Modeling and Verification of Leaders Agreement in the
Intrusion-Tolerant Enclaves Using PVS

Mohamed Layouni', Jozef Hooman?, and Sofiéne Tahar!

!Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

Email: {layouni, tahar} @ece.concordia.ca

2Computing Science Department,
University of Nijmegen, Nijmegen, The Netherlands

Email: hooman@cs.kun.nl

Technical Report

May 2003

Abstract

Enclaves is a group-oriented intrusion-tolerant protocol. Intrusion-tolerant protocols are cryp-
tographic protocols that implement fault-tolerance techniques to achieve security despite possi-
ble intrusions at some parts of the system. Among the most tedious faults to handle in security
are the so-called Byzantine faults, where insiders maliciously exhibit an arbitrary (possibly
dishonest) behavior during executions of the protocol. This class of faults poses formidable
challenges to current verification techniques and has been formally verified only in simplified
forms and under restricted fault assumptions. In this paper we present our work on the formal
verification of the Byzantine fault-tolerant Enclaves [1] protocol. We use PVS to formally
specify and prove Proper Byzantine Agreement, Agreement Termination and Integrity.

Keywords : Byzantine Fault-Tolerance, Group-Membership Protcols, Model Checking, The-
orem Proving, Secret Sharing and Provable Security.

1 Introduction

We have seen in the last decade a substantial progress in the formal verification of cryptographic
protocols. A wide variety of techniques have been developed to verify a number of key security
properties ranging from confidentiality, authentication to atomic transactions and non-repudiation
[2, 3, 4, 5]. Nevertheless, all the focus was either on two-party protocols (i.e. involving only a pair
of users) or, in the best cases, on group protocols with centralized leadership (i.e. a presumably
trusted fault-free server managing a group of users). In the present work, we are concerned with the
verification of the intrusion-tolerant Enclaves [1]: a group-membership protocol with a distributed
leadership architecture, where the authority of the traditional single server is shared among a set of
n independent elementary servers, f of which at most could fail at the same time. The protocol has
a maximum resilience of one third (i.e. f < L"T’IJ) and uses a similar algorithm to the consistent
broadcast of Bracha and Toueg [8].

The primary goal of Enclaves is to preserve an acceptable group-membership service of the
overall system despite intrusions at some of its subparts. For instance, an authorized user v who
requests to join an active group of users should be eventually accepted, despite the fact that faulty
leaders may coordinate their messages in such a way as to mislead non-faulty leaders (the majority)
into disagreement, and thus into rejecting user u.

To achieve its intrusion-tolerant capabilities, Enclaves relies on the combination of a crypto-
graphic authentication protocol, a Byzantine fault-tolerant leader agreement protocol and a secret
sharing scheme. Although we assume the underlying cryptographic primitives and fault-tolerant
components to be perfect, one cannot easily guarantee security of the whole protocol. In fact,
several protocols had been long thought to be secure until a simple attack was found (see [19] for
a survey). Therefore, the question of whether or not a protocol actually achieves its security goals
becomes paramount. To date, most of the research in protocol analysis has been devoted to finding
attacks on known, either two-party or centralized protocols. In this paper we are concerned with
the verification of a distributed multi-leader group communication protocol.

Enclaves is intended to tolerate Byzantine faults [7]. Modeling Byzantine behavior has been
always a big issue in formal verification. It arises the problem of how much power should be
given to a Byzantine fault and how general the model should be to capture the arbitrary nature
of a Byzantine fault behavior. These questions have been extensively studied [11, 12, 13] and
continue to be a center of focus. In this paper faults are only limited by cryptographic constraints.
For instance, they can arbitrarily send random messages, reset their local clocks and perform any
action without satisfying its preconditions. Faults, however, cannot decrypt a message without
having the appropriate key, or impersonate other participants by forging cryptographic signatures.
More details about our fault assumptions are discussed in Section 2.

In this paper is we discuss a formal analysis of the Byzantine fault-tolerant leaders agreement
module used of Enclaves. This module relies, to a large extent, on the timing and the coordination
of a set of distributed actions, possibly performed by faulty processes whose behavior is hard to
assess in any automatic verification tool. Therefore, we found it more convenient to proceed by
means of theorem proving. In fact, we use PVS [14] and formalize the protocol in the style of
Timed-Automata [9]. This formalism makes it easy to express timing constraints on transitions. It
also captures several useful aspects of real-time systems such as liveness, periodicity and bounded
timing delays. Using this formalism, we specified the protocol for any instance of size n, and
we proved safety and liveness properties such as Proper Agreement, Agreement Termination and
Integrity.

The remainder of this paper is organized as follows. In Section 2, we give an overview of the
Enclaves protocol architecture and goals, and we explicitly state our system model assumptions. In
Section 3, we present how we model the elementary components of the Byzantine leader agreement
module in PVS and how we build the final protocol model out of these ingredients. In Section 4,
we formulate and prove our theorems. In Section 5, we discuss some related work. Finally in
Section 6, we comment our results and state some perspectives for a future work.

2 The Enclaves Protocol

Enclaves [1] is a protocol that enables users to share information and collaborate securely through
insecure networks such as the Internet. Enclaves provides services for building and managing
groups of users. Access to a given group is granted only to sets of users who have the right creden-
tials to do so. Authorized users can dynamically and at their will join, leave, and rejoin an active

group.

The group communication service relies on a secure multicasting channel that ensures integrity
and confidentiality of group communication. All messages sent by a group member are encrypted
and delivered to all the other group members.

The group-management service consists of user authentication, access control, and group-key
distribution. Figure 1 shows the different phases of the protocol execution. Initially at time %,
user u sends requests to join the group to a set of leaders. These leaders locally authenticate v
within time interval [t1,f;]. When done, the agreement procedure starts and terminates at time
t4 by reaching a consensus as whether or not to accept user u. Finally on acceptance, user u is
provided with the current group composition, as well as the group-key. Once in the group, each
member is notified when a new user joins or a member leaves the group in such a way that all
members are in possession of a consistent image of the current group-key holders.

Join Requests

Local Authentications
2

Byzantine Agreement

Group Management and Key Distribution

S

time

Figure 1: Protocol execution

In summary, we prove that Enclaves satisfies the Proper authentication and access control re-
quirement even in the presence of f compromised leaders. The latter requirement states that only
authorized users can join the application and an authorized user cannot be prevented from joining
the application. This has been established in PVS through the Proper Agreement, Agreement Ter-
mination and Integrity theorems (Sections 3).

The description of Enclaves in [1] assumes a reliable network where messages eventually reach
their destinations within an upper bound delivery time. In this paper we make the same assump-
tions. Concerning the intruder, we adopt a standard model where an intruder fully monitors the
network, proactively augments its knowledge, and chooses to send, either adaptively or randomly,
messages on the network. The intruder, however, cannot block messages from reaching their des-
tination and is limited by cryptographic constraints. For instance, the intruder cannot decrypt mes-
sages without having the right key, or impersonating other participants by forging cryptographic
signatures. Given the above settings, we assume the cryptography layer to be perfect (i.e. mes-
sages format is well chosen to prevent any leakage of sensitive information), and we concentrate
rather on the Byzantine fault-tolerance capabilities of the protocol.

Next, we formalize the elementary components of the Byzantine leader agreement module
in PVS and we build the final protocol model out of these ingredients. Then in Section 4, we
formulate and prove our theorems.

3 Modeling Byzantine Agreement in PVS

Most group communication protocols, including Enclaves, can be modeled by an automaton whose
initial state is modified by the participants’ actions as the group mutates (e.g., new members join).
Because Enclaves depends also on time (participants timeout, timestamp group views etc.), it is
natural to model it as a timed automaton. Participants in a typical run of Enclaves consist of a set
of n leaders (f of which are faulty), a group of members, and one or more users requiring to join
the group. Similarly to the PAXOS protocol in [15], the leaders communicate with each others and
with users via a partially asynchronous network. Messages sent on this network are assumed to
be eventually delivered to their destinations within an upper bound of time, but no assumption is
made on the reception order.

In the remainder of this section, we first explain our general PVS theory about timed automata.
The parameters of this theory are used here to formalize Enclaves by defining the actions, the
states, and the preconditions and effects of each action. Finally, the resulting executions of the
protocol and fault assumptions are described.

3.1 Timed Automata

We present a general, protocol-independent, theory called TimedAutomata. Given a number of
parameters, it defines all possibles executions of the protocol as a set of Runs. A run is a sequence
of the form sy =3 s & s B s3 23 ... where the s, are states, representing a snapshot of the
system during execution and the a; are the executed actions. A particular protocol (an instance
of the timed automaton) is characterized by sets of possible States and Actions, a condition
Init on the initial state, the precondition Pre of each state, expressing which actions can be

executed, the effect Ef fect of each action, expressing the possible state changes by the action,
and a function now which gives the current time in each state. In a typical application, there is a
special delay action which models the passage of time and increases the value of now. All other
actions do not change time. In PVS, the theory and its parameters are defined as follows'.

TimedAutomata [States, Actions: TYPE+,
Init : pred[States],
Pre : [Actions -> pred[States]] ,
Effect : pred[[States, Actions, States]],
now : [States —-> nonneg_real]
] : THEORY

To define runs, let PreRuns be a record with two fields, states and events.

PreRuns : TYPE = [# states : sequence[States],
events : sequence[Actions] #]

A Run is a PreRun where the first state satisfies Init, the precondition and effect predicates of
all actions are satisfied, the current time never decreases and increases above any arbitrary bound
(avoiding Zeno-behaviour [6]). In PVS this is formalized as follows.

PreEffectOK(pr) : bool = FORALL i
Pre (events (pr) (i)) (states(pr) (i)) AND
Effect (states (pr) (i), events (pr) (i), states(pr) (i + 1))

NoTimeDecrease (pr) : bool =

FORALL i : now(states(pr) (1)) <= now(states(pr) (i + 1))
NonZeno (pr) : bool =

FORALL t : EXISTS i : t < now(states(pr) (1))

Runs : TYPE =
{ pr: PreRuns | Init(states(pr) (0)) AND PreEffectOK (pr) AND
NoTimeDecrease (pr) AND NonZeno (pr) }

3.2 Leaders Actions

To define the actions of the leaders, we first state a few preliminary definitions. Let n be the
number of leaders and let f be such that 3f + 1 < n (the maximum number of faulty leaders).
For simplicity, leaders are identified by an element of {0,1,... ,n — 1}. Users are represented by
some uninterpreted non-empty type. We model time as a non-negative real number and define three
time constants for the maximum delay of messages in the network, the maximum delay between
trypropagate actions and the maximum delay between tryaccept actions. Details below:

'For more details about the PVS theories and proofs, we refer the reader to the project web page :
http://hvg.ece.concordia.ca/Publications/TECH REP/PVS_TRO03/PVS _TR03.html

posnat
{ k : nat | 3 * k + 1 <= n }

LeaderIds : TYPE = below[n]

UserIds : TYPE+

Time : TYPE+ = nonneg_real

i VAR LeaderIds

user : VAR UserlIds

t VAR Time

MaxMessageDelay, MaxTryPropagate, MaxTryAccept : Time

The actions of the protocol are represented in PVS as a data type, which ensures, e.g., that all
actions are syntactically different.

LeaderActions [LeaderIds, UserIds, Time : TYPE] : DATATYPE
BEGIN
delay(del : Time) : delay?
announce (id : LeaderIds, user : UserIds) : announce-?
trypropagate (id : LeaderIds) : trypropagate?
tryaccept (id : LeaderIds) : tryaccept?
receive (id : LeaderIds) : receive?
crash(id : LeaderIds) : crash?
misbehave (id : LeaderIds) : misbehave?
END LeaderActions

Informally, these actions have the following meaning:

delay 1s a general action which occurs in all our timed models; it increases the current time
(now), and all other clocks that may be defined in the system, with the amount specified by
parameter del.

The announce action is used to send announcement messages of new locally authenticated
users to the other leaders of the protocol.

The trypropagate action allows a user announcement to be further spread among leaders.
This action is executed periodically, but it only changes the state of the system if enough
announcements (f + 1) have been received for the considered user and it has not already
been announced or propagated by the leader in question before.

Tryaccept is used to let leaders periodically check whether they have received enough an-
nouncements and/or propagation messages for a given user. Once this condition is satisfied,
the user is accepted to join the group.

The receive action allows a leader to receive messages. More concretely, it is used to remove
a received message from the network and to add corresponding data to the leaders local
buffers.

The crash action models the failure of a leader. After a crash, a leader may still perform all
the actions mentioned above, but in addition it may perform a misbehave action.

6

e Action misbehave models the Byzantine mode of failure and can only be performed by a
faulty (crashed) leader.

3.3 States

In order to properly capture the distributed nature of the network, it is suitable to model two kinds
of states: a local state for each leader, accessible only to the particular leader, and a global state to
represent global system behavior which includes the local state of each leader, the representation
of the network and a global notion of time.

An important part of the local state is the group views, which is a set of users in the current
group. In fact, the ultimate goal of Enclaves is to assure consistency of the group views. Moreover
we have a Boolean flag (faulty) marking the leader status as to faulty or not, some local timers
(clockp and clocka) to enforce upper bounds on the occurrence of trypropagate and
tryaccept actions, and finally a list, (received), of the leaders from which the local leader
received proposals for a given user.

Views : TYPE = setof[UserIds]

LeaderStates : TYPE =

[# view : Views,
faulty : bool,
clockp : Time, % clock for the trypropagate action
clocka : Time, % clock for the tryaccept action
received : [UserIds —> list[LeaderIds]] #]

We model Messages as quadruples containing a source, a destination, a proposed user and a
timestamp indicating an upper bound on the delivery time, i.e., the message must be received
before the tmout value.

Messages : TYPE = [# src : LeaderlIds,
tmout : Time,
proposal : Userlds,
dest : LeaderIds #1]

In the GlobalStates the network is modeled as a set of messages. Messages that are broadcast
by leaders are added to this set, with a particular time-out value, and they are eventually received,
possibly with different delays and at a different order at recipient ends. The global state also
contains the local state of each leader and a global notion of time, represented by now.

GlobalStates : TYPE = [# 1s : [LeaderIds —> LeaderStates],
now : Time,
network : setof[Messages] #]

s, s0, sl : VAR GlobalStates

Predicate Tnit expresses conditions on the initial state, requiring that all views, received sets and
the network are empty, all clocks and now are zero.

3.4 Precondition and Effect

For each action A we define its precondition, expressing when the action is enabled, and its ef-
fect. An announce action may always occur and hence has precondition t rue. Similarly for
trypropagate and tryaccept, which should occur periodically. Action receive (i) is
only allowed when there exists a message in the network with destination i. For simplicity, a
crash action is only allowed if the leader is not faulty (alternatively, we could take precondition
true). A misbehave action may only occur for faulty leaders.

Most interesting is the precondition of the delay (t) action. This action increases now and
all timers (clockp and clocka) by t. To ensure that messages are delivered before their time-
out value, we require that condition prenetwork holds in the state before a delay (t) action,
which fits our informal assumptions about network reliability.

prenetwork (s, t) : bool = FORALL msg
member (msg, network(s)) IMPLIES now(s) + t <= tmout (msg)

Similarly, there is a condition preclock which requires that all timers (clockp and clocka)
are not larger than MaxTryPropagate and MaxTryAccept, respectively. Since the t ryaccept
and trypropagate actions reset their local timers to zero, this may enforce the occurrence of
such an action before a time delay is possible.

Pre (A) (s) : bool =

CASES A OF
delay (t) : prenetwork(s,t) AND preclock(s,t),
announce (i, u) : true,
trypropagate (i) : true,
tryaccept (1) : true,
receive (1) : MessageExists(s,1i),
crash (1) : NOT faulty(ls(s) (1)),
misbehave (i) : faulty(ls(s) (1))

ENDCASES

Next we define the effect of each action, relating a state sO immediately before the action and a
state s1 immediately afterwards.

e delay (t) increments now and all local timers by t, as defined by sO+t.

e announce (i, u) adds, foreach leader j a message to the network, with source i, time-out
now (s0) +MaxMessageDelay, proposal u, and destination 7.

e trypropagate (i) resets clockp to zero and adds to the network messages, to all lead-
ers, containing proposals for each user for which at least £+1 messages have been received.

e tryaccept (i) resets clocka to zero and adds to its local view all users for which at
least n—f messages have been received.

e receive (i) removes a message with destination i from the network, say with source j
and proposal u, and adds j to the list of received leaders for u provided it is not in this list
already.

e crash (1) setsthe flag faulty of i to true.

e misbehave (1) may just reset the local timers clockp and clocka of i to zero, as ex-
pressed by ResetClock (s0,1, s1), or it may add randomly, and above all, maliciously
chosen messages to the network (as long as timeouts are not violated). A misbehaving
leader, however, cannot impersonate other protocol participants, i.e., any message sent on
the network has the identifier of its actual sender.

This leads to a predicate of the following form:

Effect (s0,A,sl) : bool =
CASES A OF
delay (t) : sl = sO0 + t,
announce (i, u) : AnnounceEffect (s0,1i,u,sl),
trypropagate (i) : PropagateEffect (s0,i,sl),
tryaccept (i) : AcceptEffect (s0,1i,s1),
receive (i) : ReceiveEffect (s0,1i,sl),
crash (i) : CrashEffect (s0,1i,sl),
misbehave (1) : ResetClock(s0,i,sl) OR SendMessage (s0,1i,sl)
ENDCASES

3.5 Protocol Runs and Fault Assumption

Runs of this timed automata model of Enclaves are obtained by importing the general timed au-
tomata theory. This leads to type Runs, with typical variable r. Let Faulty (r, 1) be a predi-
cate expressing that leader i has a state in which it is faulty. It is easy to check in PVS that once a
leader becomes faulty, it remains faulty forever. Let FaultyNumber (r) be the number of faults
in run r (it can be defined recursively in PVS). Then we postulate, by an axiom that the maximum
number of faults is f (MaxFaults : AXIOM FaultyNumber (r) <= f).

4 Formal Verification

We verify the following properties of the Intrusion-Tolerant Enclaves protocol:

e Termination: if a user u wants to join an active group and has been announced by enough
non-faulty leaders, then user v will be eventually accepted by all non-faulty leaders and
becomes a member of the group.

e Integrity: a user u that has been accepted in the group should have been announced by a
non-faulty leader earlier during the protocol execution.

e Proper Agreement: if a non-faulty leader decides to accept a user u, then all non-faulty
leaders accept user u too.

In the remainder of this section, we briefly outline proofs of the above theorems.

Theorem 1 (Termination)
For all r and u, announced by many (r, u) implies accepted by_all (r,u)

9

where

e announced by many (r, u) expresses that at least f + 1 non-faulty leaders announced
user u during run r;

e acceptedby_all (r, u) asserts that eventually all non-faulty leaders have user u in
their view during run r.

Proof

Assume announced by many (r, u), which implies that at least f+1 non-faulty leaders broad-
cast a proposal for u. Because of the reliability of the network, these messages will be eventually
delivered to their destination, and in particular to the n — f non-faulty leaders of the network.
They all receive f + 1 announcement messages for user u, enough to have u in their PropSets
and trigger the propagation procedure for all non-faulty leaders who did not participate in the
announcement phase. Now because of the network reliability, we conclude that eventually all non-
faulty leaders will receive at least n— f approvals for user u, enough to make a majority (n— f > f
asn > 3f). O

Theorem 2 (Integrity)
For all r and u, accepted by_one (r,u) implies announced by _one (r, u)

where

e accepted by_one (r,u) holds if at least one leader eventually included u in its view
during run r.

e announcedby_one (r, u) expresses that at least one non-faulty leader announced user
u during run r;

Proof

We proceed by contrapositive and use the non-impersonation property. We assume that for all
non-faulty leaders no announcement for user u has been done during run r. Now because of non-
impersonation, faulty leaders cannot send more than f different announcements. This implies that
the leaders would receive no more than f announcements for user u, which is not enough to trigger
propagation actions. This yields that u will never be in any of the non-faulty leaders PropSet,
and hence in none of the AcceptSets. As a result user u will never be accepted by any of the
non-faulty leaders. O

Theorem 3 (Proper Agreement)
For all r and u, accepted by_one (r,u) implies acceptedby_all (r,u)

Proof

acceptedby_one (r,u) implies that there exists one non-faulty leader that received at least
n— f approvals (i.e. announcements or propagation messages) for user u. Among these approvals,
at least n — 2f come from non-faulty leaders (by non-impersonation). Now because these leaders
are non-faulty, they broadcast the same approval to all the other leaders. In addition, because of
the network reliability, these messages are eventually delivered to destination. This implies that all
n — f non-faulty leaders receive eventually the above n — 2 f approvals. Since n —2f > f + 1, all

10

n — f non-faulty leaders have user u in their PropSet. Now like in the proof of Termination, the

latter implies the start of the propagation procedure, then the reception of at least n — f approvals

for user u, and finally the acceptance of u by all non-faulty leaders. O
The above proofs were conducted in PVS and required over 40 lemmas.

5 Related Work

Much work has been done to formally verify fault-tolerance in distributed protocols. Some of them
dealt with the Byzantine failure model while others remained limited to the benign form. Most of
these already adopted different kinds of automata formalisms to specify their protocols.

Castro and Liskov [11] specified their Byzantine fault-tolerant replication algorithm using the
I/O automata of Tuttle and Lynch [10]. They have manually proved their algorithm’s safety, but
not its liveness, using invariant assertions and simulation relations. This work, although similar to
our Byzantine agreement module, has never been mechanized in any theorem prover.

Kwiatkowska and Norman [12] analyzed the Asynchronous Binary Byzantine Agreement [18]
(based on a similar concept to our key management module) using a combination of mechanical
inductive proofs (for non-probabilistic properties) and finite state checks (probabilistic properties)
plus one high-level manual proof. Our approach too takes advantage of the easiness and perfor-
mance of the different earlier mentioned techniques to prove the overall Enclaves protocol.

Lynch et al. used also timed automata to model their fault-tolerant protocols PAXOS [15] and
Ensemble [20]. They assume a partially synchronous network and support only benign failures.
This bears some similarities with Enclaves verification in the sense that we assume some bounds
on timing, but unlike the work in [15, 20] we are dealing with the more subtle Byzantine kind of
failure.

In [17], Archer presented the formal verification of some distributed protocols using the Timed
Automata Modeling Environment (TAME). TAME provides a set of theory templates to specify
and prove general I/O automata. Our work can be used to extend the TAME package.

6 Conclusion and future work

Although formal verification techniques have reached a certain level of maturity, making complex
and safety critical aspects of systems relatively easy to undertake, reasoning about systems involv-
ing Byzantine faults remained always a challenging task. In this paper we present our attempt to
the formal specification and verification of the Byzantine agreement protocol used in the intrusion-
tolerant Enclaves.

We believe we have achieved a promising success in verifying a complex protocol such as the
Byzantine leaders agreement of Enclaves. Thanks to the high level of expressiveness of the Timed-
Automata formalism, as well as the rich datatype package of PVS, we have succeeded to formalize
the protocol for any instance of size n, in a way that thoroughly captures the different protocol
subtleties. We have also proved the protocol to satisfy its requirements of Termination, Integrity
and Proper Agreement under the earlier mentioned model and fault assumptions. The specification
and proofs required respectively around 1200 lines of code and 40 intermediary lemmas, most of
which are of average difficulty.

11

The current verification can be further extended by widening the Byzantine faults capabilities
and by bringing, to the scene, the joint cryptographic layers yet abstracted away. This should make
the model more complex, and might require a compositional verification of the different layers.

Acknowledgments

The formal specification and analysis of Enclaves benefited from the fruitful discussions with
Adriaan DeGroot from University of Nijmegen.

References

[1] Bruno Dutertre, Valentin Crettaz and Victoria Stavridou. Intrusion-Tolerant Enclaves. In:
Proc. IEEE International Symposium on Security and Privacy, p. 216-226, Oakland, CA.
May, 2002.

[2] Catherine Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Program-
ming, 26(2):113-131,1996.

[3] Peter Ryan and Steve Schneider. The Modelling and Analysis of Security Protocols: the CSP
Approach. Addison-Wesley, 2000.

[4] Lawrence C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal
of Computer Security, 6:85-128,1998.

[5] Giampaolo Bella and Lawrence C. Paulson. Mechanical Proofs about a Non-Repudiation
Protocol. In: Richard J. Boulton and Paul B.Jackson (editors), Theorem Proving in Higher
Order Logics (LNCS 2152): p. 91-104, 2001.

[6] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, Sergio Yovine. Symbolic Model
Checking for Real-time Systems. In: Proc. 7th. Symposium of Logics in Computer Science,
Santa-Cruz, California, 1992.

[7] Leslie Lamport, Robert Shostak and MARSHALL Pease. The Byzantine Generals Problem.
In: ACM Transactions on Programming Languages and Systems, 4 (3), p.382-401, July 1982.

[8] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In: Proceedings of the second
annual ACM symposium on Principles of distributed computing, p.12-26, August 17-19,
1983, Montreal, Quebec, Canada

[9] Rajeev Alur and David L. Dill. A Theory of Timed Automata. In Theoretical Computer Sci-
ence 126: p.183-235, 1994.

[10] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[11] Miguel Castro and Barbara Liskov. A Correctness Proof for a Practical Byzantine-Fault-
Tolerant Replication Algorithm. Technical Memo MIT/LCS/TM-590, MIT Laboratory for
Computer Science, June 1999.

12

[12] Marta Kwiatkowska and Gethin Norman. Verifying Randomized Byzantine Agreement. D.A.
Peled, M.Y. Vardi (Eds.): Formal Techniques for Networked and Distributed Systems (LNCS
2529): p. 194-209, 2002.

[13] Patrick Lincoln and John Rushby. A Formally Verified Algorithm for Interactive Consistency
under a Hybrid Fault Model. In Fault Tolerant Computing Symposium, p. 304-313, Toulouse,
France, June, 1993.

[14] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In 11th
International Conf. on Automated Deduction, (LNCS 607): p. 748-752, 1992.

[15] Roberto De Prisco, Butler W. Lampson, Nancy A.Lynch. Revisiting the PAXOS Algorithm.
In Mavronicolas, M. and Tsigas, P., editors, 11th International Workshop on Distributed Al-
gorithms, (LNCS 1320): p. 111-125, 1997.

[16] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving Invariants of I/O Au-
tomata with TAME. In Automated Software Engineering, Vol.9, p. 201-232, 2002.

[17] Myla Archer. Proving Correctness of the Basic TESLA Multicast Stream Authentication Pro-
tocol with TAME. In Workshop on Issues in the Theory of Security, Portland, OR, January
14-15, 2002.

[18] Christian Cachin, Klaus Kursawe and Victor Shoup. Random oracles in constantipole: prac-
tical asynchronous Byzantine agreement using cryptography (extended abstract). In Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributed computing, p.
123-132, Portland, Oregon, 2000.

[19] John Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature: Version 1.0.
Draft paper available at http://www-users.cs.york.ac.uk/~jac

[20] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and Proofs for Ensem-
ble Layers. In 5th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, (LNCS 1579), p. 119-133, March, 1999.

13

