Rank Theorems for Forward Secrecy in Group
Key Management Protocols

Amjad Gawanmeh and Sefie Tahar
Department of Electrical and Computer Engineering
Concordia University
1455 de Maisonneuve West,
Montreal, Quebec H3G 1M8
{amjad,tahar@ece.concordia.ca

December, 2006



Abstract

Design and verification of cryptographic protocols has been under inves-
tigation for quite sometime. However, not much attention has been paid for
the class of protocols that deals with group key management and distribu-
tion, mainly because of their dynamic characteristics. In addition, these pro-
tocols have special security properties, such as forward secrecy, that cannot
be verified using methodologies designed for normal two-parties protocols.
In this paper, we provide a set of generic formal specification requirements
for group key management and distribution protocols. This can help guiding
the proper specification of the behavior of such protocols, which is necessary
for a successful design and verification process. We define a formal model
for the protocol and establish rank theorem for forward properties based on
the above requirements. Rank theorems imply the validity of the security
property to be proved, and are deducted from a set of rank functions we de-
fine over the protocol. The above formalizations and rank theorems were
implemented using the PVS theorem prover. We illustrate our approach on
the verification of forward secrecy for the Enclaves protocol designed at SRI.

1 Introduction

Cryptographic protocols provide security services for communicating entities.
They involve a precise interaction between the entities in order to achieve the re-
quired security services, therefore, it is very important to verify that the protocol
operations are not vulnerable to attacks.

There are different kinds of environments that protocols must interoperate
with. Besides, networks handle more and more tasks in a potentially hostile envi-
ronment. Therefore, cryptographic protocols should take more responsibilities in
order to capture these new requirements. Some security properties like availabil-
ity and fairness take more important roles in some protocols like in commercial
systems. This requires that the complexity of the cryptographic protocol should
be increased. In addition, new cryptographic primitives are being adopted; for
instance, in group key management protocols of unbounded size, it is not obvious
how to reason about them with existing protocol analysis systems. This of course,
makes both verification and implementation more difficult. It also requires the
search for new modeling and verification approaches for cryptographic protocols
[10].

Distributing the group key to legitimate members is a complex problem. Al-
though re-keying a group, by sending the new group key to the old group members
encrypted with the old group key is trivial, re-keying the group after a member
leaves is far more complicated. The old key cannot be used to distribute a new
one, because the leaving member knows the old key. Therefore, a group key dis-
tributor must provide another scalable mechanism to distribute keys to the group.
So, there should be a mechanism to create secret keys and distribute them among
legitimate principals that guarantee the secrecy of these keys. Even though such

2



protocols claim forward and backward secrecy, the formal analysis and verifica-
tion of these properties have received very little attention.

The general requirements for protocols involving two or three parties are well
understood, however, the case is different with group key distribution protocols,
where the key can be distributed among a larger number of members who may join
or leave the group at arbitrary times. Therefore, security properties that are well
defined in normal two-party protocols have different meanings and different inter-
pretations in group key distribution protocols, and so they require a more precise
definition before we look at how to verify them. An example of such properties
is the secrecy property, which deals with the fact that secret data should remain
secret and not compromised. However, for group key distribution protocols, this
property has a further dimension since there are long-term secret keys, short-term
secret keys, in addition to present, future, and past keys; where a principal who
just joined the group and learned the present key should not be able to have enough
information to deduce any previous keys, or similarly a principal who just left the
group should not have enough information to deduct any future keys. Therefore,
systems designed for two-party protocols may not be able to model a group proto-
col, or its intended security properties because such tools require an abstraction to
a group of fixed size to be made before the automated analysis takes place. This
can eliminate chances of finding attacks on the protocol.

A limited effort has been done on modeling and verifying protocols that in-
volve more than two parties. In addition, there are very few trials in the open
literature that discuss the general formal requirements for reasoning about cryp-
tographic protocols, which, once developed, can be applied in the design process
of new protocols. In this paper, we propose a verification methodology for group
protocols, in which we first give a formal requirements specification for group
key distribution protocols and then discuss the verification steps based on these
requirements and dedicated rank theorems for security properties.

Our verification methodology is based on the notion of rank theorems we
present on this paper utilizing tmank functiondirst proposed Ryan and Schnei-
der [11]. We map the requirements into ranks, this map is based on a predefined
function, the rank function For this map, we have to find the appropriate rank
functions for the protocol events, traces and properties. This rank function is tai-
lored for the security property we intend to verify, forward secrecy and backward
secrecy in our case. Based on the above rank functions, we define in this paper a
set of rank theorems for forward secrecy.

The proof establishment will be mechanized in the PVS (Prototype Verifica-
tion System) theorem prover [8].Rank theorems, protocol events and traces of
executing have been embedded in PVS. We apply the implemented proof envi-
ronment on the Enclaves protocol from SRI [3] in order to verify related forward
secrecy property, we believe that verifying backward secrecy property will be sim-
ilar.

In our approach, we can consider establishing the proof at two levels of ab-
straction of the protocol: the protocol level and the encryption level. At the pro-

3



tocol level, embedding of the rank functions and rank theorems in PVS will make
the verification feasible, however, working out the proof at the encryption level,
will require the definition of probabilistic theorems in PVS which are not available

yet.

The rest of the paper is organized as follows, Section 2 provides related work
to ours. In Section 3, we present the overall verification methodology. In Section
4, we provide our formal specification requirements model for group key manage-
ment protocols, and use the definition of rank functions to establish rank theorems,
then prove the theorem for forward secrecy property. In Section 5, we describe the
details of our implementation of the formal specifications and theorems in PVS.
Section 6 illustrates our approach by verifying the forward secrecy for the case
study of the Enclaves protocol. Finally, Section 7 concludes the paper with future
work hints.

2 Related Work

In this section we discuss approaches for modeling and verification of group key
management and distribution protocols that are closely related to our work.

Syverson and Meadows [14] presented the formal requirements for authen-
tication in key distribution protocols. They tried to provide a single set of re-
quirements to specify a whole class of protocols, which can be fine-tuned for the
particular application. There were two main problems in their approach; first, the
requirements they provide was for a single property, authentication, which is sim-
ilar in different protocols, whereas other properties may have different semantics
in different classes of protocols; like secrecy property for example. Second, the
requirements are defined as a security property, whereas the definition should in-
clude the whole protocol requirements and how they can be interpreted and then
applied into a specific protocol.

Layouniet al. [5] used a combination of model checking in order to verify
authentication property, theorem proving to verify safety and liveness properties
such as proper agreement, and a Random Oracle Model to manually prove ro-
bustness and unpredictability properties. This example shows how difficult it is to
verify and analyze this class of protocols. While the authors achieved a promising
success in verifying a complex protocol such as Enclaves, they failed to achieve
A formal proof of the three components in a single formalism. The authors, how-
ever, suggest that this work can be complemented by performing the analysis of
the group key management module in PVS in order to be able to verify properties
such as forward and backward secrecy.

Meadows and Syverson [6] used the NPATRL language, a temporal require-
ment specification language for use with the NRL Protocol Analyzer, in order to
specify the Group Domain of Interpretation (GDOI) key management protocol.
In a later stage Meadowet al. [7] gave a detailed specification of the require-
ments for GDOI and provided a formal analysis of the protocol with respect to



these requirements using the NRL Protocol Analyzer. However, the problem with
this approach is that there is no general set of requirements for protocols require-
ments which can be applied on a specific protocol, or can be used for the refine-
ment of protocol specifications during the design process. In a related approach,
Denker and Millen [2] used multiset term rewriting in order to model group com-
munication protocols. They show the mechanisms used in key distribution and
provides an analysis of group protocols complexity in terms of key distribution.
This latter is useful in our case to formally define forward and backward secrecy
properties, since they show in their analysis how distributing new keys may affect
previously used ones. Archer [1] provided a mechanized correctness proof of the
basic TESLA protocol based on establishing a sequence of invariants for the pro-
tocol using the tool TAME. The model of the protocol is rather simple, and the
proof was made under a strong assumption stating that the adversary has no initial
knowledge, and can only use facts revealed by users.

In a more recent work, Pereira [9] proposed a systematic approach to analyze
protocol suites extending the Diffie-Hellman key-exchange scheme to a group set-
ting. He pointed out several unpublished attacks against the main security prop-
erties claimed in the definition of these protocols. The method provided is essen-
tially manual and applicable only on Group Diffie-Hellman (GDH) protocols. In
a similar work, Sun and Lin [13] extended the strand space theory to analyze the
dynamic security of Group Key Agreement Protocols (GKAP) and discussed the
conditions of the security retention in the dynamic cases of the protocol, this work
treats the analysis dynamic aspects of the protocol with no reasoning about the
correctness of the protocol under these dynamic events. A related work by Steel
et al. [12] model a group key protocol by posing inductive conjectures about the
trace of messages exchanged in order to investigate novel properties of the proto-
col, such as tolerance to disruption, and whether it results in an agreement on a
single key. The method, however, is applicable on limited groups of two or three
members only. Recently, Truderung [15] presents a formalism, called selecting
theories, which extends the standard non-recursive term rewriting model and al-
lows participants to compare and store arbitrary messages. This formalism can
model recursive protocols, where participants, in each protocol step, are able to
send a number of messages unbounded w.r.t. the size of the protocol. This mod-
eling cannot be applied on non—recursive protocols such as GDH or the Enclaves.

Ryan and Schneider [11] proposed the idea of rank functions for verification
of CSP (Communication Sequential Process). Dutertre and Schneider [4] used an
embedding of CSP in PVS in order to verify the authentication property of Need-
ham Shroeder public key protocol. However, the work in [11] did not present a
method that can be applied on security properties in other classes of protocols,
like group key protocols. In fact, the method, as is, may not be applied on proper-
ties such as forward and backward secrecy. Even thought rank functions was first
introduced and used by Ryan and Schneider, in this paper, we started from there in
order to precisely define a set of requirements for rank functions and then reason
about their soundness, and then suggest the new idea of using rank theorems in

5



order to extend the use of rank functions in order to verify forward and backward
secrecy properties for group key distribution protocols.

From the above account on related work, we noticed the lack of a single for-
malism to model the protocols and reason about their security properties, such
that the protocol can fit and its verification is feasible. There is no formal link
between the informal specification and the provided protocol models and their
security properties. All approaches concentrate on the trivial secrecy and authen-
tication properties. Besides, there are no trials to reason about complex features
of key distribution properties such as key hierarchies that are not easy to handle.
Also, there is no generalized verification methodology that can be instantiated to
prove the correctness of a specific protocol. Finally, there are no well defined
specification requirements, which will reduce the possibility of introducing errors
into the protocol during the design process. This justifies the need for a generic set
of formal specification requirements of group key distribution protocols, which is
discussed in the next section.

3 \Verification Methodology

Our verification methodology is based on rank theorems. We use a rank function
to map facts about the protocol into ranks, and define for every security property
a theorem that implies the validly of the property with respect to the protocol. In
following, we briefly present the steps of our verification methodology. Figure
1 provides a summary of these steps. The first step consists of providing a for-
mal model and precise definition for group protocols properties and events. This
will help eliminating the gap between the informal protocol specification and the
formal model. It will also provide a well defined protocol specification that can
be directly integrated into the verification methodology. In the second step, we
define map functions between the set of facts and the set of integers. The set
of facts include protocol events, protocol execution traces and the security prop-
erty. This mapping function will be useful in partitioning the message space and
enabling mechanized proof of security protocols properties. The main idea is to
define rank theorems that provide conditions satisfied by a given rank function in
order to conclude that the security property satisfies its protocol model, we define
for every security property a theorem that implies the validly of the property with
respect to the protocol, we show the proof of the correctness of the rank theorem.
The set of events and traces are concretely defined by the protocol. This allows
their definition at different levels of abstraction in the final step of our approach,
which is implementing the rank theorems in PVS and establishing their proof of
correctness.

After this map, we defineank theoremswhich are the set of properties and
protocol specifications modeled using the rank functions we defined. Rank theo-
rems imply the correctness of the security property it models. In order to prove
the correctness of a specific property, we need to prove that its corresponding



Informal Protocol Specifications

Formal Specifications Requirements

‘ Protocol Events ‘ ‘Security Property‘ ‘ Protocol Traces

Formal Protocol Model

Property Rank Function  Protocol
o Jleem—zl[ & |

Rank Theorems

"

PV'S Implementation

‘ Rank function ‘ ‘ Rank Theorem ‘ ‘ Traces ‘

Establishing proof in PVS

Figure 1: Verification Methodology

rank theorem is correct with respect to the protocol model. The final step is to
mechanize the proof through PVS theorem prover. For this purpose, we provide
PVS implementation for the rank theorem, events and traces of the protocol, and
then use PVS theorem proving strategies to construct the correctness of the rank
theorem.

In summary, the proposed methodology is a top-down approach, where the
property verification is achieved in the last step. In order to make sure of the
soundness of our approach, we have to show the formal link between the con-
structed rank theorem and the formal model of the property. This is carried out
by proving that the correctness of the rank theorem implies the correctness of
the security property. This way, we can argue that verifying the property at the
implementation level guarantees the correctness of the property in the model.

4 Formal Specification Requirements Model

In this section we give the specification requirement of group key management
protocols. Since there are many different approaches in the literature to design



such protocols, specially keys generation and distribution, the specification of
these protocols and their properties are informal. So we try to provide a com-
mon formal model for these specifications where most of commonly designed
protocols fit. We need these formal specification requirements for many reasons:
first, to fill the gap between the informal protocols descriptions on one hand and
the formal protocol models and their implementations on the other hand. Second,
to integrate formal analysis in the design process of cryptographic protocols and
specifically group key distribution protocols [6]. Finally, to give a better under-
standing of the verification problem and suggest a verification method based on
these requirements.

Freshnesgequirement imposes that when a principal receives a piece of in-
formation, such as keys, then this information must have been fresh and currently
valid. In this sense, freshness is similar to those that have been defined for two
parties protocolsGroup secrecghould guarantee that it is computationally infea-
sible to discover any group keforward secrecyshould guarantee that knowing
a subset of old group keys will not lead to the computation of any subsequent
group key.Backward secrecghould guarantee that knowing a contiguous subset
of group keys will not lead to the computation of a preceding group key.

Group Joiningor leavingevents are operations that result in creating a new
group with a new group key out of an existing group. Protocols should guaran-
tee that above properties remain valid when members join or leave the group. A
Group Mergegroup event is the operation where subgroups need to be merged
back into a single group, a new group key is computed and distributed to every
member of the new group, and group keys for subgroups are considered old or
preceding keys. Asroup Splitgroup event is the operation of creating two sub-
groups out of a single group, where every subgroup has an independent group
key.

In the rest of this section and throughout this paper, we will use the following
notations:

M: messages space, the set of all possible messages.

P: a honest principal who is willing to communicate.

IP: the set of knowledge of membét, P C M.

S: secret messages space, the set of all secret mesSaged[. These are the
messages we want to keep hidden from the intruder. These messages are defined
by the protocol.

I: adishonest member. We assume that the intruder is a dishonest member who is
trying to find an attack in the protocol by using his unlimited resources and com-
putational power. However, we state normal assumptions about the intruder such
as being able to encrypt or decrypt a message only if he knows the appropriate
key, the ability to block or read any message in the system.

E: the set of all events, or dynamic operations, i.e., join, leave, merge, and split.
An even is a term from the message space to the message Bpadé,— M". It
represent an action the user can perform in order to obtain extra information and
update his own set of knowledge.



T: the set of all possible traces, where a trace of events is the execution of the
sequence of these events. We wse T, such that- : E" x MP — M", m € M,

E™is a vector ofr events of typeE, andM? is a vector ofp messages of typkl,

then we writem = 7(E", M?) to say that a message is generated by the trace

7 by executing the vector of events® on the vector of messagég?. We also
write 7(E™, M?) ~» m to represent a predict formula that evaluates to true if and
only if m = 7(E™, MP).

Ko: the set of initial knowledge of the intruder, whekg C M. The initial
knowledge of the intruder is basically the information he/she can collect before
start executing the protocol events. This information is usually public and known,
so there are no secret information that is in the intruders initial set of knowledge.
In other words/m e Ml: m € S = m ¢ K,

K: the set of knowledge of the intruder, the intruder updates this knowledge by
executing events starting with the initial set of knowledgg.C K andK C M.

Gy: current group, which can be formally defined as a set of principals who share
a secret key, or information that can be used to calculate the secret key.

Gy.;: agroup that can share a secret key at future time.

Gy_;: a group that previously in time shared a secret key.

€ group membership: we define membership as folloitis; € P — P € Gy,
which means a principdp is a member of the grou@, at this time¢, if the group

key K, is in his set of principalP’s knowledgeP.

Kg,: the group session key: the key generated for the current session. Equiv-
alently, it can be the set of information that can be used to calculate the key.
I §é G, = K(gt €S

Kg, - a group session key for the grod@.; that can be generated and used
sometime in the futurd, ¢ G,;; = Kg,,, € S.

Kg, ,: a group session key that was generated and used previously inftighe.
G = K([;,t_i € S.

4.1 Secrecy

Only members of the group should have access to keys. The important issue here,
is wether we want to allow users who just joined the group to have access to pre-
viously used keys, also wether we want to allow users who just left the group to
have access to keys that will be generated henceafter. To ensure the secrecy of
old and new keys, every protocol uses a mechanism for keys generation to guar-
antee that they cannot be calculated using the current group session information
including the key itself.

In the following, we give the formal definition of group secrecy, forward se-
crecy and backward secrecy.

Definition 4.1. Group key secrecy: for any current grodp, and a dishonest
principal I who knows a set of initial knowledd&,, there is no trace € T that
he/she can execute in order to obtain the current group sessioA kgy



I¢G, = —-3reT Kg, = 7(E", MP), whereE" is a vector ofn events of
typeE and M? is a vector ofp messages of typd.

Forward secrecy requires that a session key cannot be calculated from keys and
information that are generated before this key in time. Which means that compro-
mising sessions keys does not compromise previous session keys that were estab-
lished for previous protocol runs. In order for a protocol to satisfy this property,
there should be no trace of events that can lead to generating previously used keys
by a user who was not part of the group at the time when the key was generated.
We formally model the forward secrecy requirement as follows:

Definition 4.2. Forward secrecy: for any current grou,, and a dishonest prin-
cipal I, wherel € G, (I knowsKg,), there is no tracel that he/she can execute
in order to obtain a previous group session Key, ., where0 < i < t.
IeG=-3reT: Kg,_, = 7(E", M?), wherel ¢ G,_;,and0 < i < t, E"

is a vector ofn events of typ&, and M? is a vector ofp messages of typél.

Backward secrecy requires that a session key cannot be calculated from keys
and information that are generated after this key in time. Which means that com-
promising sessions keys does not compromise keys for future sessions. The main
concern here is that a user, who decides to leave the group, should not be able to
use the information he/she learned in order to calculate keys that may be used after
he/she left. We formally model the backward secrecy requirement as follows:

Definition 4.3. Backward secrecy: for any current grop,, and a dishonest
principal I, wherel € G, (I knowsKg,), there is no tracel that he/she can
execute in order to obtain a previous group sessionikey ,, wherei > 0.
IeG,=—-3reT: Kg,,, = 7(£", M?), wherel ¢ G, andi >0

4.2 Joining and Leaving Groups

Any group key distribution protocol must handle adjustments to group secrets sub-
sequent to all membership change operations. Single member operations include
memberjoin or leave Leave occurs when a member wants to leave the group

or forced to. Join occurs when a member wants to have access to the current
group. Although protocols may impose an agreement criteria on joining and leav-
ing groups, the effect of executing the event should result in a new group setting,
in case the event is executed successfully, i.e., the member is granted access to the
group, or released from it.

Definition 4.4. A principal P joins the groupG, if P ¢ G, and there exists a
tracer < T that P can execute, wher&g, , = 7(E", M?) such thatKg,,, € P
(or P € Gyyy) andKg,,, # Kg,-

10



For this definition ofoin event, there is a time delay gfwhich should be less
than the maximum join delay imposed by the protocol.

Definition 4.5. A principal P leaves the grouf; if P € G, and there exists a
tracer € T that P can execute such th#fg, . ¢ P (or P ¢ G,y).

4.3 Merging and Splitting Groups

Merging and splitting groups are considered as multiple members operations.
Some protocols rely on distributing security management among distributed servers
rather than on one single server. This is obtained by having multiple groups. How-
ever, sometimes there is a need to merge two groups (or more) or to split a current
group into two groups. These events affect the current groups settings and result
in new settings that should maintain all the security requirements of the protocol.

A merge event occurs when two groups with two different settings execute a
trace of events that result in a new group setting, where every member of each of
the two groups is a member of a new group. Whereas a split event occurs when
one group executes a trace of events that result in two new different groups, where
every member of the current group is a member of one and only one of the new
groups.

After these events are executed successfully, groups operate normally, and
allow users to join or leave according to the previous definitions.

Definition 4.6. A groupG1, merges with groufz2,, if there is a tracer € T
that bothG1; andG2; can execute such thét;,; = G1, U G2, (which implies
thatV P € Gy, Kg,,, € P), whereKg,,, = 7(E", M?), Kg,,, # Kg, and
KGt+i 7& KG?t'

Definition 4.7. A group G, splits into groupsG1,; and G2, if there exists a
tracer € T that G, can execute such th&;, = G1,,; U G2,; andG1l,; N
G21; = ¢ whereKg, # Kgi,,, andKg, # Kga,,,-

Some events like split and merge, cannot be executed by normal group mem-
bers including the dishonest member, but by special members like group leaders.
However, a dishonest user can make use of such events when they occur, there-
fore, we assume that they can be executed by the special member upon the need
of the dishonest member. These definitions will be used in order to define rank
theorems for the properties we wish to verify.

4.4 Rank Theorems for Protocol Models

Rank functions were first introduced in [11]. For the purpose of establishing the
proof that a specific fact will not be available to the intruder, we assign a value or
rankto each fact, such that, facts that can be generated by the system have positive

11



rank, and facts that cannot be obtained by the intruder cannot have positive rank.
The ranks that are assigned will depend on the protocol itself, the initial knowl-
edge and capabilities of the intruder, and the property we want to prove. In our
approach, we will define suitable rank functions that map our formal specification
requirements in order to obtain rank theorems, which are the properties we wish
to prove, the key result that provides the basis of the verification approach is that
if these requirements all hold, then no fact of non-positive rank can be generated
by the system. Which means that these facts cannot be leaked to dishonest users.
The definition of the rank function is as follows:

Definition 4.8. (Rank Function) A rank functiomis a map functiop : M — Z
which maps the set of all messages into integers.

The rank function should obey specific rules in order to be sound. First there
are no negative ranks generated by the systémge M, p(m) >= 0. In order
to ensure that facts and signals of positive rank can be generated, it is necessary
to verify that each participant cannot introduce anything of non-positive rank to
the system. In other words, intruder initial knowledge must be of positive rank,
and only facts of positive ranks can be generated from sets of facts of positive
rank, vm € Ky, p(m) > 0. All messages that are supposed to be secret and
unknown to the intruder are mapped to zero rank, € S, p(m) = 0. When
executing an event, the rank of the generated message is a bounded function of
the rank of the parameters of the event. For instance, foetioceyptevent, we
definep as follows, ifm2 = encrypt(m1, key) thenp(m2) = p(m1) + 1, where
m1,m2, andkey € M. Similarly, we define for thedecryptevent as follows: if
m2 = decrypt(ml, key) thenp(m2) = p(m1) — 1.

All previous maps define facts about the protocol in general and maps them
into integer values. However, for a specific protocol, the rank function may be
a little bit different depending on the nature of the protocol. In addition, we can
define similar rank functions for all properties we defined in the previous section.

We define a property for a given group protocdl. This property states that
a dishonest usef cannot execute a trace Tin order to discover a secret &)
and is formally modeled as follows:

¢p=V1 €T, 7(E", M?)~ m = m ¢S.

If this property is correct for the protoc@ then we can writés | ¢.

This is a general secrecy property that will be used to define and proof the rank
theorem. The target security property to be verified, i.e., forward secrecy, will be
concretely defined later in this section. Now, we define and prove a general rank
theorem for this property as follows:

Theorem. Rank Theorerim € K, p(m) > 0 = G; = ¢, wherem = 7(E™, MP)
andr € T

This means that for all traces € T, a dishonest principal can execute
on a group protocolz;. We say that the protocol satisfies a security property

12



G, E ¢, if the protocol can maintain a positive rank for the messages that can be
generated by the intruder.

Proof. We assume there exists € K such thap(m) = 0, and we show that the
propertyo is invalid.

p(m) =0=m € S; Sis aclosed set, only messagesihave rank zero.

m € Kandm ¢ Ko = 37 € T : m = 7(E", M?), therefore,

T(E™, MP?) ~» m is valid. Then we can write

dr e T:7(E™ MP)~ m = p(m) =0, and so

IreT:7(E™ MP?)~ m = m € S, this means

p(m) =0 = —¢, and so

p(m) =0= G [~ ¢

O

Now we define our forward secrecy property,based on the formal specifi-
cations model presented previously as follows:
p=VYmeS,1e€G, = -IreT:7(E",MP)~m

We use the above general theorem in order to define a rank theorem for the
forward secrecy property (and similarly for backward secrecy). However, we
should define the rank functigr, that maps the set of all messages to the appro-
priate ranksp,, is defined as follows, wheté € Z : t + 7 >= 0 andt — i >= 0.

pep(m) =
0, ifmeSV m=Kg,_,
1, ifmeKy VvV m=Kg V
(m:K@,W A\ [EGt_i)

This means that for the validity of forward secrecy, we give the rank zero to
all the messages in the set of secret messageach as secrets shared between
users and servers, and all the groups keys that were generated before the current
group key. However, for the keys generated after the assumed dishonest used
joined the group are mapped to a positive rank because they are in his initial set
of knowledge.

Now we can write the above theorem for forward secrecy property as follows

Theorem. Rank Theorem for Forward Secrecy Propertyn € K, p,(m) >
0= G; | ¢, wherem = 7(E™, MP)andT € T

Similarly, we define a rank function and then a theorem for backward secrecy
property as follows:

py(m) =
0, ifmeSV m=Kg,,
1, ifmeKyVm=Kg V
(m:K@H N IEGt,Z’)

13



Similarly, for the validity of backward secrecy, we give the rank zero to all the
secret messages and all the groups keys that are generated after the current group
key. For these keys generated before the assumed dishonest used leave the group
are mapped to a positive rank because they are in his initial set of knowledge.

Theorem. Rank Theorem for Backward Secrecy Propeity: € K, p,(m) >
0= G; = ¢, wherem = 7(E™, MP)andT € T

One of the advantages of introducing such theorems, is that, first, it is protocol
independent, which means that we can apply it on different protocols as well as on
the same protocols at different levels of abstraction. Second, it is implementation
independent, which gives more freedom to verification tool choice without any
modification on the previous steps of our methodology.

5 PVS Implementation

The last step of our methodology is to mechanize the proof of the rank theorem
using a verification tool, for this purpose we choose the PVS theorem prover.
Our model in the PVS includes an embedding of the formal requirements that we
defined for the events and traces of execution, the rank functions and the rank the-
orem of the security property. Then we prove in PVS that the rank theorem main-
tains a positive rank, which implies the correctness of the property with respect
to the protocol. In addition, we need to consider timing since security properties
we deal with are time dependent (such as forward and backward secrecy), and
protocols messages may contain time-stamps as part of the message.

In our implementation, we first formalized the general requirement, rank func-
tion and its lemmas, and the rank theorem. First we show the type declarations we
used for our model, this includes the types of messages, events, key, a subtype of
messages, and users, traces, and groups. Actually, the type message is defined as
a record that contains all the components of messages such as source of message,
intended destination of message, key used for encryption, and nonces.

MESSAGE : TYPE

EVENT : TYPE = MESSAGE, MESSAGE -> MESSAGE
KEY : TYPE FROM MESSAGE

USER : TYPE

TRACE : TYPE = set[EVENT]

GROUP : TYPE

Then we define the sets of messages we use in our model, including the set of
all messages, secret messages, events, traces, intruders initial knowledge, intrud-
ers updated knowledge.

14



allmsgs: VAR set[MESSAGE]
allEvents: VAR set[EVENT]
secretKey: VAR set[KEY]
traces: VAR set[TRACE]
allEvents: VAR set[EVENT]
intlnitKnldg : setfMESSAGE]
intkKnldg : setfMESSAGE]

We define a number of variables for the users of the protocol, including nor-
mal users, and leaders, in addition to the intruder. In our model, we abstract the
network since it has no effect based on the assumptions made about the intruder.

| : VAR USER
U : array[n_users] of USER
L : array[n_leaders] of LEADER

Then we defined the prototypes for the events protocols can execute, this in-
cludes the normal events, like send, receive, encrypt, and decrypts, in addition to
the dynamic events such as join, leave, merge split. These events of the proto-
col are represented in PVS as a data type in order to be sure that all actions are
syntactically different.

Event : DATATYPE
BEGIN
send(msg_send, m_recv: USER,
s_msg: MESSAGE): send?
recv(m_recv, m_send: USER,
r_msg: MESSAGE) : recv?
join(user: USER, group : GROUP) : join?
leave(user: USER, group : GROUP) :leave?
merge(x_group, y_group : GROUP): merge?
split(group: GROUP) : split?
END event

In order to define the rank function for forward secrecy property we use the
predicateinSet which tells if a given message belongs to a specific set of mes-
sages. This predicate is defined as follows:

Now we can define the rank function for forward secrecy property that initial-
izes every message in the intruders initial set of knowledge and all the messages in
the set of secret messages, this definition represents the initialization of the ranks
of the messages in the initial state of the protocol, when executing the protocol,

15



inSet: [setIMESSAGE], MESSAGE -> bool] =
(LAMBDA (p: setMESSAGE], m: MESSAGE): p(m)

every new generated message will have a specific rank thats calculated depending
on the events executed.

rank(msg:MESSAGE) : NAT =
IF msg = id THEN 1
ELSEIF msg = nonce THEN 1
ELSEIF inSet(secretkey,m) THEN 0
ELSEIF inSet(intinitKnldg,m) = THEN 1
ENDIF

Next, we show how we update ranks of newly generated messages from events
in PVS as follows:

updateRank(event,m1,m2, key, ul,u2) : nat =
CASES event OF
concat(ml,m2) : MIN(rank(m1),rank(m2)
encr(m1,key) : rank(m1)+1
decr(m1,key) : rank(m1)-1
send(ul,u2,ml) : rank(ml)
recv(ul,u2,ml) : rank(mil)

ENDCASES

At this stage, we need lemmas for the rank functions consistency. Since rank
functions should meet specific requirements in order to be consistent and guaran-
tee the correctness of the rank theorem, we state lemmas that ensure the correct-
ness of the rank function. The first lemma states that there are no negative ranks
generated by the system for any message.

BEGIN
ml: VAR MESSAGE
non_neg_rank: LEMMA
FORALL ml: rank(ml) >= 0
END

The second lemma states that when executing an event, the rank of the gener-
ated message is bounded by the rank of the message(s) used by the event, in other

16



words, the rank of the new message maintains the same value of the rank of the
previous message, incremented by one, or decremented by one.

BEGIN
ml: VAR MESSAGE
m2: VAR MESSAGE
el: VAR EVENT

bounded_rank: LEMMA
ml = el(m2) IMPLIES

rho(ml) = rank(m2) OR

rho(ml) = rank(m2) + 1 OR

rho(ml) = rank(m2) - 1
END

The last lemma states that if applying two evens in sequence will result in the
original message (i.e., inverse events), then the rank of the message after applying
these two events should remain the same. These lemmas are necessary to guaran-
tee that when a zero rank is generated, it is actually generated by executing a trace
of events in the protocol, not by an inappropriate map or inconsistency in the rank
function definition.

BEGIN
ml: VAR MESSAGE
m2: VAR MESSAGE
el: VAR EVENT
e2: VAR EVENT

inverse_event: LEMMA
ml = el(m2) AND m3 = e2(m2) AND ml1 = m3
IMPLIES rank(m1) = rank(m3)
END

At this point we encoded our forward secrecy property and our rank theorem
for this property in PVS as follows:

This is the basic lemma we proof based on previous definition. Thmset
tkKnldg is updated by the intruder, and for ever update we calculate the new rank
as shown above. So the proof means that the intruder who executes any of the
above defined events for the protocol cannot obtain a message with rank zero.

17



forward_secrecy : THEORY
BEGIN

msg : VAR MESSAGE
fwd_secrecy_property: LEMMA
FORALL msg: inSet(intKnldg,msg)
IMPLIES rank(msg) > 0

END forward_secrecy

6 Application: Enclaves Protocol

Enclaves [3] is a protocol that enables users to share information and collaborate
securely through insecure networks such as the Internet and provides services for
building and managing groups of users. Authorized users can dynamically, and
at their will, join, leave, and rejoin an active group. The group communication
service relies on a secure multicasting channel that ensures integrity and confi-
dentiality of group communication. The group-management service consists of
user authentication, access control, and group-key distribution. We apply our ap-
proach on this protocol and show the correctness of its forward secrecy property.

A user who is willing to join the group sends requests to a set of leaders. The
leaders locally authenticate the user, and establish an agreement protocol among
them, as whether or not to accept the user. Upon acceptance, the user is provided
with the current group composition, as well as information to construct the group-
key. Each member is notified when a new user joins or a member leaves the group
in such a way that all members are in possession of a consistent image of the
current group-key holders.

In our PVS model of the protocol we made some assumptions about the proto-
col, including abstracting the hash functions and the mathematical computations
in secret key calculation. We also assumed that the group member can compute
the secret key only if he/she has all the necessary secret shares from group leaders,
this fact is imposed by the group key management of the protocol.

Concerning the dishonest user, we assumed, they can monitor the network
and chooses to send messages on the network, either randomly or at their choice.
However, they cannot block messages from reaching their destination. Finally, we
assumed they are limited by cryptographic constraints. For instance, they cannot
decrypt messages without having the key, or impersonate other participants by
forging cryptographic signatures.

The implementation was applied on the forward secrecy property, following
the same steps, backward secrecy property can verified following the same step.

We formalized the protocol events in PVS, utilizing previous implementations
by [5] and [3], including all the operations that can be executed on the group. In
following, we show parts of the PVS implementation, which consists of a number

18



of steps executed by users and leaders, a number of reachable states, and a number
of PVS propositions to reason about certain activities, like group key possession

and joined status.
The first part of the code shows the concrete variables declarations that are

used in the implementation of the PVS protocol model.

BEGIN

B, C: VAR USER

: VAR GROUP

VAR set[MESSAGE]

VAR TRACE

NI, NI1, NI2, Na, Nal, Na2 : VAR NONCE
Ka, Kg, Kb: VAR KEY

al, g2, g3: VAR global

el, e2: VAR EVENT

nl, n2: VAR nat

: o>

3(DQ_XZ—|([)

Then we show partially the execution steps of the protocol taken by a user and
leaders in order to complete the protocol.

step_01(q): bool =
g‘users(A0) = NotConnected and
g‘leader(A0) = NotConnected

step_02(q): bool =
EXISTS Na:
g‘users(AQ) = WaitingForKey(Na) &
g‘leader(AO0) = NotConnected &
(FORALL K, N: not PartsTrace(q)
(Encr(Shr(AO),Leader ++A0 ++Na ++N ++K)))

step_03(q): bool =
EXISTS Na, NI, Ka:
g‘users(A0) = WaitingForKey(Na) &
g‘'leader(A0) = WaitingForKeyAck(NI, Ka) &
(FORALL K, N: PartsTrace(q)(Encr(Shr(A0),
Leader ++A0 ++Na ++N ++K))=> N=NI & K=Ka)
& (FORALL N: not PartsTrace(q)
(Encr(Ka, A0 ++ Leader ++ NI ++ N))) &
not PartsTrace(q)(Encr(Ka, A0 ++ Leader))

Next, we define, as lemmas, the reachable states in the protocol, where, for
every one, there is a set of conditions to be satisfied.

19



tran_01: LEMMA
Reachable(step_00, T)
(gl) AND step_01(gl) AND T(G)(gql, e, g2)
IMPLIES step_01(g2) OR step_02(g2)
OR step_12(g2)
tran_02: LEMMA
Reachable(step_00, T)
(gl) AND step_02(gl) AND T(G)(gql, e, g2)
IMPLIES step_02(g2) OR step_03(g2)
OR step_013(g2)
tran_03: LEMMA
Reachable(step_00, T)
(gl) AND step_03(gl) AND T(G)(gql, e, g2)
IMPLIES step _03(g2) OR step_04(g2)

Then we define a preposition to show the possession of a key by a specific
user after executing the necessary steps. Then we describe the connection state
of a user which indicates that a user is connected to the group if all the given
premises are valid.

session_key prop: PROPOSITION
Reachable(step_00, T)(q) AND q‘users(AQ) =
Joined(N, Ka) => InUse(Ka, Q)

joined_states: PROPOSITION
Reachable(step_00, T)(q) AND
Joined?(q‘users(A0)) AND
Joined?(q'leader(A0))
=> EXISTS Ka, Na: g'users(AQ) =
Joined(Na, Ka) AND (‘leader(A0) =
Joined(Na, Ka)
END

At this point, we can instantiate our rank theorem for forward secrecy and
check its validity in the protocol states. Which means that starting from the first
step in the protocol, the initial step, and applying any trace, the rank of any mes-
sage in the intruder knowledge is positive.

The rich datatype package of PVS helped in formalizing the protocol require-
ment in a way that thoroughly captures the many subtleties on which the correct-
ness arguments of the protocol rely. The PVS theorem prover provides a collection
of powerful primitive inference procedures to help derive theorems, where higher
level proof strategies can be defined in order to make the verification process eas-
ier. This will allow similar theorems to be proved efficiently, therefore; we can
apply our methodology on similar properties like backward secrecy property effi-

20



forward_secrecy : THEORY
BEGIN
fwd_secrecy: LEMMA
FORALL m,T: Reachable(step_00, T)
AND inSet(intknldg,m)
IMPLIES rank(m) > 0O
END forward_secrecy

ciently and directly.

Using the features of PVS, we have proved that the protocol satisfies forward
secrecy property by establishing the correctness of the above th&aekiThe-
orem for Forward Secrecy Property PVS. The proof was conducted using the
set of general requirements in addition to the protocol model, the implementa-
tion of the proof took around three months. The proof of backward secrecy can
be derived in a similar fashion, and in much shorter time, given the experience
gained.

7 Conclusion

The correctness of security protocols in communication systems remains a great
challenge because of the sensitivity of the services provided. Formal methods
have been used widely in this area to perform protocol verification and analysis.
In this paper, we illustrated the need for a verification methodology for a class
of protocols that deal with group key distribution. While most approaches in the
literature target cryptographic properties for two parties protocols, the verification
problem for group key distribution protocols is more challenging. In addition,
properties like forward and backward secrecy are very important for protocols
correctness, however, they did not receive enough attention in the literature.

The contributions of this paper are providing a set of generic requirements
of group key distribution protocols, then establishing their formal specifications,
then define a formal model for this class of protocols, and finally present rank
theorems to enable and mechanize the verification procedure of this class of pro-
tocols. We used rank functions that map the formal protocol model into a set of
integers in order to obtain rank theorems, then embedded our model, rank func-
tions and rank theorems in PVS in order to construct the proof of the claimed
security properties. We proof the soundness of our approach by proving the cor-
rectness of the rank theorem. We applied our methodology on the Enclaves group
management protocol, and constructed the correctness proof for forward secrecy
property for this protocol in PVS. We are in the process of extending the above
approach to prove other properties for the same protocol, like backward secrecy
property, authentication, and group consistency under protocol events.

As immediate future work, we plan to elaborate on the requirements for the

21



rank function choice, and then establish the correctness of rank functions by show-
ing their coherence and consistency. Once we prove that a rank function with
specific requirements is correct, we can set the rules to choose appropriate rank
functions for the security property of interest. This will provide us with a formal
link between the rank theorems and the security property under investigation.

We also plan to extend this approach by using an inference system along with
the rank functions. The inference system represents the events of the protocols.
Another open issue is applying abstraction techniques on the rank function to
be able to model them in first order logic, and therefore, make model checking
approach feasible.

References

[1] M. Archer. Proving Correctness of the Basic TESLA Multicast Stream Au-
thentication Protocol with TAME. I'Workshop on Issues in the Theory of
Security January 2002.

[2] G. Denker and J. Millen. Modeling Group Communication Protocols us-
ing Multiset Term Rewriting. IrRewriting Logic and its Applicationwol-
ume 71 ofElectronic Notes in Theoretical Computer Sciertelsevier, 2002.

[3] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-Tolerant Enclaves. In
Proc. IEEE International Symposium on Security and Privg@ages 216—
224, May 2002.

[4] B. Dutertre and S. Schneider. Using a PVS Embedding of CSP to Verify
Authentication Protocols. Ifheorem Proving in Higher Order Logicsol-
ume 1275 ol ecture Notes in Computer Scienpages 121-136. Springer-
Verlag, 1997.

[5] M. Layouni, J. Hooman, and S. Tahar. On the Correctness of an Intrusion-
Tolerant Group Communication Protocol. Qorrect Hardware Design and
Verification Methodsvolume 2860 of_ecture Notes in Computer Science
pages 231-246. Springer-Verlag, 2003.

[6] C. Meadows and P. Syverson. Formalizing GDOI Group Key Management
Requirements in NPATRL. IfProc. ACM Conference on Computer and
Communications Securijtpages 235—-244, November 2001.

[7] C.Meadows, P. Syverson, and I. Cervesato. Formal Specification and Analy-
sis of the Group Domain of Interpretation Protocol using NPATRL and the
NRL Protocol Analyzer. Journal of Computer Securityl2(6):893-932,
2004.

22



[8] S.Owre, J.M. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-
tem. InAutomated Deductigrvolume 607 ofLecture Notes in Computer
Sciencepages 748-752. Springer Verlag, 1992.

[9] O. Pereira and J. Quisquater. Some Attacks upon Authenticated Group Key
Agreement Protocolslournal of Computer Securityt1(4):555-580, 2004.

[10] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient Authentication and
Signing of Multicast Streams over Lossy ChannelsPtac. IEEE Sympo-
sium on Security and Prvacypages 56—73, Washington, DC, USA, May
2000.

[11] P. Ryan and S. Schneiddihe Modelling and Analysis of Security Protocols:
The CSP ApproachAddison-Wesley, 2001.

[12] G. Steel, A. Bundy, and M. Maidl. Attacking a Protocol for Group Key
Agreement by Refuting Incorrect Inductive ConjecturesAliitomated Rea-
soning volume 3097 ot.ecture Notes in Computer Scienpages 137-151.
Springer-Verlag, 2004.

[13] H. Sun and D. Lin. Dynamic Security Analysis of Group Key Agreement
Protocol. IEEE Transactions on Communicatiobh52(2):134 — 137, April
2005.

[14] P. Syverson and C. Meadows. Formal Requirements for Key Distribution
Protocols. IEUROCRY P Tvolume 950 of_ecture Notes in Computer Sci-
ence pages 320-331. Springer-Verlag, 1995.

[15] T. Truderung. Selecting Theories and Recursive Protocol€olmcurrency
Theory volume 3653 of_ecture Notes in Computer Scienpages 217-232.
Springer-Verlag, 2005.

23



