Model Checking of the RCMP-800 Input FIFO

Jianping Lu and Sofiene Tahar

Concordia University, ECE Dept., Montreal, Quebec, H3G 1M8 Canada
{jianping, tahar}@ece.concordia.ca

Technical Report

February 2002

Abstractln this paper we display several practical approaches adopted for the formal
verification of an industrial case study using model checking. The device under investiga-
tion is the Routing Control, Monitoring and Policing 800 Mbps (RCMP-800), a product
from PMC-Sierra, Inc. RCMP-800 is an integrated circuit that implements ATM (Asyn-
chronous Transfer Mode) layer functions including fault and performance monitoring,
header translation and cell rate policing. In particular, we present our experience on
model checking of the input FIFO of RCMP-800 using the VIS tool. We successfully estab-
lished the environments and verified a number of relevant properties in the input process
module of RCMP-800, which led to the discovery of a few errors.

1. Introduction

With the increasing reliance of digital systems, design errors can cause serious failures,
resulting in the loss of time, money, and long design cycle. Large amounts of effort are
required to correct the error, especially when the error is discovered late in the design pro-
cess. For these reasons, we need approaches that enable us to discover errors and validate
designs as early as possible. Conventionally, simulation has been the main debugging
techniqgue. However, due to the increasing complexity of digital systems, it is becoming
impossible to simulate large designs adequately. Therefore, there has been a recent surge
of interest in formal verification [5].

One very successful formal verification approach is model checking [5] which enables to
check a design model against temporal logic properties. Model checking is an automatic
technique for verifying finite-state reactive systems, such as sequential circuit designs and
communication protocols. Specifications are expressed in a propositional temporal logic,
and the reactive system is modeled as a state-transition graph. An efficient search proce-
dure is used to determine automatically if the specifications are satisfied by the state-tran-
sition graph. While some approaches such as symbolic representations have greatly
increased the size of the system that can be verified, most realistic systems are still too
large to be handled.

In this paper we present our experience on model checking of the input FIFO of RCMP-
800 using the Verification Interacting with Synthesis (VIS) tool [1]. The RCMP-800
(Routing Control, Monitoring and Policing 800 Mbps [8]), a product from PMC-Sierra,
Inc., is an integrated circuit that implements ATM (Asynchronous Transfer Mode) [2][3]

layer functions including fault and performance monitoring, header translation and cell
rate policing). We wrote the RTL (Register Transfer Level) description of the input FIFO

in Verilog. Since, the input FIFO has 128 x 16 bit memory which could contain 4 ATM
cells, its verification could not be handled by VIS. Therefore, we abstracted away the
memory to concentrate on the functionality of the control circuitry, which is usually the
critical part in the verification. We then established an environment for the input FIFO,
which gives the inputs as random variables and defines registers as a default value. There-
after, we defined a set of safety and liveness properties, which we verified against the Ver-
ilog model. While most properties could be verified with no problems, some yielded a
state space explosion. We hence applied a number of further abstraction and reduction
techniques [6] to reduce the state space. This enabled us to verify all properties with a rea-
sonable CPU time. We have been able to find a few bugs in the design, which were not
caught during the simulation. Our experience demonstrates the applicability of formal ver-
ification for a commercial digital design.

The rest od the paper is organized as follows. In Section 2, we introduce the RCMP-800
device in detail. In Section 3, we describe the behavior of the RCMP-800 Input FIFO. In
Section 4, we present the verification environment and the set of properties we verified. In
Section 5, we display our experimental results and point to a few design errors detected.
Finally, in Section 6, we conclude the paper.

2. The RCMP-800

2.1. Function of RCMP-800

The Routing Control, Monitoring and Policing 800 Mbps (RCMP-800) device is an inte-
grated circuit that implements ATM layer functions including fault and performance mon-
itoring, header translation and cell rate policing. The RCMP-800 is intended to be situated
between a switch core and the physical layer devices in the ingress direction. It supports a

sustained aggregate throughput of 1.42 & déll/s. The RCMP-800 uses external SRAM

to store per-VPI/VCI (Virtual Path Identifier/Virtual Channel Identifier) [3][4] data struc-
tures. The device is capable of supporting up to 65536 connections. The input cell inter-
face can be connected to up to 32 physical layer devices through a SCI-PHY [9]
compatible bus. The 53 byte ATM cell is encapsulated in a data structure which can con-
tain pre-pended or post-pended routing information. Received cells are buffered in a four
cell deep FIFO. All physical layer and unassigned cells are discarded. For the remaining
cells, a subset of ATM header and appended bits is used as a search key to find the VC
(Virtual Channel) Table Record for the virtual translation. If a connection is not provi-
sioned and the search terminates unsuccessfully, the cell is discarded and a count of
invalid cells is incremented. If the search is successful, subsequent processing of the cell is
dependent on contents of the cell and configuration fields in the VC Table Record.

The RCMP-800 performs header translation if configured. The ATM header is replaced by
the contents of the fields of the VC Table Record for the connection. The VCI contents are
passed through transparently for VPCs (Virtual Path Channels). Appended bytes can be
replaced, added or removed. If the RCMP-800 is the end point for an F4 or F5 OAM
stream, the OAM (Operation Administration and Maintenance) [3] cells are dropped and
processed. If the RCMP-800 is not the end point, the OAM cells are passed to the Output
Cell Interface with an optional copy passed to the Microprocessor Cell Buffer for external
processing. Continually check cells can be generated if no user cells have been received in
the latest 1.5 +/- 0.5 or 2.5 +/- 0.5 (default) seconds.

Cell rate policing is supported through two instances of the Generic Cell Rate Algorithm
(GCRA) for each connection. Each cell that violates the traffic contract can be tagged
(CLP (Cell Loss Priority) [3] bit set high) or discarded. To offer more flexibility, each
GCRA instance can be programmed to police any combination of user cells, OAM cells,
Resource Management (RM), high priority cells or low priority cells.

The RCMP-800 supports multicasting. A single received cell can result in an arbitrary
number of cells presented on the Output Cell Interface, each with its own unique VPI/VCI
value and appended bytes. The ATM cell payload is duplicated without modification.

The Output Cell Interface can be connected to the switch core through an extended cell
format SCI-PHY compatible bus. Cells are stored in a four cell deep FIFO until the down-
stream devices are ready to accept them. The details of how cells are handled in this FIFO
depends on the particular application of the RCMP-800.

The Microprocessor Interface is provided for device configuration, control and monitoring
by an external microprocessor. This interface provides access to the external SRAM
(Static RAM) of the data structure, configuration of individual connections and monitor-
ing of the connections. The Microprocessor Cell Buffer gives access to the cell stream,
either directly by a DMA (Direct Memory Access) controller. Programmed cell types can
be routed to a microprocessor readable 16 cell FIFO. The microprocessor can send cells
over the Output Cell Interface.

To External RAM

g S5 m
m [sa 7} I
3s528 2 2 ’ 828 825
a8 cs @ < 200 25
Y A
i N tt Ly . 4
R ’
Test Microprocessor
A RAM Cell RAM
;cess Address Processor Arbitration
ort L 0okup ato
A A
SYSCLK ‘ 9 ODAT[15:0]
IDAT[15:0] » OPRTY[1;0]
IPRTY[1:0] 0SsoC
ISOC OFCLK
IFCLK OCA
A
IAVALID/ICA[4] T L > Output ORDENB
IADDRI[4:3)/ICA[3:2] E‘I,p:“o‘ FIFO OBUSS
ICA[1
IADDR[2:0)/ {1 OTSEN
IWRENBI[4:2]
IWRENB[1]
IPOLL
IBUS8 »
[Ty
All Blocks]
v £ O
_ EE
. " Micro T 2
5 ONESEC]] Microprocessor D] Cell >0
(7}
S Intertace Buffer &g
D & - O
> Q
i FTITTIL] T 9g
< = — 0 m o m O =
=3 e 4a 2 3REE <
9] =]
5 R 5
[a)

Figure 1. tructure of the RCMP-800

2.2. Structure of RCMP-800

The structure of the chip is shown in Figure 3. It consists of an input FIFO, output FIFO,
Microprocessor Interface, Micro Cell buffer, Cell Processor, Microprocessor RAM arbi-
tration, External RAM address Look up and JTAG (Joint Test Action Group standard) Test
access port. Both Input and Output FIFO are four cell depth FIFO. The basic function of
the input FIFO is to receive the data cells into the RCMP, and that of the output FIFO is to
transmit the data cells to the fabric. ATM cells are transferred to Micro Cell buffer from
the input FIFO, and the microprocessor will read the ATM cells in the Micro Cell, and
checks the cell types, cell header, VCI/VPI and Cl (Connection Identifier). Depending on
that information, the microprocessor looks for the VC table, and determines the pre-pend
and post-pend bytes, or tags CLP bit or discards the cell if GCRA is violated, or inserts
RM or OAM cell which will be written in Micro Cell Buffer. Cell Processor and Micro-
processor RAM arbitration, External RAM address look-up are used to look up VC rout-
ing table, so this part involves both hardware and software. We are interested in the input
and output FIFOs of the RCMP-800 hardware. The whole chip verification which involves
hardware and software verification is not possible for model checking due to the limitation
of current tools. However, model checking can be used to verify an individual block of the
RCMP-800, here we use the input FIFO as an example.

3. SBehavior of RCMP-800 Input FIFO

3.1. Interface of RCMP-800 Input FIFO

Cells received on the extended cell format SCI-PHY compatible Input Cell Interface are
buffered in a 4 cell deep FIFO. The input buffer provides for the separation of internal tim-
ing from asynchronous external devices. The SCI-PHY cell interface operates at clock
rates up to 52 MHz and supports 16 bit and 8 bit wide data structures with programmable
lengths. The 16 bit data structure contains 26 (HEC and User Defined Field excluded) or
27 words allocated to carry an ATM cell and up to 5 appended words. The 8 bit data struc-
ture contains a 52 bytes (HEC excluded) or 53 bytes ATM cell and up to 10 appended
bytes. The start of the data structure is indicated by the ISOC input. The data bus is pro-
tected by the IPRTY[1:0] inputs. The parity can be configured to be odd or even. Each par-
ity input can cover a byte or IPTY[1] can cover all the sixteen bits data inputs.

The input FIFO filters cells both unassigned and reserved for the use of the Physical Layer.
Unassigned cells are identified by an all zero VPI/VCI value and CLP=0. They are filtered
without notification. Physical layer cells are identified by an all zero VPI/VCI value and
CLP = 1. They are filtered with a resulting maskable interrupt indication and a Physical
Layer cell count increment. By default, the cell coding is assumed to be for a Network-
Network interface (NNI); therefore the VPI is taken to be twelve bits. If one of the PHY
links is a User-Network Interface (UNI) and the GFC field is non-zero, the cell will be fil-
tered by the Input Cell Interface (UNI) and the GFC field is non-zero, the cell will not be
filtered by the input Cell Interface, but will be discarded by the VC Identification circuit.
As an option, all cells can be interpreted as UNI cells.

The RCMP-800 is a bus master and services the PHY devices as one of two ways: direct
status arbitration or address line polling. For direct status arbitration, the RCMP-800 mon-
itors cell available signaldCA[4:1]) from up to four physical (PHY) layer devices and
generates write enableS(RENB[4:1) in response. For address line pollinGA[1] and
IWRENBI[1] are shared between up to 32 PHY devices and sigi#ddOR[4:0] and
IAVALID are used to address the latter individually. The RCMP-800 performs round-robin
polling of the PHY devices to determine which have available cells. The RCMP-800 will

read an entire cell from one PHY device before accessing the next PHY device. No fixed
cell slots exist, but instead the RCMP-800 maximizes throughput by servicing a PHY
device as soon as the bus is free and PHY device’s cell available signal is asserted.

3.2. Functions of RCMP Input FIFO

The main functions of the input FIFO are the following:

1. Storing ATM cells in the input FIFO. There are three counters: read counter, write

counter and FIFO counter. Read counter and write counter are used to control the read

and write of the FIFO, and FIFO counter indicates the depth of the FIFO.

Checking parity for the input data, and the parity check result is stored in the register.

Discarding the unsigned cells.

Discarding physical layer OAM cell with a notification

Implementing two modes of the PHY devices services:

* One is direct status arbitration. Only four physical devices are on the transceiver
board, and each physical device has an individG& (Input Cell Available) and
IWREN(Write Enable) signals.

» The other is address line polling. There are 32 physical devices which are accessed
by 5-bit physical address and share the si@AeandlWRENSsignals.

arLON

4. Verification of the Input FIFO

We used the same methods that we described in [7] to do the verification. We wrote the
RTL description of the input FIFO in Verilog, with some minor changes on the model. The
difference between the original model and our verification model was that we only used
16-bit datapath while the original design used either 16-bit or 8-bit datapath. In addition,
the input FIFO had 128 x 16 bit memory which could contain 4 ATM cells, but VIS could
not handle such big memory verification. Therefore, we verified the control circuits of the
input FIFO excluding the memory. Such reduction is practical because usually the control
circuit is the critical part in the verification.

4.1. The Environment of the Input FIFO

Similar to [7], we established an environment for the input FIFO, and the environment
gives the inputs as random variables and defines registers as a default value. Figure 2 gives
the code for the required environment. In this code, lines 2 to 9 are inputs from transceiver
board and the block of Micro cell buffer, so we define them as nondeterministic variables.
Lines 10to 14 are registers, so we give them as their default values. Because our verifica-
tion is to focus on the critical behavior of the block, the constant register values will not
have an influence on the verification. However, to further verify the block, we could apply
other constant values for these registers.

Before we give any property description, we briefly introduce the signals in Figidat?.

is a 16-bit data input from transceiver boapdty is a 2-bit parity inputs from transceiver
board.isocis the “start of a cell” signal which indicates the first byte of a cell from the
transceiver boardca4 represents the cell available for PHY device 4. Wiyl is low,
ica32indicates cell available for PHY device 2 and@®ll determines the method used to
poll PHY devices. Ifipoll is high, address lines polling is applied, and it will support the
maximum 32 input devices; otherwise, the input FIFO connects to four PHY enifittds.
means input FIFO read enable.Hacudf, icainv, cellpost, celllen, ibyteprty, icalevelO, ifrst
are such registersiecudfdetermines whether or not the HEC/UDF octets are included in
cells transferred over the input interface. When set to logic 1 (default), the HEC and UDF

octets are included; otherwise, they are omitted. i€amv bit selects the active polarity of
thelCA[4:1] signals. The default configuratioicdinv = 0) selectdCA[4:1] to be active

high; whenicainv is set to logic one, th&a[4:1] become active low. Theellpost[3:0]

bits determine the number of post-pend words in an input cell.cElken[3:0] bits deter-

mine the number of appended words to the input cell. ibyéeprty bit selects between

byte parity and word parity; ifbyteprtyis set high,iprty[1] is expected to be the parity
overidat[15:8] andiprty[0] is expected to be the parity ovielat[7:0]. If ibyteprtyis set

low, iprty[1] is expected to be the parity ovetat[15:0] and iprty[O] is ignored. The
icalevelObit determines how thECA[4:1] are interpreted. licalevelOis high, the RCMP-

800 checks for close compliance to the SCI-PHY cell transfer handshake. In this case, if
the ICA signal for the PHY whose cell is currently being transferred is deasserted before
the end of the cell, the cell will be discardedidalevelOis logic 0, theica signal may be
deasserted early without the loss of the cell. Once a cell transfer is initiated, the entire cell
will be read contiguously regardless of the state ofl@& signal. Thefrst bit determines
whether the input FIFO is in a reset staifgtyp determines the type of parity checking,
iptyp = lindicates the even parity checking, otherwise, it is the odd parity checking.

. always @(posedge clock) begin
. idat = idat_ran;

. prty = prty_ran;

. isoc = isoc_ran;
.icad =ica4d_ran;
.ical =ical_ran;
.ica32 =ica32_ran;
. ipoll = ipoll_ran;

. ifrdb = ifrdb_ran;
10. hecudf = 1,

11. icainv = 0;

12. cellpost = 0;

13. celllen = 0;

14. ibyteprty = 0;

15. icalevel0 = 1;

16. ifrst = 0;

17. iptyp = 0;

18. end

O©CoOoO~NOOULA WNPE

Figure 2. Environment of the input FIFO

4.2. Properties Description

According to the functions of the input FIFO described in Section 3, we give 8 properties.
In the following CTL (Computational Tree Logic) expressions, “*”, “->" and “*” mean
logical “and”, “imply” and “xor”, respectively. “AG” and “AX” are CTL operators mean-
ing for all paths in all states, and for all paths in the next state, respectively.

Property 1. In normal operation (not idiscardoperation), the write counter will increment by 1 whenever
writeB is deasserted. The CTL expression is the following:

AG (discard = 0 * writeB = 0 -> AX (wr_ptr == wr_ptr_plus1l))

wherediscardis an internal signal which determines whether the FIFO is in normal oper-
ation or discard operationyriteB is a write enable signal, anagr_ptr is a write pointer.

We introduce the assistant varialle ptr_pluslin the design module, which will always
bewr_ptr + 1 with one clock cycle delay.

Property 2. Whenever the signafrdb is deasserted, then the read counter will be incremented by 1. The
property can be expressed as follows:

AG(ifrdb = 0 -> AX(rd_ptr ==rd_ptr_plusl))

whereifrdb indicates Micro cell FIFO has enough space to receive a cellyénatr is
read pointer of the input FIFO. Similar t@r_ptr_plusl rd_ptr_pluslis introduced to
have the value afl_ptr + 1 with one clock cycle delay.

Property 3. In a normal operation, the signétounterwill be incremented by 1 whenevariteB is deas-
serted andfrdb is asserted; anidcounterwill be decrement by 1 whenevarriteB is asserted andrdb is
deasserted. Formally:

AG (discard = 0 * writeB =0 * ifrdb = 1 -> AX(ifcounter ==
ifcounter_plusl))

AG(discard = 0 * writeB = 1 * ifrdb = 0 -> AX(ifcounter ==
ifcounter_minus1)

Here,discard writeB andifrdb have the same meaning as Propert{fé&Gunterindicates

the depth of the input FIFO. Similarlyfcounter_pluslandifcounter_minuslare intro-

duced to represent the valuesfebunter + 1andifcounter - 1with one clock cycle delay,
respectively.

Property 4. The parity check is correct and the result will be stored in the register. Since we itbgtieerty
as default value “0” aniptyp as a default value “0”, it is a word-basis odd parity checking. Witty[1] =
1 indicating the parity error over thBAT[15:0] bus, the specification of the property is:

AG(ibyteprty = 0 * iptyp=0 -> (iprty[1] = ! (prty[1] ~ idat[0]
idat[1] ~ idat[2] ~ ... N idat[15])).

We use division [7] to verify this property using sub-properties:

AG (prtychkl == idat[0] ~ idat[1] ~ idat[2] ~ idat[3] ~ idat[4]
A idat[5] ~ idat[6] ~ idat[7])

AG (prtychk2 == idat[8] "idat[9] ~ idat[10] ~ idat[11] ~ idat[12]
A idat[13] ~ idat[14] ~ idat[15])

AG(iprty[1] = !(prtychkl *prtychk2 » prty[1]))

Property 5. Any unassigned cells will be discarded by the input FIFO. Actually, the ATM header determines
whether a cell is unassigned cell or not. If all the bits of VPI and VCI and CLP bit are zero, then the cell is
unassigned. Since we consider NNI here, the format of an unsigned cell is similar to the one in Table 1 [4].

Property 5 can be deduced through the formulas:

AG (idat[15:0] =0 * cellcount =0 * writeB = 0 -> AX
(vpi_vci[27:12] = 0 * cellcount = 1))

AG (idat[15:0] =0 * cellcount =0 * writeB = 0 -> AX AX
(vpi_vci[27:12] = 0))

AG(idat[11:0]=0 * idat[15]=0 * cellcount= 1 * writeB = 0 -> AX
(vpi_vci[11:0] =0 * clp = 0))

AG(vpi_vci[27:0] * clp = 0 * cellcount=2 -> AX discard = 1)
whereidatis a 16 bit datapath which receives data from transceiver boprdyciis a 28-

bit registers which store VPI and VCI value for each cell, aeticountindicates how
many data bytes have been transferred into RCMP for each cell.

Table 1. Format of an unassigned cell

ATM header Octet 1 Octet 2 Octet 3 Octet 4 Octet 5

00000000 00000000 00000000 0000xxx0 HEC byte

unassigned cell

Property 6. Any physical cells will be discarded by the input FIFO with a notification.
Similar to unassigned cell, physical cell is determined by its ATM header, and the format
of a physical cell is in Table 2 [4].
Like Property 5, Property 6 can be deduced by the following three CTL expressions:
AG(idat[15:4] = 0 * cellcount = 0 * writeB = 0 -> AX
vpi_vci[23:12] = 0 * cellcount = 1)

AG(idat[15:4] = 0 * cellcount = 0 * writeB = 0 -> AX AX
vpi_vci[23:12] =0)

AG(idat[11:0]=0 *idat[15] = 1 * cellcount =1 * writeB = 0 -
>AX(vpi_vci[11:0] = 0 * clp=1))

AG(vpi_vci[23:0] * cellcount = 2 * clp = 1 -> discard = 1 * phycell

=]_)
Table 2. Format of a physical cell
ATM header Octet 1 Octet 2 Octet 3 Octet 4 Octet 5
Physical cell Xxxxx0000 00000000 00000000 0000xxx1 HEC byte

Property 7. If ipoll is low, the RCMP is receiving data from PHY device 1 and PHY device 2 has a cell
available, then PHY device 2 will transmit a cell to RCMP next.

Here, switching a receiving PHY device from one to another only happens at the state
cellcount = Q When a PHY device gets permission to transfer a cell into RCMP, the write
enable signalifvren) will be asserted. And also the varialpestatestores the number of
PHY devices. Therefore, the CTL expression is as follows:

AG (ipoll=0*cellcount=0*p_state=1*ica2=1 -> AX
(iwren2 = 1))

Here, p_statestores the number of current receiving PHY devidea2 = 1 means that
PHY device 2 has a cell to seneyren2 = 1 means PHY device 2 gets the permission to
send.

Property 8. If ipoll is high, the RCMP is receiving data from the PHY device of address 10 and the PHY
device of address 11 has a cell to send, RCMP will transmit the cell from PHY device of address 11 next.

AG (ipoll = 1 * cellcount = 0 * iaddr = 10 * ica = 1 -> AX AX
(iaddr = 11))

where,iaddr = 10 expresses that the address of the current receiving PHY device is 10.
Because RCMP has a pipeline searching prodadsly will be equal to 11 in two clock
cycles.

While the above properties do not cover all functions listed in Section 3, other properties
can easily be described in a similar way.

5. Experimental Results and Error Detection

We did meet state explosion problem when verifying these properties, and the machine
gave the error indicating that the memory cannot be allocated. So we applied a reduction
method in which we “hide” unrelated design details when verifying a property [6].
Because a hardware design is “process-based”, we could simply comment unrelated pro-
cess when verifying a property, and it is also possible to write a program to search unre-
lated processes and comment them automatically. Although the method seems very
obvious, it is very effective. By this method, all the properties were verified in VIS with a
reasonable CPU time. Table 3 summarizes the experimental results including the number
of CTL formulas involved, CPU time in seconds, memory usage and number of BDD
nodes generated.

Itis to be noted that before performing the model checking, we carried out an extensive sim-
ulation of the RCMP-800 Input FIFO, but we still have found a number errors. For instance,
we identified a bug in the “address line polling circuitry” while model checking Properties 7
and 8. After fixing the RTL code, the properties succeeded the model checking.

Table 3. Model checking results

Properties | Number of CTL | CPU time (seconds] Memory Usage Nodes Allocated
(MB) (K)

Property 1 1 75 97 103, 907
Property 2 1 57 68 87,103
Property 3 2 63 59 91,034
Property 4 3 56 87 79,308
Property 5 3 62 61 71,805
Property 6 3 74 102 174,830
Property 7 1 23 42 34,049
Property 8 1 12 34 20,911

6. Conclusions

In this paper, we applied model checking to verify a block of an ATM commercial prod-
uct. We show how to described the properties in CTL. To save state space, we defined reg-
ister variables as their default values in the environment. However, we still encountered
state space explosion problem. This has been solved by adopting a reduction method in
which we comment out property unrelated HDL design code before running model check-
ing. In this work, model checking of all the properties are done with a reasonable time, and
we did detect a set of design errors by the model checking.

References

[1] R. Brayton et.al., VIS: A System for Verification and Synthésigchnical Report UCB/
ERL M95, Electronics Research Laboratory, University of California, Berkeley,
December 1995.

[2] HD. Ginsburg, ATM Solutions for Enterprise Internetworkifigddisson-Wesley, 1996.

[3] N. Giroux and S. Ganti.Quality of Service in ATM NetwqtkrK5105.35.G58, 1998.

[4] F. Halsall, “Data Commutations, Computer Networks and Open SysteAddison-
Wesley, 1996.

[5] C. Kern and M. Greenstreet, “Formal Verification in Hardware Design: A Sun/&agM
Transactions on Design Automation of Electronic Syst&fak,4, April 1999, pp. 123-
193.

[6] J. Lu, “On the Formal Verification of ATM Switchés,M.A.Sc. Thesis, Concordia
University, Department of Electrical and Computer Engineering, May 1999.

[7] J.LuandS. Tahar. “Practical Approaches to the Automatic Verification of an ATM Switch
Fabric using VIS, Proc. IEEE 8th Great Lakes Symposium on VVL&fayette, Louisiana,
USA, pp. 368-373. February 1998.

[8] PMC-Sierra, Inc. ATM Layer Routing Control, Monitoring and Policing 800 Mbjps
PMC-940904, August 1997.

[9] PMC-Sierra Inc."Saturn Compatible Interface Specification for PHY Layer and ATM
Layer Devices, Level2Application Note, Issue 4, August 1997.

10

