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Abstract

Today’s analog/RF design and verification face significant challenges due to
circuit complexity and short market windows. In particular, the influence of
technology parameters on circuits, and the issues related to noise modeling and
verification still remain a priority for many applications. Noise could be due
to unwanted interaction between the circuit elements or it could be inherited
from the circuit elements. In addition, manufacturing disparity influence the
characteristic behavior of the manufactured circuits. In this report, we discuss a
methodology for modeling and verification of analog/RF designs in the presence
of noise and process variation using statistical run-time verification technique.
In order to study the statistical behavior of noise, our approach is based on
modeling the designs using stochastic differential equations (SDE), an exten-
sion to ordinary differential equations (ODE) with stochastic properties that are
suited for modeling a continuous systems in time domain. Then, we define a
run-time based verification method combined with process variation, integrated
in the SDE simulation framework for monitoring properties of interest in order
to quickly detect errors.
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1 Introduction

In recent years, advanced technologies have allowed designers to develop smaller, faster,
low power analog/digital/RF designs in a single chip, known as systems-on-a-chip
(SoC). This complex integration among various blocks has made the design and veri-
fication a cumbersome process, mainly due to nonlinear dynamics of the design, inter-
dependency of the state variables, and the need for a continuous infinite state-space
analysis. Additional effects such as noise, fluctuations, and technology variations have
also influenced the quality and yield of the manufactured circuits [19].

Noise is a random phenomena whose origin has been studied by many researchers
for decades. The sources of noise could be due to unwanted interaction between the
various design blocks (ex: cross-talk noise) or it could be inherited from the circuit
elements (ex: thermal, shot and flicker) [6]. Further noise classification such as phase,
jitter or device switching falls within the functional characterization of the design and
are influenced by both inference and inherited noise.

Thermal noise is associated with the random thermal motion of carriers in a mate-
rial, and the extent of the motion is proportional to the resistance of the material and
its absolute temperature T. It also exists whenever there is a presence of conducting
channel and its influence become nullified as T approaches zero [6]. Shot noise is gen-
erally found in junction semiconductors, although it was originally observed in vacuum
tubes, its existence is attributed by the random flow of current across the potential
barrier. For instance, in a semiconductor p-n junction, the movement of charge carriers
into the depletion region generates a small pulse, that contributes to shot noise. Effec-
tive at lower frequencies the 1/f noise also called as flicker noise is due to impurities in
a conductive channel that are caused due to varying doping concentration [6]. Flicker
noise is a general form of a power law noise or a 1/fα noise where α is considered to
vary between 0 and 2 [6]. Cross-talk noise, is due to capacitive and inductive coupling
between the lines that run close to one another, meaning, the signal on one line will
influence the behavior of the signal in the adjacent lines. This kind of interference
effect depends on the frequency of the signal, the proximity of the two lines, and the
total distance that the two lines run adjacent to one another [15].

The question now is Can we eliminate noise? It depends on the type of noise and
its origin. For instance, with proper layout and shielding techniques between the two
neighboring lines in a design, interference noise can be nullified [6]. On the other hand,
the inheritance noise can be reduced and cannot be eliminated completely. This is
because, the dynamics of such noise are influenced by the way active/passive elements
are manufactured, environment constraints (such as fluctuations, temperature) that
could totally alter its behavior.

Things get even more challenging when we look at the different steps involved
in fabricating a circuit. This is because, manufacturing steps present a completely
different set of constraints on the designs. For instance, in a MOS transistor, can we
assume the ultra-thin oxide layer that separates the gate from the channel has a smooth
edge? Absolutely not, because, we cannot control the manufacturing process entirely [5]
and hence will create disparities at different points in a device. Such discrepancies, will
make the MOS transistor susceptible to varying tunneling phenomena, thereby altering
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the characteristics of the noise [29].
The sources of variations due to fabrication can be classified as interdie and in-

tradie [12]. While, interdie variation also called as global variation assumes the de-
vice/circuit parameter discrepancies to be the same across die-to-die or lot-to-lot or
wafer-to-wafer [12], intradie also called as local variation reflects the mismatch in a
component with reference to a adjacent component [12]. In this case, the devices in
the same circuits might have different variations, thereby posing a serious threat on
circuit performance and functionality. So, the optimum approach for the circuit design
is to recognize the degree of freedom allowed and the availability of different devices
within the technology.

The next step is to understand the kind of quantification required to study the
effect of noise and process variation. For any design influenced by noise, the variation
of input/output signal amplitude (voltage, current etc.) is considered random with
time. An important noise metrics (signal-to-noise ratio (SNR), noise figure (NF)) for
such random signals would be to measure the root mean square (RMS) in terms of
probability density function (PDF). SNR is a measure used to determine the quality
of a signal that are corrupted by noise, and NF is a quality measure of SNR degrada-
tion. More often, we may also be interested in finding the worst-case scenario of noise
voltage/current in terms of its peak-to-peak amplitude. Hence, based on probability
density function with a known standard deviation, one can translate the RMS noise
voltage/current to its counterpart peak-to-peak voltage/current.

Today’s circuit simulation use statistical modeling to study the effect of process
variation and noise on analog/RF circuit performance [16]. Such standard statistical
compact SPICE [16] models allow many deep-submicron process variation on device
parameters to achieve a good fit between measured (SNR, NF) and extracted values.
But, at circuit level, statistical analysis that involves studying the PDF can be time
consuming and can also suffer from memory space problems [15] due to increases in
higher order harmonics.

Generally, designers use Worst Case or Monte Carlo methods [2] to study the
effect of process variations. In Worst-Case analysis, analog circuits are modeled with
pessimistic process corners. This worst-case variation are determined in the foundry
design document, and are based on ±3σ parameter distribution. For a given circuit,
and for each components, process corners are constructed to maximize/minimize one
specific performance of a device (e.g., speed, power, area, etc.). The main advantage
of such simulation techniques is its ability to achieve robustness and sensitivity to the
worst-case scenario and can provide much faster simulation results [17]. But, such
analysis that targets single device variation has to be always compromised with other
parameter variation, meaning, its does not provide leverage for additional parameter
variation. Such complex analysis may increase the design efforts and costs.

Monte-Carlo methods take into account a predefined distribution (usually normal
distribution) of the device parameters due to process variation. When defining normal
distribution, the designers has to use certain standard deviation, usually, it is ±3σ pa-
rameter distribution. This means that, unlike worst-case that target for single device
performance, monte-carlo methods use repeated simulation technique for multiple de-
vice performance [17]. In the end, it provides a statistical estimate of the analysis with
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certain confidence level. Though, it looks attractive, monte-carlo simulation may or
may not always use worst-case parameter variation for devices and iterative in nature.

An alternate solution to the problem of expensive simulation times and memory
usage would be to capture the behavior of the design as a purely mathematical or
numerical model [22], [21] and integrate process variation on device parameters. In that
case, one has to provide a way to handle the error bounds on the results. For noise and
process variation, rather than qualitative estimation of the design specification, like
SNR, NF, and so on, we might be interested in the functional evaluation of the circuit.
For instance, a designer would like to monitor the functional behavior (current, voltage)
at run-time, and then comparing it to the expected result. This leads us to statistical
behavior rather than detailed response of the system. Therefore we propose to use
stochastic differential equations (SDE) [3] as an analog/RF noise model. However,
the challenge is to incorporate verification techniques that are suited for SDE based
modeling.

In recent years, formal and semi-formal methods have been advocated by many re-
search groups and industries for analog and mixed signal verification [8]. In particular,
run-time verification techniques have been shown to be effective in detecting violation
of the design specification thereby avoiding exhaustive checking inherited by traditional
circuit simulation and formal methods. Run-time verification employs logical monitors
to check (online or offline) if an execution (simulation) of the design model violates
the design specifications (properties).

Statistical run-time verification combines hypothesis testing [27] and Monte Carlo
simulation for monitoring the properties in an analog circuit. Hypothesis testing is
the use of statistics to determine the probability that a given hypothesis is true and
in general, expressed as a null hypothesis H0 and the alternative hypothesis H1. The
statistical property, is expressed as a null hypothesis, while the alternative hypothesis
becomes the counterexample. For noise and process variation, the designers might
be interested in evaluating the statistical behavior (such as confidence interval, error
margin, reliability, etc.) of the circuit.

The first step in hypothesis testing is to understand the distribution of any param-
eters (observations) that are used in the analysis. For instance, designers may wish to
estimate the error margin involved in the analysis of the jitter period at the VCO out-
put. This can be accomplished by observing the information along the simulation path
as a sample with a predefined distribution. This kind of estimation involves statistical
techniques such as evaluating the parameters based on the sample mean, confidence
interval, hypothesis testing, and modeling (e.g., regression and density estimation) [27].
In order to achieve a high confidence interval and error margins, the design has to be
evaluated for different trajectories.

The rest of the paper is organized as follows: In Section 3, we overview the theory
and modeling of analog/RF designs using SDEs. In Section 4, we introduce the pro-
posed methodology for monitoring noise in analog/RF designs. Experimental results
are illustrated in Section 5, followed by discussions and conclusion in Section 6.
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2 Related Work

Lately, several new techniques that targets analog/RF designs have been developed by
many research and industrial groups. For instance, in [28] the authors have numerically
evaluated an electronic oscillator based on a new physical descriptions of thermal noise.
The method involves combining the non-equilibrium statistical mechanics with the SDE
based Langevin approach. But, the method fails to neglects non-linearity and also
ignores the process variation. Methodology based on closed-form solution of SDE’s
has been introduced in [26], where the effect of noise has been analyzed for a single-
ended input differential amplifier. As discussed earlier, such analytical approach of
solving SDE’s using stochastic calculus are limited to circuits that have closed form
solution and is not accurate enough to conclude on the results. Similarly, the proposed
transient noise analysis in [4] enables circuit designers to efficiently perform SPICE-
accurate device noise analysis on complex non-periodic analog/RF blocks. However,
such noise analysis at low level of abstraction is time consuming. Also, Synopsys has
introduced a tool, HSPICE RF [11] implementing stochastic differential equation (SDE)
techniques to make a direct prediction on the statistical behavior of analog/RF circuits.
The results of such a simulation include the usual deterministic transient analysis
waveforms, and also its time-varying root-mean square (RMS) statistical behavior.
Similarly, an open source tool, f REEDA [9] provides a leverage to model and analyze
noise using SDEs. Based on f REEDA, the authors in [13] have performed an SDE
based phase noise simulation in time domain. Though the phase noise is accurately
predicted for a fairly large frequency range, their technique suffers from long simulation
run-times without the mean to be able to detect undesired behavior.

Many methodologies have been proposed by different research groups and the details
are provided in our research proposal. Lately, in [30], the authors propose a runtime
verification methodology for statistical properties of analog and mixed signal (AMS)
designs in an offline fashion. The approach combines system of recurrence (SRE)
equation AMS model with the statistical method and Monte Carlo simulation to verify
the statistical property. The above approach has two problems: 1) SRE models are
based on if-then-else structure and is not accurate. 2) The method also fails to address
the issue related to noise and process variation.

In common practice, there are several methodologies to verify quantitative and
probabilistic properties in a real-time system at runtime. However, providing a common
platform that could study the effect of noise and process variation for monitoring the
statistical property in an analog circuits has not been addressed.

3 Preliminaries

3.1 Stochastic Differential Equation

A SDE is an ordinary differential equation (ODE) with stochastic process that can
model unpredictable real-life behavior of any continuous systems [3]. A stochastic
process is a collection of random variables {Xt; t ε T} defined on a given probability
space indexed by the parameter time t that vary over an index set T. The random term
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in SDE can be purely additive or it may multiply with some deterministic term [3]. For
Example, consider the population growth model describe by the following differential
equation

dN

dt
= a(t)N(t); N(0) = A (1)

where N(t) is the size of the population at time t, and a(t) is the relative rate of
growth at time t and A is some initial constant. But, a(t) is unknown and is random
in nature. Hence a reasonable mathematical interpretation of the randomness for the
above equation can be described as

dN

dt
= a(t)N(t) + ξtN(t); N(0) = A (2)

The term a(t)N(t) is the deterministic drift coefficient while the term ξtN(t) represents
the stochastic effect [3]. However, in SDE terminology, the above equation can be
represented in two forms: Itô or Stratonovich [3] for more mathematical explanation of
Stratonovich form. If we consider ξt to be the pathwise derivative of Brownian motion
(or Wiener Process) dBt, then Equation 2 can be written in Itô differential and integral
form as given by

dN = a(t)N(t)dt +N(t)dBt

N =

∫ t

0

a(s)N(s)ds +

∫ t

0

N(s)dBs
(3)

However, to solve Equation 3 traditional calculus lack the structure to handle
stochastic process, and hence we need special mathematical interpretation in the form
of stochastic calculus to solve the equations involving brownian motion [3]. A Brown-
ian (or a Wiener process) is a family of random variables Wt, indexed by nonnegative
real numbers t, defined on a common probability space with the following properties:

• W0 = 0.

• With probability 1, the function t → Wt is continuous in t.

• The process Wt has stationary, independent increments.

• The increment Wt+s - Ws has the Normal(0, t) distribution.

In addition, stochastic calculus uses the concept of expectation and Itô isometry to solve
SDEs. Expectation determines the behavior of any system in the absence of randomness
and hence it is easy to conclude that the expectation of any random process (Brownian
or Wiener) is zero. As brownian motion cannot be solved using definite integral, the
goal of Itô isometry is to replace the brownian motion dBsby deterministic term ds for
solving SDEs.

In contrast, there is not always a closed form solution for SDEs, hence researchers
have looked for solving them numerically. The methods based on numerical analysis
are reported in [18], which involve discrete time approximation in a finite time interval
over the sample paths. The simplest time discretization approach is based on Euler-
Maruyama approximation [18] which we adopt in this report.
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Consider an Itò SDE in differential form

dXt = a(Xt)dt+ b(Xt)dWt (4)

where a and b are some function of time and Wt is a Wiener process. Based on Euler
approximation, equation (4) can be written as:

Xn+1 = Xn + a(Xn)∆n + b(Xn)∆n∆Wn (5)

where for time step τ ,

∆n = τn+1 − τn; ∆Wτn = Wτn+1 −Wτn; (6)

for n=0,1,2.....N-1 with initial value X0 = x0; and for maximum N simulation steps.
The recursive method described by equations (5) and (6) gives only an approximate

solution and it is important to note that the solution is close to the Itò process [18].
The amount of deviation of the numerical solution is defined by the absolute error
which satisfies the convergence properties.

In summary, the role of numerical approximation is to model and simulate a given
design in an iterative fashion. More accurate numerical methods such as Milstein,
Taylor, Runge-Kutta are available in [3] for the simulation of the analog/RF designs.

3.2 Hypothesis Testing

Hypothesis testing is the use of statistics to determine the probability that a given
hypothesis is true. Hypothesis testing in general, has two parts:

• Null hypothesis, denoted by H0, which is what we want to test (e.g., jitter period
≤ 3.2 ns); and

• Alternative hypothesis, denoted by H1, which is what we want to test against the
null hypothesis (e.g., jitter period > 3.2 ns).

The statistical property, is expressed as a null hypothesis, while the alternative hy-
pothesis becomes the counterexample. For noise and process variation, the designers
might be interested in evaluating the statistical behavior (such as confidence interval,
error margin, reliability, etc.) of the circuit. The first step in hypothesis testing is
to understand the distribution of any parameters (observations) that are used in the
analysis. For instance, designers may wish to estimate the error margin involved in the
analysis of the jitter period at the VCO output. This can be accomplished by observing
the information along the simulation path as a sample with a predefined distribution.
This kind of estimation involves statistical techniques such as evaluating the parame-
ters based on the sample mean, confidence interval, hypothesis testing, and modeling
(e.g., regression and density estimation) [27]. In order to achieve a high confidence
interval and error margins, the design has to be evaluated for different trajectories.

If we reject H0, then the decision to accept H1 is made. The conclusion is drawn
with certain probability of error (α and β) along with specific confidence level. Usually,
α, also called the significance level, denotes the probability of rejecting H0 when it is
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actually true (Type I error) and β denotes the probability of accepting H0 when it
is actually false (Type II error). For instance, α = 0.05 and α = 0.01 refer to the
confidence level of 95% and 99%, respectively. The question now is how to decide on
rejecting the null hypothesis H0?

In hypothesis testing, if the observed sample data over a given interval is within
some critical region, then we reject the null hypothesis H0, also known as the rejection
region. The critical region depends on the distribution (lower tail, upper tail or both
tails) of the data under the null hypothesis, the alternative hypothesis, and the margin
of error. If a large value of the test statistic would provide evidence for rejecting H0,
then the rejection region is in the upper tail of the distribution of the test statistic else
the rejection region is in the lower tail of the distribution.

3.3 Process Variation on Device Parameters

In following, we discuss the influence of 0.18µm process technology on device parame-
ters that will be adopted in this research. However, the effect of process variation for
other technologies can be extended easily.

Influence of 0.18µm Process Variation on Resistor. Poly resistor that are built
with poly layer deposited over field oxide is used widely to represent resistors in ana-
log/RF designs and its value depends on the sheet resistance (Rsh) associated with
the poly layer. For a given process the variations in poly resistance are mainly due
to fluctuation in film thickness, doping concentration, doping profile and annealing
conditions [12]. Usually, a 0.18µm CMOS process allows 10 to 15% variation in poly
thickness which attributes to a similar variation on poly sheet resistance Rsh. In addi-
tion, there is a 10 to 20% variation in Rsh due to doping and ion implantation steps.
By large, 0.18µm CMOS allows 15 to 25% variation in sheet resistance due to the
deviation in poly thickness and doping concentration [29]. For instance, the sheet re-
sistance Rsh for TSMC 0.18µm process is 7.9Ω/square [1]. This means that, for the
slow, nominal and fast process corners, the variation in sheet resistance Rsh would be
15%, 20% and 25% respectively. This allows us to use three different values for the
resistors in an analog/RF circuit.
Influence of 0.18µm Process Variation on Capacitor. A typical MOS transistor
can be used as a capacitor when operating in the linear region, with the gate represent-
ing one plate and drain/source with the channel forming the other plate. Apart from
MOS capacitors, current CMOS technology provides poly-to-poly capacitors, metal-to-
metal capacitors and junction capacitors. We consider the effect of MOS capacitance
in 0.18µm process, where the variation in MOS capacitance is mainly due to the vari-
ation in oxide thickness and the channel doping concentration across the die/wafer.
For a 0.18µm process, a ±20% variation has to be taken for MOS capacitance which
represents a deviation of +20% for slow process corner and -20% for fast process corner
with no changes in capacitance value for nominal process corner. However, variation
in metal-insulator-metal (MIM) capacitor can be more than 20% [12]. For a given
capacitor, a variation of ±20% in the capacitance value is used to represent a fast and
slow process corners.
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Influence of 0.18µm Process Variation on MOS Transistor. A typical MOS
transistor can be classified as enhancement-n type or enhancement-p with positive or
negative threshold voltages respectively. For a given technology, the process variation
in a MOS transistor may cause a deviation in threshold voltage (Vt), length and width
of the transistor (L and W ), oxide thickness (Tox) which results in the change in
device characteristics across the die/wafer. The deviation in threshold voltage Vt and
transconductance parameter K is calculated as [29]:

σ(∆Vt) = AV T√
WL

σ(∆K
K

) = AK√
WL

(7)

We consider the 0.18µm process variation in threshold voltage Vt and transconductance
K. For instance, given an analog/RF circuit that involve the use of MOS transistor,
the variation in threshold voltage is calculated based on equation( 7) and is passed
as a slow, nominal and fast process corner parameter in the verification environment.
Table 1 summarizes the technology parameters needed to calculate Vt and K.

Table 1: CMOS 0.18µm Process Variation
Type AV T Aβ

gm

IDS
(VGS - VT )

[mVµm] [%µm] [ S
A

] [V]
nMOS 5 1.04 2.08 0.96
pMOS 5.49 0.99 1.80 1.11

4 Statistical Run-Time Verification

Figure 1 shows the overall statistical run-time verification methodology. Thereafter,
given an analog design described as a system of ODEs, the idea is to generate SDEs
that describes the noise behavior. For process variation, the technology vendors create
a library of devices with different corners [29] that characterize the device in terms of
power, speed, area, etc. This allows the designers to choose from a range of devices
based on the application and requirements. In our proposed methodology, for 0.18µm
process and with a known ±3σ deviation, different circuit parameters are derived using
gaussian distribution as described in Algorithm 1.

For a 0.18µm CMOS technology, we have to account for 15 to 25% variation in
sheet resistance in order to study the effect of process variation [29], i.e., the sheet
resistance Rsh is 7.9Ω/� [1]. This means that, for the process corners, the variation in
Rsh would be 15%, 20% and 25%, respectively. Typically, ±20% variation is taken for
capacitance due to 0.18µm process [29].

The SDE model, process variation, along with the statistical properties, and the
environment constraints are evaluated using Monte Carlo monitors in an statistical
run-time verification environment.
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Figure 1: Statistical Verification Methodology

The basic idea behind the Monte-Carlo method is to simulate the SDE model for
multiple trajectories and sample them in order to calculate the desired statistics for a
given confidence level δ. For instance, for K trajectories, we generate DK uncorrelated
wiener process, where D is the noise dimension of the given circuit. From DK total
samples, the calculation procedure for the given circuit state variables (current, voltage
etc.) is repeated for M Monte-Carlo trails. The hypothesis testing is carried out on
those samples generated from M observations. In general, there is no theory that
governs the number of trials in Monte-Carlo simulation. However, a trade off exists
between the number of trials and the simulation run-times. The higher confidence can
be gained by choosing more number of samples, but at the cost of run-times [27].

Algorithm 1 Process Parameter Variation

Require: lower bound, nominal bound, upper bound, randn, inc, sigma bound, n
Ensure: n > 0

1: Dist← lower bound : inc : upper bound

2: PDF ← (1/(
√

(2× π)× sigma bound))× exp(−(Dist−nominal bound)2

(2×(sigma bound)2)
)

3: Param← sigma bound× randn(n, 1) + nominal bound
4: return Param

Figure 2 shows the methodology for Monte-Carlo based on hypothesis testing. The
statistical property, is expressed as a null hypothesis H0 and alternative hypothesis
H1 and is verified if H0 is accepted, else, the monitor reports the violation of the
property. The detailed procedure for Monte Carlo hypothesis testing is illustrated in
Algorithm 2, where, Tobs is observed value, n is the sample size, σ is the population
standard deviation, σ̄ is the standard error of the sample, µ denotes the population
mean, D is the noise dimension, and SEED represents the random seed generation.

Given the number of trajectory Trac, based on the simulation step-size (∆T ) andD,
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Algorithm 2 SDE based Monte-Carlo Hypothesis Testing

Require: Trac, Param, ∆T
Require: α, Tobs, n, σ, σ̄, µ, SEED
Require: lower, nominal, upper, randn, inc, sigma
Ensure: Trac 6= 0 and Trac > 0
Ensure: Param 6= 0

1: while Trac 6= 0 do
2: W ← wiener process generator(∆T, SEED)
3: Param← param generator(lower, nominal,
4: upper, randn, inc, sigma, n)
5: Tobs ← sde model(∆T, Param,W )
6: for i = 1 to M do
7: r = random number generator(n)
8: s = σ · r + µ
9: Tmc(i) = (mean(s)− µ)/σ̄

10: end for
11: while Upper Tail Test do
12: critical value = quantile(Tmc, 1− α)
13: if Tobs > critical value then
14: Reject H0

15: else if Tobs < critical value then
16: Accept H0

17: end if
18: end while
19: while Lower Tail Test do
20: critical value = quantile(Tmc, α)
21: if Tobs < critical value then
22: Reject H0

23: else if Tobs > critical value then
24: Accept H0

25: end if
26: end while
27: Error Margin← quantile(1−α

2
, σ,N)

28: end while
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Figure 2: Monte-Carlo Based Hypothesis Testing

we generate DTrac sets of Wiener process and circuit parameters. We then use Monte-
Carlo method (line 5) to randomly calculate the desired values. Using the value of the
Wiener process and circuit parameters in sde model, we generate the observed value
Tobs as described in line 7. The loop between line 9 and line 13 is the Monte-Carlo
simulation repeated for M trials for hypothesis testing. In each trial, we randomly
sample from the distribution of population under the null hypothesis with the same
sample size n and then calculate and record the observed value Tmc (line 12). For upper
tail test, the hypothesis testing is performed afterwards (from line 13 to line 20).

If the observed value Tobs is greater than the critical value we reject the null hy-
pothesis H0. Otherwise, we retain H0. The quantile procedure (line 14) is used to
determine the decision about the rejection of a hypothesis [27]. For any simulation
technique, it is unlikely that the observed value of the sample is exactly equal to the
true value, hence, it is more useful to provide an error margin as shown in line 21.
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5 Experimental Results

To illustrate the efficiency of the proposed methodology, we have applied it on several
benchmark circuits. The circuit diagram for a MOS transistor based Colpitts oscillator
is shown in Figure 3. For the correct choice of component values the circuit will oscillate
due to the bias current and negative resistance of the passive tank. The frequency of
oscillation is determined by L, C1 and C2. For simplicity, we assume the noise only
from the passive elements, while the noise from the MOS transistor is ignored.

R L

C1

C2Iss

Vg

Vc1

Vc2

Vdd

Figure 3: Colpitts Oscillator

5.1 Statistical Property Observations

The deterministic property that was verified [23] is: whether for the given parameters
and initial conditions, the inductor current is within a certain bound or not? However,
for statistical run-time verification one would be interested to know whether for the
given confidence level α, process variation and M Monte Carlo trials, what is the prob-
ability of acceptance and rejection of inductor current for multiple trajectories Trac?
As a result, the null hypothesis H0 and the alternative hypothesis H1 of this property
can be expressed as

H0 : −0.004 ≤ IL ≤ 0.004;
H1 : IL > 0.004 or IL < −0.004;

(8)

The Monte Carlo experiments were conducted on an ULTRA SPARC-IIIi server
(177 MHz CPU, 1GB memory) for the confidence level δ = 0.95 (α = 0.05). Since a
large value would provide the evidence for the rejection of the null hypothesis H0, an
upper tail test scenario is considered in this case. In order to gain high confidence, we
investigated different case studies for analyzing the statistical property of the Colpitts
oscillator that are outlined in Table 2. The behavior of the Colpitts oscillator circuit in
the presence of noise and process variation is shown in Figure 4 and 5. For simplicity,
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(b) CASE I : Varying R, C and L
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(c) CASE II : Constant R, L, C

Figure 4: Simulation Result of Colpitts Oscillator.

we show the results of the inductor current for two trajectories only but with multiple
violations. Rather than observing the output for each trajectories and reporting any
violation, one can achieve certain degree of confidence (say, 95%), by following a sta-
tistical approach for the above simulation. This could be based on the acceptance or
rejection of null hypothesis H0 as summarized in Table 2.
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Figure 5: Simulation Result of Colpitts Oscillator.

Table 2: Statistical Runtime Verification Results for Colpitts Oscillator.
TRAC = 11, P.V = Process Variation, T = Simulation Time (Sec)

Monte-Carlo Without Noise & P.V With Noise Only With P.V Only With Noise & P.V
Trials Reject Accept T Reject Accept T Reject Accept T Reject Accept T
1000 0 11 118 1 10 371 0 11 117 6 5 475
10000 0 11 247 4 7 971 1 10 319 5 6 1263
25000 0 11 316 4 7 2121 1 10 320 7 4 2431
50000 0 11 391 5 6 6173 1 10 420 7 4 7021
100000 0 11 403 7 4 16473 2 9 463 9 2 17021

The acceptance of the null hypothesis H0 indicates that the property is satisfied and
the rejection of H0 indicates that the property is violated and the current through the
inductor (Tobs) is larger than the specification (Critical Value) as shown in Figure 6.
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Figure 6: Effects of Confidence Level Selection.
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Figure 7: Acceptance/Rejection Cumulative Distribution for Table 2.

From Table 2, we see that for the analysis in the absence of noise and process
variation, from columns 2-4, the null hypothesis (H0) has 100% acceptance mainly
because the observed value Tobs is less than the critical value C.V . However, when we
consider the effect of noise only (columns 5-7), based on the number of Monte-Carlo
trials, we see more number of rejection of H0. This is because, the additive Wiener
process in the SDE model makes the inductor current to deviate from its specified
value. It is also evident from columns 8-10, analysis with parameter variation due to
0.18µm have shown little failures compared with noise. This is because ±3σ parameter
variation is not large enough to create discrepancy on the inductor current. A more
detailed analysis of the process variation is summarized in Table 3. In contrast, in
columns 11-13 of Table 2, it is evident that the effect of noise and process variation
have led to maximum rejection of the statistical property.

Though we have achieved a good insight on the simulation results, the question is:
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Table 3: Effect of Process Variation on Accept/Reject of H0

TRAC = 11, R = Reject, A = Accept, T = Simulation Time (Sec)
Monte-Carlo Constant R Constant L Constant C1, C2

Trials R A T R A T R A T
1000 0 11 118 1 10 117 0 11 118
10000 0 1 301 4 7 300 1 10 321
25000 0 11 321 4 7 319 1 10 319
50000 0 11 397 5 6 401 1 10 411
100000 0 11 471 7 4 469 2 9 470
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Figure 8: Reject Probability Density Function Distribution for Table 2.

Does the number of Monte Carlo trials have an impact on the outcome of the hypothesis?
We carried out the hypothesis testing for different Monte Carlo trials and the results
are summarized in Tables 2 and 3. As seen from both tables, it is apparent that with
more number of Monte-Carlo trials, the hypothesis testing will have the leverage to
work on a larger group of samples and hence it can provide us with a better assessment
of the statistical property, but at the cost of simulation run-times. The best way to
describe the results of the statistical property is through cumulative distribution as
shown in Figure 7.

The distribution is plotted based on the cumulative sum of the number of accep-
tance/rejection for the results summarized in Table 2. Figures 4 (a), (b) and (c)
represent the distribution for the case of noise only, process variation only and the
combined effect of noise and process variation respectively. We see that the rejection
gradually increase with the number of Monte-Carlo trials. Also, the number of rejection
is dominated by the effect of noise than process variation as seen in Figures 4 (a) and
(b). But, it is obvious, that the maximum rejection occurs due to the combined effect
of noise and process variation as shown in Figure 4 (c). In summary, the hypothesis
test results can be different for different confidence levels and the accuracy would be
compromised if the confidence level is too high or too low. The confidence level of
100% is impossible to reach.
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6 Conclusion

In this paper, we have presented an approach for noise modeling SDEs, and then
integrated the device variation due to the 0.18µm fabrication process in an SDE based
simulation framework for verifying statistical properties of the designs. For illustration
purposes, we have used the proposed method to verify the statistical behavior of a
Colpitts oscillator circuit.

Our proposed approach is limited to noise in passive elements and we would like to
investigate other types of noises. Also, we plan to extend our methodology to handle
higher order designs such as phase locked loops (PLL) and verify complex properties
that involve the use of second order SDEs. We also need to test the feasibility of other
numerical models such as Taylor approximation [18] for accuracy and stability and
decide on the appropriate ones for practical applications.
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