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Abstract

Signal-flow-graphs is a special kind of directed graph which is widely used to represent physical

and engineering systems such as electrical networks, photonic and digital signal processing systems.

Mathematically, signal-flow-graphs describes a linear relation among input and output of a system.

Generally, Mason’s gain formula is used to compute the transfer function of such systems using the signal-

flow-graphs. Traditionally, the analysis of physical circuits based on signal-flow-graphs had been carried

by paper-and-pencil based proofs and numerical techniques. Both of these methods have some known

limitations of human-error proneness and incompleteness. In this report, we present the formalization of

signal-flow-graphs and Mason’s gain formula in higher-order logic. We also briefly describe one potential

application of our work which is add-drop filter.
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1 Introduction

In order to design physical or engineering systems, we need to analyze their behavior and
to ensure that our design satisfies the system properties and specifications. To analyze
those behaviours, we need first to obtain the system transfer function which relates the
system input and output. Therefore based on the transfer function we will be able to
investigate the system properties, such as stability for physical systems, which ensures that
the output is bounded whenever the input in bounded. Generally those studies are curried
by some tedious, time-consuming, and error-proneness methods, such as transfer matrix
method or the successive substitutions of simultaneous equations. Particularly for large
number of components and interconnections in some engineering systems such as space
rocket, biomedical systems, etc. But with the simplicity of signal-flow-graphs (proposed by
Mason in 1953 [9]) which is widely applied to linear engineering system analysis and design,
we can overcome those limitations. A signal-flow-graph (SFG) is a block diagram that
represents a set of simultaneous linear algebraic equations, the signal-flow-graphs depicts the
flow of the signals from one point of a system to another and gives the relation-ships among
the signals. The main benefit of using SFG is Mason’s gain formula [9, 8] to determine the
system transfer function, which can be applied on any linear signal-flow-graphs. Mason’s gain
formula (MGF) can easily handle the system transfer function and avoid the linear algebraic
computations of simultaneous equations and reduce the work to the computation of forward
paths and feedback loops. MGF comes up often in the context of control systems [11] and
digital filters, because control systems and digital control systems are often represented by
SFG [3].

An automated approach is to use well known computational tools such as MATLAB [7],
which provides the facility to obtain transfer functions for an arbitrary systems (e.g., the
program available at [4]). However, this tool is not efficient and only provide the facility to
handle the systems with constant parameters and the generated output is string of characters;
which is a complex-valued function. Theses mentioned inaccuracy problems of traditional
analysis techniques are preventing their usage in designing safety-critical engineering systems,
where minor bugs can lead to fatal consequences both in terms of cost and human safety. In
order to build high assurance engineering systems, it is indispensable to develop a framework
which is both accurate and scalable for analyzing complex engineering systems.

Formal methods [13] based techniques have the potential to improve the analysis accuracy
of engineering systems. Particulary higher-order logic theorem proving [6] does not exhibit
the above limitations, thus we propose a higher-order logic formalization of SFG. To the
best of our knowledge, SFG theory and MGF have not been formalized. Our formalization
is mainly based on existing theories of multivariate analysis in the HOL Light theorem prover
[5]. In order to demonstrate the practical effectiveness of our formalization, we present a
potential application for our work.

In this report we present our formalization of transfer function using SFG and MGF in
HOL Light theorem prover. The report is organized as follows: Section 2 describes some
fundamentals of signal-flow-graphs. Section 3 presents HOL Light theorem prover and some
HOL Light symbol and functions. In Section 4 we present in details our elementary and
forward algorithm, also in Section 5 we present the idea to compute the transfer function
using Mason’s gain formula. We give some preliminaries of our formalization in Section 6
which will be used in the next sections. Sections 7 and 8 describe our HOL formalization
of elementary and forward algorithm and Mason’s gain formula, respectively. In Section 9
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we give some properties of our SFG formalization. In order to demonstrate the practical
effectiveness and the use of our work, we present in Section 10 a potential application of our
work, which is add-drop filter [10]. Finally, Section 11 concludes the report.

2 Signal-Flow-Graphs

A signal-flow-graphs (SFG) is a special type of block diagram and directed graph, consisting
of nodes and branches, which connect at nodes. Its nodes are the variables of a set of linear
algebraic relations. For example a branch jk originates at node j and terminates upon node
k; its direction is indicated by an arrowhead.

The SFG may be interpreted as a signal transmission system in which each node is a tiny
repeater station [9]. The station receives signals via the incoming branches, combines the
information, and then transmits the result along each outgoing branch. If the nodes of a flow
graph are numbered in a chosen order from 1 to n, then we will be able to specify the forward
path, as any path along which the sequence of node numbers is increasing, and a backward
path as one along which the numbers decrease [9]. A SFG can only represent multiplications
and additions. Multiplications are represented by the weights of the branches; additions are
represented by multiple branches going into one node [8].

2.1 Some Properties of Signal-Flow-Graphs

Source : A source is a node having only outgoing branches.
Sink : A sink is a node having only incoming branches.
Path : A path is any continuous succession of branches traversed in the indicated branch
directions.
Forward Paths : A forward path is a path in SFG that connects the input to the output
without touching any single node or path more than once. A single system can have multiple
forward paths.
Loops : A loop is a structure in SFG that leads back to itself. A loop does not contain the
beginning and ending points, and the end of the loop is the same node as the beginning of
a loop. The loops are touching if they share a node or a line in common. The loop gain is
the total gain of the loop, as we travel from one point, around the loop, back to the starting
point.

2.2 Mason’s Gain Formula

Mason’s gain formula [2] is a method for finding the transfer function which relates the
input and output of the corresponding system of a linear signal-flow-graphs. The formula
was proposed by Samuel Jefferson Mason in 1953 [9], whom it is also named after. MGF
is an alternate method to find the transfer function algebraically by labeling each signal,
writing down the equation for how that signal depends on other signals, and then solving
the multiple equations for the output signal in terms of the input signal. MGF provides a step
by step method to obtain the transfer function from a SFG. Often, MGF can be determined
by inspection of the SFG. The method can easily handle SFG with many variables and loops
including loops with inner loops. MGF is often used in the context of control systems and
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Fig. 1: An example of signal-flow-graphs

digital filters. The formula is given as follows :

MasonGain =
Output node

Input node
=

N∑
k=1

Gk∆k

∆
(1)

∆ = 1−
∑

Li +
∑

LiLj −
∑

LiLjLk + . . .+ (−1)m
∑

. . .+ . . .

where ∆ represents the determinant of the graph which has N forwards paths, yin and yout
represent the input and output node variables. The parameters Mason Gain and Gk describe
the complete gain between Input node and Output node and the gain of the kth forward path,
respectively. The Loop gain of each closed loop is represented by Li whereas the product
of the loop gains of any two non-touching loops is given by LiLj and this process continues
for all non-touching loops in SFG. Finally, ∆k represents the cofactor value of ∆ for the kth

forward path considering the elimination of all loops touching the kth forward path.

3 HOL Light Theorem Prover

HOL Light is an interactive high order theorem prover and member of the HOL theorem
prover family, developed by John Harrison in 1996 at the University of Cambridge. HOL
light conducts proofs formally in higher order logic, HOL light has been successfully used as
a verification framework for both software and hardware verification as well as a platform
for the formalization of pure mathematical theorems, HOL light also provides a number of
automated tools and pre-proved theorems (e.g. arithmetic, set and list theory, and real and
complex analysis). HOL light is written in the functional programming language Objective
CAML [5](OCaml). So installing OCaml is required for using HOL Light.

3.1 HOL Light Symbols

Table 1 provides the mathematical interpretations of some HOL Light notations that will
be used in this report.
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HOL Symbol Standard Symbol Meaning

/\ and Logical and
\/ or Logical or
∼ not Logical negation
T true Logical true value
F false Logical false value

==> −→ Implication
<=> = Equality
!x.t ∀x.t for all x : t
?x.t ∃x.t for some x : t
@x.t εx.t an x such that : t
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type

complex All complex numbers Complex data type
suc n (n+ 1) Successor of natural number
abs x |x| Absolute function

&a N→ R Typecasting from Integers to Reals

EL k L L[k] The kth element of list L
CONS e L cons Add the element e to the list L

APPEND l1 l2 append Joins two lists together
HD L head Return the head of the list L
TL L tail tail of list L

LENGTH L length Length of list L
(a, b) a× b A pair of two elements
FST fst(a, b) = a First component of a pair
SND snd(a, b) = b Second component of a pair

{x|P(x)} {x|P (x)} Set of all x such that P (x)

Table 1: HOL Light Symbols and Functions

4 Elementary & Forward Algorithms

In this section we describe in details the algorithms for extraction the elementary and for-
ward circuit (EC & FC algorithm) from the signal-flow-graphs using a common algorithm
[12]. The algorithms are named, EC for ”elementary circuit”,and FC for ”forward circuit”.
The function blocks of EC are named EC INITIALIZATION, EC SEARCH, etc. And of FC,
FC VALIDATION, FC MODIFICATION, etc. In our algorithms we assigned to the nodes of the
graph by order, the integer designators 1, 2, . . . , n. The algorithms utilize three principal
arrays: The first is a two-dimension-array that describes graph G, for which each row i
contains all the nodes with which there is a branch starting from i. The second is a one-
dimension-array P which contains the nodes of the present path under consideration. The
third is a two-dimension-array H, in which each row i contains all the nodes which are closed
to the node i (which means there is no loop or forward path starting from i and ending in
the same node.)

4.1 Algorithm Description

In EC BUILDING, we build the matrix G based on the list of branches given as input to the al-
gorithm. EC INITIALIZATION initializes the EC or FC algorithms parameters. In EC SEARCH,
we start the constitution of new path starting by the first node which will be in the first
iteration of the algorithm node 1.
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Data: L:path
Result: H:matrix of integer
for i = 1 to n do

k = 0;
for j = 1 to n do

if L[j,1] = i then
G[i,k] = L[j,3];
k = k + 1;

end

end

end
Algorithm 1: EC BUILDING

Data: n:integer
Result: H:matrix of integer , P:list of integer, k:integer
P = 0;
H = 0;
k = 1;
P[1] = 1;

Algorithm 2: EC INITIALIZATION

The path will be extended from its end, with three conditions checked before tentative
extension is performed:

• The extension node can not be in P .

• The extension node designation value should be larger than that of the previous node.

• The extension node can not be closed node to the first node of the path under consid-
eration, which means it is not in H.

First condition assures that a path (elementary, or forward) is being formed. Second con-
dition assures that each circuit will only be considered once. The search for a particular
circuit will only occur when its lowest valued integer is at the path beginning. Third condi-
tion assures that no circuit is considered more than once.

Data: P:list of integer, k:integer
Result: G,H:Matrix of integer , P:list of integer, k:integer
for j = 1 to n do

if ((G[P[k],j] > P[1]) ∧ (G[P[k],j] 6∈ H[P[k]]) ∧ (G[P[k],j] 6∈ P)) then
k = k + 1;
P[k] = G[P[k],j];
Go to EC SEARCH;

end

end
Algorithm 3: EC SEARCH
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At some points no nodes will be available for extension. A circuit confirmation is then per-
formed, i.e., is there an arc connecting the last node of P to the first node ? (EC VALIDATION,
for elementary circuit) or is the last node of P is the sink node of the graph ? (FC VALIDATION,
for forward circuit) if it does exist, a circuit is reported.

Data: Loops:matrix (m1×m2) of integer
Result: G:matrix of integer , P:list of integer, k:integer, Loops:matrix (m1×m2) of

integer
if (P[1] 6∈ G[P[k]]) then

Go to EC MODIFICATION ;
else

ADD P to Loops;
Go to EC MODIFICATION ;

end
Algorithm 4: EC VALIDATION

Data: P:list of integer , k,n :integer
Result: H:matrix of integer , P:list of integer, k:integer, Loops:matrix (m1×m2) of

integer
if (stop 6∈ G[P[k]]) then

Go to FC MODIFICATION ;
else

ADD P to Forwards;
Go to FC MODIFICATION ;

end
Algorithm 5: FC VALIDATION

In any case, node closure occurs unless there is only one node in the path. The node closure
process consists of three steps (EC MODIFICATION for elementary circuit and FC MODIFICATION

for forward circuit):

• Enter the last node of P into the row in H for the previous node of the last node in P .

• Clear the row in H for the last node.

• Shorten P by one arc eliminating the last node.

The first step assures that the path extension just performed will not be repeated. The
second step allows correct forward continuation from the last node if it is reached by a
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different path in the next iterations.
Data: P:list of integer, k:integer
Result: G, H:matrix of integer, P:list of integer, k:integer
if k = 1 then

Go to EC EXTEND ;
else

for j = 1 to n do
if H[P[k-1],j] = 0 then

H[P[k-1],j] = P[k];
exit;

end

end
P[k] = 0;
k = k - 1;
Go to EC SEARCH;

end
Algorithm 6: EC MODIFICATION

Data: P:list of integer, k:integer
Result: G, H:matrix of integer, P:list of integer, k:integer
if k=1 then

Go to FC REWRITING;
else

for j=1 to n do
if H[P[k-1],j] = 0 then

H[P[k-1],j] = P[k];
exit;

end

end
P[k] = 0;
k = k - 1;
Go to EC SEARCH;

end
Algorithm 7: FC MODIFICATION

The above extension process continues until eventually the path has been backed down to
one node. At this point an initial node advancement occurs (EC EXTEND, only for elementary
circuit, the forward circuit algorithm ends here). In this step, the first node is incremented
by one, H is cleared and the extension process starts anew. Now, however, no paths, and
thus circuit containing node 1 will be considered. EC continues to extend paths and, on
occasion, advance the initial node until P contains a path of one node, node n. Then we will
move to the next step of EC & FC algorithm, which is rewriting the output in the format of
branches like the format of the input (which is path) the output will be a list of paths, each
under form of a list of branches.
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Data: P:list of integer, n, k:integer
Result: H:matrix of integer, P:list of integer, k:integer, Loops:matrix (m1×m2) of

integer
if P[1] = n then

Go to EC REWRITING;
else

P[1] = P[1] + 1;
k = 1;
H = 0;
Go to EC SEARCH;

end
Algorithm 8: EC EXTEND

The second part of EC & FC algorithm (EC REWRITING for elementary circuit, and
FC REWRITING for forward circuit) is to write the reported circuits in the format that each
circuit is a list of branches, each is constituted of the start node, the gain, and the end node.
Those functions utilize a list of branches which representing the graph, and a list of circuits
(forward or elementary) given by the first part of the algorithm.

Data: Loops:matrix (m1×m2) of integer, SFG:matrix (nb×3)
Result: Loops path:matrix
for i = 1 to m1 do

for j = 1 to m2-1 do
for k = 1 to nb do

if (Loops[i,j] = SFG[k,1]) ∧ (Loops[i,j+1] = SFG[k,3]) then
path[j,1] = SFG[k,1];
path[j,2] = SFG[k,2];
path[j,3] = SFG[k,3];

end

end

end
for k = 1 to nb do

if (Loops[i,n] = SFG[k,1]) ∧ (Loops[i,1] = SFG[k,3]) then
path[n,1] = SFG[k,1];
path[n,2] = SFG[k,2];
path[n,3] = SFG[k,3];

end

end
Loops path[i] = path;

end
Algorithm 9: EC REWRITING
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Data: Forwards:matrix (m1×m2) of integer, SFG:matrix (nb×3)
Result: Forwards path:matrix
for i = 1 to m1 do

for j = 1 to m2-1 do
for k = 1 to nb do

if (Forwards[i,j] = SFG[k,1]) ∧ (Forwards[i,j+1] = SFG[k,3]) then
path[j,1] = SFG[k,1];
path[j,2] = SFG[k,2];
path[j,3] = SFG[k,3];

end

end

end
Forwards path[i] = path;

end
Algorithm 10: FC REWRITING

5 Mason’s Gain Formula Algorithm

In order to implement the Mason’s gain formula and to overcome the challenges, such as the
number of loops and forward paths can be infinite, and also finding no touching loops, we
implement the fowling procedures:

1. A list of all the forward paths and their gains

2. A list of all the loops and their gains

3. A list of list for non touching loops for each loop

4. A list of list as in 3 but only for the no touching loops with the forward path

5. Computing the determinant ∆ and the cofactor ∆k

6. Applying the formula

6 Preliminaries

In order to simplify our formalization of SFG and to make it more meaningful we defined
three types of abbreviation: the first one is : branch which is composed of the start node
(integer designation), the gain (complex), and the end node (integer designation). The sec-
ond one is a path, which is a list of branches. The third one is : SFG which is composed
of a list of branches, the size (integer), the sink node (integer), and the source node (integer).

Definition 1 (Type of Abbreviations).
new type abbrev ("branch", ‘:N × C × N‘)

new type abbrev ("path", ‘:(branch)list‘)

new type abbrev ("SFG", ‘:(branch)list × N × N × N‘)
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Definition 2 (Are Two Paths Touching).
` ∀ (t1:path) (t2:path).

IS TOUCHING [ ] [ ] = F ∧
IS TOUCHING [ ] t1 = F ∧
IS TOUCHING t2 [ ] = F ∧
IS TOUCHING (CONS a t1) (CONS b t2) = if ((RIGHT (CONS a t1) b) ∨
(LEFT a (CONS b t2))) then T else IS TOUCHING t1 t2

The above function verifies if two paths are touching or not, two paths are touching if
they have one common node or more. IS TOUCHING accepts as parameters two paths (list of
branches), and takes in each iteration one branch from each path and verifies if that branch
does touch the other path. If the branch is from the path in the left, IS TOUCHING calls the
function LEFT [1], otherwise if the branch from the list in the right calls the function RIGHT

[1]. By induction the function will go through the both given paths.

Definition 3 (Gain).
` ∀ (t:path).

GAIN [ ] = Cx(&0)

GAIN (CONS h t) =

if (t = [ ]) then snd of trpl h else (snd of trpl h) * (GAIN t)

The GAIN function calculates the gain of path, which in the case of empty path it returns
0, otherwise it returns the product of the transmittances of all the branches in the path. We
used snd of trpl [1] to extract the second component of the branch which is the transmittance.

Definition 4 (Valid Path).
` ∀ (l:path).

IS VALID PATH (CONS e l) = if (l=[ ]) then T

else (if((lst of trpl e) = (fst of trpl (HD l)))

then (T ∧ (IS VALID PATH l)) else F)‘;;

To ensure that a path is a valid path which means that all the branches in the path are
connected to each other. We define the function IS VALID PATH to fulfill this requirement.
Where fst of trpl and last of trpl extract the first and third element of a triplet, respectively.
The function IS VALID PATH accepts a path (which is a list of branches) and returns true
(T ) if last components of each i branch is equal to the first element of corresponding (i + 1)
branch in the path.

7 Formalization of Elementary & Forward Circuit Algorithms

In this section, we give some definitions of our formalization of the elementary and forward
circuits extraction from a given SFG. We start our formalization by defining a new type KPH

which is a type of data we will need in our formalization, and represents the triple (k, P,H),
as we described in the EC & FC algorithm in Section 4.

Definition 5 (Types of Abbreviations).
new type abbrev ("KPH", ‘:N × (N list) × ((N list) list)‘)

Definition 6 (Generates Matrix G).
` ∀ (k:N) (t1:N list) (t2:N list) (t3:N list).
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EC G creation k t1 t2 [ ] = [ ] ∧
EC G creation k (CONS e1 t1) (CONS e2 t2) (CONS e3 t3) =

(CONS (EC G creation aid (k+1) (CONS e1 t1) (CONS e2 t2))

(EC G creation (k + 1) (CONS e1 t1) (CONS e2 t2) t3))

The matrix G here is represented as list of list and has the same size of the graph,
each list i of G is the list of nodes where there are direct branches from the node i to
those nodes. EC G creation takes in each iteration a node from the graph and calls the
function EC G creation aid which in each iteration searches in the list of start nodes (second
parameter of the main function) if there is matching with the given node, it returns the
element of the list of end nodes (third parameter of the main function) which is in the same
place as the one from the list of start nodes, and by induction the EC G creation aid will
go through the list of start nodes, also by induction the EC G creation will go through all
the nodes of the graph.

Definition 7 (Modifying Matrix H).
` ∀ (e1:N) (H:(N list) list) (k1:N) (k2:N).

EC H MODIFIE e1 H k1 k2 = EC H MODIFIE2 (EC H MODIFIE1 e1 H k1) k2 (LENGTH H)

When the path attains the closed node, matrix H, in which each row i contents the closed
nodes of the node i in the graph, is modified as in EC MODIFICATION and FC MODIFICATION

process explained above. The function EC H MODIFIE1 with the help of the function EC H MODIFIE0,
puts the closed node of the path under consideration as closed node for the previous node
in the same path. The function EC H MODIFIE2 initializes the row of the closed node to zero
as in the process explained before. Thus the function EC H MODIFIE uses all those functions.

Definition 8 (Path Searching).
` ∀ (n:N) (m:N) (t1:N list) (t2:N list) (l1:N list) (l2:N list).

EC next node n m [ ] t2 l1 l2 e t = 0 ∧
EC next node n (m + 1) (CONS e1 t1) (CONS e2 t2) l1 l2 =

EC next node n m (CONS e1 t1) t2 l1 l2 ∧
EC next node n 0 (CONS e1 t1) (CONS e2 t2) l1 l2 =

if((e1 > HD l1) ∧ (NOT IN LIST e1 l1) ∧
(NOT IN LIST e1 l2)) then (n+1) else

EC next node (n+1) 0 t1 (CONS e2 t2) l1 l2

` ∀ (k:N) (P: N list) (H: (N list) list) (G: (N list) list).

EC next node main k P H G =

EC next node 0 k (EL (minus one (EL k P)) G) P P

(EL (minus one (EL k P)) H)

The function EC next node is the core for searching to paths inside the graph, it verifies
if the next node under consideration of a path does verify the three conditions explained in
the EC SEARCH procedure in the Elementary & Forward Algorithm Section 4. All the graph
nodes are under consideration as the next node in the searching of path. After that the path
will be extended until the closed node and path will be reported to the validation process to
validate it.

Definition 9 (Path Searching Main).
` ∀ (k:N) (P:N list) (H:(N list) list) (G:(N list) list) (j:N).
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EC search path k P H G j =

if(¬(j = 0)) then EC search path (k+1) (EC replace first zero (k + 1)

(EL (minus one j) (EL (minus one (EL k P)) G)) P) H G

(EC next node main (k + 1) (EC replace first zero (k + 1)

(EL (minus one j) (EL (minus one (EL k P)) G)) P) H G) else (if(¬(k = 0))

then (k,P,(EC H MODIFIE (EL k P) H (minus one (EL (minus one k) P))

(minus one (EL k P)) )) else (k,P,H))

To validate the result found by EC next node main and to do the necessary modification
for the next search parameters (matrix H and vector P ), we use EC search path in which the
two first parameters represent the path under consideration and its size, respectively. The
next two parameters are matrix H for closed nodes and matrix G of the graph description,
respectively.

Definition 10 (Searching All EC for Node).
` ∀ (l:KPH) (G:(N list) list) (t:N list).

EC POINT l G [ ] = [ ] ∧
EC POINT l G (CONS e t) =

if((fst of trpl l = 0) ∧ (¬(EC TEST (snd of trpl l) (fst of trpl l) G)))

then [ ] else (APPEND (if(EC TEST (snd of trpl l) (fst of trpl l) G)

then [(EC add node (snd of trpl l))] else [ ])

(EC POINT (EC POINT AID l G) G t3))

The function EC POINT reports all the elementary circuits which start from a single node
of the graph. If the path reported by EC search path is a valid loop, by testing it with
the function EC TEST [1], an elementary circuit will be reported and EC POINT goes to the
next iteration of the search by calling EC POINT AID [1] to update the search parameters.
EC POINT AID makes call to the function EC search path to update the search parameters
and to start new search as explained above.

Definition 11 (Skip Node).
` ∀ (p:N) (G:(N list) list) (n:N) (m:N).

ECSKIP p G m n = if(m=n) then F else if(IN LIST p (EL m G)) then T

else (ECSKIP p G (m+1) n)

For some nodes in the graph all the branches are outgoing (there is no incoming branches).
From the definition of loops, we can not find a loop which contains a node which does not
have incoming branch. So in order to enhance the performance of our algorithm, we define
the function ECSKIP which skips the process of finding loops for each node of the graph
which does not have an incoming branch.

Definition 12 (Searching All EC for All Nodes).
` ∀ (k:N) (P:N list) (H:(N list) list) (G:(N list) list)

(size:N) (n:N) (t:N list).

EC ALL POINTS k P H G size n [ ] = [ ] ∧
EC ALL POINTS k P H G size n (CONS e t) = if(EECTEST P size)

then [ ] else if(ECSKIP (EL 0 P) G (minus one (EL 0 P)) n) then

(APPEND (EC POINT k P H G (EC next node main k P H G)) G (REPLICATE (m∗m) 0)

(EC ALL POINTS k (EC add one to list head P) H G n (minus one m) t)) else

(EC ALL POINT k (EC add one to list head P) H G n (minus one m) t)
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As the function EC POINT did report all the elementary circuits which start from a single
node of the graph, the EC ALL POINTS calls in each iteration the function EC POINT for each
node of the graph by order, so to make sure that all the graph elementary circuits are
reported. The end of this function process will be when the head of the vector P is equal to
the graph size (EECTEST [1]).

Definition 13 (Feedback Paths, Output: List of Nodes).
` ∀ (l:path) (size:N).

EC MAIN l size =

EC ALL POINTS 0 (EC replace vector head (EC create vector size) 1)

(EC create matrix size) (EC G creation 0

(EC start nodes l) (EC end nodes l)

(EC create vector size) size size (EC create vector size))

EC MAIN function, which is the main function for elementary circuit algorithm, which
starts by initializing the vector P and matrixes H and G (search parameters), thereafter
it uses the function EC ALL POINTS to report all the graph’s elementary circuits. EC MAIN

accepts as parameters the graph representation (as list of branches) and the graph size.

Definition 14 (Rewriting Feedback Paths Output).
` ∀ (p:(N list) list) (l:path).

EC REWRITING [ ] l = [ ] ∧
EC REWRITING (CONS t p) l = (CONS (EC REWRITING0 t (EC REWRITING1 (HD t) t l)

(HD t)) (EC REWRITING p l))

The EC REWRITING function takes all the elementary circuits as list of nodes and returns
them as list of branches (more meaningful form). In its process EC REWRITING calls in each
iteration two functions. First one, EC REWRITING1 [1] which reports the list of gains of the
circuit under consideration. The second function is EC REWRITING0 [1] which takes each
circuit in format of list nodes and returns it in list of branches with the help of the previous
function. EC REWRITING has two parameters, the list of elementary circuits and the graph
representation (list of branches).

Definition 15 (Feedback Paths).
` ∀ (l:path) (size:N).

EC l size = if(l=[ ]) then [ ] else EC REWRITING (EC MAIN l n) l

Above is EC, the main function which returns all the elementary circuits returned by
EC MAIN, in format of list of nodes, in format of list of branches (more meaningful) and that
with the help of EC REWRITING. It takes two parameters: the graph representation and its
size, respectively.

Definition 16 (Finding Next Forward Path).
` ∀ (k:N) (P:N list) (H:(N list) list) (G:(N list) list).

FC next node main k P H G = EC next node 0 0 (EL (minus one (EL k P)) G)

P P (EL (minus one (EL k P)) H)

The next function is the core of searching for forward circuits inside the graph by us-
ing the function EC next node explained before. the difference between this function and
EC next node main is in the parameters of searching, this function is part of FC SEARCH and
FC VALIDATION process in Section 4 . The first two parameters are the size of the path under
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consideration and the path under consideration (list P ), respectively. The next two param-
eters are the matrix H (the closed nodes matrix) and the matrix G (the graph description
matrix).

Definition 17 (Removing Node From Search).
` ∀ (k:N) (P:N list) (H:(N list) list) (G:(N list) list) (j:N).

FC search path k P H G j =

if(¬(j = 0)) then (FC search path (k + 1)

(EC replace first zero(k + 1) (EL (minus one j)

(EL (minus one (EL k P)) G)) P) H G (FC next node main (k + 1)

(EC replace first zero(k + 1) (EL (minus one j)

(EL (minus one (EL k P)) G)) P) H G)) else (if(¬(j = 0)) then

(k,P,(EC H MODIFIE (EL k P) H (minus one (EL (minus one k) P))

(minus one (EL k P)))) else (k,P,H))

The FC search path function searches for forward circuits and reports the results given
by FC next node main to the validation process also it calls EC H MODIFIE to do the neces-
sary modification to matrix H. Which is the main process of EC SEARCH and FC VALIDATION.
The first four parameters are the size of the path under consideration, the path under con-
sideration (list P ), matrix H (the closed nodes matrix), and matrix G (the graph description
matrix).

Definition 18 (Forward Paths, Output: List of Nodes (1/2)).
` ∀ (l:KPH) (G:(N list) list) (t:N list) (stop:N).

FC FORWARD l G [ ] stop = [ ] ∧
FC FORWARD l G (CONS e t) stop =

if((fst of trpl l = 0) ∧ (¬(FCTEST (snd of trpl l) (fst of trpl l) stop)))

then [ ] else (APPEND (if(FCTEST (snd of trpl l) (fst of trpl l) stop)

then [(EC add node (snd of trpl l))] else [ ])

(FC FORWARD (FC POINT AID l G) G t stop))

` ∀ (k:N) (P:N list) (H:(N list) list) (G:(N list) list)

(stop:N) (size:N).

FORWARD CIRCUIT k P H G stop size = FC FORWARD (FC search path k P H G

(FC next node main k P H G)) G (REPLICATE (size∗size) 0) stop

The function FC FORWARD reports all the forward circuits of the graph. If the path reported
by FC search path is validated by FCTEST [1], a forward circuit is reported and FC FORWARD

goes to the next iteration of search by using FC POINT AID [1] to update the search parame-
ters. FC POINT AID uses the function FC search path to update the search parameters and
to start new search as explained above.

Definition 19 (Forward Paths, Output: List of Nodes (2/2)).
` ∀ (l:path) (size:N) (stop:N) (start:N).

FC MAIN l size stop start =

FORWARD CIRCUIT 0 (EC replace vector head (EC create vector size) start)

(EC create matrix size) (EC G creation 0

(EC start nodes l)

(EC end nodes l) (EC create vector size)) stop size
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FC MAIN is the main function for forward circuit algorithm. Which starts by initializ-
ing the vector P and matrixes H and G (search parameters), then it calls the function
FORWARD CIRCUIT to report all the graph’s forward circuits.

Definition 20 (Rewriting Forward Paths Output).
` ∀ (p:(N list) list) (l:path).

FC REWRITING [ ] l = [ ] ∧
FC REWRITING (CONS t p) l = (CONS (FC REWRITING1 t (FC REWRITING0 t l))

(FC REWRITING p l))

The FC REWRITING function takes the forward circuits as list of nodes and returns them as
list of branches in more meaningful forms. In its process FC REWRITING uses in each iteration
two functions. First one, FC REWRITING0 [1], which reports the list of gains of the circuit
under consideration. The second function is FC REWRITING1 [1], which takes each circuit in
format of list nodes and returns it in list of branches with the help of the previous function.
The difference between FC REWRITING and EC REWRITING is that in elementary circuit the
number of branches is equal to the number of nodes but in forward circuit it is equal to the
number of nodes minus one. The plus branch in elementary circuit is the feedback branch
from the last node to the start node.

Definition 21 (Main Forward Paths).
` ∀ (l:path) (size:N) (stop:N) (start:N).

FC l size stop start = if(l = [ ]) then [ ] else

FC REWRITING (FC MAIN l size stop start) l

FC, the main function which returns all the forward circuits returned by FC MAIN (in
format of list of nodes) in format of list of branches more meaningful and that with the help
of FC REWRITING. It takes four parameters, the graph representation (list of branches), the
graph’s size, and the graph’s sink and source nodes, respectively.

8 Mason’s Gain Formula Formalization

Definition 22 (Lists of Touching Loops).
` ∀ (t1:path) (t:(path)list).

TOUCHING LOOP t1 [ ] = [ ] ∧
TOUCHING LOOP t1 (CONS t2 t) = if (IS TOUCHING t1 t2)

then (TOUCHING LOOP t1 t) else CONS t2 (TOUCHING LOOP t1 t)

` ∀ (t:(path)list).

TOUCHING LOOP MAIN [ ] = [ ] ∧
TOUCHING LOOP MAIN (CONS h t) = (CONS (TOUCHING LOOP h t)

(TOUCHING LOOP MAIN t))

The function TOUCHING LOOP MAIN calculates for each loop, the list of loops which are;
first have bigger rank than the loop under consideration in the list of loops given, second
non touching with the loop under consideration. Therefore the function TOUCHING LOOP

does the work for each loop and that by testing each loop with the loops which have bigger
rank than the loop under consideration in the list of loops given and that with the function
IS TOUCHING. Then it reports the result to TOUCHING LOOP MAIN and then the next iteration
for the next loop. TOUCHING LOOP MAIN takes as parameter the list of loops in the graph.
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Definition 23 (Common Paths).
` ∀ (t1:(path)list) (t2:(path)list).

COMMON ELES LISTS [ ] [ ] = [ ] ∧
COMMON ELES LISTS [ ] t1 = [ ] ∧
COMMON ELES LISTS (CONS a t1) t2 = if (LEFT OF LIST a t2) then

(CONS a (COMMON ELES LISTS t1 t2))

else (COMMON ELES LISTS t1 t2)

The function COMMON ELES LISTS extracts the common paths of two given lists of paths,
it calls the function LEFT OF LIST [1] which takes a path and a list of paths and verifies if
that path is an element of the list of paths and that by using ARE SAME PATH [1] which takes
a path and tests it with each path of the list of paths.

Definition 24 (Products of Loops).
` ∀ (t1:path) (t3:(path)list) (t:((path)list)list) (l:(path)list)

(tl:((path)list)list).

PRODUCT THREE MORE t1 (CONS t2 t3) [ ] l tl = Cx(&0) ∧
PRODUCT THREE MORE t1 [ ] t l tl = Cx(&0) ∧
PRODUCT THREE MORE t1 (CONS t2 t3) (CONS t4 t) l tl =

if(LISTS ARE EMPTY (CONS t4 t))

then Cx(&0) else ((PRODUCT THREE MORE t1 t3 t l tl) -

((GAIN t1) × ((GAIN PATH LISTPATHS t2 (COMMON ELES LISTS t3

(EL (EXTRACT PLACE ELEMENT OFLIST 0 t2 l) tl))) +

(PRODUCT THREE MORE t2

(COMMON ELES LISTS t4 t3) t l tl))))

PRODUCT THREE MORE calculates the infinite part of Mason’s determinant which contents
the product of three or more of non touching loops to a given loop which are already computed
by the previous functions we defined.

Definition 25 (Delta Minus One).
` ∀ (t2:(path) list) (t:((path) list) list) (tl:((path) list) list).

DELTA MINUS ONE [ ] [ ] l tl = Cx(&0) ∧
DELTA MINUS ONE (CONS t1 t2) [ ] l tl = Cx(&0) ∧
DELTA MINUS ONE [ ] (CONS t3 t) l tl = Cx(&0) ∧
DELTA MINUS ONE (CONS t1 t2) (CONS t3 t) l tl =

((GAIN PATH LISTPATHS t1 t3) + (PRODUCT THREE MORE t1 t3 t l tl)

+ (DELTA MINUS ONE t2 t l tl) - (GAIN t1))

The above function calculates the determinant of the graph minus one by using in each
iteration for each loop; GAIN PATH LISTPATHS [1] to calculate the product between each loop
and its non touching loops, GAIN to calculate the gain of the loop under consideration, and
PRODUCT THREE MORE to calculate the product of three and more of non touching loops to
the loop under consideration. the first two parameters of DELTA MINUS ONE are the list of
loops and the list of non touching loops for each loop.

Definition 26 (MGF Denominator).
` ∀ (t:(path) list).

DETERMINANT t =

Cx(&1) + (DELTA MINUS ONE t (TOUCHING LOOP MAIN t) t (TOUCHING LOOP MAIN t))
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The function DETERMINANT above calculates the determinant of Mason’s gain formula by
calling TOUCHING LOOP MAIN to compute for each loop its non touching loops then it uses
DELTA MINUS ONE to calculate the determinant minus one. It takes as parameter the list of
loops.

Definition 27 (FP Delta Minus One).
` ∀ (t1:path) (t:(path) list).

FORWARD DELTA MINUS t1 t = (DELTA MINUS ONE (TOUCHING LOOP t1 t)

(TOUCHING LOOPS FORWARD t1 t) (TOUCHING LOOP t1 t)

(TOUCHING LOOPS FORWARD t1 t))

FORWARD DELTA MINUS calculates for each forward path its determinant based on the non
touching loops to the given forward path and that by using TOUCHING LOOPS FORWARD [1] to
determine the list of loops and DELTA MINUS ONE to calculate the determinant minus one. It
accepts as parameters a forward path, and the list of loops.

Definition 28 (MGF Numerator).
` ∀ (t1:(path)list) (t2:(path)list).

PRODUCT FORWARD DELTA [ ] t2 = Cx(&0) ∧
PRODUCT FORWARD DELTA (CONS f t1) t2 = (((GAIN f) * (Cx(&1)

+ (FORWARD DELTA MINUS f t2))) + (PRODUCT FORWARD DELTA t1 t2))

PRODUCT FORWARD DELTA calculates in each iteration the product of the forward path
under consideration and its determinant which is calculated by FORWARD DELTA MINUS, and
adding the result to the terms which will be calculated in the next iterations. It takes two
parameters, the list of forward paths and the list of loops in the graph.

Definition 29 (MGF).
` ∀ (l:(path) list) (t:(path) list).

MASON GAIN l t =
PRODUCT FORWARD DELTA l t

DETERMINANT t

Above is MASON GAIN, the main function of MGF formalization which returns the transfer
function as in MGF for a given list of feedback loops and forward paths, and that by calling
DETERMINANT to calculate the determinant of the graph and PRODUCT FORWARD DELTA to
calculate the numerator.

Definition 30 (Transfer Function (TF) (1/2)).
` ∀ (sfg:SFG) (P:N list) (H:(N list) list) (G:(N list) list).

SFG Main AID sfg P H G = MASON GAIN (FC REWRITING

(FORWARD CIRCUIT 0 (EC replace vector head P (lst of four sfg))

H G (thd of four sfg) (snd of four sfg)) (fst of four sfg))

(EC REWRITING (EC ALL POINT 0 (EC replace vector head P 1)

H G (snd of four sfg) (snd of four sfg) P) (fst of four sfg))

Definition 31 (Transfer Function (TF) (2/2)).
` ∀ (sfg:SFG).

SFG Main sfg = if((fst of four sfg)=[]) then Cx(&0) else

(SFG Main AID sfg (EC create vector (snd of four sfg))

(EC create matrix (snd of four sfg))

(EC G creation 0 (EC start nodes (fst of four sfg))

(EC end nodes (fst of four sfg)) (EC create vector (snd of four sfg))))
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SFG Main, the main function of our formalization of SFG theory, which combines forward
and elementary circuits algorithms and Mason’s gain formula algorithm to calculate the
transfer function of a given graph. SFG Main initializes the matrix G and H, and the vector
P, next it uses SFG Main AID in order to compute the transfer function of the given graph
(sfg).

Definition 32 (Numerator of TF (1/2)).
` ∀ (sfg:SFG) (P:N list) (H:(N list) list) (G:(N list) list).

NUMERATOR AID sfg P H G = PRODUCT FORWARD DELTA (FC REWRITING

(FORWARD CIRCUIT 0 (EC replace vector head P (lst of four sfg))

H G (thd of four sfg) (snd of four sfg)) (fst of four sfg))

(EC REWRITING (EC ALL POINT 0 (EC replace vector head P 1)

H G (snd of four sfg) (snd of four sfg) P) (fst of four sfg))

Definition 33 (Numerator of TF (2/2)).
` ∀ (sfg:SFG).

NUMERATOR sfg = if((fst of four sfg)=[]) then Cx(&0) else

(NUMERATOR AID sfg (EC create vector (snd of four sfg))

(EC create matrix (snd of four sfg))

(EC G creation 0 (EC start nodes (fst of four sfg))

(EC end nodes (fst of four sfg)) (EC create vector (snd of four sfg))))

The function NUMERATOR calculates the numerator of SFG Main, first by using EC create matrix,
EC G creation, and EC create vector to calculate the matrix H, G, and the vector P, sec-
ond the function NUMERATOR AID computes list of feedback paths and forward paths and uses
PRODUCT FORWARD DELTA to calculate the numerator of Mason’s gain formula.

Definition 34 (Denominator of TF).
` ∀ (sfg:SFG).

DENOMINATOR sfg = DETERMINANT (EC (fst of four sfg) (snd of four sfg))

The function DENOMINATOR calculates the numerator of the SFG Main, using EC to deter-
mine the list of feedback loops and DETERMINANT to calculate the determinant of the graph
as in Mason’s gain formula algorithm.

9 Some Basic Properties of Signal-Flow-Graphs

In this section we give some properties of our SFG formalization in HOL Light, that we have
proved.

Theorem 1 (SFG Fundamental Theorem).
` ∀ (sfg:SFG).

SFG Main sfg =
NUMERATOR sfg

DENOMINATOR sfg

This property proves that the transfer function of SFG (SFG Main) can be written as
fraction of the NUMERATOR and DENOMINATOR defined above of the same SFG. The proof of
this theorem is based on rewriting the definitions of SFG Main, DENOMINATOR, and NUMERATOR.
This theorem is very useful for the analysis of physical circuits, because it helps for the
extraction of the system zeroes and poles.
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Theorem 2 (FC of Empty SFG).
` FC [ ] 0 0 = [ ]

The property above proves that in an empty SFG (no branch and node, graph size = 0),
there is no forward circuit. The proof is by rewriting the definition of FC.

Theorem 3 (FC of SFG Contents Single Branch).
` ∀ (gain:C). FC [(1,gain,2)] 2 3 = [ ]

The above mentioned property describes that in a given SFG if the given stop node does
not match with any node of the end nodes of the graph branches, the graph will not have any
forward circuit. Note that the proof is based on some simplifiers (see appendix I) developed
for the forward circuits which reduces the interaction with HOL Light during the proof.

Theorem 4 (EC of Empty SFG).
` EC [ ] 0 = [ ]

This property proves that in an empty SFG, there is no feedback loop. The proof of this
theorem is by rewriting the definition of EC.

Theorem 5 (EC of SFG contents single branch).
` ∀ (gain:C). EC [(1,gain,2)] 2 = [ ]

The property above proves that in given SFG if there is no feedback loop the result will
be an empty list. The proof of this theorem is based on some simplifiers [1] developed for
the elementary circuits which reduces the interaction with HOL Light during the proof.

Next property proves that however the given list of feedback loops if the list of forward
paths is empty, the transfer function will be zero. The proof is based on rewriting the defini-
tions of MASON GAIN and PRODUCT FORWARD DELTA. When we rewrite PRODUCT FORWARD DELTA

we will get zero, because PRODUCT FORWARD DELTA is the sum of products of forward path
gain and its determinant, so when there is no forward path the first term of each product is
zero and the final result therefore is zero.

Theorem 6 (Mason’s gain formula Property).
` ∀ (l:(path) list).

MASON GAIN l [ ] = Cx(&0)

10 Add-Drop Filter

10.1 Introduction

As an application of our proposed signal-flow-graphs formalization, we formalize and ver-
ify an important photonic processor namely add-drop filter (or add-drop multiplexer) [10]
which is widely used as a filtering element in biosensors and wavelength division multiplexing
(WDM). Add-drop filter (ADF) is generally used for the construction of optical telecommu-
nication networks. ”add” and ”drop” refer to the capability of the device to add one or more
input wavelength channels to an existing multi-wavelength WDM signal, andor to drop (re-
move) one or more channels, passing those signals to another network path, respectively. An
add-drop filter may be considered to be a specific type of optical cross-connect.
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Fig. 2: Add-Drop Filter Schematic Architecture

10.2 Add-Drop Filter Modelling

A traditional add-drop filter consists of three stages: an optical demultiplexer, an optical
multiplexer, and between them a method of reconfiguring the paths between the optical
demultiplexer, the optical multiplexer and a set of ports for adding and dropping signals.
The optical demultiplexer separates wavelengths in an input fiber onto ports. The schematic
diagram of the add-drop filter circuit is shown in Figure 2 which consists of two directional
couplers interconnected with two optical fiber forward and feedback path. The fiber path 4 -
5 is the forward path of the circuit, while path 7 - 2 is the feedback path of the circuit. The
signal-flow-graphs representation of the ADF circuit is shown in Figure 3 which consists of the
same number of nodes as in the block diagram representation in Figure 2. Our main interest
is to evaluate the circuit behavior at the output node which is represented by node 8 , when
the signal is applied at the input, i.e., node 1 . We keep all above mentioned parameters in
the general form which further can be used to model different ADF configurations.

Next, we formally define the SFG of the ADF in HOL as follows:

Definition 35 (ADF Model).

` ∀ξ S1 S2 C1 C2 ∈ C.
ADF model ξ S1 S2 C1 C2 = [(1,−j ∗ S1, 4); (4,

√
ξ, 5); (5, C2, 7); (1, C1, 3);

(5,−j ∗ S2, 8); (6, C2, 8); (6,−j ∗ S2, 7); (7,
√
ξ, 2); (2, C1, 4); (2,−j ∗ S1, 3)], 8, 8, 1

where ADF model accepts complex-valued transmittances and coupling coefficients, and re-
turns the signal-flow-graphs which has a total number of 8 nodes and the output node is 8
as shown in Figure 2.
Next, we verify the transfer function of the ADF circuit as follows:

Theorem 7 (Transfer Function of ADF).
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` ∀ξ S1 S2 C1 C2 ∈ C.
transfer function (ADF model ξ S1 S2 C1 C2) =

−S1 ∗ S2 ∗
√
ξ

1− C1 ∗ C2 ∗ ξ

11 Conclusions

In this report, we presented the formalization of algorithms for calculating the transfer
function using HOL Light theorem prover. In particular, we presented the formalization of
the signal-flow-graphs alone with the Mason’s gain formula. We also verified some important
properties which ensures the correctness of our definitions. Finally, we gave an application
of our formalization in the field of photonic signal processors, in order to demonstrate the
effectiveness of our proposed formalization of signal-flow-graphs. Note that our proposed
formalization can be used in other field other than photonic, such as: command theory,
electronic, and digital signal processing.
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Appendix I: Proof Tactics

Tactic Description

SIMPLIFIED FH TAC0 It simplifies the function which confirms if a possible feedback
path is a real feedback path and simplifies the function which
updates the matrix H and the vector P for the next search

SIMPLIFIED FC TAC0 It simplifies the function which searches for one possible forward path
TAC FC It simplifies the function which computes the entire forward path

by applying the previous two tactics randomly
SIMPLIFIED EC TAC0 It simplifies the function which searches for one possible feedback path
SIMPLIFIED H TAC0 It simplifies the function which confirms if a possible feedback

path is a real feedback path and simplifies the function which
updates the matrix H and the vector P for the next search

SIMPLIFIED H TAC1 It combines the two previous tactics
SIMPLIFIED ALL TAC0 It simplifies the function EC ALL POINTS in order to change

the search starting node
TAC EC It simplifies the function which computes the entire feedback paths

by applying the previous four tactics randomly
MASON SIMP TAC It simplifies the function which calculates the transfer

function using Mason’s gain formula (MASON GAIN)
COMPLEX DIV TAC It simplifies a goal of comparing two fractional expressions
ECFEC SIMP TAC2 Simplifies the functions which normalize the output of the feedback

path’s searching functions
ECFEC SIMP TAC1 Simplifies the functions which initialize the matrix G and H and the

vector P used for extracting the feedback paths and the forward paths
ECFEC SIMP TAC3 Simplifies the functions which normalize the output of the forward

path’s searching functions
SFG TAC This is the main tactics for simplifying the transfer function

of the given graph
NUMERATOR SIMP TAC Simplifies the functions which initialize the matrix

G and H and the vector P used for extracting the feedback
paths and the forward paths for computing the numerator

DENOMINATOR SIMP TAC2 Simplifies the functions which normalize the output of the forward
path’s searching functions for calculating the denominator

DENOMINATOR SIMP TAC1 Simplifies the functions which initialize the matrix
G and H and the vector P used for extracting the feedback
paths and the forward paths for computing the denominator

NUMERATOR TAC This is the main tactics for simplifying the numerator of
transfer function of the given graph

DENOMINATOR TAC This is the main tactics for simplifying the denominator
of transfer function of the given graph
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