
Formal Specification Requirements for Group

key Management and Distribution Protocols

Amjad Gawanmeh and Sofiène Tahar

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve West,

Montreal, Quebec H3G 1M8

{amjad,tahar}@ece.concordia.ca

July, 2006

1



Abstract

Design and verification of cryptographic protocols has been under in-

vestigation for quite long time. However, there is not much attention paid

for the class of protocols that deals with group key management and dis-

tribution, mainly because of their dynamic characteristics. In this paper,

we provide formal specification requirements for group key distribution and

management and distribution protocols. This can help in the correct speci-

fication of the behavior of the protocol which is necessary in the design and

verification process. We define a formal model based on these specifications

and we use the idea of rank functions in order provide a solution for the

verification problem of this class of protocols using theorem proving.

1 Introduction

Cryptographic protocols provide security services for communicating entities.

The protocol involves a precise interaction between the entities in order to achieve

the required service such as authentication of origin, establishing session keys be-

tween communicating entities, and secrecy of information. Because of the sen-

sitivity of these services, it is very important to verify the operation of protocols

and that they are not subtle to attacks. There are examples of protocols that have

been used extensively before it turns out that an attack can be taken against them,

even though the protocol received intensive analysis, but the flaw could not be ad-

dressed. This triggered people towards using formal methods to design and verify

protocols. There are many approaches and tools that have been developed in this

direction, some succeeded in identifying new flaws in protocols.

There are different kinds of environments that protocols must interoperate

with, networks also handle more and more tasks in a potentially hostile envi-

ronment. Therefore, cryptographic protocols should take more responsibilities in

order to capture these new requirements. Some security properties like availabil-

ity and fairness take more important rules in some protocols like in commercial

systems. This requires that complexity of the cryptographic protocol should be

increased. In addition, new cryptographic primitives are being adopted; in group

key management protocols of unbounded size, it is not obvious how to reason

about them with existing protocol analysis systems. This of course, makes both

verification and implementation more difficult. It also requires the search for new

modeling and verification approaches for cryptographic protocols [14].

2



Group communication applications use encryption methods in order to limit

access to information for legitimate members only. They are also dynamic with

regard to principals participating in the group. So messages are protected by en-

cryption using a chosen key, which in the context of group communication is

called the group key. Only those who know the group key are able to recover the

original message. In addition, the group may require that membership changes

cause the group key to be refreshed. Changing the group key prevents a new

member from decoding messages exchanged before they joined the group or after

they leave. If a new key is distributed to the group when a new member joins,

the new member cannot decipher previous messages even if it has recorded earlier

messages encrypted with the old key.

However, distributing the group key to legitimate members is a complex prob-

lem. Although re-keying a group, by sending the new group key to the old group

members encrypted with the old group key, before the join of a new member is

trivial, re-keying the group after a member leaves is far more complicated. The old

key cannot be used to distribute a new one, because the leaving member knows

the old key. Therefore, a group key distributor must provide another scalable

mechanism to distribute keys to the group.

So, there should be a mechanism to create secret keys and distribute them

among legitimate principals that guarantees the secrecy of these keys. There are

three different classes for group key management [16]:Centralized group key

management protocols, where a single entity is responsible for controlling the

whole group, hence a group key management protocol seeks to minimize storage

requirements, computational power on both client and server sides.Decentralized

architectures, where the management of a large group is divided among subgroup

managers, trying to minimize the problem of concentrating the work in a single

place. Finally,distributed key management protocols, where there is no explicit

key distribution center, and the members themselves do the key generation. All

members can perform access control and the generation of the key can be either

contributory, meaning that all members contribute some information to generate

the group key, or done by one of the members.

Talking about protocols involving two or three parties, the general require-

ments for these protocols are well understood, however, the case is different with

group key distribution protocols, where the key can be distributed among large

number of member who may join or leave the group at an arbitrary time. So secu-

rity properties that are well defined in normal two parties protocols have different

3



meaning and different interpretation in group key distribution protocols, and so

they require a more precise definition before we talk about how to verify them.

An example of such properties is secrecy property, which deals with the fact that

secret data should remain secret and not compromised. However, talking about

group key distribution protocols, this property has a further dimension since there

are long terms secret keys, short term secret keys, in addition to present, future,

and past keys; where a principal who just joined the group and learned the present

key should not be able to have enough information to deduce any previous keys, or

similarly a principal who just left the group should not have enough information

to deduct any future keys.

There are many protocols design approaches suggested to handle the .

There are many suggested protocols to handle the group key distribution prob-

lem, examples are Hydra [15], Enclaves [4], key graphs [15], and Internet Group

Management Protocol (IGMP) [15]. Rafaeli and Hutchison [16] provided a sur-

vey on current approaches and protocols for key distribution. The correctness of

these protocols is an important issue that has not been investigated enough yet.

Therefore, in this paper we discuss our approach to provide a verification method-

ology for this class of protocols. We first give a formal specification require-

ments for group distribution protocols, and then discuss the steps of a verification

methodology which is based on our requirements definition and utilizing previous

techniques and existing verification tools.

We intend to use theorem proving techniques as verification method. So we

will be concerned with the fact that certain messages should not occur, or should

occur only under particular conditions. In theorem proving, this means providing

theories for establishing the impossibility of particular combinations of events.

In general, security properties are concerned with conditions under which the in-

truder can learn specific facts. We require that facts are obtained by protocol

principals only be possible after some other fact (like authentication) has been oc-

curred. In order to establish a prove that a fact is not available to the intruder, we

need to show that this specific fact has a characterizing property that enables its

generation, and the intruder do not have that property. To achieve this, we assign

value orrank to each fact, these ranks will depend on the protocol itself, the initial

knowledge and capabilities of the intruder, and finally the facts that we want to

reveal to the intruder [17].

The rest of this paper is organized as follows, Section 2 provides related work

to ours. In Section 3, we provide our formal specification requirements for group

4



key management protocols. In Section 4 we provide an application of the require-

ments to verify properties for group key management protocols. Finally Section 5

concludes the work with future work hints.

2 Related Work

In this section we discuss approaches for modeling and verification of group key

management and distribution protocols that are closely related to our work. There

is a limited effort has been done on modeling and verification protocols that in-

volve more than two parties. In addition, there are very few trials to discuss the

general formal requirements for reasoning about cryptographic protocols, which,

once developed, can be applied at the design stage of new protocols as well as

existing ones.

Syverson and Meadows [19] presented a the formal requirements for authen-

tication in key distribution protocols. They tried to provide a single set of re-

quirements to specify a whole class of protocols, which can be fine-tuned for the

particular application. There were two main problems in their approach; first,

the requirements they provide was for a single property, which is authentication,

which is a property that has no different meanings in different protocols. Second,

the requirements are defined as a security property, whereas the definition should

include the whole protocol requirements and how they can be interpreted and then

applied into a specific protocol.

The work in [9, 8] used a combination of three different approaches in or-

der to prove the correctness of Intrusion-tolerant Enclaves protocol. They used

Murphi model checker in order to verify authentication property, and PVS (Pro-

totype Verification System) [12] to verify safety and liveness properties such as

proper agreement, agreement termination, and integrity, finally, and Random Or-

acle model to manually prove robustness and unpredictability properties. The

choice of the techniques was driven by the nature of the correctness arguments in

each module of the protocol, by the environment assumptions and the capability

of the verification approaches. This example shows that its difficult to verify and

analyze this class of protocols. There was no single formalism where the protocol

can fit and its verification is feasible. However, they achieved a promising success

in verifying a complex protocol such as Enclaves, the results could be improved

further first by using the rank functions to partition the message space and me-

chanically prove properties for the protocol [17]. Also by providing correctness

5



proofs for the consistency group membership when members leave and join the

group. Finally one of the biggest challenges is to perform the analysis of the group

key management module in PVS which requires the elaboration of some general

purpose theories that deal with probabilities which are not yet available in theorem

provers.

In addition to the previously mentioned work in [9], Meadows and Syverson

[10] used the NPATRL language, a temporal requirement specification language

for use with the NRL Protocol Analyzer, in order to specify the the Group Domain

of Interpretation (GDOI) key management protocol. In a later stage Meadowset

al. [11] gave a detailed specification of the requirements for GDOI and provided a

formal analysis of the protocol with respect to these requirements using the NRL

Protocol Analyzer. However, the problem with this approach is that there is no

general set of requirements for protocols requirements which can be applied on

specific protocol, or can be used for the refinement of protocol specifications in

the design stage. In a related approach, Denker and Millen [3] used multiset term

rewriting in order to model group communication protocols.

Bressonet al. [1, 2] presented a security model Group Diffie-Hellman proto-

cols for Authenticated Key Exchange (AKE) and use it to precisely define AKE

and the entity-authentication goal as well. They then define in this model the ex-

ecution of an authenticated group Diffie-Hellman scheme and prove its security.

Other work by Kimet al. [6, 7] investigates a novel group key agreement approach

which blends key trees with Diffie-Hellman key exchange for the purpose of de-

signing group key agreement protocols. But they do not provide any proof of the

security of the protocol. A complementary step would be providing an approach

to verify this class of protocols based on the same approach to design them.

In a recent work, Pereira [13] proposed a systematic approach to analyze pro-

tocol suites extending the Diffie-Hellman key-exchange scheme to a group setting.

He pointed out several unpublished attacks against the main security properties

claimed in the definition of these protocols. The method provided is essentially

manual and applicable only on Group Diffie-Hellman (GDH) protocols suit. In

a recent work, Sun and Lin [18] extended the strand space theory to analyze the

dynamic security of GKAP.

There has been recent trials to provide design approaches for group key man-

agement protocols. Wonget al. [20] presented three strategies for securely dis-

tributing re-key messages after a join/leave operation and specified protocols for

joining and leaving a secure group. Kikuchi [5] presented a new group key dis-

6



tribution scheme based on the Rabin public-key cryptosystem. Another approach

based on tree-key for group key management protocols construction is found in

[7]. Rafaeli and Hutchison [15] presented a decentralized architecture to cre-

ate and distribute symmetric cryptographic keys to large multicast-based groups.

These design approaches are important to us because the formal model we intend

to present should be scalable to different protocols and therefore should consider

the design approaches used to develop group protocols.

Ryan and Schneider [17] proposed the idea of rank functions for protocols

verification by defining suitable rank functions for the CSP (Communication Se-

quential Process). In this project, we take advantage of this idea and use it for

group key distribution protocols by applying the ranks functions on our protocol

model and providing a mechanized verification approach.

We noticed that there are general common problems in many of these ap-

proaches discussed above. There is no single formalism to model the protocols

and reason about their security properties. There is no formal link between the

informal specification and the provided protocol models and their security prop-

erties. All approaches concentrate on the trivial secrecy and authentication prop-

erties. There are no trials to reason about complex features of key distribution

properties such as key hierarchies which is not easy to reason about. There is no

mechanized verification methodology to relay on to prove the correctness of a spe-

cific protocol. Finally, the design process of new protocols doesn’t relay on a well

defined specification requirements, which will reduce the possibility of introduc-

ing errors into the protocol in the design stage. This justifies the need of formal

specification requirements of group key distribution protocols, which is discussed

in the next section.

3 Formal Specification Requirements for Group Key

Distribution Protocols

In this section we give specification requirement of group key management pro-

tocols. Since there are many different approaches in literature to design these

protocols, specially keys generation and distribution, the specification of these

protocols and their properties are informal. So we try to provide a common formal

model for these specifications where most of these currently designed protocols

fit. We need these formal specification requirements for many reasons: first, to fill

the gap between the informal protocols descriptions on one hand and the formal

7



protocol models and their implementations on the other hand. Second, to integrate

formal analysis in the design process of cryptographic protocols and specifically

group key distribution protocols [10]. Finally, to give a better understanding for

the verification problem and suggest a verification method based on these require-

ments.

Freshness requirement imposes that when a principal receives a piece of in-

formation, such as keys, then this information must have been fresh and currently

valid. In this sense, freshness is similar to those that have been defined for two

parties protocols. Group secrecy should guarantee that its computationally infea-

sible to discover any group key. Forward secrecy should guarantee that knowing a

subset of old group keys will not lead to the computation of any subsequent group

key. Backward secrecy should guarantee that knowing a contiguous subset group

keys will not lead to the computation of a preceding group key.

Joining group or leaving group events are operations that result in creating a

new group with a new group key out of an existing group. Any protocol should

guarantee the above properties should apply on joining/leaving group members.

Merge group event is the operation where portioned subgroups need to be merged

back into a single group, a new group key is computed and distributed to every

member of the new group, and group keys for subgroups are considered old or

preceding keys. Split group event is the operation of creating two subgroups out

of a single group, where every subgroup has an independent group key.

The formal definition of these protocols requirements is necessary first for un-

derstanding the protocol, and second for the protocol verification. Therefore, we

are concerned with providing a formal definition for these requirements as a first

step. We will consider different protocol design approaches, explore how these

requirements are provided in these protocols, and formally model them accord-

ingly.

We introduce the notation of time in order to be able to model specific events

and properties in the protocols. This is mainly because the definition of a specific

property at one time is different from another time, which can be a future time or

a past time. This is necessary when we talk about forward secrecy and backward

secrecy.

In order to provide a formal definition of these requirements, we introduce

here the notation we use throughout the report.

P : honest principals who are willing to communicate.

I: a dishonest member.

8



Gt: current group, which cab be formally defined as a set of principals who

share a secret key, or information that can be used to calculate the secret key.

Gt+n: a group that can share a secret key at future time.

Gt−n: a group that previously in time shared a secret key.

F : a set of facts, i.e. nounces, secret keys, etc.

E: the set of dynamic operations, i.e. join, leave, merge, and split.

τ a trace of events that can take place during a protocol run, like encryption,

decryption, send, receive, etc.

KGt : the group session key: which is the key generated for the current session.

Equivalently, it can be the set of information that can be used to calculate the key.

KGt+n: a group session key that can be generated and used sometime in the

future.

KGt−n: a group session key that was generated and used previously sometime

in time.

∈ group membership: we define membership as follows: if a principalP

knows a keyKGt , thenP ∈ Gt.

3.1 Authentication

This property is similar to authentication in two parties protocol, and it has re-

ceived intensive analysis and so formally modeled in many frameworks [10, 17,

19]. However, in group key distribution, it can be intended for authentication of

group members to each others, in addition to the authentication of a new user to

the group.

3.2 Secrecy

Only members of the group should have access to keys. the important issue here, is

wither we want to allow users who just joint the group to have access to previously

used keys, also wither we want to allow users who just left the group to have access

to keys that will be generated hence after. To insure the secrecy of old and new

keys, every protocol uses a mechanism for keys generation to guarantee that they

cannot be calculated using the current group session information including the key

itself.

In the following we give the formal definition of group secrecy, forward se-

crecy and backward secrecy.

9



Definition 3.1. Group key secrecy: for any current groupGt, and dishonest prin-

cipal I who knows a set of factsF , there is no traceτ that he can execute in order

to obtain the current group session keyKGt .

Definition 3.2. Forward secrecy requires that a session key cannot be calculated

from from keys and information that are generated after this key in time.

Which means that compromising sessions keys does not compromise previous

session keys that were established for previous protocol runs. In order for a pro-

tocol to satisfy this property, there should be no trace of events that can lead to

generating a previously used keys by a user who was not part of the group at the

time when the key was generated.

We formally model forward secrecy requirement as follows:

For any current groupGt, and a dishonest principalI who knowsKGt−n, there

is no traceτ that he can execute in order to obtain the current group session key

KGt.

Definition 3.3. Backward secrecy requires that a session key cannot be calculated

from from keys and information that are generated before this key in time.

Which means that compromising sessions keys does not compromise keys for

future sessions. The main concern here is that a user who decides to leave the

group, should not be able to use the information he learned in order to calculate

keys that maybe used after he left.

We formally model backward secrecy requirement as follows: For any current

groupGt, and a dishonest principalI who knowsKGt , there is no traceτ that he

can execute in order to obtain a previous group session keyKGt−n.

3.3 Freshness

This is the requirement that, if a principal receives information, then it must be

current at some specified time. When a principal requests a piece of information,

he expects to receive a current information. So when a protocol responds to a

member’s request with for a key, it must be sure that this is a new request, not

a reply of an old one. Therefore, this freshness requirement can only be guaran-

teed for honest members, as we cannot prevent dishonest users from replying old

requests to obtain some information.

10



Definition 3.4. Freshness requirement: a principalPi can execute a traceτ to

obtain a factF , however, there is no principalPj that can execute the same trace

tau in order to obtain the factF .

In order to reason about freshness, we have to consider time, and assign time-

stamps to every piece of information, including the traces that can be executed by

principals, and the set of facts the principal is willing to obtain.

3.4 Joining and Leaving Groups

Any group key distribution protocol must handle adjustments to group secrets

subsequent to all membership change operations. Single member operations in-

clude memberjoin or leave. Leave occurs when a member wants to leave the

group or forced to. Join occurs when a member wants to have access to current

group. Although, protocols may impose an agreement criteria on joining and leav-

ing groups, the effect of executing the event should result in a new group settings,

in case the event is executed successfully, i.e. the member is granted access to the

group, or released from it.

Definition 3.5. A principal P joins the group if for a current group settingsGt,

P /∈ Gt, and there is a traceτ that P can execute such thatP ∈ Gt+n and

KGt+n 6= KGt .

For this definition ofjoin event, there is a time delay ofn, which should be

less than the max join delay imposed by the protocol.

Definition 3.6. A principalP leaves the group if for a current group settingsGt,

P ∈ Gt, and there is a traceτ that P can execute such thatP /∈ Gt+n and

KGt+n 6= KGt .

3.5 Merging and Splitting Groups

Merging and splitting groups are considered as multiple members operations,

some protocols relay on distributing security management among distributed servers

rather than one single server, this is obtained by having multiple groups. However,

sometimes there is a need to merge two groups (or more) or to split a current group

into two groups. These events affect the current groups settings and result in new

settings that should maintain all the security requirements of the protocol.

11



Merge event occurs when two groups with two different settings execute a

trace of events that result in every member of either group is a member of a new

group that has new settings. Whereas split event occurs when one group executes

a trace of events that result in two new different groups, where every member of

current group is a member of one and only one of the new groups.

Definition 3.7. A groupG1t merges with groupG2t, if there is a traceτ that both

G1t andG2t can execute such that∀ P ∈ G1t ∪ G2t P ∈ Gt+n, KGt+n 6= KG1t

andKGt+n 6= KG2t .

Definition 3.8. A groupGt splits into groupsG1t andG2t, if there is a traceτ

that Gt can execute such that∀ P ∈ Gt either P ∈ G1t+n or P ∈ G2t+n,

KGt 6= KG1t+n andKGt 6= KG2t+n.

These definitions can are used in order to define rank theorems for the proper-

ties we wish to verify.

4 Verification Approach Based on the Formal Re-

quirements

Our verification approach is based on the specification requirements model pro-

vided in the previous section. The main idea is to map the requirements into ranks,

this map is based on a predefined function calledthe rank function[17]. Then, we

will define rank theorems that provide conditions satisfied by this rank function

in order to conclude that the model satisfies the security property under investiga-

tion. The proof establishment will be mechanized in PVS theorem proving based

on embedding the rank functions into PVS and establishing proof of correctness

for the rank theorems in PVS.

We will define a verification approach based on the model we presented, this

approach should have the following features:

• It can prove the correctness of the protocol under investigation.

• It can verify security properties provided by the protocol, mainly safe key

distribution.

12



Probabilistic Theorems in PVS

Model

Establishing proof

PVS Embedding

in PVS

Formal Protocol

Rank Theorems

Rank Functions

Requirements

Formal Specifications

Specifications

Informal Protocol

Figure 1: Verification Methodology

• It can be efficiently implemented, which means there is an appropriate tool

support.

In our approach, we can consider establishing the proof on the different levels

of abstraction of the protocol at two levels: the protocol level and the encryption

level. Working at the protocol level, embedding of the rank functions and rank

theorems into PVS will make verification feasible, however, working out the proof

at the encryption level, will require the definition of probabilistic theorems in PVS

which are not available yet.

Figure 1 shows the steps of our verification methodology. The first step, which

was discussed in the previous section, will help to eliminate the gap between the

informal protocol specification and the formal model and provide a well defined

protocol specification that can be directly integrated into the verification method-

ology. In the second step, we define a map function between the set of facts we

13



know, or we can learn about the protocol and the set of integers. This mapping

function will be useful in partitioning the message space and enabling mechanized

proof of security protocols properties. After this map, we obtainrank theorems,

which are the set of properties and protocol specifications modeled using the rank

functions we defined. In order to prove the correctness of a specific property, we

need to show that its corresponding rank theorem is correct with regard to the

protocol model. The final step, is to mechanize the proof through PVS theorem

prover.

4.1 Rank Functions for Protocol Models

Rank functions were first introduced in [17] for the purpose of proving CSP using

PVS. For the purpose of establishing the proof that a specific fact will not be

available to the intruder, we assign a value orrank to each fact, such that, facts that

can be generated by the system have positive rank, and facts that we wish to show

cannot be obtained by the intruder cannot have positive rank. The ranks that are

assigned will depend on the protocol itself, the initial knowledge and capabilities

of the intruder, and the property we want to prove. In our approach, we will define

suitable rank functions that map our formal specification requirements in order to

obtain rank theorems, which are the properties we wish to prove, the key result

that provides the basis of the verification approach is that if these requirements all

hold, then no fact of non-positive rank can be generated by the system. Which

means that these facts cannot be leaked to dishonest users.

The definition of the rank function is provided in [17] as follows:

Definition 4.1. (Rank Function) A rank functionρ is a map functionρ : Fact ∪
Signal → Z which maps facts and signals into integers.

In order to ensure that facts and signals of positive rank can be generated,

it is necessary to verify that each participant cannot introduce anything of non-

positive rank to the system. In other words, intruder initial knowledge must be

of positive rank, and only facts of positive ranks can be generated from sets of

facts of positive rank. We illustrate this idea by defining a rank function for group

secrecy requirement defined in the previous section.

14



ρ(f) = 1, wheref ∈ F

ρ(key) =

{
0 if key = KGt

1 otherwise

ρ(m) =

{
0 if {m} = KGt

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(claim secret.k) =

{
0 if k = KGt

1 otherwise

The rank theorem in the above map isρ(KGt) > 1 which we wish to proof

correct. All previous maps define facts about the protocol in general and maps

them into integer values. However, for a specific protocol, the rank function

maybe a little bit different depending on the nature of the protocol. In addition, we

can define similar rank functions for all the properties we defined in the previous

section.

So, to define the property we want to proof for a specific protocol, likeρ(KGt) >

1, we say: For all eventsε and tracetau a principal P can execute onGt,

ρ(KGt) > 1. ∀ ε, τ P ‖ Gt ⇒ ρ(KGt) > 1. Where,ε ∈ E and ‖
represents executing the protocol by a principal.

The rank functionρ can also be appliedd on forward and back ward secrecy

requirments. The rank function for forawrd secrecy is defined as:

ρ(key) =

{
0 if key = KGtor key = KGt−n

1 if key = KGt+n

and the rank function that maps backward secrecy is defined as follows:

ρ(key) =

{
0 if key = KGtor key = KGt+n

1 if key = KGt−n

15



Similarily, we want to show for both forward and backward secrecy thatρ(KGt) >

1 holds:

∀ ε, τ P ‖ Gt ⇒ ρ(KGt) > 1

4.2 Verification in Theorem Proving

In the next step, we plan to mechanize the correctness proof using the general

purpose theorem prover PVS. For our case, we need to provide a PVS embedding

for the formal requirements, the rank functions we defined, and the rank theorems.

In addition, we need to consider timing since security properties we deal with are

time dependent (such as forward and backward secrecy), and protocols messages

may contain time-stamps as part of the message. For this purpose, we will use the

general PVS theory about time automata developed by Layouni [8].

In a later stage of this project, if we plan to conduct correctness proofs for

the protocols at the encryption level, we will need to define probabilistic theories

in PVS in order to be able to reason about encryption and decryption algorithms.

However, this remains a future direction of this project which depends on the

results we can achieve using the current approach in addition to the time needed.

5 Conclusion

The correctness of security protocols in communication systems remains a great

challenge because of the sensitivity of the services provided. Formal methods

have been used widely in this area to perform protocol verification and analysis.

In our proposal, we provided a literature survey of the state of the art approaches to

use formal methods in the design and verification of cryptographic protocols. We

also illustrated the need for a verification methodology for a class of protocols that

deal with group key distribution, because most of the approaches in the literature

targets cryptographic properties for two parties protocols, while the verification

problem is more challenging for group key distribution protocols.

The contributions of this paper are providing a state of the art survey on mod-

eling and verification of group key distribution protocols, then the formal specifi-

cation requirements of group key distribution protocols, and finally defining rank

functions for our requirements and proposing a verification approach to enable

and mechanize the verification procedure of this class of protocols. We use rank

functions that map the formal protocol model into a set of integers in order to

obtain rank theorems. As future work, we will embed our model, rank functions

16



and rank theorems in PVS in order to be able to construct the proof of the claimed

security properties. This requires providing PVS model for the protocol under

investigation.

References

[1] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated

Group Diffie-Hellman Key Exchange - the Dynamic Case. InProc. of the 7th

International Conference on the Theory and Application of Cryptology and

Information Security, Lecture Notes in Computer Science, pages 290–309.

Springer-Verlag, 2001.

[2] E. Bresson, O. Chevassut, and D. Pointcheval. The Group Diffie-Hellman

Problems. In K. Nyberg and H. Heys, editors,Selected Areas in Cryptog-

raphy, volume 2595 ofLecture Notes in Computer Science, page 325338.

Springer-Verlag, August 2002.

[3] G. Denker and J. Millen. Modeling Group Communication Protocols us-

ing Multiset Term Rewriting. InRewriting Logic and its Applications, vol-

ume 71 ofElectronic Notes in Theoretical Computer Science. Elsevier, 2002.

[4] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-Tolerant Enclaves. In

Proc. IEEE International Symposium on Security and Privacy, pages 216–

224, May 2002.

[5] H. Kikuchi. Rabin Tree and its Application to Group Key Distribution.

In Farn Wang, editor,Automated Technology for Verification and Analysis,

ATVA 2004, volume 3299 ofLecture Notes in Computer Science, pages 384–

391. Springer-Verlag, November 2004.

[6] Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient Group Key

Agreement. InIFIP/Sec ’01: Proceedings of the IFIP TC11 Sixteenth An-

nual Working Conference on Information Security, pages 229–244. Kluwer

Academic Publisher, 2001.

[7] Y. Kim, A. Perrig, and G. Tsudik. Tree-based Group Key Agreement.ACM

Transactions on Information and Systems Security, 7(1):60–96, 2004.

17



[8] M. Layouni. On the Formal Verification of an Intrusion-Tolerant Group

Communications Protocol. Master’s thesis, Concordia University, Montreal,

Canada, September 2003.

[9] M. Layouni, J. Hooman, and S. Tahar. On the Correctness of an Intrusion-

Tolerant Group Communication Protocol. InCorrect Hardware Design and

Verification Methods, volume 2860 ofLecture Notes in Computer Science,

pages 231–246. Springer-Verlag, 2003.

[10] C. Meadows and P. Syverson. Formalizing GDOI Group Key Management

Requirements in NPATRL. InProc. ACM Conference on Computer and

Communications Security, pages 235–244, November 2001.

[11] C. Meadows, P. Syverson, and I. Cervesato. Formal Specification and Analy-

sis of the Group Domain of Interpretation Protocol using NPATRL and the

NRL Protocol Analyzer. Journal of Computer Security, 12(6):893–932,

2004.

[12] S. Owre, J.M. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-

tem. InAutomated Deduction, volume 607 ofLecture Notes in Computer

Science, pages 748–752. Springer Verlag, 1992.

[13] O. Pereira and J. Quisquater. Some Attacks upon Authenticated Group Key

Agreement Protocols.Journal of Computer Security, 11(4):555–580, 2004.

[14] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient Authentication and

Signing of Multicast Streams over Lossy Channels. InProc. IEEE Sympo-

sium on Security and Prvacy, pages 56–73, Washington, DC, USA, May

2000.

[15] S. Rafaeli and D. Hutchison. Hydra: A Decentralised Group Key Manage-

ment. InProceedings of the 11th IEEE International Workshops on Enabling

Technologies, pages 62–67. IEEE Computer Society Press, 2002.

[16] S. Rafaeli and D. Hutchison. A Survey of Key Management for Secure

Group Communication.ACM Computing Surveys, 35(3):309–329, 2003.

[17] P. Ryan and S. Schneider.The Modelling and Analysis of Security Protocols:

The CSP Approach. Addison-Wesley, 2001.

18



[18] H. Sun and D. Lin. Dynamic Security Analysis of Group Key Agreement

Protocol. IEEE Transactions on Communication, 152(2):134 – 137, April

2005.

[19] P. Syverson and C. Meadows. Formal Requirements for Key Distribution

Protocols. InEUROCRYPT, volume 950 ofLecture Notes in Computer Sci-

ence, pages 320–331. Springer-Verlag, 1995.

[20] C. Wong, M. Gouda, and S. Lam. Secure Group Communications using Key

Graphs.IEEE/ACM Transactions on Networking, 8(1):16–30, 2000.

19


