Enabling SystemC Verification using Abstract State Machines

Amjad Gawanmeh, Ali Habibi, and Sofiene Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada
Email: {amjad, habibi, tahar} @ece.concordia.ca

Technical Report

May 2004

Abstract

SystemC is a system level language recently proposed to raise the abstraction level for embedded systems
design and verification. We propose a verification methodology for SystemC designs based on a combi-
nation of static code analysis and SystemC semantics described with abstract state machines (ASM). We
abstract the source SystemC design into hypergraphs to keep an abstract (simplified) view of the design
including only processes status, activation conditions and order of execution. This latter is then modeled
with ASMs and compiled with the AsmL tool in order to generate a finite state machine that can be used
for formal verification by external tools linked to ASM, such as model checkers or theorem provers. We
can also generate a .NET representation of the abstracted SystemC model to guide test vectors generation
and perform coverage analysis within the .NET framework. Our approach solves a number of problems
classical verification techniques do face when used with SystemC through the efficient handling of the
object—oriented aspect of SystemC and the complexity of its simulation environment.

1 Introduction

Today’s systems combine different types of components, including microprocessors, DSPs, memories, em-
bedded software, etc. For some time, there was a need for system level languages to fill the gap between
hardware description languages (HDLs) and traditional software programming languages. Such language
should combine together hardware and software modeling and verification aspects. SystemC [13] was in-
troduced as a new system level language to overcome the problem of the growth in complexity and size of
systems. SystemC comprises C++ class libraries and a simulation kernel used for creating behavioral and
register transfer level (RTL) designs. SystemC can provide the common development environment needed
to support software engineers working in C/C++ and hardware engineers working in HDLs such as Verilog
or VHDL. This advance in technology and upgrade in languages capabilities had the drawback of increas-
ing the complexity of the verification process. In fact, both the object-oriented (OO) aspect of SystemC and
its hybrid software/hardware structure make it impossible to completely verify using pure simulation. In
the same time, other formal verification approaches suffer from problems related to state-explosion (model
checking) or complexity of the verification process (theorem provers).

In this work, we present a verification approach that takes advantage of both the SystemC programs
(also called designs) structure and existing verification tools. For instance, most of the System-on-a-Chip
(SoC) design methodologies consider that an SoC is composed of multiple Intellectual Properties (IPs).
Assuming individual IPs have been verified, the verification process of the SoC properties are mostly related

to transactions (processes order of execution, triggering events, etc.) which can be represented efficiently as
state machines (in particular Abstract State Machines: ASM [7]).

The ASM methodology is mathematically precise, yet general enough to be applicable to a wide variety
of problem domains [7]. The ASM thesis asserts that any computing system can be described at its natural
level of abstraction by an appropriate ASM. ASMs provide features to capture the behavioral semantics of
programming and modeling languages, as a wide range of these languages were defined with this notion
[8]. There are many languages that have been developed for ASMs, the recent one is AsmL [9] which was
developed at Microsoft. We chose this language to model the SystemC simulator in order to execute the
complete design. SystemC modeling in ASM has several advantages, in particular it is possible to interface
this representation to existing formal verification tools such as model checkers (SMV [15] and MDG [5]),
and theorem provers (PVS [6]). At the same time new tools, in particular AsmL tester [9], generates a finite
state machine representation of the ASM model and can even output testing scenarios that are useful to
perform better coverage of the system’s possible states.

In order to make our verification methodology more efficient when dealing with SystemC designs we
considered first to abstract the concrete SystemC design in order to extract a representation that only includes
the process related information (execution and activation events). To do so, we used an approach based on
abstract interpretation [1] that was first introduced by [14] for C++ programs. We added to the work of [14]
the support of the SystemC simulator and library components. In addition to that we defined completely
the SystemC simulator semantics and SystemC components in ASM while adapting definitions presented in
[11]. This way, we will get a one-to-one mapping between the abstracted model and the ASM model. The
complete formal semantics of the main parts of SystemC language presented in this paper is complementary
to the work of Miller et. al.[11], where an ASM based SystemC semantics was introduced. We extend,
however the definitions in [11] to cover more complex components of SystemC and introduce a new seman-
tics definition for design rules of SystemC channels including static and dynamic design rules checking, and
define the semantics of the SystemC simulator based on the definition of the SystemC scheduler introduced
in [11].

The rest of the report is organized as follows: Section 2 overviews the related work. Sections 3 and 4
describe SystemC library and the abstract state machines, respectively. Section 5 describes our verification
methodology. Section 6 presents a case study to illustrate our methodology. Section 7 concludes the paper
with future work hints.

2 Related Work

Related projects to ours concern mainly defining SystemC semantics and verifying SystemC designs. For
instance, Salem [12] presented the formal semantics of a synchronous subset of SystemC using denotational

semantics. The delta cycle was formulated using function domains. Physical time was modeled at the clock

period level. A description style based on defining two types of processes: synchronous and combinational
was also proposed. The semantics of the SystemC methods and threads limited to this description style were

also defined. The evaluate and update phases of SystemC scheduler have been formulated for both timed
and immediate notifications. The work in [12], however, provides the description of the above parts only
using general syntactic rules. It does not provide any specific definitions for basic SystemC components and
processes; like wait or notify or SystemC simulator.

Muller et. al. [10] first presented a semantics definition of SystemC 1.0 that covers method, thread,
and clocked thread behavior. Later, Muller et. al. [11] defined parts of the semantics of SystemC 2.0,
including signals updates for primitive channels with write() method only, notify, notify_delay, cancel, and
next_trigger for SystemC events and dynamic sensitivity, wait() method for synchronization of threads, and
finally SystemC scheduler.

The work in [11] nicely describes the above components using the theory of ASMs, however, there
are still fundamental parts of SystemC 2.0 that were not defined, including some SystemC primitive and

hierarchical channels, design rules for SystemC channels, and most importantly the semantics of SystemC
simulator. There are nontrivial components introduced in SystemC 2.0 such as mutual exclusive channels
and request—grant protocol, which semantics should be defined in order to understand its behavior and how
different components work and interact. Our work provides a comprehensive definition for the SystemC
simulation semantics. It is different in the sense that we provide an abstract simulator which can be used
as an underlying engine to execute abstract models of the designs. We also focus our definition towards
solving the verification problem of SystemC by abstracting SystemC models and represent them in ASM
and then generate a state machine out of the design. Probably this work is one of the very few ones that have
executed the semantics defined in ASM on the supporting tools for ASM.

State machine representations were also used in verification of SystemC designs either when applying
model checking or guiding functional verification. For instance, Drechsler et al. [2] proposed to use reach-
ability analysis to verify certain properties of a SystemC design. Nevertheless, they restricted SystemC to
a Verilog like language. Ferrandi et al. [3] proposed to use state machines to perform efficient functional
verification of SystemC designs. They constructed an FSM directly from the code then use it to guide the
test generation. In that work, the FSM generation was briefly described and does not consider the seman-
tics of the SystemC simulator. Besides, we believe that, considering the complexity of the data structures
of SystemC and its OO aspect, it is more suitable to represent SystemC designs as an ASM rather than a
concrete FSM.

3 SystemC

SystemC [13] is a modeling language based on C++ that is intended to enable system level design in response
to the need of a very fast executable specification to validate and verify system concepts. It is an SoC
language representing functionality, communication, software and hardware at various system levels of
abstraction.

SystemC 1.0 provides structural description features including modules and ports that can be used in sys-
tems design. In addition, there exist different data types to enable modeling hardware systems and processes
to express concurrency. SystemC 2.0 introduces channels, interfaces, and events to enable communication
and synchronization between modules or processes. An interface specifies a set of access methods to be
implemented within a channel, where channels provide the implementation for these interfaces. An event is
a flexible synchronization primitive that is used to construct other forms of synchronization.

Different channel types bring along different design rules. SystemC imposes rules on channels and the
way they communicate. Design rules check should be carried out before simulation starts to ensure how
many ports are connected and what the interface types are that these ports require. This is called static
design rule checking. On the other hand, dynamic design rules checking is needed after the simulation has
started to ensure that channels do not violate these rules during simulation time.

Most HDLs, VHDL for example, use a simulation kernel. The purpose of the kernel is to ensure that
parallel activities (concurrency) are modeled correctly. The behavior of the simulation should not depend on
the order in which the processes are executed at each step in simulation time. The SystemC simulation kernel
supports the concept of delta cycles. A delta cycle consists of an evaluation phase and an update phase. This
is typically used for modeling primitive channels that cannot change instantaneously. By separating the two
phases of evaluation and update, it is possible to guarantee deterministic behaviors.

SystemC simulation kernel contains a scheduler to determine the order of execution of processes within
the design based on the event sensitivity of the processes and the event notifications which occur. It supports
both software and hardware-oriented modeling. The semantics of this scheduler was defined using ASM
rules [11] and denotational semantics [12]. Understanding the scheduler is necessary to understand the
simulation process.

In a layered approach, the SystemC simulation kernel forms the base layer. On top of the simulation
kernel, SystemC implements dynamic sensitivity and events. This facilitates both the modeling at higher

levels of abstraction as well as the creation of refined communication channels. The next layer contains
the definition of channel types and interfaces and, ports. This layer implements the so-called interface
method-call (IMC) scheme, which supports dynamic master/slave relationships between processes[4].

4 Abstract State Machines

States in ASM are given as many-sorted first—order structures [7]. A structure is given with respect to a
signature which is a finite collection of function names, each of a fixed arity. The given structure fixes the
syntax by naming sorts and functions. An algebra provides domains (i.e., carrier sets) for the sorts and a
suitable symbol interpretation for the function symbols on these domains, which assigns a meaning to the
signature. Therefore, a state is defined as an algebra of a given signature with domains and an interpretation
for each function symbol.

A vocabulary is a finite collection of function names, each with a fixed arity. Every ASM vocabulary
contains the following logic symbols: nullary function names true, false, undef, the equality sign, the names
of the usual Boolean operations, and a unary function name Bool. Some function symbols (such as Bool)
are tagged as relations. A state S of vocabulary T is a non—empty set X (the superuniverse of S), together
with interpretations of all function symbols in T over X. A function symbol f of arity r is interpreted as an
r—ary operation over X; if r = 0, f is interpreted as an element of X. The interpretations of the function
symbols true, false, and undef are distinct, and are operated upon by the Boolean operations in the usual
way. The value undef is used to code functions whose value is outside the indicated domain.

A state transition into the next state occurs when dynamic functions change their evaluation. Locations
and updates capture this notion. A location of a state is a pair loc = (f, @), where f is a dynamic function
symbol and @ is a tuple of elements in the domain of the function. The element f(a) at a state is the value of
the location (f,a) in that state. For changing values of locations the notion of an update is used. An update
of a state is a pair o = (loc, val) where loc = (f,a) is a location and val, the update value, is a value in the
function domain. To fire an update at a state, the update value is set to the new value of the location. As a
consequence, the overall dynamic function f is redefined to map the location onto the new value. Transition
rules define the state transitions of an ASM. While terms denote values, transition rules denote update sets,
which define the dynamic behavior of an ASM. At each state all update sets are fired simultaneously which
causes a state change. All locations that are not referred to in the update sets remain unchanged. ASM runs
starting in a given initial state are determined by a closed transition rule declared to be the program. Basic
transition rules are skip, update, block, and conditional rules.

The update rule is an atomic rule denoted as

f(t1,t0,...,tn) =1t

It describes the change of interpretation of function f at the place given by (¢1,t9,...,t,) to the current
value of term t.
A conditional rule specifies a guarded execution.

if guard then R1
else R2
endif

Where guard is a first order Boolean term. R, and Ry denote arbitrary transition rules. The condition rule
is fired in state S by evaluating the guard g in S, if it evaluates to true R, fires, otherwise R, fires.

AsmL [9] is integrated with Microsoft’s software development environment including Visual Studio,
MS Word, and Component Object Model (COM), where it can be compiled and connected to the .NET
framework. AsmL effectively supports specification and rapid prototyping of different kinds of models.
The AsmL tester can also be used for FSM generation or test case generation.

5 SystemC Verification Methodology

Our goal is to represent a concrete SystemC design as an ASM model that can be used to verify some
design properties, where we preserve the behavior of the original model with regard to the execution of the
processes and the activation of the events. Figure 1 gives an overview of our methodology, including three
steps as follows:

1. Hypergraph Compiler: In order to extract the information related to processes and their activation
conditions we apply a static analysis technique based on abstract interpretation [1]. The output of
this step is a graph, called hypergraph [14], that will include a representation of both the program’s
environment and the process’s environment.

2. ASM Model extractor: From the previous hypergraph representation, we extract the list of processes
present in the design and their activation events. we also associate with every process a list of events
that will be activated when this process becomes active. The output is represented as an ASM model.

3. AsmL Compiler: The ASM model representing the system combined with the SystemC library se-
mantics (also in ASM) are combined to form the final AsmL code. Once compiled, this latter can be
used for model checking (SMV and MDG), theorem Proving (PVS) or used to guide tests generation
(using the AsmL tester/compiler itself).

SystemC Code
Hypergraph 1. Program’s Environment ASM Model
Compiler 2. Event’s Environment Generator
ASM Model: Processes and
i Activation Events
SystemC ASM AsmL
Semantics Compiler/Tester
Finite State Machine
,,,,,,,,,,,,,,,, o
[pvs| [wog| [swv |

Figure 1. ASM-based SystemC verification methodology.

We defined an abstract model for the SystemC simulator along with the primary classes that are neces-
sary to model SystemC designs and execute them. Then we are able to write our design within this AsmL
and run it on the defined simulator.

5.1 SystemC Design Abstraction

In order to analyze statically SystemC designs and extract the required information to generate the ASM
representation we considered an approach based on abstract interpretation [1]. Abstract interpretation is a
formal technique that has proven to be efficient with object-oriented languages and large programs. The
approach consists of:

1. Construct collecting semantics: define statically the future domains that will serve for the analysis
and their specific manipulations.

2. Construct abstract semantics: map a property to a finite representation of the property more suitable
for the analysis.

3. Define analysis techniques: analyze the abstract representation of the system in order to extract prop-
erties and/or to reduce the program size.

At the end of the analysis, the program will be represented as a hypergraph, which can be interpreted
as a general automata connecting its states by branches (also called hyper-branches). Theses branches can
be seen as an extension to Binary Decision Diagrams (BDDs) more adapted to programs representation.
They offer a higher level of abstraction and flexibility by introducing the notion of confined hypergraph.
This encapsulation property of the hypergraphs is very suitable to SoC where a system is a connection of
modules using its input and output ports. This abstraction approach was first introduced by [14] to analyze
C++ code. We augmented this work by the support for the SystemC simulator and specific classes which is
mandatory to extract information related to SystemC processes and events from the design.

5.2 Semantics of SystemC

In this section we provide and ASM based semantics for a SystemC componenets including SystemC signal,
MUTEX channel, a SystemC protocol, SystemC design rule checks, and SystemC simulator. The SystemC
simulation kernel does not impose any order on processes that are simultaneously ready—to—run. In our
definition, we treat different kinds of notifications separately. Immediate notifications are not shown in this
definition since they are implied in the execution of a method, which we treat abstractly here. Timed and
delta notifications are shown below within the simulator definition. The type of events notification can be
immediate (NON FE), at specific simulation time (T'I M E D), or at the next SystemC delta cycle (DELT A).
The vocabulary of our semantics includes the set of timed events 7, the set of delta events A, the SystemC
zero time ¢, and the current simulation time 7.

We defined the semantics of the main functions of the following components: SystemC signal, SystemC
FIFO, SystemC mutual exclusive (MUTEX) channel, message queue, request—grant protocol, FIFO with
handshake protocol (Note that some functions were already defined in [11]). The description of SystemC
components is based on the functional specifications of SystemC [4]. In following, we show the request—
grant protocol semantics for illustration purposes.

521 SystemC signal

We provide the semantics of the update method only for this type. The method read is trivial, and method
write was faithfully described in [11]. The update method as described in SystemC documentation ensures
deterministic behavior in the case of simultaneous read and write actions. If the new value of the signal is
equal to the current value, then no update is needed. If the value changed event (V alueC hanged Event)type
is T1M E D then we remove this event from the timed events set. After that, we add it to the pending events
set, set its time to next SystemC delta cycle, and finally change its type to DELT A event type.

update() =

if CurrentValue # NewV alue then
CurrentValue := NewValue
i1f ValueChangedEvent. Type = TIMED then

7:=71 — {ValueChangedEvent}
endif
if ValueChangedEvent ¢ X then
A= AU {ValueChangedEvent}

endif

time(ValueChangedEvent) := T, + 0
ValueChanged Event. Type :== DELT A
endi f

522 SystemC MUTEX

This channel is part of SystemC 2.0 only. It performs FIFO queuing of pending requests and issues a warning
if multiple requests are issued during the same delta cycle. The MUTEX (mutual exclusion) channel is
owned into only one process during any delta cycle at simulation time. If the channel is not locked, it is
given to the first process that issues a request. Only the process that locked the MUTEX is allowed to
unlock it. Dynamic sensitivity is used to suspend processes that request locking the channel when it is
already locked, and and later resume them. The SystemC MUTEX primitive channel can be used to model
shared variables, either through inheritance by deriving a shared variable channel from the MUTEX channel
or by convention where access to a certain variable is protected by a MUTEX.

The lock method keeps trying to take ownership of the channel while it is in use by another, the process
will wait on freeing MUTEX channel event (MutexFreeEvent), and then check if the target channel is
still in use. When it is freed, the process takes ownership of the channel, and it can unlock it later. The
method, trylock tries one time to take ownership of the channel, it either fails or succeeds. The unlock
method frees the channel (if process is the current owner of the channel) and triggers other processes that
are suspended on freeing channel event in the next delta cycle.

lock() =
while InU se wait (MutexFreeFEvent)
MutexOQwner := CurrentProcess
tryLock() =
if InUse then skip — false
else
MutexOwner := CurrentProcess — true
endi f
unlock() =
i1f MutexOwner # CurrentProcess then skip — false
else
block

MutexOwner := NULL
1f MutexFreeEvent.Type = TIMED then
7:=7 — {MutexFreeEvent}
endif
if MutexFreeEvent ¢ Xthen
A= AU {MutexFreeEvent}
endi f
time(Mutex FreeEvent) :=T, + §
MutexFreeEvent. Type := DELT A
endblock — true
endi f

5.2.3 Request Grant Protocol

This protocol deals with two SystemC channels, master and slave, that are sharing one port. Only one
master and one slave can be connected to the port at one time. During a writeMaster operation, the
method verifies that the channel is not already requested, otherwise, it waits on the no-request event
(noRequestEvent). Data is then stored in an update variable (projectedV alue), the projected signals
request (projectedSignals. REQU EST) is enabled (which means that a master channel has already writ-
ten to this port), and finally the channel is added to the channels update array for future updates.

WriteMaster(data) =
if currentSignals. REQU EST then
wait(noRequest Event)
endi f
projectedV alue := data
projectedSignals. REQU EST := true
channelsUpdateArray := channelsUpdateArray U sel f

To perform a read operation, the channel has to be granted to the master port. So it waits on a grant
event (grantFwvent) if the current signals grant (currentSignals.GRANT) is disabled. Thereafter, the
port reads the current value, projected signals grant and request are disabled, and finally the channel is
scheduled for later updates. The semantics of the read M aster is defined similarly to the write M aster.

After updating the channels with new values, the update method notifies processes that are sensitive
to request event (request Event) when there is one, and processes that are sensitive to no—-request event
(noRequest Event) when there is no request. It also notifies processes that are sensitive to grant event
(grant Event) when there is one to be updated in the next delta cycle.

Update =
currentSignals := projectedSignals
currentValue := projectedV alue
if currentSignals. REQUEST then
if requestEvent ¢ Xthen A := AU {requestEvent}
endif
time(requestEvent) := T, + §

else
if noRequestEvent ¢ Xthen A := AU {noRequest Event}
endif
time(noRequest Event) := T, + §

endif

if currentSignals. GRANT then
if grantEvent ¢ X then A := AU {grantEvent}
endif
time(grantEvent) := T, + 0

endif

5.24 Design Rules

Each SystemC channel requires a specific number of ports to be connected to it, or arbitrarily unlimited in
some cases. When a channel is created, it has to pass a design rules check in order to make sure that the
number of ports connected is allowed. This is called static design rules checking. On the other hand, a
channel may impose that only one process can perform an 1/O operation at one time, so the channel has to
pass design rules checking when processes access the channel. This is called dynamic design rules checking.

The SystemC signal channel demonstrates how to do dynamic design rule checking in addition to static
design rule checking. During static design rule checking, the channel makes sure that only one writer port
is attached. If the type of the port to be connected (port.TY PE) is input port (I N) or input/output port
(INOUT), then the channel asserts that no port is already connected to its output port (outputPort) and
the port is connected. If, on the other hand, the port type is output port, then it can be connected without any
check.

SignalsStaticDesignRule(port) =

if port TYPE =IN

or port. TY PE = INOUT then
if outputPort # NULL then

output Port := port

else ERROR
endi f

else skip

endi f

During dynamic design rule checking, the channel checks that there is only one driver process writing
to the channel. If a process, is trying to write to the channel, then it should be verified that there is no driver
process accessing the channel, or it is the driver process that is trying to write to the channel. The MUTEX
channel allows only one owner, and therefor, it has to pass dynamic design rules checking.

525 SystemC Simulator

SystemC simulation kernel contains a scheduler to determine the order of execution of processes within the

design based on the event sensitivity of the processes and the event notifications which occur. The semantics
of this scheduler was defined using ASM rules [11] and denotational semantics [12]. It is necessary to
understand the scheduler in order to understand how the simulator works, however, it is not enough. The

simulation process is affected by initialization process, processes execution and their order, events activation,

and errors encountered during the simulation. Figure 2 shows a flow diagram of the SystemC simulation

process. We define the SystemC simulator semantics with ASM rules utilizing the scheduler definition
presented in [11], where we highlight the steps that are already defined in [11] with dashed lines in the
figure.

Simulator =
initialize
Schedule
CheckSimStatus
processTimedFEvents
terminate

The initialize step first checks for a user stop request, then it sets to simulation end time (Simulation EndTime)

according to the required simulation duration parameter. Thereafter, it prepares all methods processes and

threads processes for simulation

(P.prepareF or Simulation()) by creating a coroutine package and allocating necessary stack space in
memory. After that, we push all methods and threads into runnable methods and threads queue, respec-

tively. Finally we process delta notifications by triggering all sensitive processes for delta events. The
initialize semantics is given as where the CheckSimStatus step just checks for a simulation error, or a

user stop request.

SimStatus= OK

-
’ Initializations ‘

 _ Resumeprocess |
 Update channels |

|
|
Lo o - - =

Runnable
processes?

SimStatus= OK
?

’ Advance Tc F

]

Trigger TIMED events
with time(event) = Tc

4% Terminate

Figure 2: The SystemC Simulator

10

Initializations

Schedule

Timed Events

Initialize =
if simStatus # SC_SIM _OK then
step := terminate
endif
SimulationEndTime 1=
if duration = 6 then MAX TIME
else T, + duration
endif
VP € THREADSU CTHREADS : P.prepareF orSimulation()
updateChannels
VM € METHODS : RunnableProcessesTable.push(M)
VTh € THREADS : RunnableProcessesTable.push(Th)
Ve € \: e.trigger()

In the processTimedEvents step, we first update the current simulation time, if there are no more
timed notifications, then 7. is set to §, otherwise, it is the time of the event in 7 smaller than all other events
times. All timed events are then processed. If there are more runnable processes and we did not exceed the
simulation time, then we resume executing them by toggling the runnable processes table. However, if, after
processing the timed events, there are no runnable processes, we advance the simulation time, and process

timed events again.

ProcessTimedEvents =
Te:= if 7 = 0 then ¢ else nextTime(r) endif
Ve €1 :
if time(e) = T, then e.trigger()
endi f

if RunnableProcesses.SIZE = 0and T, # SimulationEndTime then
step := processTimedFEvents

endif

if T, # SimulationEndTime then
step := toggle Runnable Processes
else step := terminate

nextTime(T) = time(event) : event € 7,Ve € T7,time(event) < time(e)

Therefore, the scheduler semantics, as defined in [11], does not distinguish between timed and delta
notifications, so we just define the delta events check step (ProcessDeltaEvents) within the scheduler,
as implemented in the source code, and move the AdvanceTime step to define it within the timed events
check above. Hence, to be consistent with the overall simulation process and to be able to define delta and
timed notifications we would redefine the scheduler as follows (originally defined in [11] including a faithful
definition of each step):

Schedule =
ResumeProcess
CheckReadyToRun
UpdateChannels
ProcessDeltaEvents

The ProcessDeltaFEvents steps triggers all events in A and checks if there are any more processes to
execute. If this is the case, it toggles queues and goes to the ResumeProcess step, otherwise, it goes back
to the CheckSimStatus step before processing timed notifications.

11

AsmL Executable Model

Processes List

SC_Module
Process | Status
_ M1_P1 | Executing Set of
| sc_simulator K[| M1 p2 | suspended [\——] Events
-M2 M2_P1 | Ready

AsmL Compiler/Tester
Testing
Figure 3: Executing an abstract AsmL model for the semantics of SystemC simulator

ProcessDeltaFEvents =
Ve € X e.trigger()
1f RunnableProcesses.SIZE = 0 then step := ResumeProcess
else step := CheckSimStatus
endif

We chose the AsmL language to model the SystemC simulator in order to use it as an underlying engine
to execute the abstract AsmL model of the design. The main purpose of this execution is to generate FSMs
for the model under test. The .NET format can also be generated if the appropriate compiler is used (not
provided by AsmL tester). We can generate test suites and conduct conformance tests on the basis of a
model using the AsmL Tester tool. Figure 3 shows the general framework for semantics execution.

6 Case Study: Bus Structure Model

To illustrate the proposed SystemC verification methodology , we consider in this section a simple bus
structure model [13].

6.1 BusDescription

[=|Arbiter

Figure 4. Simple bus structure.

Slave 1

12

Figure 4 shows the bus structure. It uses an overall form of synchronization, where modules attached
to the bus execute on the rising clock edge, and the bus itself executes on a falling clock edge. Multiple
masters can be connected to the bus. Each master is identified by a unique priority, that is represented by
an unsigned integer number. The lower this priority number is, the more important the master is. Each
master communicates with the bus via an interface, which describes the communication between masters
and the bus; Three modes are possible: (1) Blocking Mode where data is moved through the bus in a
burst-mode. Hence, the transaction cannot be interrupted by a request with a higher priority. (2) Non-
Blocking Mode where the master read or write a single data word. After the transaction is completed, the
caller must take care of checking the status of the last request, which can be issued and placed on the
queue (BUS_REQUEST), served but is not completed (BUS_WAIT), completed without errors (BUS _OK),
or finally did not complete due to an error (BUS.ERROR). (3) Direct Mode, where the direct interface
functions perform the data transfer through the bus, but without using the bus protocol. They are usually
used to debug the state of the memory.

The slave interface describes the communication between the bus and the slaves. Multiple slaves can
be connected to the bus. Each slave models some kind of memory that can be accessed through the slave
interface. Two modes are possible: (1) Direct interface where it can perform immediate read or writing of
data without using the bus protocol. (2) Indirect interface where the slave can read or write a single data
element. The functions return instantaneously and the caller must check the status of the transfer.

The arbiter is responsible for choosing the appropriate master when there is more than one connected
to the bus. The arbiter performs the selection according to the following rules: (1) if the current request
is a locked burst request, then it is always selected, (2) if the last request had its lock flag set and is again
“requested”, then it is selected from the collection queue and returned, otherwise (3) the request with the
highest priority is selected from the collection queue and returned.

This structure includes several SystemC components and nicely makes use of the principles of using
SystemC at the transactional level. Besides some of the sample properties, e.g. liveness and safety, cannot
be verified using simulation. They require the usage of formal techniques such as model checking.

6.2 State Machine Generation

A partial representation of the bas hypergraph is given in Figure 5. It shows the first hypergraph generated
from the bus code. It includes an events’ environment containing several processes: masters, slaves, clocks,
arbiter, etc. In parallel with the program environment, the events environment includes the list of all the
system processes and their status.

The simulation manager is presented as a box connected to the entries of the program hypergraph. It can
be seen as a procedure that determines the structure of the system according to the list of active processes.
For example, if the Master 1 is active, then, only its correspondent code is analyzed. Each small box from
the program environment, (e.g., arbiter()) presents a confined hypergraph that includes the correspondent
object members and methods.

After applying reductions tactics on the hypergraph of Figure 4, the generated reduced hypergraph is
concretized into an ASM model. Using the AsmL Tester, this model is executed on top of the abstract
simulator we defined in section 5. In addition to the possibility of interfacing the ASM code to several
model checkers and theorem provers, this AsmL Tester offers a variety of options that can serve to generate
an FSM representation of the design. Figure 6 presents a simplified FSM including only 4 clock steps
and taking into consideration the macro events corresponding to the masters sending and slaves receiving
processes.

13

b EnventManager
EventsStack
| master_direct.main_action /"Z)
/, m
P 0 3
| fast_memory.main_action() ;3;
. . 7
| slow_memory.main_action() arbiter.arbitrate() | s
| master_blocking.main_action() sbus.main_action() || [0 (SD
S
| master_nonblock.main_action()
N
| master1 | master3|
. 3
() o
> Q
g 3
= sbus m
$ [] 5
£
% 3
(o]
; J

OnS2Execute()

Figure 6: Generated state machine for the bus structure.

7 Conclusion

In this work we presented a methodology to verify SystemC designs based on a definition for SystemC
semantics using Abstract State Machines (ASMs). First we defined SystemC nontrivial components, design
rules checking, and SystemC simulator using Abstract State Machines transition rules. Then we used these
semantics to construct an abstract SystemC simulator in AsmL. Using this simulator we can define and
execute an abstract model of the source SystemC design. The abstraction methodology is based on abstract
interpretation, where we represent our design as a hypergraph. Hypergraphs capture an abstract model
based on SystemC processes and events for the source program. This abstract model can be executed on top
of our abstract simulator, where it is possible to generate test cases or finite state machines for the model.
Conformance testing can also be conducted using the AsmL Tester tool. In summary, the proposed approach
will translate the verification problem of SystemC designs from the C++ level code into a higher level of
abstraction, namely ASM level.

We applied our approach on the a case study of a bus structure model. We considered a SystemC
model of the bus structure and generated its hypergraph, then extracted an events—based model, which is
implemented in AsmL language and executed on top of the simulator. We generated an FSM of the model

14

taking into consideration the macro events corresponding to the sending and receiving processes. We believe
that our work achieved two goals: generating events—based FSM of complex SystemC designs and reduce
the learning time and effort for understanding SystemC by providing an abstract executable simulator.

As a future work, we intend to test the approach with a larger case study and apply verification techniques
such as assertion based verification, property checking, or test cases generating. We also need to explore the
possibility of applying this approach on other SoC modeling languages like Super\erilog.

References

[1] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511-547,
August 1992.

[2] R. Drechsler and D. Groe. Reachability analysis for formal verification of SystemC, In Euromicro Symposium
on Digital System Design (DSD), Dortmund, Germany. PP 337-340. 2002.

[3] F. Ferrandi, M. Rendine and D. Sciuto. Functional Verification for SystemC Descriptions Using Constraint Solv-
ing, Design, Automation and Test in Europe Conference and Exhibition (DATE). Paris, France. PP 744—751.
2002.

[4] Functional Specification for SystemC 2.0.1. Synopsys Inc. 2003.

[5] A. Gawanmeh, S. Tahar, K. Winter, Formal \erification of ASM Designs using the MDG Tool. In A. Cerone,
P. Lindsay, editors, Int. Conf. on Software Engineering and Formal Methods (SEFM 2003), IEEE Computer
Society, PP 210-219. 2003.

[6] A. Gargantini and E. Riccobene, Encoding Abstract State Machines in PVS. In Y. Gurevich, P. Kutter, M. Oder-
sky, and L. Thiele (eds.), International Workshop on Abstract State Machines, Monte Verita, Switzerland, Local
Proceedings, PP 152-173. March 2000.

[7] Y. Gurevich. Evolving Algebras 1995: Lipari Guide. In E. B 6rger (ed.), Specification and Validation Methods,
Oxford University Press, 1995.

[8] J. Huggins. Abstract State Machines website. http://www.eecs.umich.edu/gasm/. 2003.

[9] AsmL for Microsoft .NET (version 2.1.5.7 or higher), Software Distribution. Containing Tools, Samples and
Documentation. Downloadable at http://www.research.microsoft.com/foundations/asml. 2003.

[10] W. Muller, J. Ruf, D. Hofmann, J. Gerlach, Th. Kropf, Th., and W. Rosenstiel. The Simulation Semantics of
SystemC. In Proc. of Design, Automation and Test in Europe (DATE), Munich, Germany. pp. 64-70. 2001.

[11] W. Muller, J. Ruf, and W. Rosenstiel. SystemC Methodologies and Applications. Kluwer Academic Pub. 2003.

[12] A. Salem. Formal Semantics of Synchronous SystemC.Proc. Design, Automation and Test in Europe Conference
and Exposition (DATE), Munich, Germany. pp. 10376-10381. 2003.

[13] SystemC website. http://www.systemc.org, 2004.

[14] F. Vederine. Analyses totales de programmes par interpretation abstraite. PhD thesis, Ecole Polytechnique, Paris,
France, 2000.

[15] K. Winter. Model Checking Abstract State Machines, Ph.D. thesis, Tech. University of Berlin, Germany, 2001.

15

