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ABSTRACT 

 

Towards First-Order Symbolic Trajectory Evaluation using 

MDGs 

 
Donglin Li 

 

SoC design becomes more complex with the increasing amount of different kinds of IPs 

on the chip. How to ensure functionality correctness in an SoC chip is one of the biggest 

challenges in SOC designs. Traditional BDD-based symbolic model checking techniques 

are an attractive subset of formal verification methods because of their high automation 

and little requirement for human effort to guide the proof process, whereas they usually 

suffer from the state explosion problem. Symbolic Trajectory Evaluation technique and 

MDG-based model checking technique improve the traditional BDD-based symbolic 

model checking approaches in two different ways. In this thesis, we investigate the 

possibility of using MDGs to perform Symbolic Trajectory Evaluation. For each of the 

approaches of STE and MDG-based model checking, we study the underlying theory and 

methodology, offer an illustrative example, discuss the verification tool, and provide a 

detailed case study. The main purpose of these two case studies is to obtain an in-depth 

understanding of the underlying theories and methodologies of these two model checking 

techniques, which may facilitate the achievement of their combination. Two attempts to 

combine the Symbolic Trajectory Evaluation with the MDG are discussed: one in the 

STE verification environment and the other in the MDG tools. We focus on the second 
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attempt and propose a theory and methodology of performing first-order Symbolic 

Trajectory Evaluation in the MDG tools. This study may provide direction for further 

research in the application of MDGs. 
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Chapter 1  

Introduction 

SoC design becomes more complex with the increasing amount of different kinds of IPs 

on the chip. How to ensure functionality correctness in an SoC chip is one of the biggest 

challenges in SOC designs. Any SoC verification plan must cover the verification of the 

individual cores as well as that of the whole chip. The better knowledge of the external 

interfaces of each IP and their interactions with the SoC, the more complete the SoC 

verification will be. That is why people are putting more and more focus on the 

verification of different interfaces for SoC design. As for the SoC verification methods, 

basically there are no relevant new techniques which are different from what we have 

applied to the ASIC verification but just some adapted methodologies, like assertion 

based verification, theorem proving, model checking, etc. In this thesis, we are interested 

in two model checking techniques: Symbolic Trajectory Evaluation (STE) and MDG-

based model checking.  

Model checking is a formal method for automatically verifying correctness of finite 

state transition systems, which has been studied since early 1980’s and several important 

results of which have been established [18] [8]. These early model checking techniques 

were attractive because of their high automation and little requirement for human effort 

to guide the proof process, whereas they usually suffered from the state explosion 

problem and the size of the transition systems that could be verified were very limited. 
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The introduction of Bryant’s Binary Decision Diagrams (BDD’s) [20] into the original 

model checking algorithms led to a breakthrough in the size of transition systems that 

could be handled. A number of researchers have explored this BDD-based symbolic 

technique in the field of model checking and have published results of separated studies 

[17][24][13][14].  These symbolic model checking techniques, providing exhaustive 

verification of a system by implicitly representing a state space through the use of a 

symbolic representation [12], could deal with larger designs than traditional model 

checking techniques but were still not powerful enough for many real systems, when their 

models were larger than 100000 states [25], due to the state explosion problem.  

Two model checking approaches: Symbolic Trajectory Evaluation and MDG-based 

model checking have been proposed to improve the traditional BDD-based symbolic 

model checking approaches.  

Symbolic Trajectory Evaluation is a symbolic simulation based bounded model 

checking approach devised by Bryant and Seger [23]. By complementing the exhaustive 

analytical capabilities of symbolic model checking with the circuit 

modeling/manipulation methods of symbolic quaternary simulation, which gives STE the 

desirable property that the number of variables needed for the BDD’s in an STE run 

depends only on the assertion being checked, not on the size of the circuit, STE 

effectively overcomes the state explosion problem and can verify much larger circuits, 

although it has its own limitation on the kind of properties it can handle. It’s widely used 

at Intel, Compaq, IBM, and Motorola. In Motorola, it has been used to verify several 

memory units, some with millions of transistors [22]. Also in [16] [42] STE has been 

used to verify CAMs (Content Addressable Memories) and PowerPC microprocessors. 
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The MDG-based model checking approach is proposed by Corella et al. in 1997 [10]. 

An MDG, standing for Multiway Decision Graph, is an extended BDD-like data structure 

with arbitrary number of children for each node and with much more powerful labeling 

capability for both the nodes and the edges. BDDs can be viewed as a special case of 

MDGs. In this MDG-based approach, data signals are denoted by abstract variables 

instead of Boolean variables, and data operators are represented by uninterpreted or 

partially interpreted function symbols instead of Boolean functions. Thus, the verification 

based on abstract implicit state enumeration can be carried out independently of data path 

width, which therefore can effectively alleviate the state explosion problem. 

We can see that Symbolic Trajectory Evaluation technique and MDG-based model 

checking technique improve the traditional BDD-based symbolic model checking 

approaches in two different ways: the first one can dramatically reduce the computations 

for the next state space and enhance the computational efficiency, while the latter one can 

simplify the data path operations and thus can effectively overcome the state explosion 

problem. This observation led to the idea of combining these two techniques, which 

makes it possible for us to take the advantages of both of them. The basic idea of such a 

combination is to replace the use of the BDDs with the MDGs for the encoding of the 

symbolic expressions and to implement the STE algorithm at a higher level of abstraction 

which can further alleviate the state explosion problem in STE. This combined approach 

will be discussed in detail in a later chapter of this thesis.  
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1.1 Background 

1.1.1 Model Checking 

 

 

Figure 1.  Model checking process 

 

Typically a model checking process involves three major aspects: system modeling, a 

specification language and a model checking algorithm, shown in Figure 1. 

The first step in model checking a design is to develop a formal model, usually 

expressed as a finite state transition system, for the circuits under study. The desired 

specifications of the design (properties) are captured by a specification language based on 

temporal logic. A model-checking tool accepts the system model and specifications. By 

exhaustively exploring the state space of the state transition system, the tool then returns 

“yes” if the given model satisfies the given specifications and “no” with a 

counterexample otherwise. The counterexample demonstrates how the error occurs. The 

termination of model checking is guaranteed by the finiteness of the model.  
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1.1.1.1 Modeling 

A finite state transition system can be described as a Kripke structure: M = (S, SI, T, L), 

where 

• S : a finite set of states,  

• SI ⊆ S : the set of initial states, 

• T ⊆ S × S : a transition relation with ∀s ∈ S (∃ s' ∈ S ((s,s') ∈ T)), 

• L: S → 2AP: a labeling function, associating each state with a set of atomic 

propositions (AP).   

 Note that every state must have a successor in T, which means that it is always 

possible to have an infinite sequence of states in the Kripke structure.  

A path is an infinite sequence of states such that each state is related to its successor 

by the transition relation. 

Atomic propositions represent the basic properties that hold in the associated states. 

1.1.1.2 Specification Languages 

The properties of a design are expressed as temporal logic formulas [2][15]. Temporal 

logic is the logic which views time as a sequence of states. Linear Temporal Logic (LTL) 

and Computation Tree Logic (CTL) or branching time logic are two most commonly 

used temporal logics in the context of model checking. LTL expresses temporal 

properties over a linear execution sequence, i.e. a single sequence of states, of the state 

transition system. CTL, on the other hand, can express properties across several different 

sequences of states simultaneously. 
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Temporal logic uses atomic propositions as its building blocks and combines theses 

propositions into formulas using logical operators and temporal operators. Atomic 

propositions (p, q, …) are variables which can either be true or false. The logical 

operators used in temporal logic formulas are the usual connectives: and . 

The temporal operators are classified into two groups: state operators and path operators. 

State operators are used to select states: Gp ("always p", “globally p”), Fp ("sometime p", 

"finally p"), Xp ("nexttime p") and pUq ("p until q"). Path operators are used to select 

paths: A (“all paths”), E (“there exists a path”).  

Note that path operators are only applied to CTL formulas since in LTL there is no 

concept of branching and hence no need for selecting paths. We can say that the absence 

of A and E path operators in LTL formulas which reflects the linear-time paradigm (as 

opposed to branching-time paradigm in CTL) is the major difference between LTL and 

CTL. 

 The model M defined above can be viewed as a temporal model where each state 

represents a point in time. Within each state, atomic propositions are true or false; hence 

a temporal logic formula can be evaluated to true or false from its subformulas in a 

recursive fashion until reaching atomic propositions. Note that a temporal logic formula 

that is true in some states might not hold in other states for a given model.  

 A temporal formula p is satisfied by a model M = (S, SI, T, L) if it is true for all the 

initial states SI of the model, i.e. SI ⊆ { s ∈ S | M, s ╞ p}. The recursive definition of ╞ 

for a CTL formula is as following:  

• M, s0╞ p iff p ∈ L(s0). 

• M, s0╞ ¬p iff not M, s0╞ p. 
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• M, s0╞ (p1 ∧ p2) iff M, s0╞ p1 and M, s0╞ p2. 

• M, s0╞ AXp iff for all states s0' with (s0, s0') ∈ T, M, s0'╞ p. 

• M, s0╞ EXp iff for some state s0' with (s0, s0') ∈ T, M, s0'╞ p. 

• M, s0╞ A[p1 U p2] iff for all paths (s0, s1,…), there exists an j ≥ 0 with M, sj╞ p2, and 

M, si╞ p1 holds for all 0 ≤ i < j. 

• M, s0 ╞ E[p1 U p2] iff for some path (s0, s1,…), there exists an j ≥ 0 with M, sj╞ p2, 

and M, si╞ p1 holds for all 0 ≤ i < j. 

1.1.1.3 Model Checking Algorithms 

A Model checking algorithm is used to decide if a system satisfies a temporal property 

and generates a counterexample otherwise. Different temporal logic model checking 

algorithms have been devised to target LTL model checking and CTL model checking.  

 The complexity of model checking algorithms with temporal logics have been 

studied since early 1980’s and several important results have been established.  

 Pnueli and Lichtenstein [18] in 1985 presented a model checking algorithm with 

linear time temporal logic formulas and the complexity of this algorithm was shown to be 

exponential in the length of the formula but linear in the size of the transition system. 

 Clarke, Emerson and Sistla [8] devised an algorithm for CTL model checking and 

the complexity of the algorithm was proved to be linear in the length of the formula and 

also linear in the size of the transition system.  

 Another type of branching-time logic is CTL*, introduced by Clarke, Emmeson and 

Sistla[8], which combined CTL and LTL and could be checked with the same time 

complexity as the LTL formulas. 



 

 

8 

 

 

 These early model checking algorithms are so-called state exploration algorithms 

which require explicitly constructing the state graph of the circuit under study and a 

complete exploration of the state space. They were attractive because of their high 

automation and little requirement for human effort to guide the proof process, whereas 

they usually suffered from the state explosion problem and the size of the transition 

systems that could be verified by them were very limited. 

 Several techniques were developed to overcome this problem in certain aspects, 

among which symbolic algorithms have shown great success. 

1.1.2 BDDs 

A BDD is a data structure which allows us to represent a Boolean function as a rooted 

acyclic-directed graph where each non-terminal vertex is labeled by a variable and has 

two directed edges, labeled 0 and 1, respectively. Terminal vertices are labeled either 0 or 

1. Figure 2 shows a BDD for the function f(a, b, c, d) = (a∧b)∨(c∧d) with a truth table 

representing this function at the right.  

To evaluate the represented Boolean function for a given valuation of the variables in 

the function, a path is traced in the BDD from the root vertex down to a terminal by 

taking at each vertex the edge labeled with the value of the labeling variable of this vertex. 

The value of the labeling variable of the terminal reached by this path defines the value of 

the Boolean function under the current valuation. For example, to evaluate f(a=0, b=1, 

c=1, d=1), start at the root a, traverse down the edge labeled 0 to c, then down two edges 

labeled 1 until reach the terminal labeled 1, which means that the value of f is 1 with 

respect to the valuation (a=0, b=1, c=1, d=1). 
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a   b   c   d
0   0   0   0
0   0   0   1
0   0   1   0
0   0   1   1
0   1   0   0
0   1   0   1
0   1   1   0
0   1   1   1
1   0   0   0
1   0   0   1
1   0   1   0
1   0   1   1
1   1   0   0
1   1   0   1
1   1   1   0
1   1   1   1

f
0
0
0
1
0
0
0
1
0
0
0
1
1
1
1
1

a

b

c

d

0 1

0

1

0

1

0

1
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Figure 2.   BDD and true table for function f(a, b, c, d) = (a∧b)∨(c∧d) 

  

As shown by Bryant [20], a reduced ordered BDD offers a canonical representation 

of a given Boolean function, in other words, every Boolean function can be represented 

by a unique reduced BDD for a given ordering of the input variables. By using reduced 

ordered BDD’s, a set of algorithms can be developed for manipulating Boolean functions 

with a high degree of efficiency. 

1.1.3 Symbolic Model Checking 

The basic idea of symbolic model checking is to represent the state space symbolically. 

Burch, Clarke, McMillan, and Dill [14] presented a symbolic CTL model checking 

algorithm to verify sequential circuits, where the transition relation for the entire system 

is represented symbolically as a characteristic function of all of state variables in the 

system. By manipulating the BDD representations of the state space and the temporal 
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formula, model checking can be performed with efficient algorithms existing for BDD-

Based Boolean Manipulation. The strength of this algorithm stems from the fact when 

this symbolic representation captures the right structural uniformities in the graph, it is 

much smaller than an explicit table of all of the states [13], and thus it can be applied to 

verify some very large-scale sequential circuits. However, this method can not be 

generally applied to verify all the large circuits with complex data paths, and in many 

cases it will still have the state explosion problem. Another drawback of the algorithm is 

that it can be very computationally consuming to generate this characteristic function 

[23]. 

1.1.4 MDGs 

MDGs can be viewed as a generalization of BDDs. BDDs offer representations of 

Boolean formulas. Graph D in Figure 3 depicts the BDD for the Boolean formula 

)()( 10 FxFx ∧∨∧¬ , where 0F  and 1F  are the Boolean formulas represented by the sub-

graphs 0D  and 1D  respectively.  

Alternatively, graph D can be viewed as representing a formula 

))1(())0(( 10 FxFx ∧=∨∧=  in a many-sorted first-order logic. More generally, node a  

can range over a larger set of values than {0, 1} and can even range over abstract terms. It 

is also possible that a cross operator can be a decision node in a generalized decision 

graph. The definitions of an abstract term and a cross operator can be found later in this 

thesis where more details about the many-sorted first-order logic and MDGs are 

presented. 
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Figure 3.  From BDDs to MDGs 

 

Three possible generalizations of BDD D and the corresponding formulas are shown 

in Figure 3 and below, where 0F , 1F  and 2F  are first-order formulas represented by the 

sub-graphs 0D , 1D  and 2D  respectively: 

• From D to D′: }3,2,0{}1,0{ ∈→∈ xx ,  and Graph D′ represents the formula 

))3())2())0(( 210 FxFxFx ∧=∨∧=∨∧= . 

• From D to D′′: )},(,,{}1,0{ yafyaxx ∈→∈ , and Graph D′′ represents the formula 

))),(())())(( 210 FyafxFyxFax ∧=∨∧=∨∧= . 

• From D to D′′′: }3,2,0{)(}1,0{ ∈→∈ xgx , and Graph D′′′ represents the formula 

))3)(())2)(())0)((( 210 FxgFxgFxg ∧=∨∧=∨∧= . 

The above generalized decision graph D, D′ and D′′′ are examples of Multiway 

Decision Graphs (MDGs).  
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1.2 Scope of Thesis 

The aim of this thesis is to investigate the possibility of using MDGs to perform 

Symbolic Trajectory Evaluation. Symbolic Trajectory Evaluation and MDG-based model 

checking are two model checking techniques which improve the traditional symbolic 

model checking approaches in two different ways. The motivation of combining these 

two techniques is to develop a more powerful model checking technique which will take 

the advantages of both of them.  

The rest of the thesis is organized as follows: 

In Chapter 2, we study the underlying theory and methodology of Symbolic 

Trajectory Evaluation, provide an illustrative example of this approach, and describe an 

STE-based verification tool. 

Chapter 3 provides a case study of STE. We first make a brief introduction to the 

Look-Aside Interface (LA-1), and then, after the discussion of some related work 

including a previous RTL design for the LA-1 interface, present a modified RTL design 

for the LA-1 interface. Finally, the verification processes of both the designs using STE 

are illustrated followed by experimental results.  

Chapter 4 introduces the theoretical foundations and methodology of MDG-based 

model checking followed by an illustrative example, and discusses MDG-based model 

checking tools. 

In Chapter 5, we use the MDG tools to verify the same properties of the LA-1 

Interface. Our goal is to compare the two methods and prepare the ground for our 

proposal to define a symbolic trajectory evaluation in MDG. This experiment involves a 
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mapping from STE assertions to LMDG properties. We will provide a method to perform 

this mapping. Experimental results are given at the end of this chapter. 

In Chapter 6, we describe two attempts to combine the Symbolic Trajectory 

Evaluation with the MDG-based model checking: one in the STE verification 

environment and the other in the MDG tools. We focus on the second attempt and 

propose a theory and methodology of performing Symbolic Trajectory Evaluation in the 

MDG tools. 
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Chapter 2  

Symbolic Trajectory Evaluation 

This chapter describes the underlying theory and methodology of Symbolic Trajectory 

Evaluation (STE), a symbolic simulation based bounded model checking technique. 

Firstly, lattice and symbolic simulation are described, which are the theoretical 

foundations of STE. Next, the chapter discusses in detail the modeling, specification 

language and verification methodology of STE, followed by an illustrative example.  An 

STE-based verification tool is described at the end. 

2.1 Basics 

Symbolic Trajectory Evaluation (STE) is a symbolic simulation based bounded model 

checking approach devised by Bryant and Seger [23], which relates most closely to the 

symbolic model checking algorithm proposed by Bose and Fisher [24]. In Bose and 

Fisher’s algorithm, an explicit representation of the next state function for every state 

variable in the system is extracted using symbolic simulation. In one simulation run, each 

state variable and each input signal is represented by a distinct Boolean variable, and a 

Boolean representation of the next state behavior is computed. A temporal logic formula 

can then be checked using symbolic Boolean manipulation. This extraction process for 

the explicit next state function can be quite costly [23]. 
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 What distinguishes STE from Bose and Fisher’s method and other symbolic model 

checking algorithm is its representation of state space and the next state behavior. 

• The state space is represented using a lattice-based model.  

• The next state function is represented implicitly as a result of combining the circuit 

structure and the simulation algorithm, and the next state behavior is computed only 

for the particular patterns required for the verification of a given assertion,  

These particular patterns involve far fewer variables than is required in Bose and Fisher’s 

method [23]. The strength of STE comes largely from the fact that the complexity of an 

STE run depends only on the complexity of the STE assertion itself rather than that of the 

circuit being checked. STE offers an effective alternative to classical symbolic model 

checking techniques which often suffer from the state explosion problem and can verify 

much larger circuits, although it has its own limitation on the kind of properties it can 

handle. 

2.1.1 Lattice 

In this thesis, we view a lattice as a partially ordered set. The discussion of other uses of 

lattice is outside the scope of this thesis and will not be included here. 

A partial order is a binary relation on a set which is reflexive, antisymmetric, and 

transitive. Given a partial order R on a set S, for all a, b, c ∈ S, we should have:  

• a R a (reflexivity), 

• (a R b and b R a) → a = b (antisymmetry), and  

• (a R b and b R c) → a R c (transitivity). 

 This partial order relation formalizes the intuitive concept of an ordering of the set 

elements, which represents a hierarchy of information or knowledge. More specifically, 
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the higher order an element has, the more information it contains. The ‘partial’ here 

indicates that such an ordering does not necessarily need to be total, that is, not all pairs 

of elements in the set are mutually comparable. 

 We call a set with a partial order a partially ordered set.  

Definition 1: A partially ordered set (L, ≤) [9] is a lattice if for any elements a and b 

of L, the set {a, b} has both a least upper bound (join) and a greatest lower bound (meet), 

where L is the so called ground set and ≤ is the partial order. 

 The join of a and b is denoted by a∨b, and the meet is denoted by a∧b, where ∧ and 

∨ are binary operations. 

Definition 2: A complete lattice is a partially ordered set (L, ≤) which has both a 

greatest lower bound (meet) and a least upper bound (join) for every subset A of L, 

denoted by glb(A) and lub(A) , respectively.  

In other words, a complete lattice is a complete relation with a bound on every 

subset.  Note that each complete lattice has a unique greatest element (often called 

universal upper bound) and a unique least element (often called universal lower bound). 

A complete lattice is a special case of lattices.  

The power set (the collection of all subsets) of a given set S forms a complete lattice 

using “subset of” as the ordering relation ≤. Meet and join of subsets can be obtained by 

the set operations intersection and union, respectively. In this class of lattices, the empty 

set is least element, and S is greatest element. A lattice based on the power set of {a,b,c} 

is shown in Figure 4. A diagram of a partial order that leaves out the transitive relations is 

referred as a Hasse diagram. The ground set L of this lattice is {∅, S1, S2, S3, S4, S5, S6, S}. 

The ordering of these elements is listed below: 
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• ∅ ≤ S1, ∅ ≤ S2, ∅ ≤ S3;  

• S1 ≤ S4, S1 ≤ S5; 

• S2 ≤ S4, S2 ≤ S6; 

• S3 ≤ S5, S3 ≤ S6; 

• S4 ≤ S; 

• S5 ≤ S; 

• S6 ≤ S; 

 

Figure 4.  Lattice structure for the power set of {a,b,c}  

  

The ordering relation is represented by a directed edge pointing from the element 

with lower order to the one with higher order. Note that the “subset of” relation is a 

transitive relation. That is, if S1 is a subset of S4, and S4 is a subset of S, then S1 is a subset 

of S. The ordering relations implied by transitivity are not shown in the diagram. Note 

further that there is no ordering relation applied to the element pairs of {S1, S2}, {S1, S3}, 

{S2, S3}, {S4, S5}, {S4, S6} and {S5, S6}, since the two elements in each of the above pairs 
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are not mutually comparable under the relation “subset of”, which reflects the “partial” 

feature of this ordering. 

 It is not hard to tell from the diagram that each of the 28 subsets of L has a unique 

least upper bound and a unique greatest lower bound. 

2.1.2 Symbolic Simulation 

In digital hardware verification, the term simulation is referred to a modeling technique 

which describes the state transitions, inputs and outputs of a digital system. Simulators 

are often used to test logic designs before constructing the real hardware.  

Figure 5 illustrates a simulator example of a 5-input OR gate.  During simulation, a 

sequence of input patterns 01100, 10011, … are fed into the input ports of the simulator 

which models the behavior of the circuit, and the corresponding output response patterns 

are sampled and checked against the expected values at the output ports of the simulator. 

A single run of this simulator can only determine the behavior of the OR gate, that is the 

output response in this case, for a single input pattern. In order to verify this 5-input OR 

gate exhaustively, we need 32 (25) test patterns to cover all the possibilities of the input 

signals and, therefore, need 32 simulation runs 

 The number of the required test patterns for exhaustive verification will grow 

exponentially with the number of input signals. In this case of sequential circuit 

simulation, the situation will be even worse. We need to take into consideration not only 

the input sequence but also the initial state of the system. Thus, simulation is only 

applicable for verifying very small systems, the limitation of which comes from the 

stimulus generation and simulation runtime. 
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Symbolic simulation is a promising method to generalize the traditional simulation 

technique and make it feasible to larger systems. A symbolic simulator resembles a 

traditional simulator, except that it simulates the design using Boolean variables instead 

of constant binary values at the inputs of the circuit model.   

 

 

Figure 5.  Simulator for a 5-input OR gate  

 

 During simulation the values of the circuit state and the circuit output are represented 

as Boolean functions over these initial variables. At the same time, logic operations, such 

as AND, OR and NOT, should be refined to operate over Boolean functions rather than 

over the constants 0 and 1. At the end of each simulation run, a set of Boolean functions 

representing implicitly all set of states that are reachable by the current circuit state in one 

clock cycle for the input variables can obtained by manipulating Boolean operations, and 

so can the Boolean functions for the outputs. This method allows all the next state 

behaviors of a circuit in a specific state under all possible inputs to be verified with a 

single simulation run simultaneously. In other words, a single symbolic simulation run 

can compute information that would otherwise need to be obtained by multiple traditional 

simulation runs.  
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 The symbolic simulator of the same 5-input OR gate is shown in Figure 6.  The input 

signals of the simulator are represented by Boolean variables a, b, c, d and e, respectively. 

The output of the simulator is a Boolean function over these five variables. In this case, 

we only need 1 symbolic test pattern, abcde, to verify this 5-input OR gate exhaustively.  

 

 

Figure 6.  Symbolic simulator for a 5-input OR gate 

  

One problem with symbolic simulation is that it needs exhaustively manipulate the 

circuit functionality and requires extensive manipulation of Boolean expressions.   

 Ternary simulation [21] is another generalized simulation approach, in which three-

valued logic is used instead of two-valued logic. Three-valued logic extends the existing 

1 (true) and 0 (false) values in two-valued logic with an unknown or “don’t care” value 

X. In order to perform ternary simulation, functions defined over Boolean values {0, 1} 

need to be extended to ones defined over ternary values {0, 1, X}. The extensions should 

obey the following rule: if a circuit node is computed to be either 0 or 1, this result will 

not change if the X’s contained in the stimulus pattern are replaced partially or 

completely by 0 or 1. This extension rule guarantees that the simulator of a circuit will 

produce the same response to a certain input pattern even if some bits of it are set to X. 
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As an example, the truth tables of some Boolean operations and their ternary extensions 

are shown in Figure 7.  

Since each use of value X covers two cases of using 0 and 1 in ternary simulation, 

the number of test patterns required to verify a circuit will be reduced dramatically by 

introducing X’s when applicable. Take the same 5-input OR gate discussed above as an 

example. The ternary simulator model and the corresponding truth table of it are given in 

Figure 8. Compared with the 32 test patterns required by the traditional simulation, only 

six test patterns, XXXX1, XXX1X, …, 1XXXX and 00000 are needed to do the 

exhaustive verification of this 5-input OR gate using ternary simulation.  The strength of 

this approach stems from its computational efficiency.  

 

  

Figure 7.  True tables of Boolean operations and the ternary extensions 
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Figure 8.  Ternary simulator model for a 5-input OR gate  

 

Note that the use of X value may cause information loss of the circuit. Let us take a 

look at the 5-input OR gate model in Figure 8 again. When four of the inputs are set to 0, 

the attempt to set the left input to X will lead to an X value at the output of the simulator, 

a meaningless result in verification. To avoid this, we have to be careful with our choice 

of using X values in the simulation.  

Symbolic simulation and ternary simulation improve the performance of traditional 

simulation technique in two different ways. Symbolic simulation can dramatically cut 

down the number of required stimulus patterns and, therefore, the number of simulation 

runs at the price of increasing the computation complexity and the memory usage. 

Ternary simulation, on the other hand, can significantly enhance the computational 

efficiency, but may have the problem of information loss in some cases. If we can 

combine these two techniques, it is possible for us to take the advantages of both of them. 

A successful attempt was made by Beatty, Bryant and Seger [5], whose approach is 

named ternary symbolic simulation.  

 The key idea of this ternary symbolic simulation approach is to parameterize ternary 

values by Boolean variables, which can further reduce the number of required test 
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patterns. Figure 9 illustrates how the six test patterns required by the 5-input OR gate 

ternary simulator are compressed to one symbolic pattern in ternary symbolic simulation. 

First, we index the six scalar patterns with numbers from 0 to 5, which are then encoded 

with three ( ⎡ ⎤)15log( + ) Boolean variables t0, t1 and t2. Next, for each input of the 5-input 

OR gate, we represent the six ternary values gathering from the corresponding bits of the 

six test patterns as a function pair (high, low) over these three variables. Function “high” 

and “low” indicate the positions of value 1 and 0, respectively, and the unrepresented 

positions are of value X. Thus, in our example, we have one symbolic test pattern 

consisting of five function pairs over three variables to replace all the six scalar test 

patterns.  The output of the ternary symbolic simulator is also a (high, low) function pair.  
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Figure 9.  Ternary symbolic simulator for a 5-input OR gate 

 

 Recalling the 32 test patterns required for the traditional simulator of 5-input OR 

gate, 1 symbolic test pattern over 5 variables for the symbolic simulator and 6 ternary test 

patterns for the ternary symbolic simulator, our ternary symbolic simulator has the best 

performance among all these simulators.  
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 Note that reduced ordered BDDs can also be applied in ternary symbolic stimulation, 

since ternary values are manipulated implicitly via binary encodings mentioned above.  

 Note also that the above ternary symbolic simulation approach just shows us one of 

the ways to combine ternary modeling technique with symbolic simulation and in 

practice we may have our own ways to do the combination depending on the 

applications.  

 

Figure 10.  Symbolic tenary simulator for a 5-input OR gate 

 

Another possible way to symbolize the ternary simulation is to partially symbolize 

the test patterns using ternary variables and ternary constant. An example of a partially 

symbolized test pattern for the 5-input OR gate is shown in Figure 10, where input signal 

I1 is represented by variable ‘a’ over ternary values {0, 1, X}, input I2 is represented by 

ternary constant 0, and input I3, I4 and I5 are all represented by ternary constant X. This 

partially symbolized test pattern covers three possible ternary test patterns: X0XXX, 

00XXX and 10XXX, and the corresponding outputs of the circuit will be of values X, X 

and 1 respectively. Note that for some special simulators, the “don’t care” value X 

appearing at the output of a gate may have specific meaning for the verification and 

should not be deemed as meaningless. 
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2.2 Modeling 

Symbolic trajectory evaluation extends symbolic simulation with some of the analytic 

capability of temporal logic model checking techniques [6]. As in a model checking 

approach, STE also develops a formal model for the circuit under verification, but 

different from the temporal logic model checkers, it uses a lattice-based model instead of 

a Kripke structure.  

 The lattice-based model in STE is a tuple M = [(S, ≤), Suc], where: 

• S is a set of finite states, 

• ≤ is a partial order over S, 

• (S, ≤) is a complete lattice, 

• Suc: S → S is the next state function, monotone with respect to ≤. 

A function between ordered sets is monotone if it preserves the given order. For function 

Suc, whenever ji ss ≤  and ,, Sss ji ∈  then )()( ji sSucsSuc ≤ . 

The state space S = {0, 1, X}n is a set of n-length vectors over ternary values for 

some natural number n. The partial order ≤ is defined over {0, 1, X} first and extended to 

{0, 1, X}n. Figure 11 illustrates the partial orders over {0, 1, X} and {0, 1, X}2. 

 

 

Figure 11.  Partial orders over {0, 1, X} and {0, 1, X}2 
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Figure 12.  Hasse diagrams of complete lattices ({0, 1, X} U {T}, ≤) and ({0, 1, X}2 U {T}, ≤) 

 

According to the definition of complete lattice, ({0, 1, X}n, ≤) is not a complete 

lattice, since not every subset of {0, 1, X}n has a least upper bound. In order to make (S, 

≤) a complete lattice, we introduce a top element T to the state set S. We use T to 

represent a unique “overconstrained” state [4], where some node of the state vector is set 

to both 0 and 1 at the same time. Thus, the state set S = {0, 1, X}n U {T} and the partial 

order ≤ form a complete lattice with T as the universal upper bound and ⊥ = X, …, X as 

the universal lower bound. The Hasse diagrams of complete lattices ({0, 1, X} U {T}, ≤) 

and ({0, 1, X}2 U {T}, ≤) are shown in Figure 12. 

The next state function Suc: {0, 1, X}n U {T}→ {0, 1, X}n U {T} is used to compute 

constraints on the possible values of the successor states of the current states. In other 

words, for a given state s ∈ S, function Suc(s) computes the least specified (most general) 

successor state the system can be in one time step later. The “least specified (most 

general)” is defined by the partial order ≤ [4]. As mentioned in previous section, in a 

partially ordered set, the lower order an element has, the less specified it is. In this sense, 
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for example, value X is less specified than values 0, 1 and T in the complete lattice ({0, 1, 

X} U {T}, ≤). Note that the constraints computed by the next state function are the ones 

imposed by the circuit itself and are irrelevant to the circuit inputs which are controlled 

externally. 

 For a given state vector s = 1210 −− nn cccc K  ∈ S, the next state function Suc(s) is 

actually a vector of next state functions for each node (component) of s, i.e., Suc(s) = 

)()()()( 11221100 −−−− nnnn ctctctct K , where ci: {0, 1, X}n → {0, 1, X} for 1 ≤ i ≤ n-1. If node 

ci is associated with an input of the circuit, the next state function )( ii ct  = X, and 

otherwise )( ii ct  is determined by the circuit structure. A constraint of value X indicates 

that no constraint is imposed on that node. For the state vector T, the next function Suc(T) 

equals T.  

 The next state function works like a filter that can filter out irrelevant sequences of 

states which are unuseful for reasoning about model behaviors. We call these useful 

sequences trajectories. Formally, given a model M = [(S, ≤), Suc], an infinite sequence 

),,,( 210 Ksss of states of S is a trajectory iff 

1)( +≤ ii ssSuc  for 0≥i . 

 The set of all trajectories of model M is denoted as J(M). 

2.3 Specification Language 

In STE, a design specification is expressed as a trajectory assertion in a restricted 

temporal logic. A trajectory assertion is of the form [Ante → Cons], where both Ante and 

Cons are trajectory formulas. The main verification task is to evaluate whether or not 
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every trajectory satisfying Ante (called the antecedent) also satisfies Cons (called the 

consequent).  

 The basic component of a trajectory formula is a simple predicate. Given a model M 

= [(S, ≤), Suc], a predicate over S is a function that maps S to a special complete lattice 

containing only two elements false and true, with element false as the universal lower 

bound and element true as the universal upper bound. A predicate ρ over S is called 

simple if it is monotone and there exists a unique element ρd  in S such that for all s ∈ S 

with ρd ≤ s, ρ (s) = true. The ρd  here is called the defining value of predicate ρ.  

Definition 3: If we denote a set of simple predicates over S by Ρ , a trajectory 

formula of model M is then defined inductively as below: 

• A simple predicate Ρ∈ρ  is a trajectory formula. 

• The conjunction ( 21 ff ∧ ) is a trajectory formula if both 1f  and 2f  are trajectory 

formulas. 

• The domain restriction (b → f) is a trajectory formula if e is Boolean constant 0 or 1 

and f is a trajectory formula. 

• The next time expression (Nf) is a trajectory formula if f is a trajectory formula and 

N is the next-time operator. 

 If a trajectory formula f of model M is satisfied by a trajectory a = ),,,( 210 Kaaa  of 

the same model, we write a╞M f. The satisfaction relation ╞M is defined as follows: 

• a╞M ρ  iff  ρ (a0) = true. 

• a╞M ( 21 ff ∧ )  iff  a╞M 1f  and a╞M 2f . 

• a╞M (1 → f)  iff  a╞M  f; 
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• a╞M (0 → f)  always holds. 

• a╞M (Nf)  iff  ),,( 21 Kaa ╞M  f 

2.4 Verification Methodology 

The definition of simplicity can be extended directly from predicates to formulas. A 

formula f of model M is called simple if it is monotone and there exists a unique 

trajectory fα in M, called defining trajectory of formula f, such that for all a ∈ J(M) with 

af ≤α , a╞M  f holds. We will see in a later section that trajectory formulas are simple 

and we can construct the defining trajectory for every trajectory formula. Thus, the main 

verification task that checks whether or not every trajectory satisfying Ante also satisfies 

Cons can be implemented in this way: compute the defining trajectory for the trajectory 

formula Ante first, and then verify that this defining trajectory satisfies trajectory formula 

Cons. 

 Before constructing a defining trajectory for a given trajectory formula f in M, we 

will first show how to construct its defining sequence fβ . This sequence should be the 

least possible sequence in M that satisfies f, i.e., for all sequence a with af ≤β , a╞M f 

holds.  

Definition 4: Given a model M = [(S, ≤), Suc] and a set Ρ  of simple predicates over 

S, the recursive definition of the defining sequence fβ  of a trajectory formula f in M is as 

following: 

• ρβ  = ρd ⊥⊥… if ρd  is the defining value of Ρ∈ρ . 

• ),lub(
211 ffff s

βββ =∧ , where lub is the lowest upper bound function. 
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• ffb e ββ ?)( =→ , where b is a Boolean constant, ‘?’ is an infix “multiplexing” 

function, and 
⎩
⎨
⎧

⊥⊥
=

=
otherwise
bif

b f
f

K

1
?

β
β . 

• .ff ββ =⊥Ν  

It can be proved [4] that for any given trajectory formula f in M and its defining 

sequence fβ  constructed as above,  

a╞M f  ⇔ af ≤β ,  for all )(MJa ∈ . 

 Note that fβ  is not necessary a trajectory of M whereas our goal is to construct the 

defining trajectory, that is the least possible trajectory that satisfies f, and therefore we 

need to go one step further. One possible way is to combine the constraints on a sequence 

imposed by fβ and those from the next state function Suc to obtain the required 

trajectory. 

 Definition 5: Given any trajectory formula f of model M = [(S, ≤), Suc], assuming 

that fβ = K10
ff ββ  is the defining sequence for f, a sequence K10

fff χχχ =  can be 

defined inductively as follows: 

⎪⎩

⎪
⎨
⎧ =

= − otherwiseSuc
iif

i
f

i
f

fi
f ))(,lub(

0
1

0

χβ
β

χ . 

 For the sequence fχ  constructed as above, it can be proved [4] that, 

• fχ )(MJ∈ , 

• fχ ╞M f, and 

• a╞M f  ⇔ af ≤χ ,  for all )(MJa ∈ . 
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 Thus, we can view fχ  as the defining trajectory of f and it is also safe to say that 

every trajectory formula is simple. 

 More precisely, a trajectory assertion is defined as [Ante → Cons] with dep(Ante) = 

dep(Cons), where Ante and Cons are trajectory formulas and dep(Ante) and dep(Cons) 

are the depths of formulas Ante and Cons Respectively. Generally, the depth of a formula 

f, denoted as dep(f), can be defined recursively as below: 

• 1)( =ρdep  if Ρ∈ρ  is a simple predicate, 

• ))(),(max()( 2121 fdepfdepffdep =∧ , 

• )()( fdepfbdep =→ , and 

• )(1)( fdepfdep +=Ν . 

 If all the trajectories of model M satisfy a trajectory assertion [Ante → Cons] of the 

same model, we write╞M [Ante → Cons], where the satisfaction relation is defined as 

follows: 

╞M [Ante → Cons] holds iff a╞M Ante implies a╞M Cons for all )(MJa ∈ . 

 Finally, with the methods established for constructing the defining sequence and the 

defining trajectory for a given trajectory formula, we can apply the theorem below [4] to 

achieve our verification goal: 

 Theorem 1: Given Anteχ  and Consβ  as the defining trajectory and the defining 

sequence of trajectory formulas Ante and Cons in model M, respectively,  

╞M [Ante → Cons] holds iff Consβ  ≤ Anteχ . 

 Note that although both the defining sequence and the defining trajectory are infinite 

by definition, we need only to compute the bounded prefix of them, since it is easy to 
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show that for a given trajectory f with the defining sequence fβ = K10
ff ββ  we have 

=⊥i
fβ  for )( fdepi ≥ . 

2.5 Symbolic Formulation 

In this section, we will first introduce symbolic methods for representing trajectory 

formulas and trajectory assertions and then we will see how to verify these assertions 

using symbolic simulation. With these symbolic extensions, we can effectively reduce the 

number of required test cases and simulation runs. 

 Several ways can be used to realize the symbolization of trajectory formulas and 

what we present here is the one described in [4]. 

 Definition 6: Given a model M = [(S, ≤), Suc], a set U of Boolean variables, and a 

set Ρ  of simple predicates over S, the recursive definition of a symbolic trajectory 

formula of M is as follows: 

• A simple predicate Ρ∈ρ  is a symbolic trajectory formula of M. 

• The conjunction ( ss ff 21 ∧ ) is a symbolic trajectory formula if both sf1  and sf 2  are 

symbolic trajectory formulas of M. 

• The domain restriction (B→ sf ) is a symbolic trajectory formula if B is a Boolean 

function over U and sf  is a symbolic trajectory formula of M. 

• The next time expression (N sf ) is a symbolic trajectory formula if sf  is a symbolic 

trajectory formula of M and N is the next-time operator. 
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As we can see from the above definition, the only modification from the original 

definition of trajectory formula is in the domain restriction part, where the domain 

constraint is generalized from a Boolean constant to a Boolean function.  

 The definition of a symbolic trajectory assertion (shown as below) can then be easily 

developed by simply replacing the trajectory formulas with the symbolized ones: 

 A symbolic trajectory assertion is of form [Antes → Conss] with dep(Antes) = 

dep(Conss), where Antes and Conss are symbolic trajectory formulas and dep( sf ) denotes 

the depth of a symbolic formula sf . 

 For an assignment :η U →{0, 1} to the Boolean variables in a given symbolic 

trajectory formula sf of model M = [(S, ≤), Suc], the evaluation of sf  denoted by  

)(ηsf  is defined recursively as follows: 

• ρηρ =)( , if Ρ∈ρ  is a simple predicate over S. 

• )()())(( 2121 ηηη ssss ffff ∧=∧ , if both sf1  and sf 2  are symbolic trajectory formulas 

of M. 

• )()())(( ηηη ss fBfB →=→ , if B is a Boolean function over U and sf  is a 

symbolic trajectory formula of M. 

• )))((())(( ηη ss ff Ν=Ν , if sf  is a symbolic trajectory formula of M and N is the 

next-time operator. 

 Accordingly, the evaluation of a given symbolic trajectory assertion [Antes → Conss] 

of the same model for the assignment :η U →{0, 1}, denoted by [Antes → Conss](η), is 

defined as: 

)]()([)]([ ηηη ssss ConsAnteConsAnte →=→ . 
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 In the rest of this section, we will show how to verify these symbolic trajectory 

assertions using symbolic simulation. A symbolic trajectory evaluation algorithm can be 

easily developed by symbolically extending the functions and relations used in the scalar 

trajectory evaluation algorithm discussed in the previous section. 

Let H be the set of all assignments to the Boolean variable set U, i.e., 

}}1,0{:|{ →=Η Uηη . The state set S = {0, 1, X}n U {T} is extended to a symbolic state 

set }:|{)( SggUS →Η= . Each symbolic state in )(US is a function mapping a 

Boolean assignment Η∈η to a vector of ternary values (a scalar state) in S. For any 

given state s ∈ S, we let cs denotes the constant function that has ssc =)(η  for any 

assignment Η∈η . Particularly, c⊥ denotes the constant function for the state ⊥ . The 

next state function Suc: S → S is then extended to the symbolic next state function 

)()(: USUSSuc s → . The lowest upper bound function lub, and the partial order ≤ are 

extended to their symbolic counterparts lubs and s≤ , respectively. 

 Note that in order to apply BDD technique in the symbolic trajectory evaluation 

algorithm, we need to represent the state space as Boolean functions. Thus, we treat the 

symbolic state in )(US  bit by bit. Let cX , 1c, and 0c be the constant functions for value 

X, 1 and 0, respectively. Each bit of the symbolic state can be a constant function cX /1c/ 

0c, a Boolean function, or a “mux” function taking either of them as the result by the 

control of another Boolean function. Actually this “mux” function can also be viewed as 

a Boolean function with a constant cX /1c/ 0c. 
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 Definition 7: Given a model M = [(S, ≤), Suc] and a set Ρ  of simple predicates over 

S, the defining symbolic sequence of a given symbolic trajectory formula sf  of model 

M, denoted by s
f sβ , can be defined as follows: 

• s
ρβ  = Kcccd ⊥⊥ρ  if ρd  is the defining value of Ρ∈ρ . 

• ),(lub
2121

s
f

s
f

ss
ff ssss βββ =

∧
, where slub  is the symbolic extension of lub . 

• s
f

ss
fB ss B ββ ?=

→
,    where B is a Boolean function and s?  is the symbolic extension 

of ?. 

• .s
f

cs
f ss ββ =⊥

Ν
 

 The evaluation of the defining symbolic sequence s
f sβ  for any assignment Η∈η , 

denoted by )(ηβ s
f s , is s

f
s
f ss )(

)(
η

βηβ = . 

 Definition 8: Given any symbolic trajectory formula sf  of model M = [(S, ≤), Suc], 

assuming that s
f sβ = K10 s

f
s
f ss ββ  is the defining sequence for sf , the defining symbolic 

trajectory K10 s
f

s
f

s
f sss χχχ =  can be defined inductively as follows: 

⎪⎩

⎪
⎨
⎧ =

= − otherwiseSuc
iif

is
f

ssi
f

s

s
fsi

f
ss

s

s ))(,(lub
0

)1(

0

χβ
β

χ . 

 The evaluation of the defining symbolic trajectory s
f sχ  for any assignment Η∈η , 

denoted by )(ηχ s
f s , is as below: 

s
f

s
f ss )(

)(
η

χηχ = . 

We can also extend the satisfaction relations symbolically for a symbolic trajectory 

formula and for a symbolic trajectory assertion, respectively.  
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 Given a symbolic trajectory formula sf of model M, which is satisfied by a 

trajectory a = ),,,( 210 Kaaa  of the same model, we define the symbolic satisfaction 

relation ╞s
M for the assignment :η U →{0, 1} as: 

(a╞s
M

sf )(η) = 1  iff  a╞M )(ηsf . 

Similarly, for a symbolic trajectory assertion, we have: 

(╞s
M [Antes → Conss])(η) = 1  iff  ╞M ([Antes → Conss](η)). 

 At last, we can apply the theorem below [4] to verify if a symbolic trajectory 

assertion is satisfied by a model M: 

 Theorem 2: Given s
Antesχ  and s

Conssβ  as the defining symbolic trajectory and the 

defining symbolic sequence of symbolic trajectory formulas Antes and Conss in model M, 

respectively, for every Η∈η , 

╞s
M [Antes → Conss](η) = 1  iff )(ηβ s

Conss  ≤ )(ηχ s
Antes . 

 For a given model M and a symbolic trajectory assertion of it, the symbolic 

evaluation algorithm yields a Boolean function denoting the set of assignments under 

which the assertion is satisfied as compared with the simple yes/no answer from the 

scalar algorithm. Since the verification task requires that the assertion should hold under 

all variable assignments, this Boolean function should simply be the constant function 1c, 

i.e., the function that returns 1 for all assignments.  

2.6 Illustrative Example 

In this section, we will present an illustrative example for Symbolic Trajectory 

Evaluation.  
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Figure 13.  Diagram for a Verilog model of a sequential circuit 

 

Consider the Verilog model of a sequential circuit shown in Figure 13. Signals s1 and 

s2 are two inputs to the circuit. The other input s3 severs as a clock signal. Signals s4 

registers s2 at the positive edge of clock s3. Finally, signal s5 is the registered output of the 

circuit, the value of which equals 41 ss ∧ . The time unit we use here is half clock cycle 

and we assume there is no time delay at the and gate. 

 We represent the circuit state as a 5-bit vector 54321 ssssss = . The next state function 

54321 tttttSuc s =  is defined as follows: 

5341355432344332211 )(,)(,)(,)(,)( sssssstssssstXstXstXst ccc +=+==== . 

As mentioned before, no next state constraint is imposed on a state vector component 

associated with an input signal, that is, its next state function should be the constant 

function for value X.  

 Assume that we want to verify the following symbolic trajectory assertion for the 

above circuit model: 

))((

))1()0()1()0()()((

5
4

3
3

3
2

33
}2{

2
}4{

1

abs

ssssbsas

=Ν→

=Ν∧=Ν∧=Ν∧=∧=∧=
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where the expression )( 1 as =  stands for the symbolic trajectory formula 

))0(())1(( 11 =→∧=→ sasa , }2{
2 )( bs =  denotes )()( 22 bsbs =Ν∧= , and iΝ  

denotes i next time operators. Generally, we use )( Bsi =  as the shorthand for the 

symbolic formula ))0(())1(( =→∧=→ ii sBsB , and represent the symbolic formula 

sisss ffff 12 −Ν∧Ν∧Ν∧ K  as }{)( isf , where sf  is a symbolic trajectory formula.  

 The simple predicates involved in the above assertion and the corresponding defining 

values are listed below: 

• s1 = 0 with defining value 〈0, X, X, X, X〉, 

• s1 = 1 with defining value 〈1, X, X, X, X〉, 

• s2 = 0 with defining value 〈X, 0, X, X, X〉, 

• s2 = 1 with defining value 〈X, 1, X, X, X〉, 

• s3 = 0 with defining value 〈X, X, 0, X, X〉, 

• s3 = 1 with defining value 〈X, X, 1, X, X〉, 

• s5 = 0 with defining value 〈X, X, X, X, 0〉, 

• s5 = 1 with defining value 〈X, X, X, X, 1〉. 

From Definition 7, we get the defining symbolic sequence of symbolic trajectory 

formula )( 1 as = , a shorthand expression for ))0(())1(( 11 =→∧=→ sasa , as: 

K〉〉〈〉〈〈=
=→∧=→

ccccccccccccccs
sasa

XXXXXXXXXXXXXXa ,,,,,,,,,,,,
)))0(())1((( 11

β . 

Similarly, we get the defining symbolic sequence of )( 2 bs =  as: 

K〉〉〈〉〈〈=
=→∧=→

ccccccccccccccs
sbsb

XXXXXXXXXXXXXbX ,,,,,,,,,,,,
)))0(())1((( 22

β . 

Then the defining symbolic sequence of )()( 21 bsas =∧=  is computed as: 
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K〉〉〈〉〈〈=

= ===∧=

ccccccccccccc

s
bs

s
as

ss
bsas

XXXXXXXXXXXXXba ,,,,,,,,,,,,

),(lub )()()()( 2121
βββ

 

By recursively applying Definition 7, we can get the defining symbolic sequence of 

the antecedent: 

))1()0()1()0()()(( 3
3

3
2

33
}2{

2
}4{

1
ccccs ssssbsasAnte =Ν∧=Ν∧=Ν∧=∧=∧== , 

and then compute its defining symbolic trajectory according to Definition 8, the 

procedure of which are shown in Table I. 

TABLE I.  DEFINING SYMBOLIC TRAJECTORY OF THE ANTECEDENT 

si
Ante sβ )( )1( −is

Ante
s

sSuc χ si
Ante sχ

slub
slub
slub
slub

slub

 

TABLE II.  SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT  AND COMPARISON 

si
Conssβ si

Antesχ

s≤
s≤
s≤
s≤
s≤

s≤
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Similarly, we can also obtain the symbolic defining sequence of the consequent 

))(( 5
4 absCons s =Ν=  shown in Table II, compared with the result for the defining 

trajectory of the antecedent. We can easily see from the table that: cs
Ante

ss
Cons ss 1=≤ χβ , 

i.e., the symbolic trajectory assertion is satisfied by the circuit model under all variable 

assignments. 

2.7 STE Based Verification Tool and FL Language 

Forte is Intel's custom-built verification environment, evolved from Carl Seger's VOSS 

formal hardware verification system. Forte integrates model-checking engines (STE), 

BDDs, circuit manipulation functions, theorem proving, and a functional programming 

language called FL. FL is used in Forte as a programming language for application 

development and fast prototyping, and also as an extension language for users to enable 

writing flows and applications [33]. 

Devised by Carl Seger during the years 1990-1995, FL is a strongly typed, lazy, 

functional programming language [34]. Functional programming is a programming 

paradigm that treats computation as the evaluation of mathematical functions [31], which 

are often defined by separation into various cases, each of which is separately defined by 

appealing (possibly recursively) to function applications [19]. In contrast to imperative 

programming, functional programming emphasizes the evaluation of functional 

expressions, rather than execution of commands. The expressions in these languages are 

formed by using functions to combine basic values. Functional programming languages 

have no variables, no assignment statements, and no iterative constructs. The oldest 

example of a functional language is Lisp, not a purely functional programming language, 
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which did introduce most of the features now found in modern functional programming 

languages. The modern canonical examples are Haskell and members of the ML family 

including SML and Ocaml. FL is syntactically very similar to Edinburgh ML (Meta 

Language), and semantically closely related to lazy-ML and Haskell. 

What distinguish FL from other functional languages are the following VLSI CAD-

related features [33]: 

• BDDs fully integrated into the language with every object of type ‘bool’ represented 

as a BDD, 

• VLSI modeling capability, and  

• STE, a C based symbolic simulator, integrated into the language. 

FL provides a flexible interface for invoking and orchestrating model checking runs 

and serves as an extensible 'macro language' for expressing specifications, which makes 

Forte a generic, open framework where solutions can be tailored to individual verification 

problems [33]. 

The model to be verified in Forte must be in Exlif format [32], where the RTL design 

is flattened to the gate level netlist. It was necessary to develop a converter which can 

translate the Verilog RTL to Exlif format. The high level description of this translation is 

illustrated in Figure 14. The Verilog code is first translated to Blif-mv format using the 

VIS tool, and then we used a translator to convert the Blif-mv format file to an Exlif one. 

This Blif-mv to Exlif translator was developed using Perl script by our group. 

The converting is a straight forward process since the two formats Exlif and Blif-mv 

are similar modulo certain syntactic differences. Therefore, it is safe to say that the 

correctness of this translation is guaranteed by the VIS tool. 
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Figure 14.  Verification using Forte 

 

The properties of the design are captured by STE assertions generated in FL codes.  

In the Forte environment, the syntax for STE invocation is: 

STE <model> <weak> <antecedent> <consequence> <trace> 

where the description of each object in the above syntax is given below: 

• <model>: This is the model to be simulated. The model is an object of type fsm. 

• <weak>: This is a list of 4-tuples of the following format: (<guard>, <node>, 

<from>, <to>), where <guard> is of type bool, <node> is a node name, <from> and <to> 

are integers. The semantics of such a tuple is such that if the condition <guard> holds, the 

given <node> should be disconnected from the logic driving it in the model from time 

<from> to time <to>. The <weak> list is usually used to solve the contradiction in node 

assignment. 

• <antecedent>: The antecedent is the input vectors to the simulator. It is a list of 5-

tuples of the following format: (<guard>, <node>, <value>, <from>, <to>), where 

<value> is of type bool. The semantics of such a tuple is that if the condition <guard> 

holds, the given <node> is assigned the value <value> from time <from> to time <to>. 

• <consequence>: The <consequence> describes the expected result (consequence) of 

the simulation. It is a list of 5-tuples of following format: (<guard>, <node>, <value>, 

<from>, <to>). The semantics of such a tuple is that when the condition <guard> is T 



 

 

43 

 

 

then after running STE, the given node is expected to be equal to the given value from 

time <from> to time <to>. 

• <trace>: This is a list of triples of the following format: (<node>, <from>, <to>). 

The semantics of such a triple is that STE records the value of the given node from time 

<from> to time <to>. 

After running the STE simulation, STE returns Boolean value T if the consequence is 

realized, and returns the Boolean condition under which the consequence is realized 

otherwise. If the consequence is never realized, STE returns Boolean value F. 

Time-frame specified in <weak>, <antecedent>, <consequence> and <trace> is in 

terms of the internal clock of STE that progresses tick by tick. Model clocks and model 

timing should be translated in terms of the STE clock. 
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Chapter 3  

Verifying Look-Aside Interface using STE 

In this chapter, we first present a brief introduction to the Look-Aside Interface (LA-1). 

We then discuss some related work including a previous RTL design for the LA-1 

interface. A modified RTL design for the LA-1 interface is described in detail after that. 

Finally, the verification processes of both the previous RTL design and the modified LA-

1 interface RTL design using STE are illustrated.  

3.1 LA-1 Interface Specifications 

The LA-1 interface [35], developed by the Network Processor Forum, is a memory-

mapped interface based on QDR (Quad Data Rate) SRAM, targeted at devices (memories 

or coprocessors) that offload certain tasks from a network processing unit (NPU). The 

major features of the LA-1 interface include: 

• Concurrent read and write. 

• Separate unidirectional read and write data buses. 

• Single address bus. 

• 18-bit DDR data output bus transfers 32 bits plus 4 bits of data parity per read. 

• 18-bit DDR data input bus transfers 32 bits plus 4 bits of data parity per write. 
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• Byte write control for writes. 

3.1.1 Signal Descriptions 

 

Network 
Processor

(Host)

Memory/
Coprocessor

(Slave)

K
K#
A[n:2]
D[15:0]
DP[1:0]
R#
W#
BW#[1:0]

DO[15:0]
DPO[1:0]

 

Figure 15.  LA-1 Interface buses 

 

The LA-1 interface transfers data between an NPU and memory or coprocessors. Figure 

15 shows the LA-1 interface bus signals. One LA-1 port consists of two input clocks (K 

and K#), which are rising-edge active and should be ideally 180 degrees out of phase 

with each other, one active-low write select input W#, one active-low read select input 

R#, 2-bit active-low byte-write inputs BW#[1:0], single address bus A, 16-bit 

synchronous data inputs D[15:0]  plus 2-bit synchronous data parity inputs DP[1:0] for 

write operations, and 16-bit synchronous data outputs DO[15:0] plus 2-bit synchronous 

data parity outputs DPO[1:0] for reads. 

3.1.2  Port Operation specifications 

3.1.2.1 Write Operations 

A write cycle is initiated by asserting W# low at the rising edge of clock K.  
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The write address should be ready at the following rising edge of K# and data is 

captured at the rising edge of K and K# in the same cycle. 

3.1.2.2 Read Operations 

A read cycle is initiated by asserting R# low at the rising edge of K and the read address 

is captured at the same edge. Output data is delivered after the next rising edge of K. 

 

 

Figure 16.  LA-1 port operation timing diagram 

 

The timing diagram for the port operation of the LA-1 interface is shown in Figure 

16 [35]. 
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3.2 Related Work 

The LA-1 interface was first verified by A.Habibi et al. [1] at both the behavioral level 

and the RTL level. That work, to our knowledge, includes behavioral designs in Abstract 

State Machine (ASM) and SystemC, a RTL design in Verilog and the corresponding 

verification approaches. The ASM level LA-1 design was verified using the AsmL tool to 

model check a set of properties in Property Specification Language (PSL). The SystemC 

level model was verified using simulation to perform Assertion-Based Verification (ABV) 

of properties expressed in C# assertions. The verification of the Verilog RTL LA-1 

design was performed using the RuleBase tool to model check PSL properties. 

 

 

Figure 17.  Archtecture of Ahmed’s LA-1 RTL design 



 

 

48 

 

 

3.3 Verifying Ahmed’s LA-1 RTL Design using STE 

3.3.1 Design 

A synthesizable RTL design for the LA-1 interface was implemented in Verilog by A. I. 

Ahmed et al. [3] conforming to the above specifications. The architecture of the LA-1 

interface RTL design is shown in Figure 17 [3]. Three main building blocks are used in 

this LA-1 RTL design: Write port, Read port and Memory. Notice that the memory data 

bus width is 36 bits. The timing diagrams for each of the three blocks are shown in Figure 

18, 19 and 20 [3], respectively. Note that clock K and K# in the LA-1 interface 

specifications are represented by CLK_K and CLK_K1 respectively in the design.  

 

Figure 18.  Timing diagram for the LA-1 Interface Write Port 
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Figure 19.  Timing diagram for the LA-1 Interface Read Port 

 

 

Figure 20.  Timing diagram for the LA-1 Interface Memory 
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The following properties are extracted of the design specifications: 

• Property 1 (Write Port): by asserting W# low at the rising edge of CLK_K, if the 

byte-write control inputs BW#1 and BW0# are set to low, the full data input D will 

be captured, at the same cycle, at the rising edge of CLK_K and CLK_K1 and sent 

to the memory through Memory_data at the next rising edge of CLK_K. 

• Property 2 (Write Port): by asserting W# low at the rising edge of CLK_K, the 

active-low memory enable signal will be set to low at the next rising edge of 

CLK_K. 

• Property 3 (Read Port): by asserting R# low at the rising edge of CLK_K, the data 

from the memory Data_In will be sent out sequentially two times with half a clock 

cycle in between through D after the next rising edge of CLK_K . 

• Property 4 (Memory Port): the data written to a specific address of the memory by 

a previous write operation can be read out properly by a read operation to the same 

memory location, provided that there is at least a two clock cycle delay between the 

write operation and the read operation. 

3.3.2 Verification 

Now, we apply the STE model checking technique presented in a previous chapter to 

verify the LA-1 RTL Design of A. I. Ahmed et al. using Forte. As mentioned previously, 

we need the VIS tool and a Perl script to convert the RTL design from Verilog to Exlif, 

the only format accepted by Forte. One limitation of this converting process is that VIS 

does not support multiple clocks. Hence, one of the two clocks must be removed from the 

design. We solved the problem by substituting the use of the rising edge of clock 
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CLK_K1 (K#) for the use of the negative edge of the clock CLK_K (K), based on the fact 

that CLK_K1 and CLK_K are ideally 180 degrees out of phase with each other. Thus we 

have only one clock (CLK_K) left in the resulting Exlif format model. 

The STE formulations of the four properties described above are given below: 

• STE Assertion 1 for Property 1: 

])).0:15[2]0:15[_(])0:15[1]16:31[_((
)1_()0_(

]))0:15[2]0:15[()1_((
]))0:15[1]0:15[()0#1()0#0()0#()0_((

3

32

dDataMemorydDataMemory
KCLKKCLK
dDIKCLK

dDIBWBWWKCLK

=∧=Ν→

=Ν∧=Ν∧

=∧=Ν∧
=∧=∧=∧=∧=

 

• STE Assertion 2 for Property 2: 

).1(
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)0#()0_((

3
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• STE Assertion 3 for Property 3: 
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• STE Assertion 4 for Property 4: 
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The FL code used to invocate the STE simulation to verify STE assertion 1 is as 

follows: 

1.  let my_ckt = load_exe ”LA1 INTERFACE TOP.exe”; 

2.  let weak = [ ]; 

3.  let write ant = 

4.   (gen_clock_cycles clk F (0 upto 1)) @ 

5.   (ws is F in_cycles (0 upto 2)) @ 

6.   (vassign_v_t1_t2 bwe F 0 5) @ 

7.   (vassign_v_w_t1_t2 din ”d1” 15 1 2)  

8.  ; 

9.  let write cons = 

10.   (vassign_v_w_t1_t2 write nodes h ”d1” 15 3 4)  

11.  ; 

12.  let write tr = 

13.   let watch n = (n, 0, 4) in 

14.    map watch write_nodes 

15.  ; 

16.  STE ” ” my_ckt weak write_ant write_cons write_tr; 

The first line of the code is used to load the model of our LA-1 interface design into 

the Forte system. In line 2, we leave the <weak> list in the STE assertion blank since we 

suppose that there is no node with contradiction assignment in our model and thus no 

need to do any disconnection. Line 3 to line 8 specifies the antecedent of the property. 

Two STE clock cycles, that is four STE clock ticks, are generated by line 4. W#, BW0# 
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and BW1#, the control inputs, are asserted low respectively for all those two clock cycles 

in line 5 and 6. The data input is provided in the line right after. The consequence of the 

property is defined in line 9 to line 11, which gives the expected results of the simulation. 

Lines 12 to 15 specify a list of nodes which will be traced within specified time ranges. 

With all these STE invocation object definitions ready, we can run the STE simulation by 

calling the last line of the above code. This STE simulation will end up with a value T/F 

to indicate the success/fail of the simulation. 

3.3.3 Experimental Results 

In this section, we describe our results on the verification of Ahmed’s LA-1 RTL design 

using STE. Table III shows the statistics of verifying the LA-1 Interface design for 4 bits, 

6 bits, and 8 bits data width combined with 12 bits and 16 bits address width using Forte. 

The experiments were done on 2 X UltraSPARC-III+ machine with 2 900Mhz processors 

and 4096M of RAM. In Figure 21, we can see that the memory usage grows pretty 

nicely, though not linearly with respect to the width of the address bus. The BDD 

complexity grows also quite acceptably. The time complexity is not an issue since all the 

runs for the three different cases took less than one second. However, we could not 

perform the verification for the full design with 27 address bits and 16 data bits. 

TABLE III.  STATISTICS FOR AHMED’S LA-1 RTL DESIGN VERIFICATION USING STE 
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Figure 21.  Memory Usage for Ahmed’s LA-1 RTL design verification using STE 

 

Our verification did successfully find some bugs for the design which were against 

the LA-1 Interface specification. Those bugs were fixed in our RTL design. Then the 

design was converted to Exlif, loaded and checked against all the STE properties again in 

Forte. Finally all the properties passed for the updated design. The bugs for the read port, 

for example, are listed below: 

• If signal READ_SEL is asserted low all the time and never goes to high, then no data 

is delivered at all. More specifically, only after signal READ_SEL is asserted high at 

least once at the rising edge of CLK_K before it is asserted low at the rising edge of 

CLK_K, this read operation can be recognized and executed.  

• Data is delivered one clock cycle earlier than specified with respect to CLK_K. 

When an STE run returns a value other than T, it indicates that the consequence is 

not realized and there should be some unexpected results of the simulation. By looking 

into the STE return value which may give the Boolean condition under which the 

consequence is realized or by checking the records of traced nodes, we may find out 
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where the problem exists and furthermore try to figure out how it can be solved. We can 

also get some warnings in Forte when something unexpected happens and those warnings 

can be helpful in problem solving. Here is an example of such a warning message from 

the STE engine in Forte: 

 

This warning message alerts the user of a consequent failure happened on node 

DATA_WRITE_MEM_OUT_w<16> at time tick 6 during the simulation and the reason 

for this failure is shown in the second and the third lines. Finally, a Boolean condition is 

provided under which this consequent failure will hold. 

 Finally, all the STE assertions listed in the previous sections have been verified in 

Forte. 

3.4 Verifying Modified LA-1 RTL Design using STE 

3.4.1 Modifications 

The purpose of the modification is to correct some misunderstandings of the design 

specifications in Ahmed’s design presented above and to make the design more general 

and adaptable to different verification tools. 

Modification 1 (Architecture) 

After reexamining the LA-1 interface specifications described in Look-Aside (LA-1) 

Interface Implementation Agreement [35], we found that the Memory unit itself should 
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not be included as part of the LA-1 interface which works as the interconnection between 

a network processor (host) and a memory/coprocessor (slave). Thus, we removed the 

Memory block from our modified LA-1 RTL design. 

Modification 2 (Memory interface) 

As mentioned in section 4.4, the memory data bus width in the previous design is 36 

bits which means that not only the 32 bits of data but also the 4 bits of data parity are 

stored in the memory. However, from [35] we can see that, during a write operation, the 4 

bits of data parity from the host should be only used by the interface to check against the 

internal generated ones from the 32-bit data from the host and should not be put into the 

memory; while during a read operation, the 4 bits of data parity to the host should be 

generated from the 32-bit data stored in the memory by the interface but not be read out 

directly from the memory. Hence, we reduced the memory data bus width from 36 bits to 

32 bits and only the 32-bit data will be written into and read out of the memory. 

Modification 3 (Clock frequency) 

Two clocks CLK_K (K) and CLK_K1 (K#) are used in the previous design as shown 

in section 4.4. Then in section 4.5, when verifying the design using STE, we met a 

problem for the clocks because the VIS tool did not support multiple clocks and we 

solved the problem by using the double edges of clock CLK_K instead of using both the 

rising edges of the two clocks and CLK_K became the only clock in the design. Another 

solution is to generate an internal double-frequency clock clk_2x from clock CLK_K and 

clk_2x is also used as the only clock for the LA-1 interface circuit. In this case, the rising 

edge of CLK_K and CLK_K1 can be obtained by combing clk_2x and a control signal 

pflag which is used to indicate the positive edge and negative edge of clock CLK_K. The 
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second solution is a better choice for our verification purposes since it can not only avoid 

the use of multiple clocks but also avoid the use of double edges of the clock which is not 

supported by some verification tools. In fact, we will present another verification 

methodology in a later chapter for the LA-1 RTL design where the use of double edges of 

the clock is not allowed. Therefore, we will apply the second solution, that is, the double-

frequency clock scheme in our modified design. 

3.4.2 Modified Design  

 

 

Figure 22.  Modified LA-1 RTL design 

By applying the modifications presented above to the previous LA-1 RTL design, we got 

our modified design shown in Figure 22 which is also implemented in Verilog. Note that 

we also increased the address bus width from 27 bits to 28 bits in the modified design. 

According to the LA-1 interface specifications [35], the address bus width range is from 
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22 bits to 28 bits. We used the 28 bits because we wanted to verify the design in the 

extreme situation. In this design, we use a Clock Frequency Doubler to take the clock 

input clk_k (CLK_K) and generate an internal double-frequency clock clk_2x which is 

used as the only clock for the LA-1 interface circuit and a control signal pflag denoting 

the positive edge and the negative edge of clock clk_k. The timing for the Write Port and 

the Read Port are shown in Figure 23 and 24.  

clk_2x

K

pflag

din

addrin a1

d0 d1

me

a1addr_w

d0&d1d2m

ws

 

Figure 23.  Timing diagrm for Write Port Controller 

clk_2x

K

pflag

rs

a2addrin

d_m

dout mem[a2]_l mem[a2]_h

mem[a2]

 

Figure 24.  Timing diagram for Read Port Controller 
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The Clock Frequency Doubler is implemented using the built-in digital delay-locked 

loop (DLL) of Xilinx Virtex devices. Xilinx Virtex Series DLLs provide precise clock 

edges through frequency multiplication [38]. The diagram for Virtex DLL is shown in 

Figure 25 [38]. The Verilog code for the Clock Frequency Doubler is as follows: 

, 

where CLKDLL is the DLL component, IBUFG and BUFG are Xilinx global buffer 

components, signal CLK_K is the input clock, CLK_2x is the output double-frequency 

clock and FLAG_pos is the output control signal used to denote the edges of CLK_K. 

The use of global clock buffers can take advantage of the low-skew, high-drive 

capabilities of the dedicated global buffer tree of Xilinx devices [37]. 

 

Figure 25.  Virtex DLL Block Diagram 
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Based on the design specification we draw out the following properties: 

• Property 1 (Write Port): by asserting ws (W#) low at the rising edge of clk_2x 

when pflag is high, if the byte-write control inputs bwe[1:0] (BW#[1:0]) are set to 

low, the full input data din[15:0] will be captured at the current and the next rising 

edges of clk_2x and sent to the memory through d2m[35:0] (data to memory)  at 

the next rising edge of clk_2x. 

• Property 2 (Write Port): by asserting ws (W#) low at the rising edge of clk_2x 

when pflag is high, the active-low memory enable signal me will be set to low at 

the next rising edge of clk_2x. 

• Property 3 (Read Port): by asserting rs (R#) low at the rising edge of clk_2x when 

pflag is high, the data from the memory d_m[35:0] will be sent out through 

dout[15:0] (DO[15:0]) after the next rising edge of clk_2x. 

3.4.3 Verification 

We also use STE to verify the modified LA-1 RTL design in Forte.  

The STE formulations of the three properties described above are given below: 

• STE Assertion 1 for Property 1: 
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• STE Assertion 2 for Property 2: 
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• STE Assertion 3 for Property 3: 
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3.4.4 Experimental Results 

All the five STE assertions of the modified design were verified using Forte. Besides 

those properties targeted for the 28 bits address width, we also verified the same five STE 

assertions for the 4 bits address width in Forte. Firstly, in both cases, the memory usages 

for each of the five STE assertions were almost the same. Secondly, it turned out that the 

memory usage did not grow dramatically with the growth of the address bus width but 

almost remained the same. In fact, all the memory usages for the 5 plus 5 runs were less 

than 1M. Thirdly, the time complexity is also not an issue since all the runs for the ten 

different assertions took less than one second. 

Compared with the experimental results of Ahmed’s design, in which the memory 

usage were much larger and grew almost linearly with the width of the address bus, these 

results were not surprising since we removed the Memory block from the modified 

design which took most of the resources. 
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Chapter 4  

MDG-based Model Checking 

To deal with the state explosion problem of traditional BDD-based symbolic model 

checking methods, a new MDG-based model checking approach is proposed by Corella 

et al. [10]. In this chapter, we first introduce the theoretical foundations of MDG-based 

model checking in Section 1 and 2. After that, the modeling, specification language and 

verification methodology of this approach will be described in detail in the following 

sections. Finally, after providing an illustrative example of this approach, MDG-based 

model checking tools are discussed. 

4.1 Many-sorted First-order Logic 

Whereas Boolean propositional logic is used in BDD-based model checking approaches 

to model circuits at the bit level, a more expressive logic is needed in the MDG-based 

method in order to represent the circuits at higher level of abstraction. A modified many-

sorted first-order logic is then proposed for this purpose.  

Standard many-sorted first-order logic [11] is a very powerful language in terms of 

expressiveness and it can be viewed as a unifying framework for all other logics, 

including higher-order logic. By adding the notion of type (or sort) to the formalism of 

first-order logic, it gains modeling flexibility and retains the tractability of first-order 
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logic, such as completeness, compactness, structural induction over terms and formulas, 

and efficient matching and unification algorithms. 

The logic used in the MDG-based verification modified the standard many-sorted 

first-order logic by separating the set S of sorts into classes: the set cS of concrete (also 

called enumerated) sorts and the set aS  of abstract sorts, which makes possible the 

distinction between data path and control path in hardware verification.  

 Concrete sorts have enumerations, while abstract ones do not. The enumeration of a 

concrete sort cSs ∈  is a list of constants of sort s , called individual constants. The 

constants that do not show in any enumeration are generic constants of abstract sorts. 

Constants or variables may be of concrete sort or abstract sort. As a special case, the 

Boolean logic may be included in this logic as a concrete sort with an enumeration over 

{0, 1}.  

 Function symbols are classified into three categories according to the sorts of its 

arguments and the result: 

• concrete function symbol (with a concrete result and concrete arguments), 

• abstract function symbol (with an abstract result), 

• or cross-operator (with a concrete result and at least one abstract argument). 

Both abstract function symbols and cross-operators are uninterpreted and they are used to 

model data operations and feedback from data path to control, respectively. Concrete 

function symbols are used to denote control path operations. 

 Terms and formulas are defined inductively in the similar way as in standard many-

sorted first-order logic. In short, terms are formed of sorts, constants, variables, and 
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function symbols, and formulas are defined using equations of terms, logical connectives 

and quantifiers.  

 A term is said to be concrete/abstract if it is of concrete/abstract sort. A term is 

concretely reduced if and only if it has no concrete sub-terms other than individual 

constants, i.e., a concretely-reduced term is formed of either abstract terms or individual 

constants. A cross-operator ),,,( 21 ntttf K  is called a cross-term if all the arguments 

nttt ,,, 21 K  are concretely-reduced terms. 

 An interpretation, δ , is a mapping that assigns a denotation (a non-empty set) to 

each abstract sort. A concrete sort or a constant is itself a denotation. Let V  be a set of 

variables. A δ-compatible assignment with domain V, δφV , is a function that maps each 

variable in V of sort s  to an element of the denotation of the sort s. Let δ
VΦ  be the set of 

all possible δ-compatible assignments to the variables in V . 

 The truth semantics of a formula is defined relative to an interpretation and an 

assignment compatible to it. More precisely, given an interpretation δ  and a δ-

compatible assignment φ  to the variables that occur free in F , the truth of a formula F , 

denoted by φδ , ╞ F , is defined recursively as follows: 

• φδ , ╞ 21 tt = , iff 1t  and 2t  are terms of the same denotation. 

• φδ , ╞ F¬  iff not φδ , ╞ F . 

• φδ , ╞ 21 FF ∧  iff φδ , ╞ 1F  and φδ , ╞ 2F . 

• φδ , ╞ 21 FF ∨  iff φδ , ╞ 1F  or φδ , ╞ 2F . 

• φδ , ╞ Fx)(∃  iff there exists an assignment 'φ  which is φ  extended with an 

assignment to variable x  such that ',φδ ╞ F   
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• φδ , ╞ Fx)(∀  iff for any assignment 'φ  which is φ  extended with an assignment to 

variable x , ',φδ ╞ F  holds. 

We use ╞ F  to denote the case where φδ , ╞ F  holds for all δ  and δφ VΦ∈  with 

variables in V  occur free in F . 

4.2 Multiway Decision Graphs 

Multiway Decision Graph (MDG) is a data structure representing a formula in the many-

sorted first-order logic described in the previous section.  

Definition 9: Let X and A be two sets of variables such that X ∩ A = ∅. An MDG 

of type Α→Χ  is a finite rooted directed acyclic graph (DAG) G, where 

• Each non-root leaf node is labeled by formula T (truth), and a root leaf node (in 

which case G has only one node) may be labeled by formula T or ⊥ (falsity).  

• For each internal node n, either 

   n is labeled by a cross-term of concrete sort α  with variables in X, and the 

outgoing edged of n are labeled by individual constants of α , or 

   n is labeled by a variable in X of concrete sort α , and the outgoing edges of n 

are labeled by individual constants of α , or 

   n is labeled by a variable in A of concrete sort α , and the outgoing edges of n 

are labeled by individual constants of α , or 

   n is labeled by a variable in A of abstract sort β , and the outgoing edges of n 

are labeled by concretely-reduced terms of β  with variables in X. 
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 A well-formed (reduced and ordered) MDG [10] is a canonical graph representation 

of a quantifier-free and negation-free many-sorted first-order formula, called Directed 

Formula (DF) [7].  

 Note that a BDD is a special case of an MDG. More precisely, a BDD can be 

transformed into an MDG by 

• replacing the label 0 or 1 of a leaf node with T or ⊥, and 

• removing all the non-root leaf nodes labeled ⊥ and all the related incoming edges. 

4.3 Modeling 

In MDG-based model checking, digital systems under verification are modeled by 

abstract descriptions of state machines (ASMs), where both sets of states and relations are 

encoded by MDGs. 

An abstract description of a finite state machine M is a structure 

),,,,,,( OTIOSI RRSVVVA ν= , where 

• IV , SV  and OV  are pairwise disjoint vectors of input, state and output variables 

respectively.  

• ν  is the function that maps each state variable in SV  to the corresponding next state 

variable. Thus )('
sS VV ν=  is the next state variable set, which is disjoint from IV , 

SV  and OV . 

• IS  is the abstract description of the set of initial states encoded by an MDG of type 

SVX → , where X  is a set of abstract variables disjoint from IV , SV , OV  and '
SV . 
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• TR  is the abstract description of the transition relation encoded by an MDG of type 

'
SSI VVV →∪ . 

• OR  is the abstract description of the output relation encoded by an MDG of type 

OSI VVV →∪ . 

 Abstract descriptions of state machines (ASMs) describe state machines at a higher 

level of abstraction. For each interpretation δ , one and only one state machine M can be 

obtained by applying δ  to the abstract description A , which is of the form 

),),(,,,( δδδδδδ
OTIVVVV RRSSetM

SOSI
ΦΦΦ=  such that 

• δ
IVΦ , δ

SVΦ  and δ
OVΦ  are the sets of all possible δ-compatible assignments to the 

variables in IV , SV  and OV  respectively, i.e., the set of input vectors, the set of states 

and the set of output vectors respectively. 

• φδφ δδ ,|{)(
SS VIV SSet Φ∈= ╞ })( ISX∃  is the set of initial states. 

• )"(',|)",',{( νφφφδφφφ δδδδ
o∪∪Φ×Φ×Φ∈=

SSI VVVTR ╞ }TR  is the transition 

relation. 

• "',|)",',{( φφφδφφφ δδδδ ∪∪Φ×Φ×Φ∈=
OSI VVVOR ╞ }OR  is the output relation. 

4.4 Specification Language 

A specification language called MDGL  is used to express the properties to be verified in 

the MDG-based model checking approach.  

MDGL  [29] is a CTL-like specification language based on many-sorted first-order 

logic, which is used to describe properties for abstract description of state machines 
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(ASMs). ASMs lift the system modeling in BDD-based approaches from the 

propositional level to the first-order level. Similarly, MDGL  lift CTL (a specification 

language used in BDD-based approaches) from the propositional level to the first-order 

level.  

 A Next_let_formula is the basic building block of a MDGL  property. Given an ASM 

and a set of ordinary variables (not occurring in the ASM), the recursive definition of a 

Next_let_formula is as follows: 

• An equation 21 uu =  is a Next_let_formula, if 1u  is an ASM variable and 2u  is an 

ASM variable, an ordinary variable, or a constant.  

• f! (not f ), gf & ( f and g ), gf | ( f or g ) and gf → ( f implies g ) are 

Next_let_formulas, if both f  and g  are Next_let_formulas. 

• LET ( uv = ) IN f  is a Next_let_formula, if v  is an ordinary variable, u  is an ASM 

variable, and f  is a Next_let_formula. We call this type of formulas LET–IN 

formulas.  

• X f  is a Next_let_formula, if f  is a Next_let_formula and X is the next-time 

operator. 

Just like in the symbolic trajectory formulas, finite depth of nesting of the next-time 

operator is also allowed in the Next_let_formulas. 

 Let p  and q  be Next_let_formulas. A MDGL  property is defined of either of the 

following forms:  

• A( p ),  

• AG( p ),  
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• AF( p ),  

• A( p ) U ( q ), 

• AG( ( p ) ⇒ (F( q )) ), 

• AG( ( p ) ⇒ (( p ) U ( q )) ). 

 The truth semantics of a MDGL  property is defined relative to an interpretation δ and 

a δ-compatible assignment φ . A detailed description of the semantics can be found in 

[28]. 

4.5 Verification Methodology 

4.5.1 Reachability Analysis in MDG-based Model Checking 

As mentioned previously, given an abstract description ),,,,,,( OTIOSI RRSVVVA ν=  of 

finite state machines, for any interpretation δ , one and only one state machine 

),),(,,,( δδδδδ
OTIVVVV RRSSetM

SOSI

∂ΦΦΦ=  can be obtained by applying δ  to the abstract 

description A .  We now show how to perform the reachability analysis of M using some 

basic MDG algorithms.  

The pseudo-code [7] shown in Figure 26 describes the algorithm ReAn for 

reachability analysis, where R, Q, I, P and N are MDG variables representing sets of 

states, O is an MDG variable representing the set of output vectors, K is the loop counter, 

Fresh is a local function, and ReIP, PbyS and Disj are basic MDG algorithms which are 

described in detail in [7]. Note that, an invariant condition C represented by an MDG is 

checked against A during the reachability analysis.  
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In line 2, before the start of the loop, R that represents the set of reachable states 

found so far and Q that represents the frontier set, that is, a subset of R containing at least 

all those states entering R for the first time in the previous loop iteration, are initialized to 

the MDG representing the set of initial states, and the loop counter K is reset to zero. 

Lines 3 to 14 specify the body of the loop.  

In line 5, function Fresh(VI, K) constructs an MDG representing the set of input 

vectors which are fresh variables related to the value of K. 

 

Figure 26.  Reachability analysis algorithm in MDG-based model checking 
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Lines 6 to 8 are used to check if the invariant C holds and to terminate the algorithm 

and report failure if the check fails. In line 6, the relational product algorithm ReIP 

computes an MDG representing the set of output vectors produced by the states in the 

frontier set Q, which is assigned to O. In line 7, the pruning-by-subsumption algorithm 

PbyS is used to remove from O any path leading to output vectors that satisfy the 

invariant C, the resulting MDG of which is assigned to P. In line 8, if the set represented 

by P is not empty which means not all the output vectors produced by the states in the 

frontier set satisfy the invariant, the algorithm terminates, reports failure and provides a 

counterexample.  

Lines 9 to 11 compute the new frontier set and check if the fixpoint has been 

reached. Line 9 computes an MDG representing the set states reachable in one transition 

from the frontier set, which is assigned to N. Line 10 is used to remove from N the 

current reachable states represented by R, the resulting MDG of which representing the 

new frontier set is assigned to Q. In line 11, if the new frontier set is empty which means 

the fixpoint has been reached, the algorithm terminates and returns success. 

 Lines 12 and 13 are used to compute an MDG representing the new set of reachable 

states by unioning the new frontier set Q with R. First, in line 12, R is simplified using 

PbyS by removing any path subsumed by Q. Then, in line 13, the disjunction algorithm 

Disj computes an MDG representing the union of sets represented by R and Q, and assign 

the resulting MDG to R. 

Note that, the reachability algorithm described above may produce false negative and 

may not terminate, the discussion of which is beyond the scope of this thesis and the 

detail of which can be found in [7].  
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4.5.2 Model Checking of LMDG Properties 

In general, the MDG-based model checking approach is based on abstract implicit state 

enumeration (the reachability analysis algorithm described in the previous section). 

Different property checking algorithms [28] are developed for LMDG formulas of various 

forms. The basic idea is to use an automatic tool to build additional ASMs for the MDGL  

property to be verified, connect the additional ASMs to the ASM model M representing 

the design under verification to make a new composite ASM model M’, and then set an 

invariant condition to be checked against M’ during the reachability analysis of M’. If the 

invariant holds in all the reachable states of M’, we then prove that model M satisfies the 

MDGL  property.  

In this approach, data signals are denoted by abstract variables instead of Boolean 

variables, and data operators are represented by uninterpreted or partially interpreted 

function symbols instead of Boolean functions.  Thus, the verification based on abstract 

implicit state enumeration can be carried out independently of data path width, which 

therefore can effectively alleviate the state explosion problem.  

4.6 MDG-based Verification Tools 

The MDG tools [30] are implemented in Prolog as our MDG-based verification tools. 

The MDG tools, targeted to the verification of RTL designs modeled by ASMs, consist of 

an MDG package, a reachability analysis algorithm, applications for RTL verification, 

and a model checker for LMDG. The MDG package contains a set of manipulation 

algorithms for MDGs, the details of which can be found in [10]. The reachability analysis 

algorithm explores all the reachable states of an ASM and checks whether an invariant 
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holds in all those states. Four applications for RTL verification are provided in the MDG 

tools: ASM state exploration, ASM safety property checking, ASM equivalence checking 

and Combinational verification. The MDG model checker [27] performs checks on 

properties expressed in LMDG against an ASM model. Our verification for the modified 

LA-1 RTL design was performed using the MDG model checker in the MDG tools.  

The MDG model checker accepts only design models in MDG-HDL [27], a Prolog-

style Hardware Description Language which allows the use of abstract variables and 

uninterpreted function symbols. Therefore, a converter is needed to translate the Verilog 

RTL into MDG-HDL format. Note that, in this case study, due to time limitation (not 

technical limitation), we did not build the converter but did the translation for the 

modified LA-1 RTL design manually. We will put the efforts of developing such a 

Verilog to MDG-HDL converter as our future work. Besides the MDG-HDL description 

of the design, a bunch of other information, such as sort and function type definitions and 

user-defined symbol ordering, is also needed by the MDG model checker in order to 

perform the verification properly. All the required information is arranged into four input 

files: the algebraic specification file, the symbol order file, the circuit description file and 

the invariant specification file. Detailed descriptions of these files can be found in [30]. 

Design properties are expressed in LMDG. Given a LMDG property, the property parser 

in MDG model checker will develop an additional MDG-HDL code for the property, 

merge the additional code with the original MDG-HDL code generated for the design 

under verification, and set an invariant condition in the invariant specification file. 

The new merged MDG-HDL code and the invariant are then sent into the MDG 

model checker, where the MDG-HDL code is complied into an ASM encoded internally 
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by MDGs and the invariant is checked against the ASM model during the reachability 

analysis of this model. If the invariant holds in all the reachable states of the ASM model, 

we can then prove that the design under verification satisfies the MDGL  property. When 

the checking for the invariant fails at some stage of the reachability analysis procedure, 

the procedure will be terminated immediately and a counterexample will be generated to 

indicate the states not satisfying the invariant.  
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Chapter 5  

Verifying Look-Aside Interface using MDGs 

In Chapter 3, we verified several properties of the Look-aside Interface using STE. In this 

chapter, we will make another case study of verifying the same properties of the interface 

using MDGs. By comparing the syntax of STE assertions with that of LMDG properties, 

we can see that LMDG properties are more powerful than STE assertions in terms of 

expressiveness. More precisely, the properties that STE assertions can describe are a 

subset of those that can be expressed by LMDG properties. Thus, we can easily get the 

LMDG properties to be verified against the interface model by mapping from of the STE 

assertions. We will provide a method to perform the mapping from STE assertions to 

LMDG properties. 

5.1 Mapping STE Assertions to LMDG Properties 

We start from the normalized form of basic STE assertions 

)()()()( 1010 i
i

i
i CCCAAA Ν∧∧Ν∧→Ν∧∧Ν∧ KK , 

where Ai and Ci are simple predicates or conjunctions of these or empty, ∧ and → are 

logic connectives “and” and “implication” respectively, N is the next-time operator, and 

Ni denotes i next time operators. For example, Ai can be D = d, a simple predicate which 

states that node D of a circuit has the value of d at the present time and d can be a 
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symbolic variable or a constant or a vector of either of them. The antecedent instructs the 

initialization of signals for the symbolic simulation in STE and the consequent defines 

the expected response of the circuit which is then checked against the simulation result. 

Note that the time unit in STE is half clock cycle, while MDG tools use one clock 

cycle as the time unit. Thus, only those STE assertions that have no predicates at both 

edges of the clock can be mapped to LMDG properties.  

 Before doing the real work, we need to check whether an STE assertion is suitable 

for the mapping or not. If it is not, we need to redo the RTL design to remove the use of 

both edges of the clock. One solution is to generate an internal double-frequency clock 

clk_2x from the original clock clk and use clk_2x as the only clock for the circuit. The 

rising edge and the falling edge of the original clock clk can be obtained by combining 

clk_2x and clk, in which case clk is viewed as a control input.  

 We then remove the predicates related to the clock signal in the STE assertion 

because in the MDG tools the clock signal is implemented implicitly. The resulting STE 

assertion should be of the following form: 

)()()()( 2
2

02
2

0 j
j

j
j CCCAAA Ν∧∧Ν∧→Ν∧∧Ν∧ KK , 

where j is the greatest even number that is equal or less than k. 

 In order to ease the mapping process, we first transform the normalized form of an 

STE assertion mentioned earlier into an equivalent formula by decomposing the 

implication into a conjunction of sub-implications according to the consequent side as: 
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 Next, we do the decomposition again for each of the sub-implications shown above, 

according to the antecedent side, as below: 

)))((()))((())((

))()(())()(())((

)()()(
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2
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2
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i
ji
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j

i
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j

i
i

i
i

i
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j

CACACA

CACACA

CAAA

−− Ν→Ν∧∧Ν→Ν∧Ν→

=Ν→Ν∧∧Ν→Ν∧Ν→

=Ν→Ν∧∧Ν∧

K

K

K

. 

 Then we start the real mapping process. The first step is to replace a state variable or 

a vector of state variables with an ASM variable. Then we use the LET-IN formulas 

mentioned above to rewrite the final sub-implications of form )( n
m

l CA Ν→  as follows: 

• Any predicate in Al of form siai vv =  or  ]0:[nvv siai =  will be re-written as aioi vv = , 

where vai, vsi, vsi[n:0] and voi are an ASM variable, a symbolic variable, a vector of 

symbolic variable and an ordinary variable respectively.  

• Any predicate in Cn that uses vsi or vsi[n:0] will use voi instead.  

The resulting sub-implication will be written as:  

 

where vaci is an ASM variable in Al, ci is a Boolean constant or a vecotor of Boolean 

constants, and Cn’ is the resulting consequent by replacing vsi or vsi[n:0] in Cn with voi.  

LET-IN formulas allow us to use ordinary variables to remember the current values 

of ASM variables in the antecedent which are then used in the consequent. Note that the 

predicates in the antecedent that have the state variables or vectors of state variables 

assigned constant values should keep the same structure and not be transformed by LET-

IN formulas, since constant values do not change with time and therefore there is no need 

to use LET-IN formulas to store the current values for them.  
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 Thirdly, the logic connectives → and ∧ should be mapped to their counterparts in 

LMDG which are → and & respectively and each two next time operators N2 should be 

replace by one X which is the next time operator in LMDG.  

 Next, we may do some compositions to get a more compact formula.  

 The last step is simply to add AG to the front of the resulting formula.  

 The mapping process can be illustrated by the following example. Assume that we 

want to map the following STE assertion to a LMDG property: 

)2()1(
)0()1(

]))0:15[2]0:15[()0()0((
)1(]))0:15[1]0:15[()1()0((

42

43

2

ddoutddout
clkclk

ddinenclk
clkddinenclk

=Ν∧=Ν→

=Ν∧=Ν∧

=∧=∧=Ν∧

=Ν∧=∧=∧=

, 

where clk, en, din[15:0], and dout[15:0] are state variables or vectors of state variables 

representing the clock signal, the control input, the 16-bit data input and the 16-bit data 

output respectively. 

 First, by removing the clock related predicates, we get: 

)2()1(
]))0:15[2]0:15[()0((

]))0:15[1]0:15[()1((

42

2

ddoutddout
ddinen

ddinen

=Ν∧=Ν→

=∧=Ν∧

=∧=

. 

 Next, we decompose the above formula as: 

))2(]))0:15[2]0:15[()0(((
))2(]))0:15[1]0:15[()1(((
))1(]))0:15[2]0:15[()0(((

))1(]))0:15[1]0:15[()1(((

22

4

2

2

ddoutddinen
ddoutddinen
ddoutddinen

ddoutddinen

=Ν→=∧=Ν∧

=Ν→=∧=∧

=→=∧=Ν∧

=Ν→=∧=

 

 Finally, by applying the LET-IN formulas, we have the mapped LMDG property as: 

AG(    ( LET (v1=din) IN ( (en=1)  X(dout=v1) ) ) 
            & X( LET (v2=din) IN ( (en=0)  (dout=v1) ) ) 
            & ( LET (v1=din) IN ( (en=1)  XX(dout=v2) ) )
            & X( LET (v2=din) IN ( (en=0)  X(dout=v2) ) )); , 
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where v1 and v2 are ordinary variables and the other three variables din, en and dout are 

ASM variables . Note that v1, v2, din and dout should be of the same abstract sort and en 

is of a concrete sort. Thus, vectors of Boolean variables (state variables) in STE 

assertions are mapped to abstract variables in LMDG properties, which makes the 

verification in MDG tools independent of data path width. 

5.2 Verifying Modified LA-1 RTL Design using MDGs 

5.2.1 Modeling 

The MDG-HDL model for the Write Port of the modified LA-1 RTL design is shown in 

Figure 27, where  

• input signals clk_2x, pflag, ws, dpin1, dpin0, bwe1 and bwe0 are of type bool,  

• input signals din and addrin are of abstract sort ‘wordn’,  

• output signals me, bwe_m3, bwe_m2, bwe_m1, and bwe_m0 are of type bool,  

• output signals d2m and addr_w are of abstract sort ‘wordn’, and 

• components make_word, parity1, parity2, parity3 and parity4 are abstract function 

symbols.  

Note that signals dpin1 and dpin0 are mapped from dpin[1] and dpin[0] in the Verilog 

design respectively. Similarly, signals bwe1 and bwe0 are mapped from bwe[1] and 

bwe[0] respectively, and signals bwe_m3, bwe_m2, bwe_m1, and bwe_m0 are mapped 

from bwe2m[3], bwe2m[2], bwe2m[1] and bwe2m[0] respectively. The function of 

make_word is to merge two input data into one output data. The function of parity1, 

parity2, parity3 or parity4 is to compute the parity of the input data.  
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Figure 27.  MDG-HDL model for the Write Port of the modified LA-1 RTL design 

 

The MDG-HDL model for the Read Port of the modified LA-1 RTL design is shown 

in Figure 28, where  

• input signals clk_2x, pflag and rs are of type bool,  

• input signals d_m and addrin are of abstract sort ‘wordn’,  
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• output signals dpout1 and dpout0 are of type bool,  

• output signals dout and addr_r are of abstract sort ‘wordn’, and 

• components msw, lsw, parity1, parity2, parity3 and parity4 are abstract function.  

Note that signals dpout1 and dpout0 are mapped from dpout[31] and dpout[0] in the 

Verilog design respectively. The function of msw is to strip the most significant word 

from the input data. The function of lsw is to strip the least significant word from the 

input data. The function of parity1, parity2, parity3 and parity4 is to compute the parity 

of the input data.  

 

Figure 28.  MDG-HDL model for the Read Port of the modified LA-1 RTL design 
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5.2.2 Properties 

The LMDG properties listed below are obtained by mapping from the STE assertions 

presented in the previous section using the mapping procedure proposed earlier in this 

chapter: 

• LMDG Property 1 mapped from STE Assertion 1: 
 

 
 

• LMDG Property 2 mapped from STE Assertion 2: 
 

 
 

• LMDG Property 3 mapped from STE Assertion 3: 
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5.2.3 Experimental Results 

During our verification using the MDG tools, we found some bugs in the MDG tools 

which are listed below:  

• The property parser does not support the nested LET-IN structure in the LMDG 

properties and only the last Let_equation will be counted. 

• The property parser cannot deal with the cross-terms in the LMDG properties properly. 

More specifically, when generating the additional MDG-HDL code for a cross-term 

in the property, the property parser will declare the output signal of the cross-term as 

an abstract variable which contradicts the fact that the result of a cross-term should 

be of a concrete sort.  

• The property parser cannot build the symbol ordering for the resulting merged MDL-

HDL model correctly.  

We fixed the problems caused by the above bugs for our modified LA-1 RTL design 

verification manually. The formal solutions to these bugs will also be put as our future 

work.  

All the three LMDG properties listed in the previous section have been verified in the 

MDG tools. Note that MDG-based verification for the LA-1 Interface is independent of 

address width since the address input is of abstract sort. 

Table IV shows the memory usage, runtime and the number of MDG nodes used for 

verifying each of the five LMDG properties. As can be seen, the memory usages were 

very small and the time complexity is not an issue since all the runs for the three 

properties took less than two seconds. 
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TABLE IV.  VERIFICATION STATISTICS FOR THE LMDG PROPERTIES 

 Memory (MB) Runtime (s) Nodes 

LMDG Property 1 1.7 0.8 2300 

LMDG Property 2 1.0 0.5 1019 

LMDG Property 3 3.0 1.7 5210 

 

5.3 Discussion 

So far, we have studied in-depth the underlying theories and methodologies of STE 

and MDG-based model checking, provided cases studies of each of the approach, and 

described the corresponding verification tools. In the next chapter, we will show how to 

combine these two techniques together. 
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Chapter 6  

First-order Symbolic Trajectory Evaluation 

using MDGs 

In this chapter, we investigate the possibility of using MDGs to perform Symbolic 

Trajectory Evaluation. Two attempts to combine the Symbolic Trajectory Evaluation 

with the MDGs are discussed: one in the STE verification environment and the other in 

the MDG tools. We focus on the second attempt and propose a theory and methodology 

of performing first-order Symbolic Trajectory Evaluation in the MDG tools. This study 

may provide direction for further research in the application of MDGs. 

6.1 Purpose 

Symbolic Trajectory Evaluation technique and MDG-based model checking technique 

improve the traditional BDD-based symbolic model checking approaches in two different 

ways. The first one can dramatically reduce the computations for the next state space and 

enhance the computational efficiency, while the latter one can simplify the data path 

operations and thus can effectively overcome the state explosion problem. If we can 

combine these two techniques, it is possible for us to take the advantages of both of them. 

The basic idea of such a combination is to replace the use of the BDDs with the MDGs 
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for the encoding of the symbolic expressions and to implement the STE algorithm at a 

higher level of abstraction which can further alleviate the state explosion problem in STE. 

We can implement this combination either in the STE environment ‘Forte’ or in the 

MDG environment ‘MDG tools’.  

6.2 Implementing the Combination in Forte 

Our goal of the first combination approach is to encode the symbolic expressions in Forte 

using the MDG package. To achieve this goal, we need to integrate the MDG package 

into Forte. A BDD package programmed in FL is used to encode symbolic expressions in 

Forte. As mentioned in previous chapters, the programming language in Forte is FL, 

while the MDG package that we have in the MDG tools is implemented in Prolog. 

Hence, the MDG package in Prolog cannot be integrated into Forte system directly to 

replace the BDD package. In order to solve this problem, we can either program the 

MDG package again in FL or implement the MDG package in a language other than FL 

assuming that Forte has a foreign language interface to that language. The procedure of 

the first approach is somewhat straightforward provided that we have sufficient 

background knowledge for the MDG package and FL. We now illustrate the basic idea of 

the latter one using a well known Muddy example.  

MuDDy [36] is a SML (Standard ML) interface to BuDDy, a Binary Decision 

Diagram package written in C language by Jørn Lind-Nielsen [39]. The first usage of 

MuDDy was in the Hol98 theorem prover to integrate the BuDDy BDD package. BuDDy 

and a piece of C code ‘muddy.c’ associating the C functions called in MuDDy with the C 

functions in Buddy form a new C library, which is then compiled into a dynamically 
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loadable library. MuDDy is used in the Moscow ML system where Moscow ML's foreign 

function interface is used to call the C functions in the dynamic library. Moscow ML is a 

proper extension of SML and every valid SML program should be a valid Moscow ML 

program [26].  

MuDDy makes BuDDy applicable in SML modules via three structures: 

• bdd - defining an ML type bdd representing nodes in BuDDy’s BDD space, and 

operations for creating and manipulating ML values representing BDDs, 

• fdd - providing support for blocks of BDD variables used to encode values 

representing elements of finite domains, and 

• bvec - providing support for Boolean vectors. 

Figure 29 shows an example of how to access BuDDy through MuDDy in the 

Moscow ML system. When an SML function ‘func1’ of structure ‘bdd’ is called from the 

top level SML file, C function symbol ‘mlbdd_func1’ in the dynamic library associated 

to ‘func1’ by the SML function ‘app1’ in MuDDy will be accessed. Finally inside the 

dynamic library, C functions in BuDDy associated to ‘mulbdd_func1’ in ‘muddy.c’ will 

be accessed by the top level SML file. 

From the illustration of the above example, we can see that the following steps 

should be taken for the purpose of integrating the MDG package in Forte through the 

foreign function interface method: 

• Program the MDG package in a language, such as C, to which Forte has a foreign 

language, 

• Devise an FL interface to the MDG package, and 
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• Write a piece of code like ‘muddy.c’ in the same language as used for the MDG 

package to associate the functions called in the FL interface with the functions in the 

MDG package, and compile the code and the MDG package into a dynamically 

loadable library. 

 

 

Figure 29.  MuDDy in Moscow ML system 

 

Theorically, it is possible to implement both the above methods to integrate the 

MDG package in Forte either by programming the MDG package directly in FL or by 

programming the MDG package in a language other than FL and accessing the MDG 

package using FL’s foreign function interface. However, it is practically impossible for 

us to do so because the FL source code for Forte is not yet open to the public and thus we 
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can neither modify it nor add more codes to the system. Therefore, we have to make 

another try at combining these two techniques, detail of which will be discussed in the 

next section. 

6.3 Implementing the Combination in the MDG Tools 

In this combination approach, we will develop an MDG-STE engine in the MDG tools 

where the STE algorithm is implemented using the MDG package. 

To do this, we need to first find out the features exclusive to STE and try to 

implement them in the MDG tools. One such notable feature is the “don’t care” value X 

in the logic of STE. Another important feature of STE is the concept of ‘lattice’.  

 Next, we will discuss respectively the implementations of STE modeling, STE 

assertions and STE verification methodology using MDGs. 

 A detailed description of the STE algorithm and related terminology can be found in 

Chapter 2.  

6.3.1 Logic Extension 

The underlying logic of STE is three-valued logic which extends the existing 1 (true) and 

0 (false) values in two-valued logic with an unknown or “don’t care” value X. The X 

value is essential to the modeling and symbolic simulation in STE, and is absent from the 

modified many-sorted first-order logic used in MDGs. Hence, for the purpose of 

implementing the STE algorithm using MDGs, we should also extend the modified 

many-sorted first-order logic by adding the don’t care value X to the denotation of each 

of the concrete/ abstract sort for each interpretation. For example, if the denotation of a 
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concrete/abstract sort s is set },,,{ 21 naaa K  under an interpretation δ ,  the denotation of 

s should be extended as },,,,{ 21 Xaaa nK . 

6.3.2 Implementation of STE Modeling 

In STE, a lattice-based tuple M = [(S, ≤), Suc] is used to model the system under 

verification, where a partial order ≤ is defined over the state space S = {0, 1, X}n U {T} 

and (S, ≤) forms a complete lattice. Following the same structure, in the MDG-STE 

engine, we should also define a partial order ≤mdg over the state space Smdg and make 

(Smdg, ≤mdg) a complete lattice. 

In MDG tools, an abstract description of the state machine (ASM) is used to model 

the digital system. An abstract description of an STE model ),,( sucmdgmdgmdg RVA ≤= can 

be built based on the ASM, where 

• Vmdg is a vector of state variables, 

• ≤mdg is a partial order over the state space, and 

• sucR  is the abstract description of the next state function encoded by an MDG of type 

mdgmdg VV → . 

Note that the state variable vector Vmdg is actually a combination of variables representing 

the input signals, the register output signals and the output signals. For a given state 

variable vector 1210 −−= nnmdg vvvvV K  , the next state function )( mdgsuc VR  is actually a 

vector of next state functions for each element of Vmdg, i.e., )( mdgsuc VR = 

)()()()( 11221100 −−−− nnnn vtvtvtvt K . If element vi is associated with an input of the circuit, 
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the next state function c
ii Xvt =)( , and otherwise )( ii vt  is determined by the circuit 

structure.  

For each interpretation δ , one and only one STE model Mmdg can be obtained by 

applying δ  to the abstract description mdgA , which is of the form 

)),,(( δδ
sucmdgVmdg RM

mdg
≤Φ=  such that 

• δ
mdgVΦ  is the set of all possible δ-compatible assignments to the variables in mdgV , i.e., 

the set of states, 

• ≤mdg is a partial order over δ
mdgVΦ , 

• ( δ
mdgVΦ , ≤mdg) is a complete lattice, and 

• ',|)',{( φφδφφ δδδ ∪Φ×Φ∈=
mdgmdg VVsucR ╞ }sucR  is the next state function, monotone 

with respect to ≤mdg. 

 

Figure 30.  Partial orders over },,{ 21 Xaa  and },,,{},,{ 32121 XbbbXaa ⋅  

 

Suppose that the length of the state variable vector Vmdg is n and nmdg vvvV K21= . 

The state space Smdg = δ
mdgVΦ of the model Mmdg can be denoted as nddd ⋅⋅⋅ K21 , where 
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)1( nidi ≤≤  is a non-empty set representing the denotation of sort )1( nisi ≤≤  which is 

the sort of variable )1( nivi ≤≤ . Note that the don’t care value X is an element to each of 

the denotation, that is, )1( nidi ≤≤∈Χ . The partial order ≤mdg is defined over  

nddd ⋅⋅⋅ K21 . Illustrative examples for the partial orders over },,{ 21 Xaa  and 

},,,{},,{ 32121 XbbbXaa ⋅  are shown in Figure 30.  

Obviously, ),( 21 ≤⋅⋅⋅ nddd K  is not a complete lattice since not every subset of 

nddd ⋅⋅⋅ K21  has a least upper bound. Therefore, in order to make ),( mdgmdgS ≤  a 

complete lattice, we introduce the top element T, representing a unique overconstrained 

state, to the state space Smdg. Thus, the resulting partial order set UK nddd ⋅⋅⋅ 21 {T}, 

)mdg≤  forms a complete lattice with T as the universal upper bound and ⊥ = X, …, X as 

the universal lower bound. The complete lattices U},,({ 21 Xaa {T}, )mdg≤  and 

U},,,{},,({ 32121 XbbbXaa ⋅ {T}, )mdg≤  are shown in Figure 31. 

 

 

Figure 31.  complete lattices U},,({ 21 Xaa {T}, )mdg≤  and U},,,{},,({ 32121 XbbbXaa ⋅ {T}, )mdg≤  
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6.3.3 Implementation of STE Assertions 

In the MDG-STE engine, an STE assertion is of form ][ s
mdg

s
mdg ConsAnte → , where both 

s
mdgAnte and s

mdgCons  are MDG-based symbolic trajectory formulas.  

The basic component of a MDG-based symbolic trajectory formula is the simple 

predicate. Given an STE model )),,(( δδ
sucmdgVmdg RM

mdg
≤Φ=  obtained by applying an 

interpretation δ to an abstract description ),,( sucmdgmdgmdg RVA ≤=  of the STE model, a 

predicate over δ
mdgVΦ  is a function that maps δ

mdgVΦ  to a special complete lattice containing 

only two elements false and true, with element false as the universal lower bound and 

element true as the universal upper bound. A predicate mdgp over δ
mdgVΦ  is called simple if 

it is monotone and there exists a unique element 
mdgpd   in δ

mdgVΦ  such that for all δ
mdgVs Φ∈  

with sd mdgpmdg
≤ , truespmdg =)( . The 

mdgpd  here is called the defining value of predicate 

mdgp . We denote the set of all simple predicates over δ
mdgVΦ  by mdgΡ . A simple predicate 

mdgp over δ
mdgVΦ  can be extended symbolically as mdgV

s
mdgp Ρ→Φδ: , where V  is the set 

of all variables occurring in s
mdgp  and δ

mdgVΦ  is the set of all δ-compatible assignments to 

the variables in V . The symbolic simple predicate s
mdgp  maps a δ-compatible assignment 

to the variables occurring in it to a simple predicate in mdgΡ  and works over mdgV . The 

symbolic defining value s
ps

mdg
d  of s

mdgp  is the symbolic extension of the defining value 

mdgpd  of mdgp . 
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Definition 10: Given an STE model )),,(( δδ
sucmdgVmdg RM

mdg
≤Φ=  and a set mdgΡ  of 

simple predicates over δ
mdgVΦ , an MDG-based symbolic trajectory formula of model Mmdg 

is defined inductively as below: 

• A symbolic simple predicate s
mdgp  is a MDG-based symbolic trajectory formula, 

where s
mdgp  is the symbolic extension of one of the simple predicates in mdgΡ . 

• The conjunction ( s
mdg

s
mdg ff 21 ∧ ) is a MDG-based symbolic trajectory formula if 

both s
mdgf 1  and s

mdgf 2  are MDG-based symbolic trajectory formulas. 

• The next time expression (N s
mdgf ) is a trajectory formula if f is a trajectory formula 

and N is the next-time operator. 

In Forte, STE assertions are provided as an input in FL to the STE engine where the 

STE algorithm is implemented. The original MDG tools take as input only properties in 

LMDG format. Therefore, an extra input port for the MDG-based STE assertions should be 

built for the MDG-STE engine in the MDG tools. As mentioned before, in Forte, the 

syntax for STE invocation is: 

STE <model> <weak> <antecedent> <consequence> <trace>, 

where the <antecedent>/<consequence>, representing a symbolic trajectory formula, is 

both of form a list of 5-tuples of the following format: (<guard>, <node>, <value>, 

<from>, <to>). The MDG tools may follow the similar format to specify the MDG-based 

STE assertions under the logic and the internal time-frame (clock) of the MDG-STE 

engine.  
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6.3.4 Implementation of STE Verification Methodology 

In MDG-STE, the main task of verifying an assertion of form ][ s
mdg

s
mdg ConsAnte →  is to 

check whether or not every MDG-based symbolic trajectory satisfying MDG-based 

symbolic trajectory formula s
mdgAnte  also satisfies MDG-based symbolic trajectory 

formula s
mdgCons  and it can be implemented in this way:  

• first compute the MDG-based defining symbolic trajectory s
Antes

mdg
χ and the MDG-

based defining symbolic sequence s
Conss

mdg
β for s

mdgAnte  and s
mdgCons  respectively, and 

• then check if  s
Antes

mdg
χ  is no less than s

Conss
mdg

β  over the symbolic partial order s
mdg≤  

(symbolic extension of mdg≤ ) for any assignment to the symbolic variables.  

Note that the above computation is bounded since it is easy to show that for a given 

MDG-based symbolic trajectory s
mdgf  with the defining sequence s

f s
mdg

β = K10 s
f

s
f s

mdg
s

mdg
ββ  we 

have csi
f s

mdg
=⊥β  for )( s

mdgfdepi ≥ . 

In STE, function slub is used in the definitions of the defining symbolic sequence 

and the defining symbolic trajectory. Similarly, in the MDG-STE engine, function s
mdglub  

is used in the definitions of the MDG-based defining symbolic sequence and the MDG-

based defining symbolic trajectory. The function s
mdglub  is the symbolic extension of the 

MDG-based lower upper bound function mdglub . Under the definition of the complete 

lattice ),( mdgmdgS ≤ , it is straight forward to implement the function mdglub . 
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Definition 11: Given an STE model )),,(( δδ
sucmdgVmdg RM

mdg
≤Φ=  and a set mdgΡ  of 

simple predicates over δ
mdgVΦ , the MDG-based defining symbolic sequence s

f s
mdg

β  of a 

MDG-based symbolic trajectory formula s
mdgf  of Mmdg can be defined as follows: 

• s
ps

mdg
β  = Kccs

ps
mdg

d ⊥⊥  if s
ps

mdg
d  is the symbolic defining value of s

mdgp , where c⊥  

denote the constant function ⊥  and s
mdgp  is the symbolic extension of one of the 

simple predicates in mdgΡ , 

• ),(lub
2121

s
f

s
f

s
mdg

s
ff s

mdg
s

mdg
s

mdg
s

mdg
βββ =

∧
, and 

• s
f

cs
f s

mdg
s

mdg
ββ =⊥

Ν
. 

Definition 12: Given any MDG-based symbolic trajectory formula s
mdgf  of an STE 

model )),,(( δδ
sucmdgVmdg RM

mdg
≤Φ= , assuming that s

f s
mdg

β = K10 s
f

s
f s

mdg
s

mdg
ββ  is the MDG-based 

defining symbolic sequence for s
mdgf , the MDG-based defining symbolic trajectory 

K10 s
f

s
f

s
f s

mdg
s

mdg
s

mdg
χχχ =  of s

mdgf , can be defined inductively as follows: 

⎪⎩

⎪
⎨
⎧ =

= − otherwiseR

iif
is

fsuc
si
f

s
mdg

s
fsi

f
s

mdg
s

mdg

s
mdg

s
mdg ))(,(lub

0
)1(

0

χβ

β
χ , 

where sucR , as defined previously in ),,( sucmdgmdgmdg RVA ≤= , is the abstract description 

of the transition relation, i.e., the symbolic extension of δ
sucR . 

The pseudo-code shown in Figure 32 describes the algorithm MDG_STE for 

implementing the STE algorithm in the MDG-STE engine, where Ba, Bc, Ca, and N are 

MDG variables representing sets of states, K is the loop counter, dep is a function to 

calculate the depth of a MDG-based symbolic trajectory formula, lub, DSS and ParO are 
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MDG algorithms developed for MDG-STE, and ReIP is a basic MDG algorithm which is 

described in detail in [7].  The inputs of the MDG_STE algorithm are an abstract 

description ),,( sucmdgmdg RVA ≤= of a STE model and an assertion ][ s
mdg

s
mdg ConsAnte → , 

and the algorithm will return success/failure as a result. 

 

 1. MDG_STE(A, Antes Conss)

 2. loop (K := 0; K ≥ dep(Antes); K++)

 3. Ba := DSS(K, Antes);

 4. if (K = 0) 

 5. then Ca := Ba

 6. else begin

 7. N := ReIP({Ca, Rsuc}, Vmdg, 

 8. Ca := lub(Ba, N))

 9. end;

 10. Bc := DSS(K, Conss);

 11. P := ParO(Bc, Ca);

 12. if (P = F) then exit and return failure;

 13. end loop;

 14. return success;

 15. end MDG_STE;
 

Figure 32.   MDG_STE algorithm in the MDG-STE engine 

 

 Lines 2 to 13 specify the body of a loop. The loop will stop when the loop counter K 

is larger than the depth of the antecedent Antes. Note that the definition of depth of an 

MDG-based symbolic trajectory formula is similar to the one defined previously for an 
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STE formula and the antecedent Antes and the consequent Conss should be of the same 

depth. 

In line 3, algorithm DSS constructs an MDG Ba representing the K-th element of the 

defining symbolic sequence of the antecedent Antes. 

 Lines 4 to 9 are used to compute the K-th element of the defining symbolic trajectory 

Ca of the antecedent Antes. The 0-th element of Ca equals Ba, and the other elements of 

will be computed using algorithm ReIP and lub. In Line 7, the relational product 

algorithm ReIP computes an MDG N representing the set of states reachable in one 

transition from Ca. In line 8, function lub computes the least upper bound of MDGs Ba 

and N over the partial order mdg≤  and assigns the result to Ca. 

In line 10, algorithm DSS constructs an MDG Bc representing the K-th element of the 

defining symbolic sequence of the consequent Conss. 

Lines 11 to 12 check if the assertion is violated at the K-th stage. In Line 11, 

algorithm ParO is used to compare Bc and Ca over the partial order mdg≤ . Then in line 

12, if the assertion is not satisfied, the whole algorithm will stop and returns failure.  

In line 14, if no violations occur during the loop, the algorithm will return success. 

6.4 Illustrative Example 

We now present an illustrative example for performing first-order Symbolic Trajectory 

Evaluation using MDGs.  

Consider the sequential circuit modeled in MDG-HDL shown in Figure 33, where 

• input signals s1 and s2 of abstract sort ‘wordn’, 

• output signal s4 is of abstract sort ‘wordn’, 



 

 

99 

 

 

• components reg1 and reg2 are registers, and 

• component abs_and is an abstract function of type ‘wordn * wordn → wordn’. 

Note that in the MDG tools the clock signal is implemented implicitly and no input clock 

signal is needed. 

 

Figure 33.  Diagram for a MDG-HDL model of a sequential circuit 

  

We represent the circuit state as a 4-bit vector 4321 sssss = . The next state function 

4321 ttttRT =  is defined as follows: 

),(_)(,)(,)(,)( 31442332211 ssandabsstsstXstXst cc ==== . 

As mentioned before, no next state constraint is imposed on a state vector component 

associated with an input signal, the next state function of which should be Xc.  

 Assume that we want to verify the following symbolic trajectory assertion for the 

above circuit model: 

)),(_()())()(( 4
2

121 baandabssasbsas =Ν→=Ν∧=∧= . 

 By using Definition 11 and 12 in the previous section, we first show in Table V the 

computation process for the symbolic defining sequence and the symbolic defining 

trajectory of the antecedent: 

)())()(( 121 asbsasAntes
mdg =Ν∧=∧== . 
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TABLE V.  SYMBOLIC DEFINING TRAJECTORY OF THE ANTECEDENT 

si
Antes

mdg
β )( )1( −is

Antesuc s
mdg

R χ si
Ante s

mdg
χ

s
mdglub
s
mdglub
s
mdglub

 

 

TABLE VI.  SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT  AND COMPARISON 

si
Ante s

mdg
χsi

Cons s
mdg

β

s
mdg≤

s
mdg≤

s
mdg≤

s
mdg≤

 

 

The computation process for the symbolic defining sequence of the consequent 

)),(_(( 4
2 baandabssCons s

mdg =Ν=  is then shown in Table VI, compared with the result 

for the defining trajectory of the antecedent. We can easily see from the table that: 

cs
Ante

s
mdg

s
Cons s

mdg
s
mdg

1=≤ χβ , i.e., the symbolic trajectory assertion is satisfied by the circuit 

model under all variable assignments. 
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Chapter 7  

Conclusion and Future Work 

Traditional BDD-based symbolic model checking techniques are an attractive subset of 

formal verification methods because of their high automation and little requirement for 

human effort to guide the proof process, whereas they usually suffer from the state 

explosion problem. Symbolic Trajectory Evaluation technique and MDG-based model 

checking technique improve the traditional BDD-based symbolic model checking 

approaches in two different ways. The first one can dramatically reduce the computations 

for the next state space and enhance the computational efficiency, while the latter one can 

simplify the data path operations and thus can effectively overcome the state explosion 

problem. If we can combine these two techniques, it is possible for us to take the 

advantages of both of them.  

In this thesis, we investigated the possibility of using MDGs to perform Symbolic 

Trajectory Evaluation and proposed a theory and methodology of performing Symbolic 

Trajectory Evaluation in the MDG tools. For each of the approaches of STE and MDG-

based model checking, we studied the underlying theory and methodology, offered an 

illustrative example, discussed the verification tool, and provided a detailed case study. 

The main purpose of these two case studies is to obtain an in-depth understanding of the 

underlying theories and methodologies of these two model checking techniques, which 
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may facilitate the achievement of their combination. Two attempts to combine the 

Symbolic Trajectory Evaluation with the MDG were discussed: one in the STE 

verification environment and the other in the MDG tools.  

The goal of the first combination approach is to encode the symbolic expressions in 

Forte using the MDG package. We proposed theorically two methods to integrate the 

MDG package in Forte, either by programming the MDG package directly in FL or by 

programming the MDG package in a language other than FL and accessing the MDG 

package using FL’s foreign function interface. However, it was practically impossible for 

us to implement the above two methods because we didn’t have the access to the FL 

source code. 

In the second combination approach, we developed an MDG-STE engine in the 

MDG tools where the STE algorithm were implemented using the MDG package. We 

first extended the many-sorted first-order logic underlying MDGs by adding the feature 

of “don’t care” value X and then discussed respectively the implementations of STE 

modeling (including the construction of a complete lattice), STE assertions and STE 

verification methodology using MDGs. An illustrative example for performing Symbolic 

Trajectory Evaluation using MDGs was given at the end. 

As future work, we consider the following research directions: 

• fixing the bugs found in the MDG tools during our case study discussed in Chapter 5; 

• implementing the algorithm of first-order Symbolic Trajectory Evaluation in the 

MDG tools; 

• proving the correctness of our proposed first-order Symbolic Trajectory Evaluation 

algorithm; 
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• developing a RTL level Verilog to MDG-HDL converter to facilitate the verification 

using the MDG model checker; 

• performing equivalence checking between the RTL level and the gate level MDG-

HDL models of the LA-1 Interface, which may involve the development of a gate 

level Verilog to MDG-HDL converter. 
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