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Abstract 

 

FPGA Implementation of Congestion Control Routers in High Speed Networks 

 

Fariborz Fereydouni-Forouzandeh 

 

Receiving large number of data packets at different baud rates and different 

sizes at gateways in high-speed network routers may lead to a congestion 

problem and force gate routers to drop some packets. Several algorithms have 

been developed to control this problem. Random Early Detection (RED) 

algorithm is commonly used to eliminate this problem. It has been recommend by 

IETF (Internet Engineering Task Force) for next generation Internet gateways. In 

this thesis we present an FPGA implementation of a modified version of the RED 

algorithm. Furthermore, we discuss three enhancements of the RED algorithm 

leading to a better performance suitable for FPGA implementation. We have 

conducted several simulations to show that our proposed algorithm improves the 

response time and reduces the risk of global synchronization in gateways. The 

implementation is fully FPGA compatible and is targeting Xilinx Virtex-II Pro 

family devices. Finally we present the implementation that can run as fast as 10 

Gbps. 
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The impact of electronic communications, internet and networking 

applications is increasing globally and very broadly. It sounds to be out of control, 

if the appropriate enhancements do not cover its requirements. Especially in 

terms of speed getting higher and higher, and the number of users becoming 

larger and larger. It certainly creates huge data traffic at the gateways or routers, 

where a great number of sources send their packets to be routed to the 

appropriate destination. Hence, controlling this huge data traffic becomes heavily 

significant on traffic manager which are responsible in controlling the congestion 

at the gateways. 

In this work we investigate various mechanisms used to control the 

congestion at the high speed gateways, and also we describe a hardware 

implementation of traffic management scheme at high speed and high 

performance networks. Our implementation targets a Field Programmable Gate 

Arrays (FPGAs).  

While the technology of a multi-million gate in new devices is advancing 

very fast, both FPGAs and Application Specific Integrated Circuits (ASICs) are 

competitively demonstrating their capabilities in very large and high speed 

applications. Consequently, choosing the right technology to implement a given 

design is becoming the key question for several applications. In one hand, with 

ASICs one can implement multi-million gates in a small are of silicon using a 

library of reusable hardware and software blocks as Intellectual property (IP) 

cores [1]. In the other hand, FPGAs have also satisfied wonderfully the 

requirements for fulfillment of large complex designs in their today’s multi-million 



 3

gate ranges. Large variety of high performance IP cores (microprocessors, 

microcontrollers, intellectual functional logics and etc…) as well as high speed 

memories and much more are accessible in today’s FPGAs [4]. These features 

facilitate the implementation of a large complex system designs in FPGAs. Since 

the FPGAs are reprogrammable, this indeed lowers the cost of any required 

changes or modifications in the design for future, and considering the importance 

of shorter Time To Market (TTM) in industry, it is of a great benefit. 

 

1.1 – Motivations 

The motivation of this work is to explore the issues involved in congestion 

control routers as existing traffic manager mechanisms in high speed networks, 

and also implementing a higher performance traffic manager using FPGAs. First 

we compare different congestion control mechanism in high speed gateways in 

terms of efficiency and throughput. After this analysis we have chosen the 

Random Early Detection (RED) mechanism which was first introduced by Floyd 

and Jacobson [6]. And secondly, we discuss the challenges in implementing 

such mechanisms using FPGAs. Since, the achieving high speed is the biggest 

challenges in FPGAs high speed implementations. Our objective is to achieve a 

speed of 10 Gbps. This is done by improving the RED algorithm significantly to 

be suitable for such speed in FPGA.  
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1.3 – Contributions 

We can summarize our contributions in this thesis as: 

1. The modification of the RED algorithm in order to achieve higher 

performances, and to facilitate its implementation. We prove that 

our new modified RED algorithm is more efficient with higher 

throughput and improves the response time when congestion 

appears at the gateway. Also, we will prove that our algorithm is 

more reliable in terms of packets drops than the original RED 

algorithm. 

2. In order to verify and simulate the main features of our 

implementation we have designed and implemented an 

environment inside the same FPGA device. Generating artificial 

random patterns is always hard to achieve. We have produced a 

broad random vector set by mixing of two standard mechanisms to 

generate patterns of random numbers. Our 14-bit random pattern 

generator is required for calculations in RED algorithm.And our 

random pattern generator has been used as well in our 

environment to generate continuously pseudo random packets as 

emulating a real gateway to simulate the design.  

3. Our high speed FPGA implementation deals with traffic up to 10 

Gbps. Also, we introduced some heuristics in the hardware design 

to optimize some components especially in terms of speed of 

operations. 
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1.4 – Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 discusses the 

concept of the congestion and how it appears at the gateways. Chapter 3 

describes the existing congestion avoidance mechanisms and compares their 

advantages and disadvantages. In chapter 4 we describe the chosen algorithm 

(RED algorithm). We analyze the algorithm and discuss certain ideas that lead to 

an efficient implementation. In chapter 5 we present our proposed algorithm and 

its implementation in FPGAs. Finally, Chapter 6 concludes the thesis. 
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Chapter Two 
 
 
 
 
 
 
 
 

Data Congestion in high speed Networks 
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2.1 – Effective factors causing Data Congestion in high speed 

Networks 

High speed data transfer between several FTP (File Transfer Protocol) 

sources through a gateway with normal bandwidth implies unavoidable traffic 

congestions. Especially, increasing the number of high speed network stations in 

the world has brought on many problems in controlling the traffic between these 

stations. Data congestion always occurs in high speed network gateways with 

large bandwidth. 

This thesis is discussing the IP Packets (Internet Protocol Packets) 

arriving at high speed gateways from several FTP sources which their protocol is 

TCP/IP (Transmission Control Protocol / Internet Protocol). The Internet protocol 

defines how information is transferred between systems and gateways across 

the Internet. The packets are decomposed to several parts that can be 

transferred using standard Internet Protocol (IP) over the internet. The data to be 

sent is partitioned into several IP packets and is reassembled on the receiving 

computer. Each packet starts with a header containing its specifications, e.g. 

address and system control information [11], [3]. Unlike uniform Asynchronous 

Transfer Mode (ATM) that breaks the packets into smaller standard sizes of 53-

Byte cells [3], IP packets vary in length depending on the data that is being 

transmitted. IP header format of the IP Packet is shown in Table 2.1. The source 

and destination IP addresses are numbers that identify computers on the 

Internet. 
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00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total length 
Identification Flags Fragment offset 

TTL Protocol Header checksum 
Source IP address 

Destination IP address 
Options and padding ::: 

 

Table 2.1 – IP Header format. 

 

These numbers are usually shown in groups separated by periods, for 

instance: 123.123.23.2 consists of four separated values each between 0 and 

255, i.e., each position in this address range could carry one Byte of address. All 

resources on the Internet must have an IP address or else they do not belong to 

the Internet. 

FTP sources that send IP Packets to the gateway may vary in bit rates. If 

a great number of sources are active and sending IP Packets to the gateway with 

high bit rates, then there will be a bursty traffic of arriving packets and 

consequently a serious congestion will happen at the gateway. The congestion 

control is somehow based on the types of traffic sources at the Ingress port of 

the gateway. All IP Packets that have successfully passed through the gateway 

will be sent to the Egress port which represents the output port of the gateway. 

Considering the present internet system, there is no specific management 

between the gateways where traffic flow is controlled. Every IP Packet is 

processed as soon as a processor is available to send it between the gateways 
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and a transmission port is free and ready to carry the packet. If the packets have 

to wait before processing, they are held in a queue, subject to the size limit and 

the restrictions on the way they are queued and enqueued in and from the buffer 

[17]. Once the size of the queue reaches a predefined limit according to the 

congestion control mechanism, then usually the next arriving packet will be 

discarded. This is discussed in details in chapter three where we review several 

congestion avoidance mechanisms. 

 

 
 

 

Figure 2.1 – Example of some FTP connections in a Network illustrating how 

congestion could appear at the gateway. 

 

A simple example in figure 2.1 shows a gateway where several FTP 

connections are shown with different data transfer rates and burstiness. It is not 

always possible to transfer every arriving packet through such gateways, 

because the bandwidth of the node S is not capable to handle overall bandwidth 
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of nodes A to D. In a glance, that could be easily a reason to encounter data 

congestion for such a gateway. 

 

Gateway in Figure 2.1 looks like a firehouse connected to a straw through 

a small funnel as shown in figure 2.2 [2]. If the volume of the input flow is greater 

than the flow that can leave through the output of the straw, then funnel fills up 

and causes overflow. 

 

 

 
Figure 2.2 – Illustrating the Similarity of the congestion appearance in a gateway. 

 

Consider data transfer in an internet protocol for example in Figure 2.1 

that consists of four different sources A to D. The packets traverse between the 

nodes through the Gateway asynchronously, for instance using Time Division 

Multiplexing (TDM) algorithm. Asynchronous Time Division Multiplexing (ATDM) 
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is better illustrated in figure 2.3. Packets with equal sizes may arrive from each 

node at any time sequentially. Arriving packets are enqueued in the buffer 

(queue) with respect to the size of the buffer. And they are dequeued and 

transmitted through the Gateway using First In First Out (FIFO) scheduler to 

distribute the unique delay among all packets especially during the period of 

burstiness. As shown in Figure 2.3 all arriving packets from nodes A, B, C, and D 

are supposed to be queued and sent in appropriate order like the one shown in 

line ATDM as asynchronous multiplexing in order (that’s asynchronous because 

no packet is supposed to arrive at a certain expected time to be multiplexed from 

any node).  Applications like ATDM could be observed in very messy transfer 

protocols to distribute arriving data from several high speed VCs (Virtual 

Channels) efficiently. 

So, there is no fixed time relation between the multiplexed form of arrival 

cells or packets [3]. Considering the congestion appeared at the gateway as the 

result of arriving packets, it is not possible to accommodate all of them in the 

queue. That’s why the data congestion forces the gateway to drop some packets. 

The way to make the decision to drop certain packets is based on the traffic 

manager algorithm and the congestion control mechanism implemented at the 

gateway. 

Therefore the congestion is detected when the gateway starts to drop 

packets. The major factors which have main role in generating the congestion 

are increasing the number of high speed networks with  large  bandwidth and the 
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Figure 2.3 – Example of queuing the arrived packets from four different FTP in 

buffer as asynchronous time division multiplexing (ATDM). 

 

 

 

bottleneck of the gateways. Such problems motivated the researchers to propose 

some mechanisms as the solution. Some of the more important mechanisms 

between them are described in next chapter. 
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3.1 – Introduction to Congestion Avoidance 

In order to avoid data congestion problem at high speed gateways, there 

are several mechanisms which have been proposed. Some of them are used 

extensively in traffic control in high speed gateways. 

These mechanisms drop packets at the gateways when the packet queue 

reaches certain threshold. Size of the arrival packets in a fixed standard range 

[14] and also the baud rate, are discussed in next chapters. Since there is a 

queue as a buffer in every mechanism, so, while the arriving packets are being 

enqueued, meanwhile some packets could be dequeued through egress port. 

Therefore depending on the ratio of ingress and egress baud rate, size of the 

queued packets in the buffer may exceed some certain threshold value and 

consequently cause to drop some arriving packets. These threshold levels vary 

in different mechanisms, like queue overflow or a value less than overflow. We 

will see some examples in this chapter. 

All of this congestion control process is to achieve a feasible higher 

throughput and lower average queue size. In the subsequent chapters regarding 

the implementation of the congestion control routers, we will discuss the impact 

of the queue size in regard with the congestion control at the gateways in high 

speed networks. 

There are several standard queuing algorithms to control the congestion 

which determine the followings [10]: 

 

• How packets are buffered 
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• Which packets get transmitted 

• Which packets get marked or dropped 

• Indirectly determine the delay at the router 

 

3.2 –Congestion Avoidance Mechanisms 

This section introduces and reviews briefly some existing congestion 

control mechanisms by describing their advantages if any. Finally, we present the 

algorithm that we choose to design and to implement. As we’ll see all existing 

congestion control mechanisms drop some packets arriving at the gateway if the 

size of the stored packets in the buffer (queue) reaches a certain value. Some 

algorithms fill up the queue completely or make it overflow and then start 

dropping, and some verify on a threshold level. All of them choose an appropriate 

packet to drop but each of them do it in their own different way. Generally there 

are two major factors concerning these traffic managers; 

 

• When decide to drop the packets in respect to the instantaneous 

size of the queue 

• Which packets are chosen to drop in respect to the stored packets 

in the queue 

 

Below is a list of very commonly used congestion avoidance mechanisms 

in high speed gateways 
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 1 – Drop Tail 
 2 – Random Drop 
 3 – ERD (Early Random Drop)  
 4 – PPD (Partial Packet Discard) 
 5 – EPD (Early Packet Discard) 
 6 – IP Source Quench 
 7 – DEC bit 

8 – RED (Random Early Detection) 
 …  and more . . . 
 
 
 

In the following section we briefly review and compare these mechanisms. 

 

3.2.1 – Drop Tail 

This is one of the simplest mechanisms with fewer throughputs. It is a 

FIFO queuing mechanism that starts to drop the packets from the tail of the 

queue once the queue is full [6]. It means, after recognizing the condition to drop 

a packet is satisfied, the last arrived packet at the gateway will be dropped. 

 

 
 
 
Figure 3.1 –Drop Tail overflowing and drop order.  

 

 A major problem of Drop Tail is global synchronization. This is because 

dropping packets from several VCs (Virtual Channels) forces these sources to 

Overflow 

QueueLast arrived packet Departures
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resend them again later, and then consequently resending them which may 

cause congestion again at the gateway and that’s why the global synchronization 

appears by such mechanisms. Figure 3.1 simply illustrates proceeding of the Tail 

drop congestion control gateways. 

 

3.2.2 – Random Drop 

Another congestion control called Random Drop, which gives feedback to 

the sources by dropping packets at the gateway, based on statistical situation of 

the gateway. 

 

  
 
 
Figure 3.2 – Random Drop, overflowing and drop order. 

 

Unlike the Drop Tail mechanism, instead of dropping the last arrived packet, in 

Random Drop a packet is selected randomly from all incoming sources arrived at 

the gateway to be dropped. Consequently such packets belong to those 

particular users with a probability proportional to the average rate of data 

transmission [18]. Therefore, dropping packets occurs on such users whose 

traffic generation is much more than those generating less traffic. In other word, 

Overflow 

QueueLast arrived packet Departures

Randomly drop 
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the users who generate less amount of traffic, experience smaller amount of 

packet loss. As mentioned in the reference [17], Random Drop which was 

originally proposed by Van Jacobson, did not improve the congestion recovery 

behavior of the gateways. And the performance was surprisingly worse than the 

other corresponding mechanisms in a single gateway bottleneck. Figure 3.2 

simply illustrates the behavior of the Random Drop gateway. 

 

3.2.3 – ERD (Early Random Drop) 

This mechanism of congestion avoidance has been first investigated 

briefly by Hashem in [5]. In this mechanism the packets are dropped at the 

gateway with a fixed drop probability once the size of the queue exceeds a 

certain threshold level. Many active researchers in this regard believe that both 

drop level and drop probability in ERD congestion avoidance should be adjusted 

dynamically according to the network traffic of the gateway [6].  

 

 
 
Figure 3.3 – Early Random Drop, Threshold level and fixed drop probability (P) 

and drop order. 
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Hashem [5] found out with Drop Tail gateways that since packets are 

dropped on queue overflow, it results decreasing the windows of these 

connections at the same time. And consequently results a loss of throughput at 

the gateway. Therefore, Early Random Drop gateways have better chance and 

are more recommended versus Drop Tail because of their broader view of traffic 

distribution. However it suffers from some disadvantages. For example, it has not 

been well successful in controlling the misbehaving of the users in the way they 

send data. Figure 3.3 simply illustrates the proceeding of Early Random Drop 

gateway. 

 

3.2.4 – PPD (Partial Packet Discard) and EPD (Early Packet Discard) 

These congestion avoidance mechanisms are related to Cell-discard in 

coexisting of ATM (Asynchronous Transfer Mode) and TCP/IP. ATM 

interoperates with TCP/IP because of its popularity in a great area of 

applications. Such legacy applications operating under ATM that must support 

the TCP/IP protocol, are based upon TCP/IP/ATM platform [7]. ATM drives the 

packets after they are decomposed into small fixed size segments named CELL. 

Normally the size of a Cell running over the ATM is 53 Bytes which is consisted 

of a 5-Byte header and a 48-Byte of data [3]. Then, if TCP/IP is run over ATM, all 

TCP/IP packets are segmented and decomposed to such fixed size Cells. And as 

stated in [7] if an ATM switch drops a cell from an arriving packet because of 

overflowing the buffer, the rest of the cells belonging to the same packet whose 

cell has been discarded will still transmit. Therefore after all these cells are 
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arrived at the destination, the destination will fail while reassembling such packet 

that has lost a cell belonged to. According to the TCP mechanism if a packet is 

not received properly, it will be reported by a feedback and will be retransmitted. 

Thus if a packet is run over such TCP/IP/ATM whose one cell is lost, it will waste 

the whole remaining time of transmitting such useless packet resulting a loss of 

throughput. Sally Floyd and Romanow were those who observed this 

phenomenon in 1995 and then they proposed the two mechanisms named PPD 

(Partial Packet Discard) and EPD (Early Packet Discard) to enhance the 

efficiency of the TCP over ATM [9]. 

According to these congestion avoidance mechanisms, first in PPD 

(Partial Packet Discard), when a cell is dropped from a switch buffer, all cells 

except the last one in the arriving packet are discarded even if there is enough 

room to accommodate them in the buffer. The destination uses the last cell to get 

the information regarding the boundaries of the discarded packet. Therefore PPD 

could eliminate the time wasting in network concerned the damaged packet; 

however some parts of the damaged packet may have already been reached the 

destination before dropping the discarded cell. 

And second about the EPD (Early Packet Discard), if the instantaneous 

size of the queue reaches a predefined threshold level, the next arriving cells will 

be discarded and the entire packet will be dropped. On the other hand, in case of 

overflowing the buffer while receiving the cells belonged to a packet, all 

subsequent cells of the same packet will be discarded as well as in the PPD 

described before. 
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A comparison between PPD and EPD has shown that when the packet 

length is short, the performance of the PPD is better than the EPD, and when the 

packet length is long, the performance of the EPD which uses a predefined and 

optimized threshold level is better than PPD [7]. 

 

3.2.5 – IP Source Quench 

There are some different methods of congestion control mechanisms that 

are being used at the high speed gateways in the Internet that send some kind of 

a feedback to the senders reporting the congestion at the gateway. This is a 

congestion recovery policy. IP Source Quench is one of these methods that use 

such policy as described completely in [18] (RFC 1254). According to its 

definition, whenever a gateway responds to congestion by dropping an arrived 

packet, it sends a message to its source to notify the existing congestion at the 

gateway. This message in IP Source Quench is called ICMP (Internet Control 

Message Protocol). But basically the packets are not supposed to be dropped 

during the normal operation of the network gateway. Thereby it is very desirable 

to control the Sources before they overload the gateways. 

A question is when to send an ICMP message. RFC 1254 says that 

according to the experiments based on a reasonable engineering decision, 

Source Quench should be applied when about half of the queue (buffer space) is 

filled up. However, it could be arguable to try to find another threshold, but they 

have not found it necessary yet. 
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By the way, there are some other gateway implementations generating the 

message not on the first packet discard, but after few packet discards. However it 

is not recommended by the engineers as they consider it undesirable [18].  

Another question is what to do when an ICMP Source Quench is received. 

First, TCP or any other protocol will be informed of receiving such message. 

Then it demands the TCP implementations to reduce the amount of their data 

transmission rate toward the gateway. 

 

3.2.6 – DECbit Gateway 

DECbit is another method that uses a recovery policy by sending a 

feedback to the sender. But instead of the message in IP Source Quench, 

DECbit sends just a 1-bit feedback as a congestion indication bit which has 

already been allocated in the header of the packet used to inform the sender of 

existing congestion at the gateway. The congestion indication bit will be enabled 

whenever the average queue length reaches normally 1 or greater than 1 after 

every arriving packet, and average queue length is calculated during last “busy 

+idle” period plus the current “busy” period. (The busy period means the gateway 

is transmitting the packets and the idle means no transmission is in process) [6]. 

In order to control the congestion in DECbit, if the indication feedback bit 

is enabled in at least 50% of the packets, then it means notifying the congestion. 

And if it decreases the sending window by 87.5% otherwise it is increased 

linearly by one packet [6], [8]. 
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As seen in this congestion control mechanism, the destination has to echo 

the congestion indication bit to the source, and it means that there must be the 

constraint of existing such special bit in the header of every arriving packet, and 

this could be a disadvantage versus those mechanisms not requiring such 

constraint. 

 

3.2.7 – RED (Random Early Detection) 

Random Early Detection (RED) is another congestion control mechanism 

proposed by Sally Floyd and Van Jacobson in early 1990s [6] that the major 

discussion in this work is focused on. Although it has been proposed many years 

ago, nevertheless because of its efficiency and considerable throughput in 

congestion avoidance at the gateways, it is still being used, however it has been 

modified several times till now. 

The RED mechanism is introduced in this section briefly and we will 

compare it to other mechanisms mentioned earlier in this chapter, by showing its 

advantages over the other mechanisms. Then it will be explained in more details 

in next chapter, since it is the algorithm that we choose to implement. 

The RED Gateways control the congestion by computing the average 

queue size in the networks based on packet switching. It computes the average 

queue size after every arriving packet at the gateway and detects the congestion 

and notifies the sources by dropping arrived packets. The congestion detection in 

RED mechanism is based on two threshold levels on average queue size. These 

thresholds in RED are named as “Minimum Threshold Level” and “Maximum 
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Threshold Level”. After every arriving packet, the RED gateway computes the 

average queue size. Once the computed average queue size reaches the 

Minimum Threshold Level, then the arrived packet may be dropped based on a 

certain probability which depends on the average queue size [6]. If the average 

queue size is reached or is greater than the Maximum Threshold Level, the 

arrived packet will be dropped. Therefore there are three areas in computed 

average queue size separated by these two thresholds as shown in figure-3.4. 

 

 
 
Figure 3.4 – Illustrating the RED buffering mechanism. 
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Figure 3.4 illustrates three different situations regarding packet drop decision. As 

long as the average queue size is below the minimum threshold level, no packet 

is dropped. If average queue size is above maximum threshold level, every 

arrived packet is dropped. And the major part of these areas pinpointed to, in the 

RED, is while the average queue size is between minimum threshold and 

maximum threshold levels. In this case average queue size is computed after 

every arriving packet and then a probability “Pb” is calculated based on average 

queue size and these two threshold levels, and finally it is compared to a 

generated random number to decide if the arrived packet should be dropped or 

not [6]. We will see that using the random number in drop decision in RED is an 

important factor in drop decision. 

Next section describes how the RED mechanism is chosen as a better 

algorithm to implement in this work. 

 

3.2.8 – Choosing the congestion avoidance mechanism to implement. 

All congestion Avoidance mechanisms mentioned in this chapter try to 

prevent the congestion in high speed gateways in their own different ways. Most 

of them use large queue sizes to accommodate transient congestion while they 

can not keep it at a low level after any transient congestion. 

In order to guaranty that all arriving packets could be accommodated while 

in transient congestion in high speed networks, it demands to provide large 

buffers for the queues at the gateways, but on the other hand, large queue sizes 

make large delay bandwidth problem which is undesirable for high speed 
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networks. However, it is very important to have small instantaneous queue sizes 

to eliminate the large delay bandwidth problem at high speed gateways. But any 

way it is always required to guaranty the incipient or transient congestions. Thus, 

by increasing the high speed networks, it is strongly necessary to have such 

congestion mechanisms keeping high throughput with an average queue size as 

lower as possible. 

To find a better mechanism between those mechanisms explained earlier, 

it is possible to compare their major advantages and/or disadvantages. For 

example, for the first one, as Hashem mentions in [5], Drop Tail gateways have 

fewer throughputs and are not successful at the gateways. And also as shown in 

[6], the Early Random Drop (ERD) gateways (described earlier in section 3.2.3), 

have a broader view of traffic distribution than the Drop Tail or Random Drop 

(described in section 3.2.2), because of reducing the global synchronization. 

Since packet dropping in Early Random Drop (ERD) happens by a fixed 

probability when the queue is exceeded a certain threshold, therefore ERD could 

have better chance to eliminate the global synchronization than the Random 

Drop. But even for the ERD gateways, Zhang has used this mechanism in 

simulations [6], [12]. In these simulations, when the queue exceeds the half of 

the queue size, then the gateway drops the arrived packets with the probability of 

0.02. Then Zhang has shown that the ERD gateways were not successful in 

controlling the congestion at the gateways, because of unavoidable some 

misbehaving users. 
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Considering the PPD (Partial Packet Discard) and EPD (Early Packet 

Discard) mechanisms that have control on the cell portions of the arriving 

packets (described in section 3.2.4), each of them suffers from a lack of proper 

decision regarding the size of the arriving packets, because the PPD gateways 

suffer from lower performance on arriving larger packets and the EPD gateways 

from smaller packets. 

And also about the IP Source Quench and DECbit mechanisms discussed 

in sections 3.2.5 and 3.2.6, both of them use a message to send the source as a 

feedback notifying the situation, regarding the existing of congestion at the 

gateway. Although there is a difference between them concerned to the fixed 

threshold level which in IP source Quench is compared to the instantaneous 

queue size and in DECbit, it is compare to average queue size. 

IP Source quench sends the feedback to the source before the queue 

reaches a predefined certain level forcing the sender to decrease its window and 

before packets are dropped. First considerable point in this view is that both of 

these mechanisms are able to respond only to those sources whose arrived 

packets contain appropriate place or at least one bit as congestion indication bit 

to support the feedback message. On the other hand, the IP Source Quench 

does not respect to critical situations as well, such as incipient or transient 

congestion in bursty traffic at the gateway that always happens repeatedly in high 

speed networks, because it never let the queue to exceed much more than the 

fixed threshold level. However the DECbit computes the average queue size to 

compare with the threshold level and it is such an advantage over the other 
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mechanisms that don’t do, to accommodate the transient congestion in the 

queue. But since it uses the last (busy + idle) period plus the current busy period 

to compute the average queue size, the queue size in this way could be some 

times averaged over a short period of time [6]. While in high speed networks with 

large buffers at the gateway, it is desirable to consider an appropriate portion of 

time constant for computing the average queue size which is done in RED 

gateways. However we will see later in our RED implementation, we present a 

new method to compute the average queue size which is faster and easier to 

implement as part of contribution in this thesis to improve the efficiency of the 

RED. And there is another difference between RED and DECbit regarding the 

way they use to send the feedback to the sources. In DECbit there is no relation 

between the way it recognizes the existing congestion at the gateway and the 

way it chooses the sources to send them a feed back message. Once a packet 

arrives at the gateway whose computed average queue size is too high, then its 

congestion indication bit in the header is enabled while may not be sent from one 

of those sources that brought the bursty traffic. This problem has been alleviated 

in RED by using the randomization method in drop decision. We will find enough 

explanation regarding the RED mechanism in next chapter. The randomized 

results in RED drops the packets randomly from different sources, consequently 

reduces the global synchronization which happens numerously in TCP/IP 

protocols. 

Finally in this investigation on discussed congestion avoidance 

mechanisms, the RED mechanism is recognized as a more efficient method 
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showing a better performance to implement. Because it avoids generating global 

synchronization better than the other mechanisms by accommodating the 

transient congestion as well and keeping control on the average queue size to 

decrease bandwidth delay. 

Based on these results the RED gateway is the chosen mechanism to 

implement in this work. It is introduced more clearly in next chapter which gives 

us a better conceptual aspect of it. 

Besides, we will see how some modifications have been proposed by 

other authors concerning its improvement and what kind of the challenges its 

implementation has. 

Furthermore, the proposed contributions introduced and explained later in 

this thesis regarding how to improve its performance especially in terms of 

achieving more adequate response in high speed networks that has always been 

a major problem for RED high speed gateways to implement, are interpolated in 

the implementation as well. 
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4.1 – Introduction 

As seen in the previous chapters, one of the major problem for all the 

algorithms is the global synchronization at the gateways which is due to 

insufficient space in the buffer (queue) to accommodate the incipient congestion 

or transient congestion. Increasing the size of the queue will not solve the 

problem, because this will require a long delay for transmitting all packets in the 

queue. 

The solution adopted by the RED algorithm consists in calculating the 

average queue size based on a low pass filter. The average queue size follows 

the instantaneous queue size very slowly using a coefficient constant value 

which is named as weight of the queue (w). Therefore the incipient or transient 

congestion could come over and easily pass. Such a situation carrying the 

temporary congestion at the gateway causes to increase significantly the 

instantaneous size of the queue, but after accommodating and traversing such 

burstiness of arriving packets at the gateway, it enters to a normal situation that 

controls and keeps the average queue size at a low level to eliminate the big 

delay bandwidth problem at the gateway. 

On the other hand the RED mechanism drops the packets based on the 

average queue size and a random number while the average queue size reaches 

an area between two fixed thresholds level both chosen at very low levels of 

average queue size in order to control and keep it around this area. This is 

constitutes a property of a RED gateway. 
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The use of a Random Number by the RED algorithm distributes the drop 

decision between all the sources. Since the baud rate of the sources is different, 

the high bandwidth source will not be penalized too much. 

In the following section we will present the RED algorithm in details, and 

we will discuss the challenges of its hardware implementation. 

 

4.2 –RED algorithm 

In the RED algorithm, the average queue size has the main role in the 

calculations of the drop decision. The average queue size is calculated of every 

arrived packet. Then the calculated average queue size is compared to two 

threshold levels (Minimum Threshold Level and Maximum Threshold Level), as 

illustrated in figure 4.1 (Min_th, Max_th). 

 

 
 
Figure 4.1 – Illustrating detailed RED buffering mechanism. 
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If the average queue size (Avg) is below the minimum threshold level, no 

packet is dropped. If the average queue size is over the maximum threshold 

level, every arrived packet is dropped. And when the Avg is between the 

minimum threshold and maximum threshold levels which is the special case of 

the RED algorithm, the drop decision is based on the main calculations in the 

algorithm explained in section 4.3. 

Let us note that goal of the RED algorithm is to keep the average queue 

size at a very low level in order to avoid global synchronization by dropping 

packets fairly to keep the average between minimum and maximum threshold 

levels. Now let’s see how the average queue size is computed in RED. 

 

4.2.1 – Average calculation in RED 

After every arrived packet at the gateway, the new average queue size is 

computed through a low pass filter as shown the following formula [6]. 

 

New_Avg ⇐  (1-wq) ×  Old_Avg +  wq ×  q   (4.1) 

 

It could be written and used in this form too; 

 

New_Avg ⇐  Old_Avg + wq× (q – Old_Avg) 

 

Where q is the instantaneous size of the stored packets in the buffer until the last 

arrived packet and the wq is a fixed constant value which represents the weight 

of the queue which is the main parameter of the rate in low pass filter. According 
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to this formula the average queue size follows the queue size very slowly if wq is 

chosen a small constant value. Several different cases are discussed to find a 

suitable range for choosing the constant wq. It has been measured in a range of 

a minimum of “0.001” and maximum “0.0042” in the case where all the packets 

are of equal sizes of one k-byte at the gateway [6], in a moderate baud rate, not 

at a high speed gateway. However it couldn’t be considered as a real situation in 

current high speed gateways. RED algorithm is very efficient mechanism, but it 

has not published complete solution in a real high speed gateway involving real 

arrival packets in different sizes and gap-times. In fact, it is very proportional to 

the size of the arrival packets and the baud rate in high speed gateways. 

Because both could rise up the queue size very quickly while it must be 

controlled before the queue overflows. Figure-4.2 shows a simulation [6] by 

considering the arriving packets in equal sizes of one K-Byte. 

 

 

 
 

Figure 4.2 – A one second simulation of RED receiving equal packet sizes of 1 K-

Byte each, the solid line is queue size and the dashed line is average queue size both 

in terms of number of packets. 
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As shown for “one second” period of time in this figure, the minimum 

threshold has been chosen as 5 packets and the maximum threshold as 15 

packets. The authors have distinguished the empty queue to compute the new 

average queue size, from none empty queue. Because, when there is no packet 

arrival for a long time while the stored packets in the queue are being sent from 

egress port, this could empty the queue, but since there has been no packet 

arrival, therefore no new average queue size has been calculated since last 

packet arrival. Hence they have proposed a modification to calculate it in such 

cases. In case of a packet arrives at an empty queue (i.e. q=0), then the form of 

the equation (4.1) turns to the below formula: 

 
New_Avg ⇐  (1-wq) ×  Old_Avg     (4.2) 

 
They modified it in [6] by calculating the new average queue size in this 

case through the equation (4.3). 

 
New_Avg ⇐  (1-wq) m  ×  Old_Avg     (4.3) 

m = Idle_time / S 

 
Where “Idle_time” is the period of the time that the gateway has not been 

receiving any new packet and “S” is a typical required transmission time for a 

small packet. Obviously it is an approximation that calculates almost the number 

of the packets that could be sent from the gateway in this time period. Therefore 

their modified average queue size in equation (4.3) tries to compensate for the 

error in the calculation after an idle time period. Larger Idle_time gives larger m 
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and larger m gives lower average queue size after Idle_time. In the next chapter 

we will present a new method to deal with this problem significantly in our 

implementation of the RED algorithm. This represents a contribution on the way 

the calculation is done since it’s more effective and more reliable. 

 

4.2.2 – Drop decision 

The average queue size is compared to the minimum and maximum 

threshold levels for the drop decision with respect to three regions described 

earlier as follows: 

 
1- (Avg ∧  Green)  Keep arrived packet 

2- (Avg ∧  Yellow)  Drop by Probability 

3- (Avg ∧  Red)  Drop arrived packet 

where: 

Green  = Avg < Min_ th  

Yellow  = Min_ th ≤  Avg < Max_ th 

Red  = Avg ≥  Max_ th 

 

4.3 – Describing the drop decision in RED algorithm 

RED algorithm tries to drop some arrived packets fairly based on the 

average queue size, number of previously accommodated packets in the queue 

and also randomization method to distribute the packet droppings between all 
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sources sending packet to the gateway. And this is done by considering the 

following three parameters: 

 
1 – A probability factor “Pb”, a function of the average queue size which is 

mathematically a distribution function of uniform distribution over (Min_ th 

and Max_ th). Both of these levels are the boundaries for the average 

queue size to be controlled in.  

 In case of the average queue size between minimum threshold and 

maximum threshold levels, Pb is defined as below: 

If:  

 Min_ th  ≤   Avg < Max_ th 

Then if Pth is defined as: 

 Pth = (Avg - Min_th) / (Max_th - Min_th) 

Thereby: 

 Pth ∈ [0, 1] 

Then Pb is defined as: 

 Pb = Max_P ×  Pth      (4.4) 

Where: 

 Pth : Distribution function over [0, (Max_th - Min_th)] 

 Max_p : Maximum value for Probability Pb 

Then: 

 Pb = (Max_p) . (Avg - Min_th) / (Max_th - Min_th) (4.5) 
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2 – R which is a random number in [0, 1], is the second parameter used in 

RED calculation for drop decision. 

 R∈ [0, 1] 

 
3 – C which is third parameter represents a counter of the number of 

arrived and enqueued packets since last drop. It determines how many packets 

have been accommodated by that time. As we will see later in the algorithm, if 

the counter (C) is big, then it increases the probability of drop decision as 

expected to control the average queue size. 

Now by considering the RED algorithm [6] which is given in figure-4.3 we 

will see how these parameters are used to determine if a packet should be 

dropped or not. The procedure is also shown simply through the flow chart in 

figure-4.4. All steps of the algorithm from line 4 to 11 in figure-4.3 are the same 

as explained before except for lines “2” and “3” which represent an initialization 

step. In line 12 the RED looks for the average queue size if it is in Yellow area 

(Min_ th ≤  Avg < Max_ th). There is Counter “C” in the calculation which is 

initialized to “-1”. C is incremented by one after every arrived packet in this area 

(line 13). And also C becomes zero once a packet is dropped in this area (lines 

17 and 25 in figure-4.3). Thus, C represents the number of accommodated 

packets arrived at the gateway since last drop or first entrance to this area. 

After the first packet is arrived in yellow area, “C” becomes zero. Line 15 

calculates probability “Pb” for every arrived packet in this area. The condition “C 

> 0” in line 17 never lets to drop the first arrived packet in this area. Then, the 

value of C becomes greater than zero for the subsequent arrived packets. In this 
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case, the upcoming packet will be dropped depending on the probability Pb and 

on the random number “R”. 

 

 
1. Initialization: 
2.  Avg  ⇐  0 
3.  C     ⇐  -1 
4. for each packet arrival calculate the new average queue size “avg” : 
5.  
6. if     the queue is nonempty  then 
7.  Avg   ⇐  Avg + w .( q – Avg) 
8. else 
9.  m  ⇐     Idle_time / S 
10.  Avg ⇐    Avg. (1 - w) m  
11. end if 
12. if  Min_th ≤  Avg  < Max_th     then  
13.  increment C 
14.   using new “Avg“ and “C “ calculate probability ”Pb”: 
15.  Pb⇐ (Max_p) . [(Avg – Min_th) / (Max_th – Min_th)] 
16.  
17.  If  C >0  and  C ≥  Approx[R/Pb]  then 
18.   Drop the arrived packet 
19.   C ⇐  0 
20.  end if 
21.  
22.  if  C=0  then  
23.   Random number [R]  ⇐   Random[0,1] 
24.  end if 
25.  
26. else if  Avg ≥   Max_th   then 
27.  Drop the arrived packet 
28.  C ⇐   0 
29. else   C ⇐  -1 
30.  
31. end if 
32.  
33. when queue becomes empty then 
34.  start counting the Idle_time 
35.  end 

 
 
 
Figure 4.3 – Effective RED algorithm to implement. 
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The second condition in line-17 is the main condition for the drop decision 

which is verified after every arriving packet. This is a comparison between C and 

the result of R divide by Pb. The random number “R” in this comparison in the 

RED algorithm randomizes the final results and is used to distribute the drop 

decisions fairly between all arrived packets from all sources. R gets a new 

random number, once a packet is dropped in this area (line 23). And the Pb 

which is calculated in equation (4.4) is directly proportional to the Avg in this 

area. So in the comparison in line 17 it implies that if Pb is large (Avg is large), 

then probability of drop high and could happen by less number of accommodated 

packets (stored in C). Otherwise it demands to accommodate larger number of 

packets (larger C). 

The rest of the algorithm is when the average queue size is in Red area 

(Avg ≥  Max_th) which drops every arrived packet and resets the C to zero. And 

finally at the end of the algorithm, while in Green area (Avg < Max_th), the RED 

does nothing except reinitializing the counter C to “-1”. 

Not only all simulations presented in [6] by Floyd and Jacobson are based 

on the number of packets (instead of number of bytes), but also the arriving 

packets are in equal size of one K-Byte. But in the real high speed networks at 

the gateways it is different. A real gateway receives packets in different sizes. On 

the other hand, as notified in RED paper, it is optional to do all processes based 

on the number of bytes instead. As we will see in chapter five, the 

implementation of the RED algorithm in this thesis is designed and implemented 

to manage the real traffic by handling different packet sizes arriving at different 
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times. This means that our implementation accommodates random time-gaps 

between packet arrivals. 

 

 
 
 
Figure 4.4 – Illustrating the flow chart of the RED mechanism. 
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The Min_th and Max_th must be chosen such that: 

 

1. Min_th: must be large enough to accommodate bursty traffic 

2. Max_th: must not lead to long average delay 

3. rule of thumb: set Max_th at least twice Min_th 

 

And for the constant “Max_p” in equation (4.4), it’s set to “1/50”. This value 

has been found by simulations [6]. However, it could be chosen depending on 

the traffic conditions and the gateway requirements. Depending on the queue 

size and the threshold levels and also the weight of the queue (w), an optimized 

value could be chosen for Max_p especially since the implementation of the RED 

algorithm is much approximated. Therefore it is required to choose it as a 

negative power of two [6]. Because if it is supposed to work in high speed 

gateways, it takes long time to calculate any complex arithmetic calculation, but if 

the calculation is based on powers of two, all division and multiplications could be 

done simply by using shift and add operations. 

 

Finally here we can recall some benefits and principals of RED 

mechanism: 

 
• Provides both congestion recovery and congestion avoidance 

• Avoids global synchronization against bursty traffic 

• Maintains an upper bound of average queue size 
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• Works with TCP and non-TCP transport-layer protocol 

• Monitors the average queue size 

• Uses randomization method to distribute the congestion notification 

• Accommodates both transient and longer-lived congestion 

 

In the next chapter we will present a complete description of the 

implement of the RED algorithm using FPGAs, and also introducing new 

modifications to improve its efficiency. 
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5.1 – Introduction 

In this chapter, we present our new modified RED Algorithm which has 

been implemented. These modifications are necessary in order to get an efficient 

hardware implementation. To ensure that our enhancement preserves the 

functionality of the original RED, we developed a behavioral model for both the 

original RED and the modified one. Then we compared those using VHDL 

simulations. 

Our design targets the traffic speed of 10 Gbps. In other word, the goal of 

the algorithm is to compute the final drop decision for every arrived packet and 

issue the output result in the appropriate time. That means, before the actual 

packet is completely received, the drop decision must have been made and 

issued. This minimum time corresponds to the worst case of the reception of 

small size packet.  

Thus the minimum available time for our design is the time that the 

smallest packet requires to be stored in the queue, starting from the edge of the 

packet arrival input signal. The minimum available time determines the timings of 

the design and is discussed in the next section. Figure 5.1 illustrates how 

incoming packets are processed through our traffic manager, dropped or stored 

in the FIFO queue and then sent to the egress port. Packets may arrive from 

several sources at different speeds, and then after serializing them in the 

interface they are forwarded to the FIFO queue and the traffic manager. The 

traffic manager calculates the average queue size on every change in the queue 

whether a new packet is arrived or a packet is sent. As we will see in our 
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implementation, calculating the average queue size on every change in the 

queue in this design is an improvement upon the regular RED algorithm that 

calculates the average queue size only on every packet received. 

 

 
 

Figure 5.1 – Arrival packets are buffered in the Interface and then are serialized 

and sent to Traffic Manager in high speed rate, and then the traffic manager 

decides to drop or keep each packet in FIFO queue. 

 

Then depending on the current situation, the traffic manager decides to 

drop or store the currently arrived packet in the queue. Current decision is 

determined by calculating the probability factor (Pb) which is a function of the 

average queue size (Avg), a random number (R), size of the arrived packet 

(Packet-Size) and some other parameters which will explain completely in the 

next sections.  All these calculations are based on several arithmetic operations 

such as multiplication, division and powers. In order to afford these calculations 
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in a high speed gateway it has to be done as fast as possible. That’s a major 

problem of the RED algorithm if used in high speed gateways, as pointed by 

Floyd in [6]. Therefore in order to decrease the calculation time, approximation 

methods are used in RED implementation as well as in our design. Our design is 

targeting a Virtex-II Pro device from Xilinx family. XC2VP30 device from this 

family has shown better performance and throughput especially in terms of 

routing delay as well as less logic delay in synthesis reports. However it could be 

downloaded in Virtex_4 family devices and consequently show much more 

throughput in terms of speed. The Virtex-4 is the new generation of Xilinx 

products released in 2004. Our design has been downloaded into a Xilinx Virtex-

II Pro FPGA and its major features are tested. The timing reports are given later 

in this chapter, and demonstrate that our implementation is able to operate up to 

10 Gbps properly. 

 

5.2 – New features 

In order to implement the RED algorithm as shown in Fig. 4.3 there are 

several operations that have to be executed for every packet arrival. 

There are several other new features in our new modified algorithm which 

make significant differences with the original RED algorithm. In our case, we 

consider the number of byte rather than the number of packet to compute the 

drop decision. Since, the packets are of different sizes, this allow having more 

accurate calculations and hence more reliable drop decisions. Considering 

different packet sizes in the algorithm would affect directly the calculation of Pb in 
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(4.5). Because, in case of using the byte option and expecting the packets in 

different sizes, the algorithm would be modified to drop the packets with a 

probability proportional to the packet sizes [6]. That means if the arrived packet is 

too small, it shouldn’t be dropped with the same probability as much as for the 

largest arrival packet: 

 
New_Pb ⇐Old_Pb . (Pkt_Ratio) 

Where: 

Pkt_Ratio = Packet_Size / Maximum_Packet_Size 

Then: 

Pb = (Max_p) . [(Avg - Min_th) / (Max_th - Min_th)] . (Pkt_Ratio) (5.1) 

 
Since the design is targeting the FPGAs, implementing such high speed 

algorithm encounters with more complexity in terms of speed. However this 

implementation has afforded this challenge and has responded properly in 10 

Gbps. In this regard special properties of the FPGAs are employed in the 

implementation, like internal high speed input/output buffers, and some special 

internal components. Digital Clock Managers (DCMs) as a property of the FPGAs 

and provide advanced clocking capabilities to FPGA applications. DCMs can 

multiply or divide the incoming clock frequency in order to synthesize a new clock 

frequency. DCMs also eliminate clock skew which could improve the system 

performance. Phase shifting is also another application of the DCMs, so it can 

delay the incoming clock by a fraction of the clock period [13]. Thereby a global 

low-skew clock is distributed in the FPGA. Delay Locked Loop (DLL) as a part of 
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the DCM exploits a very low-skew clock from incoming clock and tries to shift the 

internal low-skew clock until reaches the corresponding edge of the incoming 

clock. Then it locks the low-skew clock in very few clock cycles. Consequently, 

DLLs (as parts of DCM) solve a variety of common clocking issues, especially in 

high performance and high speed implementations as well as in our design. 

Figure 5.2 summarizes clock synthesis options of a primitive DCM of Xilinx 

series. Using the CLK2X of the DCM in our implementation not only has 

improved the clock-skew, but also allowed us to provide a lower frequency for the 

external clock, and the duty cycle is also adjusted as well. Also we designed a 

verification environment to be downloaded in the same FPGA together with the 

design, in order to be able to test our design at high speed. Since the test 

equipments are very expensive for this kind of application. Our test environment, 

allow us to test the major features of our algorithm using the virtual packets 

which generates random packets with random arrival time. 

 

 

 
Figure 5.2 – Clock Synthesis Options in a DCM primitive. 
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It emulates randomly the sending of the packets, since our algorithm takes 

this information into account. The environment could not be configured by a ratio 

of “received packet / sent packet” in order to emulate real traffic in a given 

gateway. 

 

5.3 – New modified algorithm and proposed contributions 

In this section we discuss our major contributions for the RED algorithm. 

 

5.3.1 – Impact of events for calculating the average queue size 

The foremost open question on RED gateways involves determining the 

optimum average queue size for maximizing throughput and minimizing delay for 

various network configurations. The original RED algorithm showed that the new 

average queue size is calculated on every packet arrival at the gateway. This 

could cause some error in this calculation in case of no packet arrival for some 

periods of time, while stored packets in the queue are being sent through egress 

port. Because by sending the packets, the size of the queue is actually changed 

and consequently the corresponding average queue size should be changed too. 

Although by the next received packet at any later time the average queue size is 

calculated based on the new instantaneous queue size at that time, but the result 

is still different than the real calculation in our low pass filter algorithm. Our new 

algorithm calculates the average queue size on both packet arrival and packet 

sent, however it increases the complexity for the hardware implementation 

considering the speed constraints. 
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In case of both the packet arrival and the packet sent happen at the same 

time, the instantaneous queue size is affected because of both of them and 

stores the real current queue size in a register. In such condition the average 

queue size must not be calculated twice and once is enough. Our implementation 

by detecting such condition calculates the average queue size only once. 

In the following, we present several simulation results in a graphical format 

as shown in figures 5.3 to 5.10. They compare the original RED algorithm 

(calculating the average queue size only on every packet arrival), with our 

algorithm (which calculates the new average queue size on either packet arrival 

or packet sent). All source codes in this thesis are written in VHDL and simulated 

under ALDEC HDL Model Simulator. 

These simulations are executed in different conditions by changing the 

ratio of the packets sent to the incoming packets, as well as changing the weight 

of the queue (w). There is an Over Drop area percentage obtained from the 

simulation for each case specified in each graph. As every similar pair of the 

simulations is done under the same conditions, our new algorithm demonstrates 

less percentage of packet drops. Here are the constants used in these 

simulations; 

 

 
Min_th = 8 Kbytes 

Max_th = 24 Kbytes 

Max_p = 1/32 
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Figure 5.3 – Simulation result of Original RED algorithm with “w = 0.004” and ratio 
of “Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 36.39% in terms 
of percentage of the time). 
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Figure 5.4 – Simulation result of modified RED algorithm calculating the average 
queue size on both packet arrival and packet sent, with “w = 0.004” and ratio of 
“Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 33.80% in terms of 
percentage of the time). 
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Figure 5.5 – Simulation result of Original RED algorithm with “w = 0.002” and ratio 
of “Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 67.49% in terms 
of percentage of the time). 
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Figure 5.6 – Simulation result of modified RED algorithm calculating the average 
queue size on both packet arrival and packet sent, with “w = 0.002” and ratio of 
“Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 66.62% in terms of 
percentage of the time). 
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Figure 5.7 – Simulation result of Original RED algorithm with “w = 0.002” and ratio 
of “Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 34.03% in terms 
of percentage of the time). 
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Figure 5.8 – Simulation result of modified RED algorithm calculating the average 
queue size on both packet arrival and packet sent, with “w = 0.002” and ratio of 
“Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 34.04% in terms of 
percentage of the time). 
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Figure 5.9 – Simulation result of Original RED algorithm with “w = 0.004” and ratio 
of “Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 63.58% in terms 
of percentage of the time). 
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Figure 5.10 – Simulation result of modified RED algorithm calculating the average 
queue size on both packet arrival and packet sent, with “w = 0.004” and ratio of 
“Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 60.35% in terms of 
percentage of the time). 
 
 

A summary of these results are presented in Table-5.1. 
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Table 5.1 – This table gives the abstract results of the simulations on both original 
RED algorithm and our modified algorithm which calculates the average queue size 
on every arrival packet as well as on every sent packet, showing the improvement on 
Drop area. 

 

Conditions 
Drop % 

Original RED 
Avg affected on: 

Only Arrival 

Drop % 
Modified RED 

Avg affected on: 
Arrival & Sent 

Improvement of 
Drop % 

 
Sent/Arrive = 1/8 

W=0.004 
 

63.58 60.35 + 3.23 

 
Sent/Arrive = 1/8 

W=0.002 
 

67.49 66.62 + 0.87 

 
Sent/Arrive = 1/4 

W=0.002 
 

34.03 34.04 - 0.01 

 
Sent/Arrive = 1/4 

W=0.004 
 

36.39 33.80 + 2.59 

 

5.3.2 –SODA method to resolve the empty queue problem in RED 

We are focusing on cases when there is congestion and it happens 

whenever the flow of incoming packets is more than outgoing packets. And we 

are interested in dropping as few packets as possible in congestion periods. 

Especially, it is much more important when the congestion is very big. So, our 

investigations are based on where the ratio of the packets sent to the received 

packets is small (less than “1”). 

We proposed the Stepped Over Drop Avoidance (SODA) method in this 

thesis which is a modified version of Low Pass Filter/ Over Drop Avoidance 
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(LPF/ODA) mechanism given in [15]. The LPF/ODA discusses the compensation 

of the excessive packets drop after a long term congestion at the RED gateways. 

In the RED algorithm, the average queue size does not follow the instantaneous 

queue size as long as no packet arrives at the gateway. In other words, in such 

cases after long term congestion if no packet arrives at the gateway for a while, 

some queued packets in the buffer could have been sent meanwhile. And this 

causes to free up lots of spaces in the queue and make it ready to accommodate 

some new packets. On the other hand, since the RED algorithm calculates the 

average queue size only each time a packet arrives at the gateway, thus, the 

queue would have contained few packets or even have become almost empty. 

This is while the average queue size register, keeps a big wrong value since the 

last arrived packet after long term congestion, because the average queue size 

does not follow the instantaneous queue size on every sent packet. And 

consequently it does not let the buffer to accommodate new packets after a 

congestion term until the average queue size is decreased to below the 

maximum threshold level. In other words, the average queue size has been 

unnecessarily a large value for a while after long term congestion, causing to 

drop some packets excessively. 

RED gateways in case of no packet arrival do not resolve this problem 

unless the queue becomes empty (zero). Floyd and Jacobson’s method 

compensates or modifies some what the obtained error in the average queue 

size as the result of the empty queue problem in RED algorithm [6]. It is done by 

calculating the new average queue size through (4.3) described in section 4.2.1 
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when a packet arrives at the gateway with empty queue. In order to avoid 

excessive packets dropping in this regard, a proposed algorithm named 

“LPF/ODA” algorithm [15], has stated that how well the original RED algorithm 

has satisfied the quick response to the end of the long term congestion. It shows 

that the original LPF of the RED algorithm satisfies accommodating the short 

term congestion as well. But for quickly response to the end of the long term 

congestion in order to avoid dropping of excessive packets, it does not satisfy 

this requirement very well. Because; 

 

1- The Original RED attempts to modify the average queue size only after 

queue becomes zero. While there are many opportunities to 

compensate this error before the queue gets empty. 

2- The proposed formula to compensate the error is too big and complex 

to quickly calculate and respond especially for high speed networks. 

 

Bing and Mohammed in LPF/ODA [15] have proposed an algorithm to 

reduce the excessive packets dropping. They do that by halving the average 

queue size on every packet arrival after a long-term congestion, if the average 

queue size is above minimum threshold level (Min_th). They consider the end of 

the Long-term congestion if the instantaneous queue length being at a “low level” 

for a considerable period of time that average queue length is above minimum 

threshold level (Min_th). During this long-term congestion the average queue 

length is calculated by LPF of RED using (4.1), and after long-term congestion is 
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gone and the Avg is greater than Min_th, it will be halved. Figure 5.11 shows the 

pseudo code for LPF/ODA algorithm [15]. 

 

1. for each packet arrival: 
2.  if long term congestion then 
3.   Avg ⇐  (1-w) . Avg + w.q 
4.  else 
5.   if  Avg ≥  Min_th  then 
6.    Avg ⇐  0.5 Avg 
7.   else 
8.   Avg ⇐  (1-w) . Avg + w.q 
9.   end if 
10.  end if 
11.  end 

 
 

Figure 5.11 – Pseudo code for LPF/ODA algorithm. 

 

As stated in LPF/ODA, it waits for a considerable time period after long 

term congestion. It means that any way, while detecting the end of congestion, it 

does let the gateway to continue excessive packets dropping, and then it halves 

the Avg. This clearly implies that eliminating such wasting of this considerable 

time period, could achieve higher throughput by less excessive packet dropping. 

We have modified this algorithm by breaking down this period of time into several 

smaller steps instead. We called this method as Stepped Over Drop Avoidance 

(SODA). However, both LPF/ODA algorithm and our SODA algorithm, have less 

complexity in terms of calculating the average queue size after long term 

congestion, versus the complex formula in original RED algorithm. This algorithm 

tries to follow the average queue length so that if the instantaneous queue length 

is less than a predefined fraction of the average queue size, and if the Avg is 

above Min_th, then it decreases the Avg as this amount of fraction. Since the 
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implementation is using approximation, the fraction of Avg could be based on a 

negative power of “2” which simplifies the divide calculation by using a shift 

instruction instead. LPF/ODA halves the Avg on such events, thus, the fraction in 

LPF/ODA algorithm is (2-1), or one half (½) the Avg. But our SODA algorithm is 

flexible in choosing the number of the steps to break this long step down to 

smaller steps. Regarding the step resolution, number of steps in this algorithm 

could be “4”, “8” or “16” and etc., since these are negative powers of two. But we 

should note that, as the number of the steps gets larger and larger (i.e. makes 

very smaller steps), it will not necessarily affects much more on excessive 

packets dropping. Most of our SODA simulations are executed upon splitting this 

area to 8 steps, or using the fraction of (1/8 = 2-3) and it has responded 

appropriately well. Although, our new algorithm calculates the new average 

queue length on every packet, whether it is incoming or outgoing. Our proposed 

modified algorithm for avoiding excessive packets drop is shown in Figure – 5.12, 

where “Steps” is the number of steps chosen used for step resolution which is a 

power of two. In our simulations the step resolution is (1/8 = 2-3) or the number of 

states is “8”. 

 

1. for each   packet arrival   or   packet sent do: 
2.  if  (Avg > Min_th)   and   (q < (Avg – (Avg/Steps)))    then 
3.   Avg ⇐Avg – (Avg / Steps) 
4.  else 
5.   Avg ⇐  (1-w) . Avg + w.q 
6.  end if 
7. end do 

 
 

Figure 5.12 – Pseudo code for SODA algorithm. 
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 The simulations have shown considerable improvement on avoiding 

excessive packets drop as shown in Figures 5.13, 5.14 and 5.15. These 

simulations, shown in these three figures show a comparison between the three 

mentioned algorithms, original LPF of the RED, LPF/ODA, and SODA algorithms. 

All of them are simulated using the same conditions. They show the improvement 

getting better and better in terms of less excessive packets drop by measuring 

the percentage of the drop area in each case excluding the incipient congestion. 

For all cases, the conditions and values for constant parameters are as following; 

 
W = 0.002   “mostly recommended by Floyd in [6]” 

Congestion Factor = ~¼  “ratio of departing packets to arrivals” 

Max_p = 1/32 = 2-5 

Max_th = 24 KB 

Min_th = 8 KB 
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Figure 5.13 – Simulation result of Original RED algorithm, with “w = 0.002” and 
ratio of “Packet sent/Packet arrive” = ¼, showing more excessive packets drop with 
higher percentage of drop area versus LPF/ODA and SODA algorithms. 
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Figure 5.14 – Simulation result of LPF/ODA RED algorithm, with “w = 0.002” and 
ratio of “Packet sent/Packet arrive” = ¼, showing a sample time of excessive packets 
drop with normal percentage of drop area versus Original RED and SODA 
algorithms. 
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Figure 5.15 – Simulation result of SODA algorithm, with “w = 0.002” and ratio of 
“Packet sent/Packet arrive” = ¼, showing less excessive packets drop with less 
percentage of drop area versus Original RED and LPF/ODA algorithms. 
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A survey on the above figures indicates that after incipient congestion 

SODA has shown much better performance. It is improved in terms of 

percentage of drop area, maximum pick of instantaneous queue length which is 

directly concerned with the delay for packets transferring through the gateway. 

Also, if we look carefully to these three graphs, we will find that the LPF and 

LPF/ODA are experiencing two to three long term congestions after incipient 

congestion in the same similar time period for all cases. But the SODA algorithm 

shows its activity by larger number of shorter term congestions. And this implies 

better distribution of the congestion between all sources sending packets to the 

gateway, and consequently resulting less global synchronization. Table 5.2 gives 

briefly a better comparison between these results. 

 

Table 5.2 – Comparison between the simulation results of the Original RED 
algorithm, LPF/ODA, and our final modified SODA algorithm which is using our 
Stepped Over Drop Avoidance and calculating the average queue size on both 
arrival and sent packets in three cases shown in figures 5.13, 5.14 and 5.15. The 
simulations are executed under the same conditions in 4 ms time period and with the 
weight of the queue “w = 0.002” and the ratio of sending Packets to the arriving 
Packets as the congestion factor is “1/4”. 
 

 
Results: 

 
 

Algorithms: 
 

Drop % Max q_Size(KB) 
(Delay concern)

Congestion terms 
(More Drop distribution, 

Less global Synch.) 

 
Original RED 
 

57.20 60 2 

 
RED LPF/ODA 
 

55.28 65 3 

 
RED (SODA) 
 

52.23 45 7 
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The next three simulations shown in Figures 5.16, 5.17 and 5.18 represent 

the behavior of the algorithm after a long time after incipient congestion to 

exclude the slow start period. 
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Figure 5.16 – Simulation result of original RED algorithm, with “w = 0.004” and 

ratio of Packets to the arriving Packets as the congestion factor which is “1/8”. 

 
 

 

These again show a better performance for our SODA algorithm versus 

other two algorithms. However the LPF/ODA algorithm sometimes reacts even 

worse than original RED (LPF), like here. Table 5.3 compares them briefly. 
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Figure 5.17 – Simulation result of LPF/ODA algorithm, with “w = 0.004” and ratio 

of Packets to the arriving Packets as the congestion factor which is “1/8”. 
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Figure 5.18 – Simulation result of SODA algorithm, with “w = 0.004” and ratio of 
Packets to the arriving Packets as the congestion factor which is “1/8”. 
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Table 5.3 – Comparison between the simulation results of the Original RED 
algorithm, LPF/ODA, and our final modified SODA algorithm which is using our 
Stepped Over Drop Avoidance and calculating the average queue size on both 
arrival and sent packets in three cases shown in figures 5.16, 5.17 and 5.18. The 
simulations are executed under the same conditions in “2000 us” starting a long 
time after slow start or incipient congestion, with the weight of the queue “w = 
0.004” and the ratio of sending Packets to the arriving Packets as the congestion 
factor which is “1/8”. 
 

 
Results: 

 
 

Algorithms: 
 

Drop % Max q_Size(KB) 
(Delay concern)

Congestion terms 
(More Drop distribution, 

Less global Synch.) 

 
Original RED 
 

63.58 ~40 4 

 
RED LPF/ODA 
 

65.95 ~60 3 

 
RED (SODA) 
 

60.50 ~35 7 

 
 

 

Finally we compare our complete SODA algorithm which is also affected 

by both arriving and sending packets for calculating the Avg, with original RED 

algorithm and other cases separately. Each of the other cases is using only one 

property of our contributions. Then there are four simulation results shown in 

Figures 5.19 through 5.22. First one is the LPF of the original RED algorithm, 

second is the LPF of the RED algorithm but calculating the average queue length 

on arriving and sending packets, third one is using only our stepped over drop 

avoidance (SODA) method, and the last one is our final modified RED algorithm 

using both methods; SODA, and calculating the average queue length on both 

arriving and sending packets. All are executed under the same conditions as the 

previous simulations with the same constants and initialization. 
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Figure 5.19 – Simulation result of LPF algorithm of original RED, with “w = 0.002” 
and the ratio of sending Packets to the arriving Packets as the congestion factor 
which is “1/8”. 
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Figure 5.20 – Simulation result of the LPF algorithm of RED with calculating the 
average queue length on arriving and sending packets. Weight of queue is as “w = 
0.002” and the ratio of sending Packets to the arriving Packets as the congestion 
factor which is “1/8”. 
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Figure 5.21 – Simulation result of the LPF algorithm of RED using only SODA 
method, with “w = 0.002” and the ratio of sending Packets to the arriving Packets as 
the congestion factor which is “1/8”. 
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Figure 5.22 – Simulation result of final SODA-RED algorithm which calculates the 
average queue length on arriving and sending packets. It is using SODA method. 
Weight of queue is as “w = 0.002” and the ratio of sending Packets to the arriving 
Packets as the congestion factor which is “1/8”. 
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Table 5.4 shows briefly the complete comparison of these cases. As it is 

seen, the performance is improved on every step versus its previous step. The 

results are showing considerable improvements on all features in terms of less 

excessive packets dropping area, less delay in scheduling in the buffer, and less 

global synchronization because of splitting the long term congestions to several 

short term congestions, and consequently distributing shorter term congestions 

between the sources. 

  

 

Table 5.4 – Comparison between the simulation results of the Original RED 
algorithm and our modified algorithm in three cases shown in figures 5.19 to 5.22; 
RED (PA, PS) which calculates the average queue size on both arriving and sending 
packets; RED (SODA) which is using our Stepped Over Drop Avoidance method, 
and our final modified algorithm (SODA, PA, PS) which is using our Stepped Over 
Drop Avoidance method and also calculates the average queue size on arriving and 
sending packets. The simulations are executed under the same conditions within 
4000 us time period with weight of the queue “w = 0.002” and the ratio of sending 
Packets to the arriving Packets as the congestion factor being “1/8”. 
 

 
Results: 

 
 

Algorithms: 
 

Drop % Max q_Size(KB) 
(Delay concern)

Congestion terms 
(More Drop distribution, 

Less global Synch.) 

 
Original RED 
 

67.49 60 2 

 
RED (PA,PS) 
 

66.62 45 3 

 
RED (SODA) 
 

64.24 44 8 

 
RED (SODA, PA, PS) 
 

60.05 35 11 
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The proposed final modified RED algorithm is using stepped over drop 

avoidance, and also considers both packet sent and packet arrivals to calculate 

the average queue size. We call it SODA_RED algorithm. Hence, as seen in all 

simulated processes in several different conditions, the SODA_RED algorithm 

has always shown better performance versus other discussed algorithms. Our 

modified RED algorithm has shown sufficient improvements in the simulations, 

especially in terms of less packet drops, less delay in packet transfer, and 

generating less global synchronization problem at the gateways. 

 

 

5.3.3 – New modified algorithm 

 
Here we propose the final modified SODA_RED algorithm to implement as 

shown in Figure 5.23. Later in this chapter we will see how well this algorithm 

performs especially in terms of responding in high-speed traffic.  

SODA method not only has shown better performance than LPF/ODA or 

original LPF of RED, its algorithm is also easier to implement compared to 

extensive formula modification of empty queue problem proposed by Floyd in 

RED [6]. 
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1. Initialization: 
2.  Avg  ⇐  0 
3.  C     ⇐  -1  
4. for each packet arrival and each packet sent  calculate 
5. the average queue size “avg” : 
6. if     (Avg > Min_th)     and  (q < (Avg – (Avg / Steps)))     then 
7.  Avg   ⇐  Avg – (Avg / Steps) 
8. else Avg   ⇐  Avg + w .( q – Avg) 
9. end if 
10.  
11. if  Min_th ≤  Avg  < Max_th     then  
12.  increment C 
13.  using new “Avg“ and “C “ calculate probability ”Pb”: 
14.  Pb⇐ (Max_p) . [(Avg – Min_th) / (Max_th – Min_th)] . (Pkt_Ratio) 
15.  
16.  If  C >0  and  C ≥  Approx[R/Pb]  then 
17.   Drop the arrived packet 
18.   C ⇐  0 
19.  end if 
20.  
21.  if  C=0  then  
22.   Random number [R]  ⇐   Random[0,1] 
23.  end if 
24.  
25. else if  Avg ≥   Max_th   then 
26.  Drop the arrived packet 
27.  C ⇐   0 
28. else   C ⇐  -1 
29.  
30. end if 
 

 
Figure 5.23 --   Final modified SODA_RED algorithm for implement. 
 
 

5.4 – FPGA Implementation 

This SODA_RED implementation is written in VHDL source code and has 

been synthesized and implemented through ISE of Xilinx application series. It is 

then downloaded into a Xilinx FPGA and some major features of the design have 

been tested within the FPGA device. Hence, a required environment has been 
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designed in VHDL, implemented and downloaded inside the same FPGA, to 

perform the testing. It is expected to work in 10 Gbps gateways, and is targeting 

Virtex_II Pro family devices from Xilinx FPGAs. XC2VP30, a high performance 

device from this group has responded as well to our high speed implementation. 

 

5.4.1 – Principal specifications 

To be able to respond in 10 Gbps, this implementation has to execute a 

complete process of the SODA_RED algorithm in relatively small time.  In other 

words, the drop decision on an arrived packet must be done in minimum 

available time before the next packet arrives at the gateway (worst case). This 

minimum available time is determined by minimum size of the arriving packets at 

the gateway. However, the required time for the external interface to scan the 

result must be taken into account. Packets may arrive at the gateway in different 

sizes with different gap-times between them. The worst case is when the 

gateway is receiving packets with smallest size and zero ns gap-time between 

them. According to the FDE (Full Duplex Ethernet) in [14] the minimum and 

maximum standard packet sizes are 72-Bytes and 1526-Bytes. However, since 

the 8-Bytes for the introduction (7-byte), and SFD (Start Frame Delimiter) field (1-

byte) of the header for each packet are automatically generated by the recipient 

[14], then we consider the worse case as being the arrival packets with even less 

size. Then for our implementation, the expected range of packet sizes is; 

 
Minimum packet size =    72  –  8  =  64 Bytes  (5.1) 

Maximum packet size = 1526 – 8  =  1518 Bytes (5.2) 
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If we call the minimum available time as “T_Cycle” for a complete cycle, 

then our 10 Gbps traffic manager is calculated as followed. Keep in mind that 

each complete cycle in this design (T_Cycle) is divided into eight stages (S0 ~ 

S7), thus the given clock period (T) determines the required input clock: 

 
T_Cycle = 64 Bytes / (10 G. bits per second) 

T_Cycle = 512 bits  / (1010 bits / 109 ns) 

T_Cycle = 512 bits  / 10 bit/ns = 51.2 ns   (5.3) 

T = T_Cycle / 8 = 6.4 ns     (5.4) 

F(Clock) = 1/6.4 ns = 156.25 MHz    (5.5) 

 
In section 5.2 we discussed how we employed the DLL (Delayed Locked 

Loop) ,an internal property of advanced FPGAs, in our implementation. This 

improved clock skew, adjusted Duty-Cycle and CLK2X properties are utilized in 

our design. Therefore, required external clock to FPGA is half the frequency we 

calculated in (5.5), and thus, a 78.125 MHz external clock would be sufficient.  

 The complete cycle in this implementation could not be pipelined, due to 

different packet sizes and gap-times. Unfortunately, we cannot expect every 

arriving packet start at specified times, and as such; this makes our high-speed 

implementation more challenging. But at least by generating the stages (S0 ~ S7) 

in the controller unit, we can register the results of each stage to be used for any 

other stage if applicable. Figure-5.24 shows input signals such as; clock 

specifications, generated stage-pulses (S0 ~ S7) by controller, Packet-Arrive 

signal, Reset and the outputs Drop and PA-acknowledgment. 
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Figure 5.24 -- Clock, stage-pulses and some timing controls for SODA_RED. 

 

 

Inputs to the system are two 16-bit vectors as PA_Size (Packet Arrive 

Size) and PS_Size (Packet Sent Size) which carry the size of the packets arrived 

or sent at the gateway, as well as PA and PS signals to inform the traffic 

manager about any incoming or outgoing packet, the Clock, the Reset, and a 2-

bit width “W” which referring to four levels for weight of queue. 

The system has been designed so that the weight of queue could be 

initialized flexibly through four fixed and predefined values. These fixed values for 

W are “2-9 =0.002, 2-8 =0.004, 2-7 =0.008 and 2-6 =0.016”. The inputs PA_Size 
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and PS_Size are 16-bit width, and since the maximum expected size of arrival 

packets is 1518 bytes, it covers the packet size width. 

Outputs from the system are PA_Ack (Packet Arrive Acknowledge), 

PS_Ack (Packet sent Acknowledge), Drop (the main drop decision output signal 

to be used by the gateway) and the Valid_Drop signal to validate the final Drop 

decision for external devices waiting for decision. 

General block diagram of our final SODA_RED algorithm to implement is 

designed as shown in figure-5.25. 

The constant values used in the implementation are defined in following: 

 
Min_th = 8 KB (8192 bytes)    (5.6) 

Max_th = 24 KB (24576 bytes)    (5.7) 

Max_p = 1/32  (2-5)     (5.8) 
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Figure 5.25 - General block diagram of the new modified SODA_RED 
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5.4.2 – Random pattern generator 

There are several different methods to generate required random numbers 

for our algorithm. For example, Floyd in [6] has suggested a LUT (Look Up 

Table). For this design we designed a random number generator that generates 

a series of wide area random numbers. We employed two different standard 

mechanisms to generate the random pattern called CA (Cellular Automaton) and 

LFSR (Linear Feedback Shift Register) [16]. Each is consisted of several Flip-

Flops which could be connected all together in series through any arbitrary 

number of feedbacks between them. Number of embedded Flip-Flops in them 

determines the bit-width of the generated random pattern. The constraint in each 

method is the flexibility of each number and the kind of arbitrary feedbacks 

between them determines its efficiency. The efficiency here for the generated 

random numbers depends on maximum coverage of all existing numbers 

belonging to the bit-width of the pattern generator. Although it is hard to obtain 

very large throughput, we mixed both of these methods heuristically together and 

found an appropriate topology to make a well efficient form of feedbacks between 

the Flip-Flops. The width of our designed pattern generator is 14-bit and its 

coverage of generated pattern determined in simulation is 15,890 (out of 214 = 

16384). This is 97% coverage of the total area of our 14-bit pattern generator. 

And that is indeed large enough to utilize for our calculations in the algorithm. 

The same pattern generator has been used to generate pseudo packet sizes and 

gap-times for verification in simulations through our designed environment. 
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5.4.3 – Design and Implementation of basic elements 

Implementing the probability Pb Calculation in (5.1) and after that 

implementing the result of R/Pb division is the most important part of the design. 

These calculations are too large for high speed RED gateway and comprise of 

the difficult critical paths in hardware implementation. Therefore, eliminating such 

long path in the design is very effective to obtain the speed requirements for the 

implementation. However the original RED [6] has not considered the variety of 

arrival packets in terms of size, and the suggested implementation does not 

operate on byte option. Suggested approach is a method to calculate the Pb 

using two constants “C1” and “C2” and reformulating equation (4.5) as below: 

 

C1 = Max_P / (Max_th - Min_th) 

C2 = C1 ×  Min_th  

Pb = C1 ×  Avg – C2 

 

By interpolating the effect of Pkt_Ratio of (5.1) it becomes; 

 

Pb = (Pkt_Ratio) ×  (C1 ×  Avg – C2) 

 

Calculating the above equation encounters with very small floating point 

numbers. Because considering the expected range of constants Max_P, Max_th, 

and Min_th makes value for C1 as little as 2-20. Although this is appropriate 

method suggested by original RED, considering 20 bits just for floating point and 
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reserving some extra places for total calculation, it demands large hardware. It is 

considerably more difficult when the effect of variety in packet size is interpolated 

and it can add about 6-bits to floating point width.  

We have proposed a more effective method to address this problem. As 

mentioned in [6] for RED implementation, all results of multiplications, divisions 

and powers are approximated to their closest power of “2”. Then, all operations 

are replaced by shift instructions. Instead, we compromise with a maximum error 

of 25% in results of calculations. Reason being, in worst-case scenario in related 

range, the calculated result is something between the maximum and half the 

maximum values. Therefore, the concept of binary based approximation is based 

on “catch on the closest power of 2” which is given in original RED 

implementation [6]. This idea could be illustrated in Figure-5.26. This method is 

used several times in our design implementation and is used as reference to all 

of our approximations in the design. The illustration shows how the distributed 

areas like A, B, C, etc. are assigned to their nearest power of two. The power of 

“n” could be either positive or negative. 

 

In order to produce the result of R/Pb, consider the uniform average 

distribution part of equation (5.1) which is over [Min_th , Max_th]. we break down 

the equation to three components. We call the Avg portion as “Avg_Ratio”. 

 

Pb = (Max_p) . [Avg_Ratio] . (Pkt_Ratio)    (5.9) 
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Figure 5.26 – Binary based approximation determining assignment of range to 

areas of A, B, C, etc.  
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approximation, it is assigned to “2-4”). And for the Avg Ratio, if we break the area 

between Min_th and Max_th as six times divide by two, then by binary-based 

approximation we have waived only less than 1% error just for approximating the 

smallest value in lowest area. And it’s minimal versus 25% tolerance for higher 

area (like A or B in Figure-5.26). Then using the binary-based approximation 

(Figure-5.26), the range for each portion of (5.9) is determined as: 

 

Max_p = 1/32 = 2-5     (5.10) 

Avg_Ratio ∈  [20 , 2-5 ]   (5.11) 

Pkt_Ratio  ∈  [20 , 2-4 ]   (5.12) 

 

Then Pb in (5.9) would become 

 

Pb∈  [2-5] . [20 , 2-5 ] . [20 , 2-4 ] 

Or: 

Pb∈  [2-5 , 2-14 ] 

 

Finally we need the random number “R” previously produced by our random 

pattern generator to calculate the final result for R/pb  

 

R  ∈  [0, 1] 

R/pb = R  /  [2-5 , 2-14 ] 

R/pb = R ×  [2+5 , 2+14 ]  (5.13) 
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Sum of the powers of “2” for equations (5.10), (5.11) and (5.12) which is 

considered probability pb, could be easily produced using LUT based on binary-

based approximation. The produced sum of powers of “2” which is an integer 

value between 5 and 14 will be used in (5.13). The key is, since “R/pb“ is the 

result of the (R) multiplied by (14-bit pb), then R/pb could be easily obtained from 

the most 5 to 14 significant bits of a 14-bit random number “R” depending on 

integer value of pb. Therefore this treatment has significantly simplified the 

implementation of these calculations, which have important role in dealing with 

the speed constraints. This is another facet of these thesis findings in terms of 

heuristic hardware minimization. 

Calculating the average queue size (Avg) is done through following 

formula: 

 

Avg ⇐  (1-w) . Avg + w.q 

 

It could be arranged as below with respect to the old and new values: 

 

Avg ⇐  (1-w) . Avg + w.q = Avg – w . Avg + w . q 

Avg(new)  =  Avg(old) +  w . (q(new)  -  Avg(old))    (5.14) 

 

Required time to produce the Avg(new) in (5.14) based on stage-time (T) is first 

dependent on producing the q(new) which takes one stage-time “T” to compute. 
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Second, it depends on subtraction and shifting as it takes another stage-time “T” 

and finally in third “T” it will be added to the Avg(old). 

 

T [Avg(new)] =  T [q(new)] + T [Sub & Shift] + T [Add] = 3 Tstage  (5.15) 

 
Then, Avg takes 3 Tstage to produce. However, if we modify equation 

(5.14), we could substitute “q-old  +  new-Packet-size” with “q-new”: 

 
Avg(new)  =  Avg(old) +  w . [ (new-packet-size + q(old) )  -  Avg(old) ]  

 Avg(new)  =  Avg(old) +  w . [ new-packet-size + ( q(old)  - Avg(old)) ] (5.16) 

 T [Avg(new)] = T [((q(old) - Avg(old))+Pkt-Size) & shift] + T [Add] = 2 Tstage (5.17) 

  

In (5.16), we do not have to wait for Tstage to calculate qnew. Instead we can 

produce the result from “(q(old)  - Avg(old))”, since both parameters are already 

available. The new-packet-size is also available regardless of its size being of an 

arrived packet or a sent packet. That is why we have computed this two times in 

the implementation separately in order to handle arrival and/or sent packet sizes. 

Therefore, in first Tstage we could compute just the result of (Add & shift) and in 

the second Tstage we get the final result for Avg. Thus, comparing the (5.17) by 3-

Tstage with (5.15) by 2-Tstage indicates on elimination of Avg calculation time from 

“3” Tstage to ”2” Tstage. 

 

5.4.4 – Implementation Block Diagrams 
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The block diagram of Figure-5.25 showed a general form of total design 

comprised of many smaller components. Each component or Small block 

generates calculation result or required information for other stage(s). Eight 

components are designed and concatenated together to execute our 

SODA_RED algorithm. However number of stages in one complete cycle in our 

design also consists of eight elements. However, there is no relation between 

number of these components and number of stages in one complete cycle 

because some components wait for more than one Tstage to complete the 

process. For example, Block (B-3) is the controller unit in design, and block (B-7) 

is counter controller which depends on past situation after last dropped packet 

and crucial in next drop decision. Figure-5.27 illustrates block (B-2) which 

contains block (B-1), because these two blocks are related in more common 

connections as shown. Block (B-1) contains two separated registers for PAS 

(Packet Arrival Size) and PSS (Packet sent Size). It could calculate the 

instantaneous queue size in one stage (S1) by any arrived packet size whether it 

is informing of arrival or sending. It is designed to handle arriving and sending 

packets in the event they both happen at the same time. In stage (S0) the system 

is waiting for arrival of the packet information vectors and signals. Block (B-2) 

uses the new calculated queue to produce the new average queue size (Avg) 

after every packet is arrived or sent. It executes the processes of equation (5.16) 

to calculate the Avg of LPF (RED) before the end of second stage (S2). At the 

same time, the SODA unit has produced the Avg(SODA) too which depends on 
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the condition where appropriate Avg(new) will transfer to the Avg-Register at the 

end of (S2). 

 
 

 
 
Figure 5.27 --   Block diagrams for queue calculator (B-1) and Average calculator 

(B-2) for SODA_RED algorithm to implement. 

 
 
 

Blocks (B-4) and (B-5) are shown in Figure-5.28. (B-4) is a mix of LFSR 
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block (B-5) illustrates important part of the design which is described in detail in 

section 5.4.3. As described, it demonstrates how effortlessly and quick one 

complex part of the design is implemented to produce the calculation for R/Pb. 

 
 

         
 
Figure 5.28 -- Block diagrams for R_Pb calculator (B-5) and Random number 

generator (B-4) for SODA_RED algorithm to implement. 
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from the beginning of (S1) to end of (S6), and it gives the chance as well to 

upgrade the speed through appropriate modifications. Final Drop decision 

accompanying with its Valid-Drop signal is issued with start of the last stage (S7). 

Therefore, we have allocated large enough window for interfacing the external 

corresponding devices to safely hand shake with arrival information or to access 

issued results. This is possible since entire time for (S0) is free to arrival of input 

signals, and the entire stage (S7) is standby for sampling the result by the 

external device. 

 

 
 
Figure 5.29 -- Block diagrams for Comparator (B-6) and Decision Maker Unit (B-

8) for SODA_RED algorithm to implement. 
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5.4.5 – Synthesis reports 

As mentioned earlier, FPGA implementation has been aimed at Xilinx 

device. VIRTEX-II PRO family devices are well known high performance FPGA 

devices especially in terms of less routing delay. The XC2VP30 is chosen to 

download the final bit-stream file has well satisfied the speed requirements. 

Table 5.5 contains final timing summary of synthesis report obtained by XILINX-

ISE Navigator. 

 

 

 

 

Table 5.5 – Timing Summary of synthesis report synthesized by Xilinx-ISE Project 

Navigator. 
 

Xilinx 
Virtex II-PRO 

XC2VP30 
Synthesis Report Expected 

 
Min. Clock Period (T) 

 
6.216 ns 6.4 ns       (Satisfied) 

 
Min. Cycle Period (Tcycle) 

 
49.728 ns 51.2 ns      (Satisfied) 

 
Max. Clock Frequency 

 
160.875 MHz 156.25 MHz   (Satisfied) 
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Information about the area usage of the FPGA by this implementation is 

given in Table-5.6. Although the gate-count usage for our implementation is very 

trivial versus very large available area in XC2VP30 device, its advanced 

performance is the major reason for embedding our high speed design. 

 
 
 
Table 5.6 – HDL Synthesis report synthesized by Xilinx-ISE Project Navigator, 

final summary report of area usage. 

 
Xilinx 

Virtex II-PRO 
XC2VP30 

area of used Units Usage 

 
Slices 

 
256 out of (13696) 13% 

 
Slice FFs 

 
188 out of (27392) < 1% 

 
4-input LUTs 

 
456 out of (27392) < 2% 

 
IOBs 

 
78 out of (416) 18% 

 
GClks 

 
4 out of (16) 25% 

 
CLKDLL 

 
1 out of (16) 6% 

 
IOs 

 
78 out of (676) 11% 

 
Gate count 

 
~ 25000 out of (3000K) 1% 
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Chapter Six 
 
 
 
 
 
 

Conclusion 

 

 

 

 

 

 

 

 
 
 

 

 



 90

 

Conclusion 
 

This thesis has addressed congestion control router concerns by applying 

two approaches. First is investigation of congestion control and obtaining results 

among several commonly used standard congestion avoidance mechanisms. In 

this approach, the (RED) Random Early Detection congestion control method 

was found to be the algorithm of choice for this research. Second, in the 

research, in depth analysis of RED algorithm has yielded opportunities for 

improvements. Several significant enhancements were presented on RED 

algorithm, and improved algorithm with detailed calculations and higher 

throughput was proposed more which targeted higher speed networks with a line 

of 10 Gbps. Finally, presented algorithm in this thesis is implemented and 

validated through Xilinx FPGAs. This research demonstrates advantages of 

proposed enhanced RED algorithm. This is shown through improved high speed 

gateway efficiency response, reduced Drops, distribution of long term 

congestions to several shorter term congestions among all sources, less risk of 

global synchronization, and reduced packet queue time. 
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