

FPGA Implementation of Congestion Control

Routers in High Speed Networks

Fariborz Fereydouni-Forouzandeh

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the requirements
for the Degree of Master of Applied Science (Computer Engineering) at

Concordia University
Montreal, Quebec, Canada

February 2005

Fariborz Fereydouni-Forouzandeh, 2005

 ii

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Fariborz Fereydouni-Forouzandeh

Entitled: FPGA Implementation of Congestion Control Routers in High Speed
Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

_____________________________________ Examiner

_____________________________________ Examiner

_____________________________________ Supervisor

Approved by __
 Chair of Department or Graduate Program Director

_______________ 20____ __
 Dean of Faculty

 iii

Abstract

FPGA Implementation of Congestion Control Routers in High Speed Networks

Fariborz Fereydouni-Forouzandeh

Receiving large number of data packets at different baud rates and different

sizes at gateways in high-speed network routers may lead to a congestion

problem and force gate routers to drop some packets. Several algorithms have

been developed to control this problem. Random Early Detection (RED)

algorithm is commonly used to eliminate this problem. It has been recommend by

IETF (Internet Engineering Task Force) for next generation Internet gateways. In

this thesis we present an FPGA implementation of a modified version of the RED

algorithm. Furthermore, we discuss three enhancements of the RED algorithm

leading to a better performance suitable for FPGA implementation. We have

conducted several simulations to show that our proposed algorithm improves the

response time and reduces the risk of global synchronization in gateways. The

implementation is fully FPGA compatible and is targeting Xilinx Virtex-II Pro

family devices. Finally we present the implementation that can run as fast as 10

Gbps.

 iv

Acknowledgments

I would like to thank my dear supervisor, Dr. Otmane Ait Mohamed with

utmost respect for his knowledgeable supports concerning my thesis and his

unending patience, kindness and willingness at any time was concerning my

weaknesses. This has been a wonderful learning experience that has helped me

to continue my studies. I am thoroughly indebted to you. I am thankful to Dr.

Sadegh Jahanpour as well as Dr. Yassine Mokhtari who have given me good

feedbacks on my research. I thank Donglin, Asif and our other HVG members at

Concordia University who have contributed to my knowledge and success.

To my dear wife Zohreh and my little daughter Parissa, thank you for your

unconditional love, patience, support and belief in my ability to go the distance.

To my brother Faramarz for all his kindly helpful supports, and to the rest of my

extended family, thank you all for your love and all your individual supports.

I always knew that school is fun.

 v

Table of Contents

List of Figures . vii

List of Tables . xi

List of Abbreviations . xiii

Chapter-1: Introduction . 1

 1.1 Motivations . 3

 1.2 objectives . 3

 1.3 Contributions . 4

 1.4 Thesis Organization . 5

Chapter-2 Data Congestion in High Speed Networks 6

 2.1 Effective factors causing Data Congestion in high-speed Networks 7

Chapter-3 Congestion Avoidance Mechanisms . 13

 3.1 Introduction to Congestion Avoidance . 14

 3.2 Congestion Avoidance Mechanisms . 15

 3.2.1 Drop Tail . 16

 3.2.2 Random Drop . 17

 3.2.3 ERD (Early Random Drop) . 18

 3.2.4 PPD (Partial Packet Discard) and EPD (Early Packet Discard) . . . 19

 3.2.5 IP Source Quench . 21

 3.2.6 DECbit Gateway . 22

 3.2.7 RED (Random Early Detection) 23

 3.2.8 Choosing the congestion avoidance mechanism to implement . . . 25

Chapter-4 RED (Random Early Detection) . 30

 4.1 Introduction . 31

 4.2 RED algorithm . 32

 4.2.1 Average calculation in RED . 33

 vi

 4.2.2 Drop Decision . 36

 4.3 Describing the Drop decision in RED algorithm 36

Chapter-5 New Algorithm and FPGA Implementation 44

 5.1 Introduction . 45

 5.2 New features . 47

 5.3 New modified algorithm and proposed contributions 50

 5.3.1 Impact of events for calculating the Average queue size 50

 5.3.2 SODA method to resolve the empty queue problem in RED 56

 5.3.3 Final new modified algorithm . 70

 5.4 FPGA implementation . 71

 5.4.1 Primary specifications . 72

 5.4.2 Random Pattern Generator . 76

 5.4.3 Design and implementation of the basic parts 77

 5.4.4 Block diagrams of implement . 82

 5.4.5 Synthesis reports . 87

Chapter-6 Conclusion . 89

References . 91

 vii

List of Figures

2.1 Example of some FTP connections in a Network illustrating how congestion could

 appear at the gateway . 9

2.2 Illustrating the Similarity of the congestion appearance in a gateway 10

2.3 Example of queuing the arrived packets from four different FTP in buffer as

 asynchronous time division multiplexing (ATDM) . 12

3.1 Drop Tail overflowing and drop order . 16

3.2 Random Drop, overflowing and drop order . 17

3.3 Early Random Drop, Threshold level and fixed drop probability (P) and drop order . . . 18

3.4 Illustrating the RED buffering mechanism. . 24

4.1 Illustrating detailed RED buffering mechanism . 32

4.2 A one second simulation of RED receiving equal packet sizes of 1 K-Byte each, the

 solid line is queue size and the dashed line is average queue size both in terms of

 number of packets . 34

4.3 Effective RED algorithm to implement . 39

4.4 Illustrating the flow chart of the RED mechanism. . 41

5.1 Arrival packets are buffered in the Interface and then are serialized and sent to

 Traffic Manager in high speed rate, and then the traffic manager decides to drop or

 keep each packet in FIFO queue . 46

5.2 Clock Synthesis Options in a DCM primitive . 49

5.3 Simulation result of Original RED algorithm “w = 0.004” and ratio of “Packet sent /

 Packet arrive” = ¼ , (obtained Over-Drop rate = 36.39% in terms of percentage of

 the time) . 52

5.4 Simulation result of modified RED algorithm calculating the average queue size on

 both packet arrival and packet sent , with “w = 0.004” and ratio of “Packet sent /

 Packet arrive” = ¼ , (obtained Over-Drop rate = 33.80% in terms of percentage of

 viii

 the time) . 52

5.5 Simulation result of Original RED algorithm “w = 0.002” and ratio of “Packet sent /

 Packet arrive” = 1/8, (obtained Over-Drop rate = 67.49% in terms of percentage of

 the time) . 53

5.6 Simulation result of modified RED algorithm calculating the average queue size on

 both packet arrival and packet sent, with “w = 0.002” and ratio of “Packet sent /

 Packet arrive” = 1/8, (obtained Over-Drop rate = 66.62% in terms of percentage of

 the time) . 53

5.7 Simulation result of Original RED algorithm “w = 0.002” and ratio of “Packet sent /

 Packet arrive” = ¼ , (obtained Over-Drop rate = 34.03% in terms of percentage of

 the time) . 54

5.8 Simulation result of modified RED algorithm calculating the average queue size on

 both packet arrival and packet sent, “w = 0.002” and ratio of “Packet sent / Packet-

 arrive” = ¼ , (obtained Over-Drop rate = 34.04% in terms of percentage of the time) . . 54

5.9 Simulation result of Original RED algorithm “w = 0.004” and ratio of “Packet sent /

 Packet arrive” = 1/8 , (obtained Over-Drop rate = 63.58% in terms of percentage of

 the time) . 55

5.10 Simulation result of modified RED algorithm calculating the average queue size on

 both packet arrival and packet sent, “w = 0.004” and ratio of “Packet sent /Packet-

 arrive” = 1/8, (obtained Over-Drop rate = 60.35% in terms of percentage of the time) . . 55

5.11 Pseudo code for LPF/ODA algorithm . 59

5.12 Pseudo code for SODA algorithm . 60

5.13 Simulation result of Original RED algorithm, “w = 0.002” and ratio of “Packet sent/

 Packet arrive” = ¼, showing more excessive packets drop with higher percentage of

 drop area versus LPF/ODA and SODA algorithms . 61

5.14 Simulation result of LPF/ODA RED algorithm, with “w = 0.002” and ratio of “Packet

 sent/Packet arrive” = ¼, showing a sample time of excessive packets drop with

 normal percentage of drop area versus Original RED and SODA algorithms 62

 ix

5.15 Simulation result of SODA algorithm, with “w = 0.002” and ratio of “Packet sent/

 Packet arrive” = ¼, showing less excessive packets drop with less percentage of

 drop area versus Original RED and LPF/ODA algorithms 62

5.16 Simulation result of original RED algorithm, with “w = 0.004” and ratio of Packets to

 the arriving Packets as the congestion factor which is “1/8” 64

5.17 Simulation result of LPF/ODA algorithm, with “w = 0.004” and ratio of Packets to the

 arriving Packets as the congestion factor which is “1/8” 65

5.18 Simulation result of SODA algorithm, with “w = 0.004” and ratio of Packets to the

 arriving Packets as the congestion factor which is “1/8” 65

5.19 Simulation result of LPF algorithm of original RED, with “w = 0.002” and the ratio of

 sending Packets to the arriving Packets as the congestion factor which is “1/8” 67

5.20 Simulation result of LPF algorithm of RED with calculating the average queue length

 on arriving and sending packets both. “w = 0.002” and the ratio of sending Packets

 to the arriving Packets as the congestion factor which is “1/8” 67

5.21 Simulation result of the LPF algorithm of RED using only SODA method, with

 “w = 0.002” and ratio of sending Packets to arriving Packets as the congestion factor

 which is “1/8” . 68

5.22 Simulation result of final SODA-RED algorithm which calculates the average queue

 length on arriving and sending packets both, and besides, is using the SODA

 method. “w = 0.002” and ratio of sending Packets to arriving Packets as congestion

 factor which is “1/8” . 68

5.23 Final modified SODA_RED algorithm to implement 71

5.24 Clock, stage-pulses and some timing controls for SODA_RED 74

5.25 General block diagram of the new modified SODA_RED 75

5.26 Binary based approximation determining in which range the areas of A, B, C, etc…

 are assigned to . 79

5.27 Block diagrams for queue calculator (B-1) and Average calculator (B-2) for SODA_

 RED algorithm to implement . 84

 x

5.28 Block diagrams for R_Pb calculator (B-5) and Random number generator (B-4) for

 SODA_RED algorithm to implement . 85

5.29 Block diagrams for Comparator (B-6) and Decision Maker Unit (B-8) for SODA_RED

algorithm to implement . 86

 xi

List of Tables

2.1 IP Header format . 8

5.1 This table gives the abstract results of simulations on both original RED algorithm

 and our modified algorithm which calculates the average queue size on every arrival

 packet as well as on every sent packet, showing the improvement on Drop 56

5.2 Comparison between the simulation results of Original RED algorithm, LPF/ODA,

 and our final modified SODA algorithm which is using Stepped Over Drop Avoidance

 and calculating the average queue size on both arrival and sent packets in three

 cases shown in figures 5.13 to 5.15. The simulations are executed under the same

 conditions in 4 ms of time and with the weight of the queue “w = 0.002” and the ratio

 of sending Packets to the arriving Packets as the congestion factor is “1/4” 63

5.3 Comparison between the simulation results of the Original RED algorithm, LPF/ODA,

 and our final modified SODA algorithm which is using Stepped Over Drop Avoidance

 and calculating the average queue size on both arrival and sent packets in three

 cases shown in figures 5.16, 5.17 and 5.18. The simulations are executed under the

 same conditions in “2 ms” starting a long time after slow start or incipient congestion,

 with “w = 0.004” and ratio of sending Packets to the arriving Packets as congestion

 factor which is “1/8” . 66

5.4 Comparison between the simulation results of Original RED algorithm and modified

 algorithm in three cases shown in figures 5.19 to 5.22; RED (PA, PS) calculates the

 average queue size on both arriving and sending packets, RED (SODA) is using

 Stepped Over Drop Avoidance method, and our final modified algorithm (SODA,PA,

 PS) using our Stepped Over Drop Avoidance and calculating the average queue

 size on both arriving and sending packets. Simulations are executed under same

 conditions within “4 ms” of time, with “w = 0.002” and the ratio of sending Packets to

 arriving Packets as the congestion factor is “1/8” . 69

 xii

5.5 Timing Summary of synthesis report synthesized by Xilinx-ISE Project Navigator. . . . 87

5.6 HDL Synthesis report synthesized by Xilinx-ISE Project Navigator, final summary

 report of area usage . 88

 xiii

List of Abbreviations

ASIC Application Specific Integrated Circuit

ATDM Asynchronous Time Division Multiplexing

ATM Asynchronous Transfer Mode

CA Cellular Automaton

CBR Constant Bit Rate

DLL Delayed Locked Loop

EPD Early Packet Discard

FDE Full Duplex Ethernet

FIFO First In First Out

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

Gbps Giga bit per second

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Core Intellectual Property Core

IP/Packet Internet Protocol packet

LFSR Linear Feedback Shift Register

LPF Low Pass Filter

LUT Look Up Table

ODA Over Drop Avoidance

 xiv

PPD Partial Packet Discard)

RED Random Early Detection

RFC Request For Comments

RTL Register Transfer Level

SFD Start Frame Delimiter

SODA Stepped Over Drop Avoidance

SoC System on Chip

TCP/IP Transmission Control Protocol / Internet Protocol

TDM Time Division Multiplexing

TTM Time To Market

VBR Variable Bit Rate

VC Virtual Channel

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

 xv

 1

Chapter – 1

Introduction

 2

The impact of electronic communications, internet and networking

applications is increasing globally and very broadly. It sounds to be out of control,

if the appropriate enhancements do not cover its requirements. Especially in

terms of speed getting higher and higher, and the number of users becoming

larger and larger. It certainly creates huge data traffic at the gateways or routers,

where a great number of sources send their packets to be routed to the

appropriate destination. Hence, controlling this huge data traffic becomes heavily

significant on traffic manager which are responsible in controlling the congestion

at the gateways.

In this work we investigate various mechanisms used to control the

congestion at the high speed gateways, and also we describe a hardware

implementation of traffic management scheme at high speed and high

performance networks. Our implementation targets a Field Programmable Gate

Arrays (FPGAs).

While the technology of a multi-million gate in new devices is advancing

very fast, both FPGAs and Application Specific Integrated Circuits (ASICs) are

competitively demonstrating their capabilities in very large and high speed

applications. Consequently, choosing the right technology to implement a given

design is becoming the key question for several applications. In one hand, with

ASICs one can implement multi-million gates in a small are of silicon using a

library of reusable hardware and software blocks as Intellectual property (IP)

cores [1]. In the other hand, FPGAs have also satisfied wonderfully the

requirements for fulfillment of large complex designs in their today’s multi-million

 3

gate ranges. Large variety of high performance IP cores (microprocessors,

microcontrollers, intellectual functional logics and etc…) as well as high speed

memories and much more are accessible in today’s FPGAs [4]. These features

facilitate the implementation of a large complex system designs in FPGAs. Since

the FPGAs are reprogrammable, this indeed lowers the cost of any required

changes or modifications in the design for future, and considering the importance

of shorter Time To Market (TTM) in industry, it is of a great benefit.

1.1 – Motivations

The motivation of this work is to explore the issues involved in congestion

control routers as existing traffic manager mechanisms in high speed networks,

and also implementing a higher performance traffic manager using FPGAs. First

we compare different congestion control mechanism in high speed gateways in

terms of efficiency and throughput. After this analysis we have chosen the

Random Early Detection (RED) mechanism which was first introduced by Floyd

and Jacobson [6]. And secondly, we discuss the challenges in implementing

such mechanisms using FPGAs. Since, the achieving high speed is the biggest

challenges in FPGAs high speed implementations. Our objective is to achieve a

speed of 10 Gbps. This is done by improving the RED algorithm significantly to

be suitable for such speed in FPGA.

 4

1.3 – Contributions

We can summarize our contributions in this thesis as:

1. The modification of the RED algorithm in order to achieve higher

performances, and to facilitate its implementation. We prove that

our new modified RED algorithm is more efficient with higher

throughput and improves the response time when congestion

appears at the gateway. Also, we will prove that our algorithm is

more reliable in terms of packets drops than the original RED

algorithm.

2. In order to verify and simulate the main features of our

implementation we have designed and implemented an

environment inside the same FPGA device. Generating artificial

random patterns is always hard to achieve. We have produced a

broad random vector set by mixing of two standard mechanisms to

generate patterns of random numbers. Our 14-bit random pattern

generator is required for calculations in RED algorithm.And our

random pattern generator has been used as well in our

environment to generate continuously pseudo random packets as

emulating a real gateway to simulate the design.

3. Our high speed FPGA implementation deals with traffic up to 10

Gbps. Also, we introduced some heuristics in the hardware design

to optimize some components especially in terms of speed of

operations.

 5

1.4 – Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 discusses the

concept of the congestion and how it appears at the gateways. Chapter 3

describes the existing congestion avoidance mechanisms and compares their

advantages and disadvantages. In chapter 4 we describe the chosen algorithm

(RED algorithm). We analyze the algorithm and discuss certain ideas that lead to

an efficient implementation. In chapter 5 we present our proposed algorithm and

its implementation in FPGAs. Finally, Chapter 6 concludes the thesis.

 6

Chapter Two

Data Congestion in high speed Networks

 7

2.1 – Effective factors causing Data Congestion in high speed

Networks

High speed data transfer between several FTP (File Transfer Protocol)

sources through a gateway with normal bandwidth implies unavoidable traffic

congestions. Especially, increasing the number of high speed network stations in

the world has brought on many problems in controlling the traffic between these

stations. Data congestion always occurs in high speed network gateways with

large bandwidth.

This thesis is discussing the IP Packets (Internet Protocol Packets)

arriving at high speed gateways from several FTP sources which their protocol is

TCP/IP (Transmission Control Protocol / Internet Protocol). The Internet protocol

defines how information is transferred between systems and gateways across

the Internet. The packets are decomposed to several parts that can be

transferred using standard Internet Protocol (IP) over the internet. The data to be

sent is partitioned into several IP packets and is reassembled on the receiving

computer. Each packet starts with a header containing its specifications, e.g.

address and system control information [11], [3]. Unlike uniform Asynchronous

Transfer Mode (ATM) that breaks the packets into smaller standard sizes of 53-

Byte cells [3], IP packets vary in length depending on the data that is being

transmitted. IP header format of the IP Packet is shown in Table 2.1. The source

and destination IP addresses are numbers that identify computers on the

Internet.

 8

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total length
Identification Flags Fragment offset

TTL Protocol Header checksum
Source IP address

Destination IP address
Options and padding :::

Table 2.1 – IP Header format.

These numbers are usually shown in groups separated by periods, for

instance: 123.123.23.2 consists of four separated values each between 0 and

255, i.e., each position in this address range could carry one Byte of address. All

resources on the Internet must have an IP address or else they do not belong to

the Internet.

FTP sources that send IP Packets to the gateway may vary in bit rates. If

a great number of sources are active and sending IP Packets to the gateway with

high bit rates, then there will be a bursty traffic of arriving packets and

consequently a serious congestion will happen at the gateway. The congestion

control is somehow based on the types of traffic sources at the Ingress port of

the gateway. All IP Packets that have successfully passed through the gateway

will be sent to the Egress port which represents the output port of the gateway.

Considering the present internet system, there is no specific management

between the gateways where traffic flow is controlled. Every IP Packet is

processed as soon as a processor is available to send it between the gateways

 9

and a transmission port is free and ready to carry the packet. If the packets have

to wait before processing, they are held in a queue, subject to the size limit and

the restrictions on the way they are queued and enqueued in and from the buffer

[17]. Once the size of the queue reaches a predefined limit according to the

congestion control mechanism, then usually the next arriving packet will be

discarded. This is discussed in details in chapter three where we review several

congestion avoidance mechanisms.

Figure 2.1 – Example of some FTP connections in a Network illustrating how

congestion could appear at the gateway.

A simple example in figure 2.1 shows a gateway where several FTP

connections are shown with different data transfer rates and burstiness. It is not

always possible to transfer every arriving packet through such gateways,

because the bandwidth of the node S is not capable to handle overall bandwidth

Gateway
FTP Sources

100 Mbps 45 Mbps

Queue
100 Mbps

45 Mbps

45 Mbps

Node - S

S

A
B

C

D

 10

of nodes A to D. In a glance, that could be easily a reason to encounter data

congestion for such a gateway.

Gateway in Figure 2.1 looks like a firehouse connected to a straw through

a small funnel as shown in figure 2.2 [2]. If the volume of the input flow is greater

than the flow that can leave through the output of the straw, then funnel fills up

and causes overflow.

Figure 2.2 – Illustrating the Similarity of the congestion appearance in a gateway.

Consider data transfer in an internet protocol for example in Figure 2.1

that consists of four different sources A to D. The packets traverse between the

nodes through the Gateway asynchronously, for instance using Time Division

Multiplexing (TDM) algorithm. Asynchronous Time Division Multiplexing (ATDM)

 11

is better illustrated in figure 2.3. Packets with equal sizes may arrive from each

node at any time sequentially. Arriving packets are enqueued in the buffer

(queue) with respect to the size of the buffer. And they are dequeued and

transmitted through the Gateway using First In First Out (FIFO) scheduler to

distribute the unique delay among all packets especially during the period of

burstiness. As shown in Figure 2.3 all arriving packets from nodes A, B, C, and D

are supposed to be queued and sent in appropriate order like the one shown in

line ATDM as asynchronous multiplexing in order (that’s asynchronous because

no packet is supposed to arrive at a certain expected time to be multiplexed from

any node). Applications like ATDM could be observed in very messy transfer

protocols to distribute arriving data from several high speed VCs (Virtual

Channels) efficiently.

So, there is no fixed time relation between the multiplexed form of arrival

cells or packets [3]. Considering the congestion appeared at the gateway as the

result of arriving packets, it is not possible to accommodate all of them in the

queue. That’s why the data congestion forces the gateway to drop some packets.

The way to make the decision to drop certain packets is based on the traffic

manager algorithm and the congestion control mechanism implemented at the

gateway.

Therefore the congestion is detected when the gateway starts to drop

packets. The major factors which have main role in generating the congestion

are increasing the number of high speed networks with large bandwidth and the

 12

Figure 2.3 – Example of queuing the arrived packets from four different FTP in

buffer as asynchronous time division multiplexing (ATDM).

bottleneck of the gateways. Such problems motivated the researchers to propose

some mechanisms as the solution. Some of the more important mechanisms

between them are described in next chapter.

A

B

C

D

ATDM

1 2 3

1

12

2 3 1

2

 Sources

Time

4

 4 2 3 3 1 2 2 1 2 1 1

 13

Chapter Three

Congestion Avoidance Mechanisms

 14

3.1 – Introduction to Congestion Avoidance

In order to avoid data congestion problem at high speed gateways, there

are several mechanisms which have been proposed. Some of them are used

extensively in traffic control in high speed gateways.

These mechanisms drop packets at the gateways when the packet queue

reaches certain threshold. Size of the arrival packets in a fixed standard range

[14] and also the baud rate, are discussed in next chapters. Since there is a

queue as a buffer in every mechanism, so, while the arriving packets are being

enqueued, meanwhile some packets could be dequeued through egress port.

Therefore depending on the ratio of ingress and egress baud rate, size of the

queued packets in the buffer may exceed some certain threshold value and

consequently cause to drop some arriving packets. These threshold levels vary

in different mechanisms, like queue overflow or a value less than overflow. We

will see some examples in this chapter.

All of this congestion control process is to achieve a feasible higher

throughput and lower average queue size. In the subsequent chapters regarding

the implementation of the congestion control routers, we will discuss the impact

of the queue size in regard with the congestion control at the gateways in high

speed networks.

There are several standard queuing algorithms to control the congestion

which determine the followings [10]:

• How packets are buffered

 15

• Which packets get transmitted

• Which packets get marked or dropped

• Indirectly determine the delay at the router

3.2 –Congestion Avoidance Mechanisms

This section introduces and reviews briefly some existing congestion

control mechanisms by describing their advantages if any. Finally, we present the

algorithm that we choose to design and to implement. As we’ll see all existing

congestion control mechanisms drop some packets arriving at the gateway if the

size of the stored packets in the buffer (queue) reaches a certain value. Some

algorithms fill up the queue completely or make it overflow and then start

dropping, and some verify on a threshold level. All of them choose an appropriate

packet to drop but each of them do it in their own different way. Generally there

are two major factors concerning these traffic managers;

• When decide to drop the packets in respect to the instantaneous

size of the queue

• Which packets are chosen to drop in respect to the stored packets

in the queue

Below is a list of very commonly used congestion avoidance mechanisms

in high speed gateways

 16

 1 – Drop Tail
 2 – Random Drop
 3 – ERD (Early Random Drop)
 4 – PPD (Partial Packet Discard)
 5 – EPD (Early Packet Discard)
 6 – IP Source Quench
 7 – DEC bit

8 – RED (Random Early Detection)
 … and more . . .

In the following section we briefly review and compare these mechanisms.

3.2.1 – Drop Tail

This is one of the simplest mechanisms with fewer throughputs. It is a

FIFO queuing mechanism that starts to drop the packets from the tail of the

queue once the queue is full [6]. It means, after recognizing the condition to drop

a packet is satisfied, the last arrived packet at the gateway will be dropped.

Figure 3.1 –Drop Tail overflowing and drop order.

 A major problem of Drop Tail is global synchronization. This is because

dropping packets from several VCs (Virtual Channels) forces these sources to

Overflow

QueueLast arrived packet Departures

 17

resend them again later, and then consequently resending them which may

cause congestion again at the gateway and that’s why the global synchronization

appears by such mechanisms. Figure 3.1 simply illustrates proceeding of the Tail

drop congestion control gateways.

3.2.2 – Random Drop

Another congestion control called Random Drop, which gives feedback to

the sources by dropping packets at the gateway, based on statistical situation of

the gateway.

Figure 3.2 – Random Drop, overflowing and drop order.

Unlike the Drop Tail mechanism, instead of dropping the last arrived packet, in

Random Drop a packet is selected randomly from all incoming sources arrived at

the gateway to be dropped. Consequently such packets belong to those

particular users with a probability proportional to the average rate of data

transmission [18]. Therefore, dropping packets occurs on such users whose

traffic generation is much more than those generating less traffic. In other word,

Overflow

QueueLast arrived packet Departures

Randomly drop

 18

the users who generate less amount of traffic, experience smaller amount of

packet loss. As mentioned in the reference [17], Random Drop which was

originally proposed by Van Jacobson, did not improve the congestion recovery

behavior of the gateways. And the performance was surprisingly worse than the

other corresponding mechanisms in a single gateway bottleneck. Figure 3.2

simply illustrates the behavior of the Random Drop gateway.

3.2.3 – ERD (Early Random Drop)

This mechanism of congestion avoidance has been first investigated

briefly by Hashem in [5]. In this mechanism the packets are dropped at the

gateway with a fixed drop probability once the size of the queue exceeds a

certain threshold level. Many active researchers in this regard believe that both

drop level and drop probability in ERD congestion avoidance should be adjusted

dynamically according to the network traffic of the gateway [6].

Figure 3.3 – Early Random Drop, Threshold level and fixed drop probability (P)

and drop order.

Queue

Last arrived packet

Departures

(P): Fixed Drop
Probability factor

Threshold level

 19

Hashem [5] found out with Drop Tail gateways that since packets are

dropped on queue overflow, it results decreasing the windows of these

connections at the same time. And consequently results a loss of throughput at

the gateway. Therefore, Early Random Drop gateways have better chance and

are more recommended versus Drop Tail because of their broader view of traffic

distribution. However it suffers from some disadvantages. For example, it has not

been well successful in controlling the misbehaving of the users in the way they

send data. Figure 3.3 simply illustrates the proceeding of Early Random Drop

gateway.

3.2.4 – PPD (Partial Packet Discard) and EPD (Early Packet Discard)

These congestion avoidance mechanisms are related to Cell-discard in

coexisting of ATM (Asynchronous Transfer Mode) and TCP/IP. ATM

interoperates with TCP/IP because of its popularity in a great area of

applications. Such legacy applications operating under ATM that must support

the TCP/IP protocol, are based upon TCP/IP/ATM platform [7]. ATM drives the

packets after they are decomposed into small fixed size segments named CELL.

Normally the size of a Cell running over the ATM is 53 Bytes which is consisted

of a 5-Byte header and a 48-Byte of data [3]. Then, if TCP/IP is run over ATM, all

TCP/IP packets are segmented and decomposed to such fixed size Cells. And as

stated in [7] if an ATM switch drops a cell from an arriving packet because of

overflowing the buffer, the rest of the cells belonging to the same packet whose

cell has been discarded will still transmit. Therefore after all these cells are

 20

arrived at the destination, the destination will fail while reassembling such packet

that has lost a cell belonged to. According to the TCP mechanism if a packet is

not received properly, it will be reported by a feedback and will be retransmitted.

Thus if a packet is run over such TCP/IP/ATM whose one cell is lost, it will waste

the whole remaining time of transmitting such useless packet resulting a loss of

throughput. Sally Floyd and Romanow were those who observed this

phenomenon in 1995 and then they proposed the two mechanisms named PPD

(Partial Packet Discard) and EPD (Early Packet Discard) to enhance the

efficiency of the TCP over ATM [9].

According to these congestion avoidance mechanisms, first in PPD

(Partial Packet Discard), when a cell is dropped from a switch buffer, all cells

except the last one in the arriving packet are discarded even if there is enough

room to accommodate them in the buffer. The destination uses the last cell to get

the information regarding the boundaries of the discarded packet. Therefore PPD

could eliminate the time wasting in network concerned the damaged packet;

however some parts of the damaged packet may have already been reached the

destination before dropping the discarded cell.

And second about the EPD (Early Packet Discard), if the instantaneous

size of the queue reaches a predefined threshold level, the next arriving cells will

be discarded and the entire packet will be dropped. On the other hand, in case of

overflowing the buffer while receiving the cells belonged to a packet, all

subsequent cells of the same packet will be discarded as well as in the PPD

described before.

 21

A comparison between PPD and EPD has shown that when the packet

length is short, the performance of the PPD is better than the EPD, and when the

packet length is long, the performance of the EPD which uses a predefined and

optimized threshold level is better than PPD [7].

3.2.5 – IP Source Quench

There are some different methods of congestion control mechanisms that

are being used at the high speed gateways in the Internet that send some kind of

a feedback to the senders reporting the congestion at the gateway. This is a

congestion recovery policy. IP Source Quench is one of these methods that use

such policy as described completely in [18] (RFC 1254). According to its

definition, whenever a gateway responds to congestion by dropping an arrived

packet, it sends a message to its source to notify the existing congestion at the

gateway. This message in IP Source Quench is called ICMP (Internet Control

Message Protocol). But basically the packets are not supposed to be dropped

during the normal operation of the network gateway. Thereby it is very desirable

to control the Sources before they overload the gateways.

A question is when to send an ICMP message. RFC 1254 says that

according to the experiments based on a reasonable engineering decision,

Source Quench should be applied when about half of the queue (buffer space) is

filled up. However, it could be arguable to try to find another threshold, but they

have not found it necessary yet.

 22

By the way, there are some other gateway implementations generating the

message not on the first packet discard, but after few packet discards. However it

is not recommended by the engineers as they consider it undesirable [18].

Another question is what to do when an ICMP Source Quench is received.

First, TCP or any other protocol will be informed of receiving such message.

Then it demands the TCP implementations to reduce the amount of their data

transmission rate toward the gateway.

3.2.6 – DECbit Gateway

DECbit is another method that uses a recovery policy by sending a

feedback to the sender. But instead of the message in IP Source Quench,

DECbit sends just a 1-bit feedback as a congestion indication bit which has

already been allocated in the header of the packet used to inform the sender of

existing congestion at the gateway. The congestion indication bit will be enabled

whenever the average queue length reaches normally 1 or greater than 1 after

every arriving packet, and average queue length is calculated during last “busy

+idle” period plus the current “busy” period. (The busy period means the gateway

is transmitting the packets and the idle means no transmission is in process) [6].

In order to control the congestion in DECbit, if the indication feedback bit

is enabled in at least 50% of the packets, then it means notifying the congestion.

And if it decreases the sending window by 87.5% otherwise it is increased

linearly by one packet [6], [8].

 23

As seen in this congestion control mechanism, the destination has to echo

the congestion indication bit to the source, and it means that there must be the

constraint of existing such special bit in the header of every arriving packet, and

this could be a disadvantage versus those mechanisms not requiring such

constraint.

3.2.7 – RED (Random Early Detection)

Random Early Detection (RED) is another congestion control mechanism

proposed by Sally Floyd and Van Jacobson in early 1990s [6] that the major

discussion in this work is focused on. Although it has been proposed many years

ago, nevertheless because of its efficiency and considerable throughput in

congestion avoidance at the gateways, it is still being used, however it has been

modified several times till now.

The RED mechanism is introduced in this section briefly and we will

compare it to other mechanisms mentioned earlier in this chapter, by showing its

advantages over the other mechanisms. Then it will be explained in more details

in next chapter, since it is the algorithm that we choose to implement.

The RED Gateways control the congestion by computing the average

queue size in the networks based on packet switching. It computes the average

queue size after every arriving packet at the gateway and detects the congestion

and notifies the sources by dropping arrived packets. The congestion detection in

RED mechanism is based on two threshold levels on average queue size. These

thresholds in RED are named as “Minimum Threshold Level” and “Maximum

 24

Threshold Level”. After every arriving packet, the RED gateway computes the

average queue size. Once the computed average queue size reaches the

Minimum Threshold Level, then the arrived packet may be dropped based on a

certain probability which depends on the average queue size [6]. If the average

queue size is reached or is greater than the Maximum Threshold Level, the

arrived packet will be dropped. Therefore there are three areas in computed

average queue size separated by these two thresholds as shown in figure-3.4.

Figure 3.4 – Illustrating the RED buffering mechanism.

Maximum Threshold

Minimum Threshold

Average queue size

Queue

Arriving Packet

Empty

Full

 25

Figure 3.4 illustrates three different situations regarding packet drop decision. As

long as the average queue size is below the minimum threshold level, no packet

is dropped. If average queue size is above maximum threshold level, every

arrived packet is dropped. And the major part of these areas pinpointed to, in the

RED, is while the average queue size is between minimum threshold and

maximum threshold levels. In this case average queue size is computed after

every arriving packet and then a probability “Pb” is calculated based on average

queue size and these two threshold levels, and finally it is compared to a

generated random number to decide if the arrived packet should be dropped or

not [6]. We will see that using the random number in drop decision in RED is an

important factor in drop decision.

Next section describes how the RED mechanism is chosen as a better

algorithm to implement in this work.

3.2.8 – Choosing the congestion avoidance mechanism to implement.

All congestion Avoidance mechanisms mentioned in this chapter try to

prevent the congestion in high speed gateways in their own different ways. Most

of them use large queue sizes to accommodate transient congestion while they

can not keep it at a low level after any transient congestion.

In order to guaranty that all arriving packets could be accommodated while

in transient congestion in high speed networks, it demands to provide large

buffers for the queues at the gateways, but on the other hand, large queue sizes

make large delay bandwidth problem which is undesirable for high speed

 26

networks. However, it is very important to have small instantaneous queue sizes

to eliminate the large delay bandwidth problem at high speed gateways. But any

way it is always required to guaranty the incipient or transient congestions. Thus,

by increasing the high speed networks, it is strongly necessary to have such

congestion mechanisms keeping high throughput with an average queue size as

lower as possible.

To find a better mechanism between those mechanisms explained earlier,

it is possible to compare their major advantages and/or disadvantages. For

example, for the first one, as Hashem mentions in [5], Drop Tail gateways have

fewer throughputs and are not successful at the gateways. And also as shown in

[6], the Early Random Drop (ERD) gateways (described earlier in section 3.2.3),

have a broader view of traffic distribution than the Drop Tail or Random Drop

(described in section 3.2.2), because of reducing the global synchronization.

Since packet dropping in Early Random Drop (ERD) happens by a fixed

probability when the queue is exceeded a certain threshold, therefore ERD could

have better chance to eliminate the global synchronization than the Random

Drop. But even for the ERD gateways, Zhang has used this mechanism in

simulations [6], [12]. In these simulations, when the queue exceeds the half of

the queue size, then the gateway drops the arrived packets with the probability of

0.02. Then Zhang has shown that the ERD gateways were not successful in

controlling the congestion at the gateways, because of unavoidable some

misbehaving users.

 27

Considering the PPD (Partial Packet Discard) and EPD (Early Packet

Discard) mechanisms that have control on the cell portions of the arriving

packets (described in section 3.2.4), each of them suffers from a lack of proper

decision regarding the size of the arriving packets, because the PPD gateways

suffer from lower performance on arriving larger packets and the EPD gateways

from smaller packets.

And also about the IP Source Quench and DECbit mechanisms discussed

in sections 3.2.5 and 3.2.6, both of them use a message to send the source as a

feedback notifying the situation, regarding the existing of congestion at the

gateway. Although there is a difference between them concerned to the fixed

threshold level which in IP source Quench is compared to the instantaneous

queue size and in DECbit, it is compare to average queue size.

IP Source quench sends the feedback to the source before the queue

reaches a predefined certain level forcing the sender to decrease its window and

before packets are dropped. First considerable point in this view is that both of

these mechanisms are able to respond only to those sources whose arrived

packets contain appropriate place or at least one bit as congestion indication bit

to support the feedback message. On the other hand, the IP Source Quench

does not respect to critical situations as well, such as incipient or transient

congestion in bursty traffic at the gateway that always happens repeatedly in high

speed networks, because it never let the queue to exceed much more than the

fixed threshold level. However the DECbit computes the average queue size to

compare with the threshold level and it is such an advantage over the other

 28

mechanisms that don’t do, to accommodate the transient congestion in the

queue. But since it uses the last (busy + idle) period plus the current busy period

to compute the average queue size, the queue size in this way could be some

times averaged over a short period of time [6]. While in high speed networks with

large buffers at the gateway, it is desirable to consider an appropriate portion of

time constant for computing the average queue size which is done in RED

gateways. However we will see later in our RED implementation, we present a

new method to compute the average queue size which is faster and easier to

implement as part of contribution in this thesis to improve the efficiency of the

RED. And there is another difference between RED and DECbit regarding the

way they use to send the feedback to the sources. In DECbit there is no relation

between the way it recognizes the existing congestion at the gateway and the

way it chooses the sources to send them a feed back message. Once a packet

arrives at the gateway whose computed average queue size is too high, then its

congestion indication bit in the header is enabled while may not be sent from one

of those sources that brought the bursty traffic. This problem has been alleviated

in RED by using the randomization method in drop decision. We will find enough

explanation regarding the RED mechanism in next chapter. The randomized

results in RED drops the packets randomly from different sources, consequently

reduces the global synchronization which happens numerously in TCP/IP

protocols.

Finally in this investigation on discussed congestion avoidance

mechanisms, the RED mechanism is recognized as a more efficient method

 29

showing a better performance to implement. Because it avoids generating global

synchronization better than the other mechanisms by accommodating the

transient congestion as well and keeping control on the average queue size to

decrease bandwidth delay.

Based on these results the RED gateway is the chosen mechanism to

implement in this work. It is introduced more clearly in next chapter which gives

us a better conceptual aspect of it.

Besides, we will see how some modifications have been proposed by

other authors concerning its improvement and what kind of the challenges its

implementation has.

Furthermore, the proposed contributions introduced and explained later in

this thesis regarding how to improve its performance especially in terms of

achieving more adequate response in high speed networks that has always been

a major problem for RED high speed gateways to implement, are interpolated in

the implementation as well.

 30

Chapter Four

RED (Random Early Detection)

 31

4.1 – Introduction

As seen in the previous chapters, one of the major problem for all the

algorithms is the global synchronization at the gateways which is due to

insufficient space in the buffer (queue) to accommodate the incipient congestion

or transient congestion. Increasing the size of the queue will not solve the

problem, because this will require a long delay for transmitting all packets in the

queue.

The solution adopted by the RED algorithm consists in calculating the

average queue size based on a low pass filter. The average queue size follows

the instantaneous queue size very slowly using a coefficient constant value

which is named as weight of the queue (w). Therefore the incipient or transient

congestion could come over and easily pass. Such a situation carrying the

temporary congestion at the gateway causes to increase significantly the

instantaneous size of the queue, but after accommodating and traversing such

burstiness of arriving packets at the gateway, it enters to a normal situation that

controls and keeps the average queue size at a low level to eliminate the big

delay bandwidth problem at the gateway.

On the other hand the RED mechanism drops the packets based on the

average queue size and a random number while the average queue size reaches

an area between two fixed thresholds level both chosen at very low levels of

average queue size in order to control and keep it around this area. This is

constitutes a property of a RED gateway.

 32

The use of a Random Number by the RED algorithm distributes the drop

decision between all the sources. Since the baud rate of the sources is different,

the high bandwidth source will not be penalized too much.

In the following section we will present the RED algorithm in details, and

we will discuss the challenges of its hardware implementation.

4.2 –RED algorithm

In the RED algorithm, the average queue size has the main role in the

calculations of the drop decision. The average queue size is calculated of every

arrived packet. Then the calculated average queue size is compared to two

threshold levels (Minimum Threshold Level and Maximum Threshold Level), as

illustrated in figure 4.1 (Min_th, Max_th).

Figure 4.1 – Illustrating detailed RED buffering mechanism.

Max_ th Min_ th

Avg

Every arriving packet is dropped
Some arriving packets
are dropped based on

Probability “Pb”

No packet is
dropped

Overflow Avg = 0

Arriving
packet

 33

If the average queue size (Avg) is below the minimum threshold level, no

packet is dropped. If the average queue size is over the maximum threshold

level, every arrived packet is dropped. And when the Avg is between the

minimum threshold and maximum threshold levels which is the special case of

the RED algorithm, the drop decision is based on the main calculations in the

algorithm explained in section 4.3.

Let us note that goal of the RED algorithm is to keep the average queue

size at a very low level in order to avoid global synchronization by dropping

packets fairly to keep the average between minimum and maximum threshold

levels. Now let’s see how the average queue size is computed in RED.

4.2.1 – Average calculation in RED

After every arrived packet at the gateway, the new average queue size is

computed through a low pass filter as shown the following formula [6].

New_Avg ⇐ (1-wq) × Old_Avg + wq × q (4.1)

It could be written and used in this form too;

New_Avg ⇐ Old_Avg + wq× (q – Old_Avg)

Where q is the instantaneous size of the stored packets in the buffer until the last

arrived packet and the wq is a fixed constant value which represents the weight

of the queue which is the main parameter of the rate in low pass filter. According

 34

to this formula the average queue size follows the queue size very slowly if wq is

chosen a small constant value. Several different cases are discussed to find a

suitable range for choosing the constant wq. It has been measured in a range of

a minimum of “0.001” and maximum “0.0042” in the case where all the packets

are of equal sizes of one k-byte at the gateway [6], in a moderate baud rate, not

at a high speed gateway. However it couldn’t be considered as a real situation in

current high speed gateways. RED algorithm is very efficient mechanism, but it

has not published complete solution in a real high speed gateway involving real

arrival packets in different sizes and gap-times. In fact, it is very proportional to

the size of the arrival packets and the baud rate in high speed gateways.

Because both could rise up the queue size very quickly while it must be

controlled before the queue overflows. Figure-4.2 shows a simulation [6] by

considering the arriving packets in equal sizes of one K-Byte.

Figure 4.2 – A one second simulation of RED receiving equal packet sizes of 1 K-

Byte each, the solid line is queue size and the dashed line is average queue size both

in terms of number of packets.

 35

As shown for “one second” period of time in this figure, the minimum

threshold has been chosen as 5 packets and the maximum threshold as 15

packets. The authors have distinguished the empty queue to compute the new

average queue size, from none empty queue. Because, when there is no packet

arrival for a long time while the stored packets in the queue are being sent from

egress port, this could empty the queue, but since there has been no packet

arrival, therefore no new average queue size has been calculated since last

packet arrival. Hence they have proposed a modification to calculate it in such

cases. In case of a packet arrives at an empty queue (i.e. q=0), then the form of

the equation (4.1) turns to the below formula:

New_Avg ⇐ (1-wq) × Old_Avg (4.2)

They modified it in [6] by calculating the new average queue size in this

case through the equation (4.3).

New_Avg ⇐ (1-wq) m × Old_Avg (4.3)

m = Idle_time / S

Where “Idle_time” is the period of the time that the gateway has not been

receiving any new packet and “S” is a typical required transmission time for a

small packet. Obviously it is an approximation that calculates almost the number

of the packets that could be sent from the gateway in this time period. Therefore

their modified average queue size in equation (4.3) tries to compensate for the

error in the calculation after an idle time period. Larger Idle_time gives larger m

 36

and larger m gives lower average queue size after Idle_time. In the next chapter

we will present a new method to deal with this problem significantly in our

implementation of the RED algorithm. This represents a contribution on the way

the calculation is done since it’s more effective and more reliable.

4.2.2 – Drop decision

The average queue size is compared to the minimum and maximum

threshold levels for the drop decision with respect to three regions described

earlier as follows:

1- (Avg ∧ Green) Keep arrived packet

2- (Avg ∧ Yellow) Drop by Probability

3- (Avg ∧ Red) Drop arrived packet

where:

Green = Avg < Min_ th

Yellow = Min_ th ≤ Avg < Max_ th

Red = Avg ≥ Max_ th

4.3 – Describing the drop decision in RED algorithm

RED algorithm tries to drop some arrived packets fairly based on the

average queue size, number of previously accommodated packets in the queue

and also randomization method to distribute the packet droppings between all

 37

sources sending packet to the gateway. And this is done by considering the

following three parameters:

1 – A probability factor “Pb”, a function of the average queue size which is

mathematically a distribution function of uniform distribution over (Min_ th

and Max_ th). Both of these levels are the boundaries for the average

queue size to be controlled in.

 In case of the average queue size between minimum threshold and

maximum threshold levels, Pb is defined as below:

If:

 Min_ th ≤ Avg < Max_ th

Then if Pth is defined as:

 Pth = (Avg - Min_th) / (Max_th - Min_th)

Thereby:

 Pth ∈ [0, 1]

Then Pb is defined as:

 Pb = Max_P × Pth (4.4)

Where:

 Pth : Distribution function over [0, (Max_th - Min_th)]

 Max_p : Maximum value for Probability Pb

Then:

 Pb = (Max_p) . (Avg - Min_th) / (Max_th - Min_th) (4.5)

 38

2 – R which is a random number in [0, 1], is the second parameter used in

RED calculation for drop decision.

 R∈ [0, 1]

3 – C which is third parameter represents a counter of the number of

arrived and enqueued packets since last drop. It determines how many packets

have been accommodated by that time. As we will see later in the algorithm, if

the counter (C) is big, then it increases the probability of drop decision as

expected to control the average queue size.

Now by considering the RED algorithm [6] which is given in figure-4.3 we

will see how these parameters are used to determine if a packet should be

dropped or not. The procedure is also shown simply through the flow chart in

figure-4.4. All steps of the algorithm from line 4 to 11 in figure-4.3 are the same

as explained before except for lines “2” and “3” which represent an initialization

step. In line 12 the RED looks for the average queue size if it is in Yellow area

(Min_ th ≤ Avg < Max_ th). There is Counter “C” in the calculation which is

initialized to “-1”. C is incremented by one after every arrived packet in this area

(line 13). And also C becomes zero once a packet is dropped in this area (lines

17 and 25 in figure-4.3). Thus, C represents the number of accommodated

packets arrived at the gateway since last drop or first entrance to this area.

After the first packet is arrived in yellow area, “C” becomes zero. Line 15

calculates probability “Pb” for every arrived packet in this area. The condition “C

> 0” in line 17 never lets to drop the first arrived packet in this area. Then, the

value of C becomes greater than zero for the subsequent arrived packets. In this

 39

case, the upcoming packet will be dropped depending on the probability Pb and

on the random number “R”.

1. Initialization:
2. Avg ⇐ 0
3. C ⇐ -1
4. for each packet arrival calculate the new average queue size “avg” :
5.
6. if the queue is nonempty then
7. Avg ⇐ Avg + w .(q – Avg)
8. else
9. m ⇐ Idle_time / S
10. Avg ⇐ Avg. (1 - w) m
11. end if
12. if Min_th ≤ Avg < Max_th then
13. increment C
14. using new “Avg“ and “C “ calculate probability ”Pb”:
15. Pb⇐ (Max_p) . [(Avg – Min_th) / (Max_th – Min_th)]
16.
17. If C >0 and C ≥ Approx[R/Pb] then
18. Drop the arrived packet
19. C ⇐ 0
20. end if
21.
22. if C=0 then
23. Random number [R] ⇐ Random[0,1]
24. end if
25.
26. else if Avg ≥ Max_th then
27. Drop the arrived packet
28. C ⇐ 0
29. else C ⇐ -1
30.
31. end if
32.
33. when queue becomes empty then
34. start counting the Idle_time
35. end

Figure 4.3 – Effective RED algorithm to implement.

 40

The second condition in line-17 is the main condition for the drop decision

which is verified after every arriving packet. This is a comparison between C and

the result of R divide by Pb. The random number “R” in this comparison in the

RED algorithm randomizes the final results and is used to distribute the drop

decisions fairly between all arrived packets from all sources. R gets a new

random number, once a packet is dropped in this area (line 23). And the Pb

which is calculated in equation (4.4) is directly proportional to the Avg in this

area. So in the comparison in line 17 it implies that if Pb is large (Avg is large),

then probability of drop high and could happen by less number of accommodated

packets (stored in C). Otherwise it demands to accommodate larger number of

packets (larger C).

The rest of the algorithm is when the average queue size is in Red area

(Avg ≥ Max_th) which drops every arrived packet and resets the C to zero. And

finally at the end of the algorithm, while in Green area (Avg < Max_th), the RED

does nothing except reinitializing the counter C to “-1”.

Not only all simulations presented in [6] by Floyd and Jacobson are based

on the number of packets (instead of number of bytes), but also the arriving

packets are in equal size of one K-Byte. But in the real high speed networks at

the gateways it is different. A real gateway receives packets in different sizes. On

the other hand, as notified in RED paper, it is optional to do all processes based

on the number of bytes instead. As we will see in chapter five, the

implementation of the RED algorithm in this thesis is designed and implemented

to manage the real traffic by handling different packet sizes arriving at different

 41

times. This means that our implementation accommodates random time-gaps

between packet arrivals.

Figure 4.4 – Illustrating the flow chart of the RED mechanism.

Avg = 0
C = -1

New packet arrived ?

Queue is none empty ?

Y

N

Y

N

Y

N

Y

N

Avg = (1- wq).Avg + wq.q

Min_th ≤ Avg < Max_th

Inc C

Pb = Max_p (Avg-Min_th)/(Max_th-Min_th)

Drop if [C ≥ approx(R/Pb)] and [C > 0]

Count = 0

m = Idle_time / S

Avg = (1- wq) . avg m

Avg ≥ Max_th

Mark arriving Packet
C = 0 C = -1

 42

The Min_th and Max_th must be chosen such that:

1. Min_th: must be large enough to accommodate bursty traffic

2. Max_th: must not lead to long average delay

3. rule of thumb: set Max_th at least twice Min_th

And for the constant “Max_p” in equation (4.4), it’s set to “1/50”. This value

has been found by simulations [6]. However, it could be chosen depending on

the traffic conditions and the gateway requirements. Depending on the queue

size and the threshold levels and also the weight of the queue (w), an optimized

value could be chosen for Max_p especially since the implementation of the RED

algorithm is much approximated. Therefore it is required to choose it as a

negative power of two [6]. Because if it is supposed to work in high speed

gateways, it takes long time to calculate any complex arithmetic calculation, but if

the calculation is based on powers of two, all division and multiplications could be

done simply by using shift and add operations.

Finally here we can recall some benefits and principals of RED

mechanism:

• Provides both congestion recovery and congestion avoidance

• Avoids global synchronization against bursty traffic

• Maintains an upper bound of average queue size

 43

• Works with TCP and non-TCP transport-layer protocol

• Monitors the average queue size

• Uses randomization method to distribute the congestion notification

• Accommodates both transient and longer-lived congestion

In the next chapter we will present a complete description of the

implement of the RED algorithm using FPGAs, and also introducing new

modifications to improve its efficiency.

 44

Chapter Five

New Algorithm

and

FPGA Implementation

 45

5.1 – Introduction

In this chapter, we present our new modified RED Algorithm which has

been implemented. These modifications are necessary in order to get an efficient

hardware implementation. To ensure that our enhancement preserves the

functionality of the original RED, we developed a behavioral model for both the

original RED and the modified one. Then we compared those using VHDL

simulations.

Our design targets the traffic speed of 10 Gbps. In other word, the goal of

the algorithm is to compute the final drop decision for every arrived packet and

issue the output result in the appropriate time. That means, before the actual

packet is completely received, the drop decision must have been made and

issued. This minimum time corresponds to the worst case of the reception of

small size packet.

Thus the minimum available time for our design is the time that the

smallest packet requires to be stored in the queue, starting from the edge of the

packet arrival input signal. The minimum available time determines the timings of

the design and is discussed in the next section. Figure 5.1 illustrates how

incoming packets are processed through our traffic manager, dropped or stored

in the FIFO queue and then sent to the egress port. Packets may arrive from

several sources at different speeds, and then after serializing them in the

interface they are forwarded to the FIFO queue and the traffic manager. The

traffic manager calculates the average queue size on every change in the queue

whether a new packet is arrived or a packet is sent. As we will see in our

 46

implementation, calculating the average queue size on every change in the

queue in this design is an improvement upon the regular RED algorithm that

calculates the average queue size only on every packet received.

Figure 5.1 – Arrival packets are buffered in the Interface and then are serialized

and sent to Traffic Manager in high speed rate, and then the traffic manager

decides to drop or keep each packet in FIFO queue.

Then depending on the current situation, the traffic manager decides to

drop or store the currently arrived packet in the queue. Current decision is

determined by calculating the probability factor (Pb) which is a function of the

average queue size (Avg), a random number (R), size of the arrived packet

(Packet-Size) and some other parameters which will explain completely in the

next sections. All these calculations are based on several arithmetic operations

such as multiplication, division and powers. In order to afford these calculations

 47

in a high speed gateway it has to be done as fast as possible. That’s a major

problem of the RED algorithm if used in high speed gateways, as pointed by

Floyd in [6]. Therefore in order to decrease the calculation time, approximation

methods are used in RED implementation as well as in our design. Our design is

targeting a Virtex-II Pro device from Xilinx family. XC2VP30 device from this

family has shown better performance and throughput especially in terms of

routing delay as well as less logic delay in synthesis reports. However it could be

downloaded in Virtex_4 family devices and consequently show much more

throughput in terms of speed. The Virtex-4 is the new generation of Xilinx

products released in 2004. Our design has been downloaded into a Xilinx Virtex-

II Pro FPGA and its major features are tested. The timing reports are given later

in this chapter, and demonstrate that our implementation is able to operate up to

10 Gbps properly.

5.2 – New features

In order to implement the RED algorithm as shown in Fig. 4.3 there are

several operations that have to be executed for every packet arrival.

There are several other new features in our new modified algorithm which

make significant differences with the original RED algorithm. In our case, we

consider the number of byte rather than the number of packet to compute the

drop decision. Since, the packets are of different sizes, this allow having more

accurate calculations and hence more reliable drop decisions. Considering

different packet sizes in the algorithm would affect directly the calculation of Pb in

 48

(4.5). Because, in case of using the byte option and expecting the packets in

different sizes, the algorithm would be modified to drop the packets with a

probability proportional to the packet sizes [6]. That means if the arrived packet is

too small, it shouldn’t be dropped with the same probability as much as for the

largest arrival packet:

New_Pb ⇐Old_Pb . (Pkt_Ratio)

Where:

Pkt_Ratio = Packet_Size / Maximum_Packet_Size

Then:

Pb = (Max_p) . [(Avg - Min_th) / (Max_th - Min_th)] . (Pkt_Ratio) (5.1)

Since the design is targeting the FPGAs, implementing such high speed

algorithm encounters with more complexity in terms of speed. However this

implementation has afforded this challenge and has responded properly in 10

Gbps. In this regard special properties of the FPGAs are employed in the

implementation, like internal high speed input/output buffers, and some special

internal components. Digital Clock Managers (DCMs) as a property of the FPGAs

and provide advanced clocking capabilities to FPGA applications. DCMs can

multiply or divide the incoming clock frequency in order to synthesize a new clock

frequency. DCMs also eliminate clock skew which could improve the system

performance. Phase shifting is also another application of the DCMs, so it can

delay the incoming clock by a fraction of the clock period [13]. Thereby a global

low-skew clock is distributed in the FPGA. Delay Locked Loop (DLL) as a part of

 49

the DCM exploits a very low-skew clock from incoming clock and tries to shift the

internal low-skew clock until reaches the corresponding edge of the incoming

clock. Then it locks the low-skew clock in very few clock cycles. Consequently,

DLLs (as parts of DCM) solve a variety of common clocking issues, especially in

high performance and high speed implementations as well as in our design.

Figure 5.2 summarizes clock synthesis options of a primitive DCM of Xilinx

series. Using the CLK2X of the DCM in our implementation not only has

improved the clock-skew, but also allowed us to provide a lower frequency for the

external clock, and the duty cycle is also adjusted as well. Also we designed a

verification environment to be downloaded in the same FPGA together with the

design, in order to be able to test our design at high speed. Since the test

equipments are very expensive for this kind of application. Our test environment,

allow us to test the major features of our algorithm using the virtual packets

which generates random packets with random arrival time.

Figure 5.2 – Clock Synthesis Options in a DCM primitive.

 50

It emulates randomly the sending of the packets, since our algorithm takes

this information into account. The environment could not be configured by a ratio

of “received packet / sent packet” in order to emulate real traffic in a given

gateway.

5.3 – New modified algorithm and proposed contributions

In this section we discuss our major contributions for the RED algorithm.

5.3.1 – Impact of events for calculating the average queue size

The foremost open question on RED gateways involves determining the

optimum average queue size for maximizing throughput and minimizing delay for

various network configurations. The original RED algorithm showed that the new

average queue size is calculated on every packet arrival at the gateway. This

could cause some error in this calculation in case of no packet arrival for some

periods of time, while stored packets in the queue are being sent through egress

port. Because by sending the packets, the size of the queue is actually changed

and consequently the corresponding average queue size should be changed too.

Although by the next received packet at any later time the average queue size is

calculated based on the new instantaneous queue size at that time, but the result

is still different than the real calculation in our low pass filter algorithm. Our new

algorithm calculates the average queue size on both packet arrival and packet

sent, however it increases the complexity for the hardware implementation

considering the speed constraints.

 51

In case of both the packet arrival and the packet sent happen at the same

time, the instantaneous queue size is affected because of both of them and

stores the real current queue size in a register. In such condition the average

queue size must not be calculated twice and once is enough. Our implementation

by detecting such condition calculates the average queue size only once.

In the following, we present several simulation results in a graphical format

as shown in figures 5.3 to 5.10. They compare the original RED algorithm

(calculating the average queue size only on every packet arrival), with our

algorithm (which calculates the new average queue size on either packet arrival

or packet sent). All source codes in this thesis are written in VHDL and simulated

under ALDEC HDL Model Simulator.

These simulations are executed in different conditions by changing the

ratio of the packets sent to the incoming packets, as well as changing the weight

of the queue (w). There is an Over Drop area percentage obtained from the

simulation for each case specified in each graph. As every similar pair of the

simulations is done under the same conditions, our new algorithm demonstrates

less percentage of packet drops. Here are the constants used in these

simulations;

Min_th = 8 Kbytes

Max_th = 24 Kbytes

Max_p = 1/32

 52

0

10000

20000

30000

40000

50000

60000

70000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Original RED)
W = 0.004
Ratio of sent/Arrive = 1/4
Drop area = 36.39%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.3 – Simulation result of Original RED algorithm with “w = 0.004” and ratio
of “Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 36.39% in terms
of percentage of the time).

0

10000

20000

30000

40000

50000

60000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt arrive & Pkt sent)
W = 0.004
Ratio of sent/Arrive = 1/4
Drop area = 33.80%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.4 – Simulation result of modified RED algorithm calculating the average
queue size on both packet arrival and packet sent, with “w = 0.004” and ratio of
“Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 33.80% in terms of
percentage of the time).

 53

0

20000

40000

60000

80000

100000

120000

140000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt Arrive only)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 67.49%

Max_th

Bytes

Time: us

queue

Avg

Drop

Figure 5.5 – Simulation result of Original RED algorithm with “w = 0.002” and ratio
of “Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 67.49% in terms
of percentage of the time).

0

20000

40000

60000

80000

100000

120000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt arrive & Pkt sent)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 66.62%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.6 – Simulation result of modified RED algorithm calculating the average
queue size on both packet arrival and packet sent, with “w = 0.002” and ratio of
“Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 66.62% in terms of
percentage of the time).

 54

0
10000
20000

30000
40000
50000
60000
70000

80000
90000

100000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt Arrive only)
W = 0.002
Ratio of sent/Arrive = 1/4
Drop area = 34.03%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.7 – Simulation result of Original RED algorithm with “w = 0.002” and ratio
of “Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 34.03% in terms
of percentage of the time).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt arrive & Pkt sent)
W = 0.002
Ratio of sent/Arrive = 1/4
Drop area = 34.04%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.8 – Simulation result of modified RED algorithm calculating the average
queue size on both packet arrival and packet sent, with “w = 0.002” and ratio of
“Packet sent / Packet arrive” = ¼ , (obtained Over-Drop rate = 34.04% in terms of
percentage of the time).

 55

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

queue Avg Drop LPF (Original RED)
W = 0.004
Ratio of sent/Arrive = 1/8
Drop area = 63.58%

queue

Avg

Drop
Max_th

Time: us

Bytes

Figure 5.9 – Simulation result of Original RED algorithm with “w = 0.004” and ratio
of “Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 63.58% in terms
of percentage of the time).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

queue Avg Drop LPF (Avg on Pkt Arrive & Pkt Sent)
W = 0.004
Ratio of sent/Arrive = 1/8
Drop area = 60.35%queue

Avg

Drop
Max_th

Time: us

Bytes

Figure 5.10 – Simulation result of modified RED algorithm calculating the average
queue size on both packet arrival and packet sent, with “w = 0.004” and ratio of
“Packet sent / Packet arrive” = 1/8 , (obtained Over-Drop rate = 60.35% in terms of
percentage of the time).

A summary of these results are presented in Table-5.1.

 56

Table 5.1 – This table gives the abstract results of the simulations on both original
RED algorithm and our modified algorithm which calculates the average queue size
on every arrival packet as well as on every sent packet, showing the improvement on
Drop area.

Conditions
Drop %

Original RED
Avg affected on:

Only Arrival

Drop %
Modified RED

Avg affected on:
Arrival & Sent

Improvement of
Drop %

Sent/Arrive = 1/8

W=0.004

63.58 60.35 + 3.23

Sent/Arrive = 1/8

W=0.002

67.49 66.62 + 0.87

Sent/Arrive = 1/4

W=0.002

34.03 34.04 - 0.01

Sent/Arrive = 1/4

W=0.004

36.39 33.80 + 2.59

5.3.2 –SODA method to resolve the empty queue problem in RED

We are focusing on cases when there is congestion and it happens

whenever the flow of incoming packets is more than outgoing packets. And we

are interested in dropping as few packets as possible in congestion periods.

Especially, it is much more important when the congestion is very big. So, our

investigations are based on where the ratio of the packets sent to the received

packets is small (less than “1”).

We proposed the Stepped Over Drop Avoidance (SODA) method in this

thesis which is a modified version of Low Pass Filter/ Over Drop Avoidance

 57

(LPF/ODA) mechanism given in [15]. The LPF/ODA discusses the compensation

of the excessive packets drop after a long term congestion at the RED gateways.

In the RED algorithm, the average queue size does not follow the instantaneous

queue size as long as no packet arrives at the gateway. In other words, in such

cases after long term congestion if no packet arrives at the gateway for a while,

some queued packets in the buffer could have been sent meanwhile. And this

causes to free up lots of spaces in the queue and make it ready to accommodate

some new packets. On the other hand, since the RED algorithm calculates the

average queue size only each time a packet arrives at the gateway, thus, the

queue would have contained few packets or even have become almost empty.

This is while the average queue size register, keeps a big wrong value since the

last arrived packet after long term congestion, because the average queue size

does not follow the instantaneous queue size on every sent packet. And

consequently it does not let the buffer to accommodate new packets after a

congestion term until the average queue size is decreased to below the

maximum threshold level. In other words, the average queue size has been

unnecessarily a large value for a while after long term congestion, causing to

drop some packets excessively.

RED gateways in case of no packet arrival do not resolve this problem

unless the queue becomes empty (zero). Floyd and Jacobson’s method

compensates or modifies some what the obtained error in the average queue

size as the result of the empty queue problem in RED algorithm [6]. It is done by

calculating the new average queue size through (4.3) described in section 4.2.1

 58

when a packet arrives at the gateway with empty queue. In order to avoid

excessive packets dropping in this regard, a proposed algorithm named

“LPF/ODA” algorithm [15], has stated that how well the original RED algorithm

has satisfied the quick response to the end of the long term congestion. It shows

that the original LPF of the RED algorithm satisfies accommodating the short

term congestion as well. But for quickly response to the end of the long term

congestion in order to avoid dropping of excessive packets, it does not satisfy

this requirement very well. Because;

1- The Original RED attempts to modify the average queue size only after

queue becomes zero. While there are many opportunities to

compensate this error before the queue gets empty.

2- The proposed formula to compensate the error is too big and complex

to quickly calculate and respond especially for high speed networks.

Bing and Mohammed in LPF/ODA [15] have proposed an algorithm to

reduce the excessive packets dropping. They do that by halving the average

queue size on every packet arrival after a long-term congestion, if the average

queue size is above minimum threshold level (Min_th). They consider the end of

the Long-term congestion if the instantaneous queue length being at a “low level”

for a considerable period of time that average queue length is above minimum

threshold level (Min_th). During this long-term congestion the average queue

length is calculated by LPF of RED using (4.1), and after long-term congestion is

 59

gone and the Avg is greater than Min_th, it will be halved. Figure 5.11 shows the

pseudo code for LPF/ODA algorithm [15].

1. for each packet arrival:
2. if long term congestion then
3. Avg ⇐ (1-w) . Avg + w.q
4. else
5. if Avg ≥ Min_th then
6. Avg ⇐ 0.5 Avg
7. else
8. Avg ⇐ (1-w) . Avg + w.q
9. end if
10. end if
11. end

Figure 5.11 – Pseudo code for LPF/ODA algorithm.

As stated in LPF/ODA, it waits for a considerable time period after long

term congestion. It means that any way, while detecting the end of congestion, it

does let the gateway to continue excessive packets dropping, and then it halves

the Avg. This clearly implies that eliminating such wasting of this considerable

time period, could achieve higher throughput by less excessive packet dropping.

We have modified this algorithm by breaking down this period of time into several

smaller steps instead. We called this method as Stepped Over Drop Avoidance

(SODA). However, both LPF/ODA algorithm and our SODA algorithm, have less

complexity in terms of calculating the average queue size after long term

congestion, versus the complex formula in original RED algorithm. This algorithm

tries to follow the average queue length so that if the instantaneous queue length

is less than a predefined fraction of the average queue size, and if the Avg is

above Min_th, then it decreases the Avg as this amount of fraction. Since the

 60

implementation is using approximation, the fraction of Avg could be based on a

negative power of “2” which simplifies the divide calculation by using a shift

instruction instead. LPF/ODA halves the Avg on such events, thus, the fraction in

LPF/ODA algorithm is (2-1), or one half (½) the Avg. But our SODA algorithm is

flexible in choosing the number of the steps to break this long step down to

smaller steps. Regarding the step resolution, number of steps in this algorithm

could be “4”, “8” or “16” and etc., since these are negative powers of two. But we

should note that, as the number of the steps gets larger and larger (i.e. makes

very smaller steps), it will not necessarily affects much more on excessive

packets dropping. Most of our SODA simulations are executed upon splitting this

area to 8 steps, or using the fraction of (1/8 = 2-3) and it has responded

appropriately well. Although, our new algorithm calculates the new average

queue length on every packet, whether it is incoming or outgoing. Our proposed

modified algorithm for avoiding excessive packets drop is shown in Figure – 5.12,

where “Steps” is the number of steps chosen used for step resolution which is a

power of two. In our simulations the step resolution is (1/8 = 2-3) or the number of

states is “8”.

1. for each packet arrival or packet sent do:
2. if (Avg > Min_th) and (q < (Avg – (Avg/Steps))) then
3. Avg ⇐Avg – (Avg / Steps)
4. else
5. Avg ⇐ (1-w) . Avg + w.q
6. end if
7. end do

Figure 5.12 – Pseudo code for SODA algorithm.

 61

 The simulations have shown considerable improvement on avoiding

excessive packets drop as shown in Figures 5.13, 5.14 and 5.15. These

simulations, shown in these three figures show a comparison between the three

mentioned algorithms, original LPF of the RED, LPF/ODA, and SODA algorithms.

All of them are simulated using the same conditions. They show the improvement

getting better and better in terms of less excessive packets drop by measuring

the percentage of the drop area in each case excluding the incipient congestion.

For all cases, the conditions and values for constant parameters are as following;

W = 0.002 “mostly recommended by Floyd in [6]”

Congestion Factor = ~¼ “ratio of departing packets to arrivals”

Max_p = 1/32 = 2-5

Max_th = 24 KB

Min_th = 8 KB

0

20000

40000

60000

80000

100000

120000

1 501 1001 1501 2001 2501 3001 3501 4001Time: us

bytes

LPF (Original RED)
W = 0.002
Ratio of Sent/Arrive = 1/4
Drop area = 57.20%

Max_th

Min th

queue

Avg

Excessive
Drops

Figure 5.13 – Simulation result of Original RED algorithm, with “w = 0.002” and
ratio of “Packet sent/Packet arrive” = ¼, showing more excessive packets drop with
higher percentage of drop area versus LPF/ODA and SODA algorithms.

 62

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 501 1001 1501 2001 2501 3001 3501 4001Time: us

(bytes) ODA / LPF
W = 0.002
Ratio of Sent/Arrive = 1/4
Drop area = 55.28%

Max_th

Min_th

queue

Avg

Excessive
Drops

Figure 5.14 – Simulation result of LPF/ODA RED algorithm, with “w = 0.002” and
ratio of “Packet sent/Packet arrive” = ¼, showing a sample time of excessive packets
drop with normal percentage of drop area versus Original RED and SODA
algorithms.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 501 1001 1501 2001 2501 3001 3501 4001Time: us

bytes SODA
W = 0.002
Ratio of Sent/Arrive = 1/4
Drop area = 52.23%

Max_th

Min_th

Excessive
Drops

queue

Avg

Figure 5.15 – Simulation result of SODA algorithm, with “w = 0.002” and ratio of
“Packet sent/Packet arrive” = ¼, showing less excessive packets drop with less
percentage of drop area versus Original RED and LPF/ODA algorithms.

 63

A survey on the above figures indicates that after incipient congestion

SODA has shown much better performance. It is improved in terms of

percentage of drop area, maximum pick of instantaneous queue length which is

directly concerned with the delay for packets transferring through the gateway.

Also, if we look carefully to these three graphs, we will find that the LPF and

LPF/ODA are experiencing two to three long term congestions after incipient

congestion in the same similar time period for all cases. But the SODA algorithm

shows its activity by larger number of shorter term congestions. And this implies

better distribution of the congestion between all sources sending packets to the

gateway, and consequently resulting less global synchronization. Table 5.2 gives

briefly a better comparison between these results.

Table 5.2 – Comparison between the simulation results of the Original RED
algorithm, LPF/ODA, and our final modified SODA algorithm which is using our
Stepped Over Drop Avoidance and calculating the average queue size on both
arrival and sent packets in three cases shown in figures 5.13, 5.14 and 5.15. The
simulations are executed under the same conditions in 4 ms time period and with the
weight of the queue “w = 0.002” and the ratio of sending Packets to the arriving
Packets as the congestion factor is “1/4”.

Results:

Algorithms:

Drop % Max q_Size(KB)
(Delay concern)

Congestion terms
(More Drop distribution,

Less global Synch.)

Original RED

57.20 60 2

RED LPF/ODA

55.28 65 3

RED (SODA)

52.23 45 7

 64

The next three simulations shown in Figures 5.16, 5.17 and 5.18 represent

the behavior of the algorithm after a long time after incipient congestion to

exclude the slow start period.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

queue Avg Drop LPF (original RED)
W = 0.004
Ratio of sent/Arrive = 1/8
Drop area = 63.58%

queue

Avg

Drop
Max_th

Time: us

Bytes

Figure 5.16 – Simulation result of original RED algorithm, with “w = 0.004” and

ratio of Packets to the arriving Packets as the congestion factor which is “1/8”.

These again show a better performance for our SODA algorithm versus

other two algorithms. However the LPF/ODA algorithm sometimes reacts even

worse than original RED (LPF), like here. Table 5.3 compares them briefly.

 65

0

10000

20000

30000

40000

50000

60000

70000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

queue Avg Drop LPF/ODA
W = 0.004
Ratio of sent/Arrive = 1/8
Drop area = 65.95%

Max_th

Bytes

Time: us

queue

Avg

Drop

Figure 5.17 – Simulation result of LPF/ODA algorithm, with “w = 0.004” and ratio

of Packets to the arriving Packets as the congestion factor which is “1/8”.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

queue Avg Drop SODA
W = 0.004
Ratio of sent/Arrive = 1/8
Drop area = 60.50%

Max_th

Bytes

Time: us

queue

Avg
Drop

Figure 5.18 – Simulation result of SODA algorithm, with “w = 0.004” and ratio of
Packets to the arriving Packets as the congestion factor which is “1/8”.

 66

Table 5.3 – Comparison between the simulation results of the Original RED
algorithm, LPF/ODA, and our final modified SODA algorithm which is using our
Stepped Over Drop Avoidance and calculating the average queue size on both
arrival and sent packets in three cases shown in figures 5.16, 5.17 and 5.18. The
simulations are executed under the same conditions in “2000 us” starting a long
time after slow start or incipient congestion, with the weight of the queue “w =
0.004” and the ratio of sending Packets to the arriving Packets as the congestion
factor which is “1/8”.

Results:

Algorithms:

Drop % Max q_Size(KB)
(Delay concern)

Congestion terms
(More Drop distribution,

Less global Synch.)

Original RED

63.58 ~40 4

RED LPF/ODA

65.95 ~60 3

RED (SODA)

60.50 ~35 7

Finally we compare our complete SODA algorithm which is also affected

by both arriving and sending packets for calculating the Avg, with original RED

algorithm and other cases separately. Each of the other cases is using only one

property of our contributions. Then there are four simulation results shown in

Figures 5.19 through 5.22. First one is the LPF of the original RED algorithm,

second is the LPF of the RED algorithm but calculating the average queue length

on arriving and sending packets, third one is using only our stepped over drop

avoidance (SODA) method, and the last one is our final modified RED algorithm

using both methods; SODA, and calculating the average queue length on both

arriving and sending packets. All are executed under the same conditions as the

previous simulations with the same constants and initialization.

 67

0

20000

40000

60000

80000

100000

120000

140000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt Arrive only)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 67.49%

Max_th

Bytes

Time: us

queue

Avg

Drop

Figure 5.19 – Simulation result of LPF algorithm of original RED, with “w = 0.002”
and the ratio of sending Packets to the arriving Packets as the congestion factor
which is “1/8”.

0

20000

40000

60000

80000

100000

120000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop LPF (Avg on Pkt arrive & Pkt sent)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 66.62%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.20 – Simulation result of the LPF algorithm of RED with calculating the
average queue length on arriving and sending packets. Weight of queue is as “w =
0.002” and the ratio of sending Packets to the arriving Packets as the congestion
factor which is “1/8”.

 68

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop SODA (Avg on Pkt arrive only)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 64.24%

Max_th

Bytes

queue

Avg

Drop

Time: us

Figure 5.21 – Simulation result of the LPF algorithm of RED using only SODA
method, with “w = 0.002” and the ratio of sending Packets to the arriving Packets as
the congestion factor which is “1/8”.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 501 1001 1501 2001 2501 3001 3501 4001

queue Avg Drop SODA (Avg on Pkt arrive & Pkt sent)
W = 0.002
Ratio of sent/Arrive = 1/8
Drop area = 60.05%

Max_th

Bytes

Time: us

queue

Avg

Drop

Figure 5.22 – Simulation result of final SODA-RED algorithm which calculates the
average queue length on arriving and sending packets. It is using SODA method.
Weight of queue is as “w = 0.002” and the ratio of sending Packets to the arriving
Packets as the congestion factor which is “1/8”.

 69

Table 5.4 shows briefly the complete comparison of these cases. As it is

seen, the performance is improved on every step versus its previous step. The

results are showing considerable improvements on all features in terms of less

excessive packets dropping area, less delay in scheduling in the buffer, and less

global synchronization because of splitting the long term congestions to several

short term congestions, and consequently distributing shorter term congestions

between the sources.

Table 5.4 – Comparison between the simulation results of the Original RED
algorithm and our modified algorithm in three cases shown in figures 5.19 to 5.22;
RED (PA, PS) which calculates the average queue size on both arriving and sending
packets; RED (SODA) which is using our Stepped Over Drop Avoidance method,
and our final modified algorithm (SODA, PA, PS) which is using our Stepped Over
Drop Avoidance method and also calculates the average queue size on arriving and
sending packets. The simulations are executed under the same conditions within
4000 us time period with weight of the queue “w = 0.002” and the ratio of sending
Packets to the arriving Packets as the congestion factor being “1/8”.

Results:

Algorithms:

Drop % Max q_Size(KB)
(Delay concern)

Congestion terms
(More Drop distribution,

Less global Synch.)

Original RED

67.49 60 2

RED (PA,PS)

66.62 45 3

RED (SODA)

64.24 44 8

RED (SODA, PA, PS)

60.05 35 11

 70

The proposed final modified RED algorithm is using stepped over drop

avoidance, and also considers both packet sent and packet arrivals to calculate

the average queue size. We call it SODA_RED algorithm. Hence, as seen in all

simulated processes in several different conditions, the SODA_RED algorithm

has always shown better performance versus other discussed algorithms. Our

modified RED algorithm has shown sufficient improvements in the simulations,

especially in terms of less packet drops, less delay in packet transfer, and

generating less global synchronization problem at the gateways.

5.3.3 – New modified algorithm

Here we propose the final modified SODA_RED algorithm to implement as

shown in Figure 5.23. Later in this chapter we will see how well this algorithm

performs especially in terms of responding in high-speed traffic.

SODA method not only has shown better performance than LPF/ODA or

original LPF of RED, its algorithm is also easier to implement compared to

extensive formula modification of empty queue problem proposed by Floyd in

RED [6].

 71

1. Initialization:
2. Avg ⇐ 0
3. C ⇐ -1
4. for each packet arrival and each packet sent calculate
5. the average queue size “avg” :
6. if (Avg > Min_th) and (q < (Avg – (Avg / Steps))) then
7. Avg ⇐ Avg – (Avg / Steps)
8. else Avg ⇐ Avg + w .(q – Avg)
9. end if
10.
11. if Min_th ≤ Avg < Max_th then
12. increment C
13. using new “Avg“ and “C “ calculate probability ”Pb”:
14. Pb⇐ (Max_p) . [(Avg – Min_th) / (Max_th – Min_th)] . (Pkt_Ratio)
15.
16. If C >0 and C ≥ Approx[R/Pb] then
17. Drop the arrived packet
18. C ⇐ 0
19. end if
20.
21. if C=0 then
22. Random number [R] ⇐ Random[0,1]
23. end if
24.
25. else if Avg ≥ Max_th then
26. Drop the arrived packet
27. C ⇐ 0
28. else C ⇐ -1
29.
30. end if

Figure 5.23 -- Final modified SODA_RED algorithm for implement.

5.4 – FPGA Implementation

This SODA_RED implementation is written in VHDL source code and has

been synthesized and implemented through ISE of Xilinx application series. It is

then downloaded into a Xilinx FPGA and some major features of the design have

been tested within the FPGA device. Hence, a required environment has been

 72

designed in VHDL, implemented and downloaded inside the same FPGA, to

perform the testing. It is expected to work in 10 Gbps gateways, and is targeting

Virtex_II Pro family devices from Xilinx FPGAs. XC2VP30, a high performance

device from this group has responded as well to our high speed implementation.

5.4.1 – Principal specifications

To be able to respond in 10 Gbps, this implementation has to execute a

complete process of the SODA_RED algorithm in relatively small time. In other

words, the drop decision on an arrived packet must be done in minimum

available time before the next packet arrives at the gateway (worst case). This

minimum available time is determined by minimum size of the arriving packets at

the gateway. However, the required time for the external interface to scan the

result must be taken into account. Packets may arrive at the gateway in different

sizes with different gap-times between them. The worst case is when the

gateway is receiving packets with smallest size and zero ns gap-time between

them. According to the FDE (Full Duplex Ethernet) in [14] the minimum and

maximum standard packet sizes are 72-Bytes and 1526-Bytes. However, since

the 8-Bytes for the introduction (7-byte), and SFD (Start Frame Delimiter) field (1-

byte) of the header for each packet are automatically generated by the recipient

[14], then we consider the worse case as being the arrival packets with even less

size. Then for our implementation, the expected range of packet sizes is;

Minimum packet size = 72 – 8 = 64 Bytes (5.1)

Maximum packet size = 1526 – 8 = 1518 Bytes (5.2)

 73

If we call the minimum available time as “T_Cycle” for a complete cycle,

then our 10 Gbps traffic manager is calculated as followed. Keep in mind that

each complete cycle in this design (T_Cycle) is divided into eight stages (S0 ~

S7), thus the given clock period (T) determines the required input clock:

T_Cycle = 64 Bytes / (10 G. bits per second)

T_Cycle = 512 bits / (1010 bits / 109 ns)

T_Cycle = 512 bits / 10 bit/ns = 51.2 ns (5.3)

T = T_Cycle / 8 = 6.4 ns (5.4)

F(Clock) = 1/6.4 ns = 156.25 MHz (5.5)

In section 5.2 we discussed how we employed the DLL (Delayed Locked

Loop) ,an internal property of advanced FPGAs, in our implementation. This

improved clock skew, adjusted Duty-Cycle and CLK2X properties are utilized in

our design. Therefore, required external clock to FPGA is half the frequency we

calculated in (5.5), and thus, a 78.125 MHz external clock would be sufficient.

 The complete cycle in this implementation could not be pipelined, due to

different packet sizes and gap-times. Unfortunately, we cannot expect every

arriving packet start at specified times, and as such; this makes our high-speed

implementation more challenging. But at least by generating the stages (S0 ~ S7)

in the controller unit, we can register the results of each stage to be used for any

other stage if applicable. Figure-5.24 shows input signals such as; clock

specifications, generated stage-pulses (S0 ~ S7) by controller, Packet-Arrive

signal, Reset and the outputs Drop and PA-acknowledgment.

 74

Figure 5.24 -- Clock, stage-pulses and some timing controls for SODA_RED.

Inputs to the system are two 16-bit vectors as PA_Size (Packet Arrive

Size) and PS_Size (Packet Sent Size) which carry the size of the packets arrived

or sent at the gateway, as well as PA and PS signals to inform the traffic

manager about any incoming or outgoing packet, the Clock, the Reset, and a 2-

bit width “W” which referring to four levels for weight of queue.

The system has been designed so that the weight of queue could be

initialized flexibly through four fixed and predefined values. These fixed values for

W are “2-9 =0.002, 2-8 =0.004, 2-7 =0.008 and 2-6 =0.016”. The inputs PA_Size

 75

and PS_Size are 16-bit width, and since the maximum expected size of arrival

packets is 1518 bytes, it covers the packet size width.

Outputs from the system are PA_Ack (Packet Arrive Acknowledge),

PS_Ack (Packet sent Acknowledge), Drop (the main drop decision output signal

to be used by the gateway) and the Valid_Drop signal to validate the final Drop

decision for external devices waiting for decision.

General block diagram of our final SODA_RED algorithm to implement is

designed as shown in figure-5.25.

The constant values used in the implementation are defined in following:

Min_th = 8 KB (8192 bytes) (5.6)

Max_th = 24 KB (24576 bytes) (5.7)

Max_p = 1/32 (2-5) (5.8)

Compute
q

PSS
Reg

B-2

(Controller)

B-3

(Calculate)

R/Pb
B-5

(Comparator) Avg ≥ Max_th

Min_th ≤ Avg < Max_th
B-6 Avg < Min_th

(Random #)

R
B-4

(Counter)

C
B-7

(DMU)

Decision
Maker
Unit

B-8

PAS
Reg

S_ODA

LPF

Avg

Avg
Min_th
Max_th

R/Pb

S0 .. S7

R

C

Avg

q

PA_Size

 16
PA

PS_Size

 16
PS

Clock

Reset

W 2

Drop

Valid
Drop

PA_Ack

PS_Ack

(Average calculator)

B-1

S0 .. S7

(Queue calculator)

Figure 5.25 - General block diagram of the new modified SODA_RED

 76

5.4.2 – Random pattern generator

There are several different methods to generate required random numbers

for our algorithm. For example, Floyd in [6] has suggested a LUT (Look Up

Table). For this design we designed a random number generator that generates

a series of wide area random numbers. We employed two different standard

mechanisms to generate the random pattern called CA (Cellular Automaton) and

LFSR (Linear Feedback Shift Register) [16]. Each is consisted of several Flip-

Flops which could be connected all together in series through any arbitrary

number of feedbacks between them. Number of embedded Flip-Flops in them

determines the bit-width of the generated random pattern. The constraint in each

method is the flexibility of each number and the kind of arbitrary feedbacks

between them determines its efficiency. The efficiency here for the generated

random numbers depends on maximum coverage of all existing numbers

belonging to the bit-width of the pattern generator. Although it is hard to obtain

very large throughput, we mixed both of these methods heuristically together and

found an appropriate topology to make a well efficient form of feedbacks between

the Flip-Flops. The width of our designed pattern generator is 14-bit and its

coverage of generated pattern determined in simulation is 15,890 (out of 214 =

16384). This is 97% coverage of the total area of our 14-bit pattern generator.

And that is indeed large enough to utilize for our calculations in the algorithm.

The same pattern generator has been used to generate pseudo packet sizes and

gap-times for verification in simulations through our designed environment.

 77

5.4.3 – Design and Implementation of basic elements

Implementing the probability Pb Calculation in (5.1) and after that

implementing the result of R/Pb division is the most important part of the design.

These calculations are too large for high speed RED gateway and comprise of

the difficult critical paths in hardware implementation. Therefore, eliminating such

long path in the design is very effective to obtain the speed requirements for the

implementation. However the original RED [6] has not considered the variety of

arrival packets in terms of size, and the suggested implementation does not

operate on byte option. Suggested approach is a method to calculate the Pb

using two constants “C1” and “C2” and reformulating equation (4.5) as below:

C1 = Max_P / (Max_th - Min_th)

C2 = C1 × Min_th

Pb = C1 × Avg – C2

By interpolating the effect of Pkt_Ratio of (5.1) it becomes;

Pb = (Pkt_Ratio) × (C1 × Avg – C2)

Calculating the above equation encounters with very small floating point

numbers. Because considering the expected range of constants Max_P, Max_th,

and Min_th makes value for C1 as little as 2-20. Although this is appropriate

method suggested by original RED, considering 20 bits just for floating point and

 78

reserving some extra places for total calculation, it demands large hardware. It is

considerably more difficult when the effect of variety in packet size is interpolated

and it can add about 6-bits to floating point width.

We have proposed a more effective method to address this problem. As

mentioned in [6] for RED implementation, all results of multiplications, divisions

and powers are approximated to their closest power of “2”. Then, all operations

are replaced by shift instructions. Instead, we compromise with a maximum error

of 25% in results of calculations. Reason being, in worst-case scenario in related

range, the calculated result is something between the maximum and half the

maximum values. Therefore, the concept of binary based approximation is based

on “catch on the closest power of 2” which is given in original RED

implementation [6]. This idea could be illustrated in Figure-5.26. This method is

used several times in our design implementation and is used as reference to all

of our approximations in the design. The illustration shows how the distributed

areas like A, B, C, etc. are assigned to their nearest power of two. The power of

“n” could be either positive or negative.

In order to produce the result of R/Pb, consider the uniform average

distribution part of equation (5.1) which is over [Min_th , Max_th]. we break down

the equation to three components. We call the Avg portion as “Avg_Ratio”.

Pb = (Max_p) . [Avg_Ratio] . (Pkt_Ratio) (5.9)

 79

Figure 5.26 – Binary based approximation determining assignment of range to

areas of A, B, C, etc.

To calculate Pb, we need to operate the binary approximation method on

all three portions. Max_p is given in (5.8). Minimum value for Packet_Ratio

according to (5.1) and (5.2) would be “64/1518 = 0.04216” (By the binary-based

2n

2n-1

2n-2

2n-3

2n-4

0

Approx. Range

A ⇒ 2n

B ⇒ 2n-1

C ⇒ 2n-2

D ⇒ 2n-3

E ⇒ 2n-4

-
-

Powers of “2’

 80

approximation, it is assigned to “2-4”). And for the Avg Ratio, if we break the area

between Min_th and Max_th as six times divide by two, then by binary-based

approximation we have waived only less than 1% error just for approximating the

smallest value in lowest area. And it’s minimal versus 25% tolerance for higher

area (like A or B in Figure-5.26). Then using the binary-based approximation

(Figure-5.26), the range for each portion of (5.9) is determined as:

Max_p = 1/32 = 2-5 (5.10)

Avg_Ratio ∈ [20 , 2-5] (5.11)

Pkt_Ratio ∈ [20 , 2-4] (5.12)

Then Pb in (5.9) would become

Pb∈ [2-5] . [20 , 2-5] . [20 , 2-4]

Or:

Pb∈ [2-5 , 2-14]

Finally we need the random number “R” previously produced by our random

pattern generator to calculate the final result for R/pb

R ∈ [0, 1]

R/pb = R / [2-5 , 2-14]

R/pb = R × [2+5 , 2+14] (5.13)

 81

Sum of the powers of “2” for equations (5.10), (5.11) and (5.12) which is

considered probability pb, could be easily produced using LUT based on binary-

based approximation. The produced sum of powers of “2” which is an integer

value between 5 and 14 will be used in (5.13). The key is, since “R/pb“ is the

result of the (R) multiplied by (14-bit pb), then R/pb could be easily obtained from

the most 5 to 14 significant bits of a 14-bit random number “R” depending on

integer value of pb. Therefore this treatment has significantly simplified the

implementation of these calculations, which have important role in dealing with

the speed constraints. This is another facet of these thesis findings in terms of

heuristic hardware minimization.

Calculating the average queue size (Avg) is done through following

formula:

Avg ⇐ (1-w) . Avg + w.q

It could be arranged as below with respect to the old and new values:

Avg ⇐ (1-w) . Avg + w.q = Avg – w . Avg + w . q

Avg(new) = Avg(old) + w . (q(new) - Avg(old)) (5.14)

Required time to produce the Avg(new) in (5.14) based on stage-time (T) is first

dependent on producing the q(new) which takes one stage-time “T” to compute.

 82

Second, it depends on subtraction and shifting as it takes another stage-time “T”

and finally in third “T” it will be added to the Avg(old).

T [Avg(new)] = T [q(new)] + T [Sub & Shift] + T [Add] = 3 Tstage (5.15)

Then, Avg takes 3 Tstage to produce. However, if we modify equation

(5.14), we could substitute “q-old + new-Packet-size” with “q-new”:

Avg(new) = Avg(old) + w . [(new-packet-size + q(old)) - Avg(old)]

 Avg(new) = Avg(old) + w . [new-packet-size + (q(old) - Avg(old))] (5.16)

 T [Avg(new)] = T [((q(old) - Avg(old))+Pkt-Size) & shift] + T [Add] = 2 Tstage (5.17)

In (5.16), we do not have to wait for Tstage to calculate qnew. Instead we can

produce the result from “(q(old) - Avg(old))”, since both parameters are already

available. The new-packet-size is also available regardless of its size being of an

arrived packet or a sent packet. That is why we have computed this two times in

the implementation separately in order to handle arrival and/or sent packet sizes.

Therefore, in first Tstage we could compute just the result of (Add & shift) and in

the second Tstage we get the final result for Avg. Thus, comparing the (5.17) by 3-

Tstage with (5.15) by 2-Tstage indicates on elimination of Avg calculation time from

“3” Tstage to ”2” Tstage.

5.4.4 – Implementation Block Diagrams

 83

The block diagram of Figure-5.25 showed a general form of total design

comprised of many smaller components. Each component or Small block

generates calculation result or required information for other stage(s). Eight

components are designed and concatenated together to execute our

SODA_RED algorithm. However number of stages in one complete cycle in our

design also consists of eight elements. However, there is no relation between

number of these components and number of stages in one complete cycle

because some components wait for more than one Tstage to complete the

process. For example, Block (B-3) is the controller unit in design, and block (B-7)

is counter controller which depends on past situation after last dropped packet

and crucial in next drop decision. Figure-5.27 illustrates block (B-2) which

contains block (B-1), because these two blocks are related in more common

connections as shown. Block (B-1) contains two separated registers for PAS

(Packet Arrival Size) and PSS (Packet sent Size). It could calculate the

instantaneous queue size in one stage (S1) by any arrived packet size whether it

is informing of arrival or sending. It is designed to handle arriving and sending

packets in the event they both happen at the same time. In stage (S0) the system

is waiting for arrival of the packet information vectors and signals. Block (B-2)

uses the new calculated queue to produce the new average queue size (Avg)

after every packet is arrived or sent. It executes the processes of equation (5.16)

to calculate the Avg of LPF (RED) before the end of second stage (S2). At the

same time, the SODA unit has produced the Avg(SODA) too which depends on

 84

the condition where appropriate Avg(new) will transfer to the Avg-Register at the

end of (S2).

Figure 5.27 -- Block diagrams for queue calculator (B-1) and Average calculator

(B-2) for SODA_RED algorithm to implement.

Blocks (B-4) and (B-5) are shown in Figure-5.28. (B-4) is a mix of LFSR

and Cellular Automaton random pattern generators as described in 5.4.2. And

Clk

PSS

R

Clk

PAS

R

Clk

q

R

MUX

q (Comparator)
Min_th
Avg
Avg – Shifted Avg

3-bit shift

AvgMU

XMUX

MUX

W for shifting Avg

“0000……..00”

 q - Avg

SODA

LPF

B-1

B-2

 q - Avg

Avg Calculator
Queue Calculator

SODA Unit

 85

block (B-5) illustrates important part of the design which is described in detail in

section 5.4.3. As described, it demonstrates how effortlessly and quick one

complex part of the design is implemented to produce the calculation for R/Pb.

Figure 5.28 -- Block diagrams for R_Pb calculator (B-5) and Random number

generator (B-4) for SODA_RED algorithm to implement.

Finally, Figure 5.29 shows the blocks (B-6) and (B-8) which gathers all

produced results through the corresponded comparators to make the final

decision for arrived packet. All these processes are done in only 6 stages starting

Ratio
(LUT)

Ratio
(LUT)

Ratio
(LUT)

Max_p

Avg

PAS

Cellular Automata
&

LFSR
(RX)

Random
Pattern

Generator

R

Shifter

“0000….00”

Clk

Reset

B-5

R/Pb Calculator

B-4

R_Pb

 86

from the beginning of (S1) to end of (S6), and it gives the chance as well to

upgrade the speed through appropriate modifications. Final Drop decision

accompanying with its Valid-Drop signal is issued with start of the last stage (S7).

Therefore, we have allocated large enough window for interfacing the external

corresponding devices to safely hand shake with arrival information or to access

issued results. This is possible since entire time for (S0) is free to arrival of input

signals, and the entire stage (S7) is standby for sampling the result by the

external device.

Figure 5.29 -- Block diagrams for Comparator (B-6) and Decision Maker Unit (B-

8) for SODA_RED algorithm to implement.

Comparator

R_Pb R/Pb

C Counter

C = 1

C > 1

C < (R/Pb)

C > (R/Pb)

Valid Drop

PA_Ack

Drop

PS_Ack

Decision Maker
Unit

(DMU)

Comparator

Avg ≥ Max_th

Min_th ≤ Avg < Max_th

 Avg < Min_th

B-6

Avg

Max_th

Min_th

B-8

 87

5.4.5 – Synthesis reports

As mentioned earlier, FPGA implementation has been aimed at Xilinx

device. VIRTEX-II PRO family devices are well known high performance FPGA

devices especially in terms of less routing delay. The XC2VP30 is chosen to

download the final bit-stream file has well satisfied the speed requirements.

Table 5.5 contains final timing summary of synthesis report obtained by XILINX-

ISE Navigator.

Table 5.5 – Timing Summary of synthesis report synthesized by Xilinx-ISE Project

Navigator.

Xilinx
Virtex II-PRO

XC2VP30
Synthesis Report Expected

Min. Clock Period (T)

6.216 ns 6.4 ns (Satisfied)

Min. Cycle Period (Tcycle)

49.728 ns 51.2 ns (Satisfied)

Max. Clock Frequency

160.875 MHz 156.25 MHz (Satisfied)

 88

Information about the area usage of the FPGA by this implementation is

given in Table-5.6. Although the gate-count usage for our implementation is very

trivial versus very large available area in XC2VP30 device, its advanced

performance is the major reason for embedding our high speed design.

Table 5.6 – HDL Synthesis report synthesized by Xilinx-ISE Project Navigator,

final summary report of area usage.

Xilinx

Virtex II-PRO
XC2VP30

area of used Units Usage

Slices

256 out of (13696) 13%

Slice FFs

188 out of (27392) < 1%

4-input LUTs

456 out of (27392) < 2%

IOBs

78 out of (416) 18%

GClks

4 out of (16) 25%

CLKDLL

1 out of (16) 6%

IOs

78 out of (676) 11%

Gate count

~ 25000 out of (3000K) 1%

 89

Chapter Six

Conclusion

 90

Conclusion

This thesis has addressed congestion control router concerns by applying

two approaches. First is investigation of congestion control and obtaining results

among several commonly used standard congestion avoidance mechanisms. In

this approach, the (RED) Random Early Detection congestion control method

was found to be the algorithm of choice for this research. Second, in the

research, in depth analysis of RED algorithm has yielded opportunities for

improvements. Several significant enhancements were presented on RED

algorithm, and improved algorithm with detailed calculations and higher

throughput was proposed more which targeted higher speed networks with a line

of 10 Gbps. Finally, presented algorithm in this thesis is implemented and

validated through Xilinx FPGAs. This research demonstrates advantages of

proposed enhanced RED algorithm. This is shown through improved high speed

gateway efficiency response, reduced Drops, distribution of long term

congestions to several shorter term congestions among all sources, less risk of

global synchronization, and reduced packet queue time.

 91

References

[1] Virtual Socket Interface Alliance- VSIA. Web Page: Fact Sheet.

[2] Van Jacobson, “Notes on using RED for Queue Management and
 Congestion Avoidance”, Network Research Group, Berkeley National
 Laboratory, Berkeley, CA 94720, NANOG 13, Dearborn, MI,
 van@ee.lbl.gov, June 8, 1998

[3] Khalid Ahmed, “Source book of ATM and IP internetworking”, IEEE press,
 ISBN: 0-471-20815-9.

[4] Crain Matsumoto, and Rick Merritt. “Analysis: FPGAs muscle in on
 ASICs”, embedded turf. EE Times, July 2000.

[5] Hashem, E., “Analysis of random drop for gateway congestion control”,
 Report LCS TR-465, Laboratory for Computer Science, MIT, Cambridge,
 MA, 1989, p.103.

[6] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for
 Congestion Avoidance”, Lawrence Berkeley Laboratory, University of
 California, floyd@ee.lbl.gov, van@ee.lbl.gov, To appear in the August
 1993 IEEE/ACM Transactions on Networking

[7] Hairong Sun_ Xinyu Zang and Kishor S_ Trivedi, fhairong_ xzang_
 kst_ee_duke_edug, “A Performance Model of Partial Packet Discard and
 Early Packet Discard Schemes in ATM Switches”, Center for Advanced
 Computing and Communications, Department of Electrical and Computer
 Engineering, Duke University, Durham_ NC 27708

[8] Justin Kutticherry U69-69-8804, Palak Patel U48-47-3644, “Random Early
 Detection”, SC 546 Fall 2001 Project

[9] A. Romanow, S. Floyd, “Dynamics of TCP Traffic over ATM
 Networks,“IEEE J –SAC. pp. 633-641, May 1995.

[10] Peterson, L. and Davie, B., Morgan Kaufmann “Congestion Control and
 Resource Allocation Lecture material” taken from “Computer Networks A
 Systems Approach”, Presented by Bob Kinicki, Third Ed. , 2003.

[11] RFC: 791, “INTERNET PROTOCOL DARPA INTERNET PROGRAM
 PROTOCOL SPECIFICATION”, prepared for Defense Advanced
 Research Projects Agency, Information Processing Techniques Office,

 92

 1400 Wilson Boulevard, Arlington, Virginia 22209, By Information
 Sciences Institute, University of Southern California, 4676 Admiralty Way,
 Marina del Rey, California 90291, September 1981

[12] Zhang, L., "A new architecture for packet switching network protocols",
 MIT/LCS /TR-455, laboratory for computer science, Massachusetts
 institute of technology, august 1989.

[13] Virtex-II PRO Platform FPGA Handbook, October 2002, Xilinx.

[14] Scott Karlin and Larry Peterson, “Maximum Packet Rates for Full-Duplex

 Ethernet”, Technical Report TR_645-02, Department of Computer
 Science, Princenton University, February 14,2002,

[15] Bing Zheng and Mohammed Atiquzzaman, “Low Pass Filter/Over Drop
 Avoidance (LPF/ODA): Int. J. Commun. Syst. 2002; 15:899-906 (DOI:
 10.1002 / dac.571), School of Computer Science, Univ. of
 Oklahoma, Norman, OK 73019, USA. 18, Oct, 2002.

[16] Katarzina Radeka, and Zeljko Zilic, “Verification by Error Modeling Using
 Testing Techniques in Hardware Verification”, Kluwer Academic
 Publishers, Boston, Concordia and Mc Gill Universities, Canada, 2003.

[17] Allison Mankin, “Random Drop Congestion Control”, The MITRE
 Corporation, 7525 Colshhe Drive, McLean, VA 22102,

mankin@gateway.mitre.org

[18] A. Mankin, MITRE, K. Ramakrishnan, “RFC (Request for Comments):
 1254”, Networking Group, Digital Equipment Corporation Editors, August
 1991

	part-1_18.pdf
	part-2_18.pdf

