Providing a Formal Linkage between MDG and
HOL Based on a Verified MDG System

A thesis submitted to Middlesex University
in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

Haiyan Xiong
School of Computing Science
Middlesex University

January 2002

Abstract

Formal verification techniques can be classified into two categories: deductive the-
orem proving and symbolic state enumeration. Each method has complementary
advantages and disadvantages. In general, theorem provers are high reliability sys-
tems. They can be applied to the expressive formalisms that are capable of model-
ing complex designs such as processors. However, theorem provers use a glass-box
approach. To complete a verification, it is necessary to understand the internal
structure in detail. The learning curve is very steep and modeling and verifying a
system is very time-consuming. In contrast, symbolic state enumeration tools use a
black-box approach. When verifying a design, the user does not need to understand
its internal structure. Their advantages are their speed and ease of use. But they
can only be used to prove relatively simple designs and the system security is much
lower than the theorem proving system. Many hybrid tools have been developed to
reap the benefits of both theorem proving systems and symbolic state enumeration
systems. Normally, the verification results from one system are translated to another
system. In other words, there is a linkage between the two systems. However, how
can we ensure that this linkage can be trusted? How can we ensure the verification

system itself is correct?

The contribution of this thesis is that we have produced a methodology which
can provide a formal linkage between a symbolic state enumeration system and a
theorem proving system based on a verified symbolic state enumeration system. The

methodology has been partly realized in two simplified versions of the MDG system

(a symbolic state enumeration system) and the HOL system (a theorem proving
system) which involves the following three steps. First, we have verified aspects of
correctness of two simplified versions of the MDG system. We have made certain that
the semantics of a program is preserved in those of its translated form. Secondly, we
have provided a formal linkage between the MDG system and the HOL system based
on importing theorems. The MDG verification results can be formally imported
into HOL to form the HOL theorems. Thirdly, we have combined the translator
correctness theorems with the importing theorems. This combination allows the low
level MDG verification results to be imported into HOL in terms of the semantics of a
high level language (MDG-HDL). We have also summarized a general method which
is used to prove the existential theorem for the specification and implementation
of the design. The feasibility of this approach has been demonstrated in a case study:

the verification of the correctness and usability theorems of a vending machine.

il

Acknowledgments

I have been very fortunate to have had Dr. Paul Curzon, Prof. Ann Blandford
and Prof. Sofiene Tahar as my supervisors. I am deeply grateful for their support
and encouragement throughout my Ph.D studies. I am most indebted to them for
the considerable amount of time they each devoted to me in my research work. I
extend my deepest thanks especially to Dr. Paul Curzon, without whose invaluable

guidance I could not have completed this work.

In this thesis, several of the chapters are based on publications that were pro-
duced in the course of this research. The papers published jointly with my supervi-
sors were all first-authored by me, and all report on my own work, completed under
their supervision [78 - 83]. The work reported in Chapter 5 realized a general idea of
Curzon and Tahar [80]: I formalized that idea in HOL. The work reported in Chap-
ter 8 takes an example that was originally developed by Curzon and Blandford [24],
and applies the approach developed within this thesis to that same example. The
MDG verification was completed with the help of Tahar. All the HOL proof is my

own work, again completed under their supervision.

I would like to thank people in the Automated Reasoning Group in Cambridge
and the MDG group in Montreal, Prof. Mike Gordon, Dr. Konrad Slind, Dr.
Michael Norrish, Joe Hurd, Dr. Richard Boulton and Prof. Tom Melham. When I

have needed help they have always lent me a hand. I have benefitted so very much

il

from their vast knowledge and insight.

I am particularly thankful to Dr. Wai Wong, who not only introduced me to

this field, but also provided a great deal of assistance.

Many thanks to Sardia, who provided fabulous administrative support, and to

Leonard, who was always available whenever I had problems with my computer.

I would like to reserve my deepest thanks for my parents for their perpetual love
and encouragement, and to my husband and my son for their sacrifices and patience.

I can never thank them enough.

Lastly, I would like to acknowledge the support obtained from the School of
Computing Science, Middlesex University and EPSRC grant GR/M45221.

Haiyan Xiong

v

Contents

Abstract
Acknowledgments

1 Introduction
1.1 The MDG System
1.2 The HOL System
1.3 Overview of the Research
1.3.1 Verifying the MDG Translators
1.3.2 The Importing Theorems

1.3.3 Combining the Translator Correctness Theorems with the Im-

porting Theorems
1.3.4 Proving the Existential Theorem

1.4 Outline of Thesis o

ii

iv

2 Literature Review

2.1 Semantic Embedding o000

2.2 Verifying Verification Systems

2.3 Verifying Compiler Correctness

2.4 Trusting Combined Systems L 0.

3 Verifying the MDG Translators for a Boolean Subset

3.1 The Syntax of the MDG-HDL Language

3.2 'The Syntax of the Core MDG-HDL Language

3.3 The Syntax of the MDG Formula Representation Program

3.4 Translating MDG-HDL into the Core MDG-HDL Language

3.5 'Translating the Core MDG-HDL Program into the MDG Formula

Representation Program

3.6 The Semantics of the MDG-HDL Program

3.7 The Semantics of the Core MDG-HDL Program

3.8 The Semantics of the MDG Formula Representation Program

3.9 Translator Correctness Theorems

4 Verifying the MDG Translator for the Extended Subset

4.1 State Transitions of the Fairisle Switch Fabric Timing Block

vi

4.2 The Syntax of the MDG-HDL Language 73

4.3 'The Syntax of the Core MDG-HDL Language 75
4.4 Compiling MDG-HDL into the Core MDG-HDL Language 76
4.5 The Semantics of the MDG-HDL Program 7
4.6 The Semantics of the Core MDG-HDL language 85
4.7 Translator Correctness Theorem 87
Importing Theorems 89
5.1 Combinational Verification 92
5.2 Sequential Verification 0000000 92
5.3 Invariant Checking. oL oo 96

Combining the Compiler Correctness Theorems with the Importing

Theorems 99

6.1 Combining the Translator Correctness Theorems with the Importing

Theorems for a Boolean Subset 102
6.1.1 Combinational Verification 102
6.1.2 Sequential Verification 105

6.2 Combining the Translator Correctness Theorem with the Importing

Theorems for an Extended Subset 111

6.2.1 Combinational Verification 111

vii

6.2.2 Sequential Verification o000 112
7 Existential Theorems 115
7.1 Existential Theorem for the Extended Subset 118
7.2 The Output Representation for the Basic MDG-HDL Components . . 119
7.3 The Output Representation for TABLE Components 121
7.4 Dealing with the Existential Quantified Internal Variables. 126
75 AnExampleo 127

8 Case Study: Verification of the Correctness and Usability Theo-
rems of a Vending Machine 131
8.1 Chocolate Machineo oL 0o 134
8.2 Proving the Chocolate Machine using the MDG System 134
8.2.1 The Implementation 136
8.2.2 The Specification oL 139
8.2.3 Three Other Specification Files 141
8.3 The Importation Process of the Verification Results 141
8.3.1 The Syntax and the Semantics of the Chocolate Machine . . . 142
8.3.2 Importing the MDG Results into HOL 146
8.4 Verification of the Usability Theorems 151

viii

Conclusions and Future Work 156

9.1 Conclusions 156
9.2 Futurework e 161
The Abstract Syntax of a Boolean Subset 174
The Abstract Syntax of an Extended Subset 177

The MDG-HDL programs of the verification of the Chocolate Ma-
chine 180

X

List of Figures

1.1 Overview of the Research 9
1.2 The AND Table 11
1.3 Overview of the MDG Translation Phases 11
1.4 The AND Gate in the MDG Formula Representation 12
1.5 The MDG Translation Phases 12
1.6 Compilation Correctness 14
1.7 Hierarchical Verification 17
1.8 The MDG Verification Process 20
2.1 The MDG Verification System 32

3.1 The Circuit Description File of Three NOT Gates and One Register . 44

3.2 The Syntax of a NOT Gate Table 46

3.3 The Abstract Syntax of a Core MDG-HDL Program 49

3.4

3.5

4.1

4.2

5.1

5.2

9.3

6.1

6.2

6.3

6.4

7.1

7.2

8.1

The Syntax of an AND Gate Table 51

Translating the MDG-HDL program into the Core MDG-HDL program 53

State Transitions of the Fairisle Switch Fabric Timing Block 72
The Behavior of the Fairisle Switch Fabric Timing Block 72
The Hierarchy of Module A 90
The Product Machine used in MDG Sequential Verification 93
The Machine Verified in Invariant Checking 96
Combining the Translator Correctness Theorems with Importing The-

orems for a Boolean Subset 100

Combining the Translator Correctness Theorems with Importing The-

orems for an Extended Subset 101

Two Equivalent Combinational Circuits 104

The Machine used for Sequential Verification of the REGNOT3M
Circuit e 108

The Output of a TABLE is a State Variable and Contains in the Input

List . . . s, 124
A Circult o 127
The Chocolate Machine 135

x1

8.2

8.3

8.4

8.5

8.6

8.7

The Circuit of the Chocolate Machine 137

The State Transition Diagram of the Chocolate Machine 139
The Abstract Syntax of the Specification File 144
The Abstract Syntax of the Implementation File 145
The Semantics of the Specification File 147
The Existential Theorem of the Specification of the Chocolate Machine149

xii

Chapter 1

Introduction

Formal methods are the application of applied mathematics - formal logic - to the
design and analysis of computer systems. Generally, formal verification techniques
can be classified into two categories: deductive theorem proving and symbolic state
enumeration. In deductive theorem proving systems, the correctness condition for
a design is represented as a theorem in a mathematical logic, and a mechanically
checked proof of this theorem is generated using a general-purpose theorem prover.
In symbolic state enumeration systems, the design being verified is represented as a
decision diagram. Techniques such as reachability analysis are used to automatically
verify given properties of the design or machine equivalence. Much of this work is
based on Binary Decision Diagrams (BDD) [4] [11].

Deductive theorem proving systems use interactive proof methods. In these
systems, an implementation and its behavioral specification are represented as first-
order or higher-order logic formulas. The user interactively constructs a formal proof
which proves a theorem stating the correctness of this implementation. Theorem
proving systems are naturally deductive process systems. They allow a hierarchical
verification method to be used to model the overall functionality of designs with

complex datapaths. They are very general in their applications. The theorems can

not only be used to formalize a specific design but also can be abstracted as a general
situation of this class of design. Theorem proving systems are semi-automated. To
complete a verification, experts with good knowledge of the internal structure of the
design are required to guide the proof searching process. This enables the designer
to gain greater insight into the system and thus achieve better designs. However,
the learning curve is very steep, modelling and verifying a system is very time-
consuming. This is the major difficulty to applying the theorem proving systems in

industry.

In contrast, symbolic state enumeration systems are automated decision dia-
gram approaches. In this kind of approach, an implementation and its behavioral
specification are represented as decision diagrams. A set of algorithms is used to
efficiently manipulate the decision diagrams so as to get the correctness results. The
introduction to the BDD based method by Hu [47] may be taken as a good refer-
ence. In contrast to the theorem prover, symbolic state enumeration verification is
a relatively modest activity. It normally deals with a single model rather than the
whole design. The symbolic state enumeration verification approach can be viewed
as a black-box approach. During the verification, the user does not need to under-
stand the internal structure of the design. The strength of this approach is its speed
and ease of use. However, it does not scale well to complex designs since it uses
non-hierarchy state-based descriptions of the design. An increase in the number of

design components can result in the state space growing exponentially.

In the 1990s, the efficiency breakthrough in symbolic state enumeration was such
that industry has successfully applied symbolic state enumeration tools in digital
circuit synthesis and verification. Since then, more and more tools have been devel-
oped including Spin [45], MDG [20], STE [72] and so on. Although they have been
very successfully used in industry, there are still many deficiencies in the currently
available symbolic state enumeration tools. Although the symbolic state enumera-
tion based tools can be applicable to circuits of considerable size, they still do not

scale up sufficiently. However, the theorem proving systems can be applied to large

designs in theory, although in practice it is time consuming. One solution is to com-
bine these two kind of systems to reap the advantages of both. This combination
allows the fully automated proof tools to rely on a theorem proving system and the

increasing size and complexity of a design can be handled in practice.

Recently, there has been a great deal of work concerned with combining the
theorem proving and symbolic state enumeration systems. A common approach
to combining proof tools is to use an symbolic state enumeration system as an
oracle to provide results to the theorem proving system. The issue in such work
is to guarantee that the results provided by external tools are theorems within the
theory of the proof system. In other words, an oracle is used to receive problems
and return answers. For example, the HOL system provides approaches for tagging
theorems that are dependent on the correctness of external verification tools. An
oracle can be built in the HOL system is viewed as a plug-in. This brings about two

questions.

1. Can we ensure the automated verification system produces the correct results?

2. Have the verification results from an automated verification system been cor-
rectly converted into a valid theorem in the current theory of the theorem

proving system?

The research describe here investigates the answers to the above two questions.
In fact, some symbolic state enumeration based systems such as MDG [20] consist
of a series of translators and a set of algorithms. Higher level languages such as
hardware description languages are used to describe the specification and imple-
mentation of the design. The specification and implementation are then translated
into the decision diagrams via intermediate languages. The algorithms in the system
are used to efficiently and automatically deal with the decision diagrams so as to
obtain the correctness results. We need to verify the translators and algorithms in
order to get the answer of the first question. For solving the second question, we

need to formally justify the correctness results, which are obtained from a symbolic

state enumeration system, into a theorem prover, to ensure the correctness of the

theorem creation process.

In this thesis, we will produce a methodology, which can provide a formal link-
age between a theorem proving system and a symbolic state enumeration system
based on a verified symbolic state enumeration system, to ensure the correctness of
the theorem creation process. We first need to verify aspects of correctness of the
symbolic state enumeration system in an interactive theorem proving system. We
then need to prove the translators and algorithms to ensure the correctness of the
system. By combining the translator correctness theorems with the importing the-
orems, the verification results from the state enumeration system can be imported
into the theorem proving system in terms of the semantics of high level language
(HDL) rather than low level language (decision graph). We also need to summarize
a general method to prove the existential theorem of the design, which is needed

for importing sequential verification result into the theorem proving system.

We will partly realize the methodology in the HOL system and two simpli-
fied versions of the MDG system. We will prove the correctness of aspects of the
simplified versions of the MDG system and provide a formal linkage between the
HOL system and the simplified versions of the MDG system. Lessons from the
research could be applicable to other related systems. We chose HOL and MDG
because this research is part of a large project in collaboration with the Hardware
Verification group at Concordia University. They are developing a hybrid system
(MDG-HOL) [54] [53] [66] which combines the MDG system and the HOL system.
Our aim is different to theirs. We are not developing a practical tool. We are do-
ing theoretical research about how to verify the MDG system and provide a formal
linkage between the HOL system and the MDG system. Our deep embedding se-
mantics is in terms of the specification of the MDG system. Since we will consider
the simplified versions of the MDG system, in the rest of this thesis, we will refer
to the simplified versions of the MDG system as ‘the MDG system’ except in the

section 1.1.

In the research, we first consider verifying the translation phases of the MDG
system using the HOL system and obtain a series of correctness theorems. By
combining those theorems, we obtain that the semantics of a low level MDG program
equals the semantics of a high level MDG-HDL program (the MDG input language).
We then consider how to formally import the MDG verification results to a form
that can be used in the HOL system. We formalize the MDG verification results
in terms of the semantics of the low level MDG program and turn them into HOL
to form the HOL theorems. By combining the translation correctness theorems
with the importing theorems, we obtain theorems which convert the low level MDG
verification results into HOL to form the HOL theorem based on the semantics of
the MDG input language. In other words, this combination allows the imported
theorem to be in terms of the semantics of the MDG-HDL. For easily importing
the MDG results into HOL for sequential verification, we summarize a general way
to prove the existential theorem (a theorem which has form: V ip. 3 op. C ip

op). All the theorems in this thesis written with Fy,, have been proved in HOL.

The structure of the rest of this chapter is as follows: In sections 1.1 and 1.2,
we will briefly introduce the MDG system and the HOL system respectively. An
overview of the research will be given in section 1.3. Finally, an outline of this thesis

will be presented in the last section.

1.1 The MDG System

The full MDG system is an automated verification tool for hardware verification. It
uses a new class of decision graphs called Multiway Decision Graphs, which subsume
the class of Bryant’s Reduced and Ordered Binary Decision Diagrams (ROBDD) [12]

while accommodating abstract sorts and uninterpreted function symbols.

A multiway decision graph (MDG) is a finite directed acyclic graph G where the

leaf nodes are labeled by formulas, the internal nodes are labeled by terms and the

edges issuing from an internal node, N, are labeled by terms of the same sort as the

label of N. Such a graph represents a formula defined inductively as follows:

1. If G consists of a single leaf node labeled by a formula P, then G represents P,

2. If G has a root node labeled A with edges labeled B;...B,, leading to subgraphs
G1'...G,', and if each G;' represents a formula P;, then G represents the formula
V1<i<n((A = Bz‘) A Pz)

In fact, when an MDG has been constructed as a graph, it must obey the restrictions
that any path from the root to leaf yields a canonical representation. Like ROBDDs,
an MDG must be reduced and ordered. Unlike ROBDDs, all the variables used in
an MDG must have appropriate sort, and sort definitions must be provided for all
functions. MDG can also represent the transition and output relations of a state
machine, as well as the set of possible initial states and the sets of states that arise

during reachability analysis.

The underlying logic of MDG is a subset of many-sorted first-order logic with a
distinction between concrete and abstract sorts. A concrete sort has an enumeration
while an abstract sort does not. Therefore, a data signal can be represented by
a single variable of abstract sort and a data operation can be represented by an
uninterpreted function symbol. It partially fulfills the aim of interactive verification
to verify hardware designs automatically at a high level of abstraction. It also lifts
many ROBDD techniques from the boolean domain to a more abstract domain. In
particular, a data signal in an MDG is represented by a single variable of abstract
sort rather than a vector of boolean variables, and the data represents an operation
by an uninterpreted function symbol. Therefore, MDGs are more compact than
ROBDDs for circuits having a datapath, and this greatly increases the range of

circuit that can be proved.

The MDG package has been implemented in Prolog. Algorithms such as disjunc-

tion, relational product (combination of conjunction and existential quantification),

6

pruning-by-subsumption (for testing of set inclusion) and reachability analysis (using
abstract implicit enumeration) have been developed. Applications for hardware veri-
fication such as combinational verification, sequential verification, invariant checking

and model checking are provided.

1.2 The HOL System

The HOL system is an LCF (Logic of Computable Functions) style proof system. It
uses higher-order logic to model and verify a system. There are two main different
proof methods: forward and backward proof. In forward proof, the steps of a proof
are implemented by applying inference rules chosen by the user, and HOL checks
that the steps are safe. All derived inference rules are built on top of a small number
of primitive inference rules. In backward proof, the user sets the desired theorem as
a goal. Small programs written in SML [65] called tactics and tacticals are applied
to breaking the goal into a list of subgoals. Tactics and tacticals are repeatedly
applied to the subgoals until they can be resolved. A justification function is also
created mapping a list of theorems corresponding to subgoals to a theorem that
solves the goal. In practice, forward proof is often used within backward proof to

convert each goal’s assumptions to a suitable form.

Theorems in the HOL system are represented by values of the ML abstract type
thm. There is no way to construct a theorem except by carrying out a proof based on
the primitive inference rules and axioms. More complex inference rules and tactics
must ultimately call a series of primitive rules to do the work. In this way, the ML
type system protects the HOL logic from the arbitrary construction of a theorem,
so that every computed value of the type-representing theorem is a theorem. The

user can have a great deal of confidence in the results of the system.

HOL has a rudimentary library facility which enable theories to be shared. This

provides a file structure and documentation format for self contained HOL devel-

opments. Many basic reasoners are given as libraries such as mesonLib, simpLib,
decisionLib and bossLib. These libraries integrate rewriting, conversion and deci-
sion procedures that automate a proof. They free the user from performing low-level

proof.

1.3 Overview of the Research

The intention of our research is to explore a way of increasing the degree of trust
of the MDG system and provide a formal linkage between the HOL system and the
MDG system as shown in Figure 1.1. This work can be divided into three steps. (a)
We must verify the correctness of the MDG system using the HOL system. It con-
sists of two phases—(1) verification of the translators [82] and (2) verification of the
algorithms. (b) We then must prove theorems (step 3 in Figure 1.1), which formally
convert the verification results of different MDG applications into the traditional
HOL hardware verification theorems [80]. (c) By combining the correctness theo-
rems (theorems obtain from step 1, 2 in Figure 1.1) of the verification of the MDG
system with the importing theorems (theorems obtain from step 3 in Figure 1.1),
the MDG verification results can be imported into HOL in terms of the MDG input

language.

During this study, we concentrate on the verification of the translation phase of
the MDG system (step 1, Figure 1.1) using the HOL theorem prover and importing
the MDG results into HOL to form the HOL theorems (step 3, Figure 1.1) [80]. Step
2 is similar to Chou and Peled’s work [17] which verifies a partial-order reduction
technique for model checking. Verifying the algorithms is beyond the scope of this
thesis, as we are primarily concerned with the linkage and how it could be combined
with the correctness theorems and importing theorems. We outline the methodol-
ogy of the whole story and emphasize the importation process of the hybrid system.
We not only verify the correctness of aspects of the MDG system in HOL, but also
formally import the MDG results into HOL to form the HOL theorems based on the

(MDG_HDL j

1
— - — - Verify thetrandator
(MDG decision graphs)
2.
MDG verif. agorithms)— - — —| Verify the dgorithms

)

(Results (Yes/No) j

3

_ _ _ 1 Veify the conversion

(Trajiti onal HOL theoremsj

Figure 1.1: Overview of the Research

semantics of the high level MDG input language (MDG-HDL) [86] rather than the
semantics of the low level language. Since we use a deep embedding semantics, the
translator correctness theorems can be combined with other translator correctness
theorems and the importing theorems. These combinations allow the low level MDG
results to be converted into a form that can be easily reasoned about in HOL based
on the semantics of MDG-HDL. We also summarize the general method about prov-
ing the existential theorem to remove the burden from the user of the combined
system. This theorem is needed for importing sequential verification result into the

theorem proving system.

In the remainder of this section, we will briefly introduce the individual steps
that we have undertaken: verifying the translator correctness theorems, proving the
general importing theorems, combining the translator correctness theorems with
the importing theorems on the basis of deep embedding semantics and proving
the existential theorem. These will each be considered in detail in subsequent

chapters.

1.3.1 Verifying the MDG Translators

The input language of the MDG system is a Prolog-style hardware description lan-
guage (MDG-HDL) [86], which allows the use of abstract variables for representing
data signals. It supports structural specification, behavioral specification or a mix-
ture of both. A structural specification is usually a netlist of components connected
by signals, and a behavioral specification is given by a tabular representation of
transition/output relations or a truth table. In MDG, a circuit description file de-
clares signals and their sort assignment, components network, outputs, initial values
for sequential verification and the mapping between state variables and next state
variables. In the components network, there is a large set of predefined components
such as logic gates, flip-flops, registers and constants, etc. Among the predefined
components there is a special component called a Table, which is used to describe
a functional block in the implementation and specification. The Table constructor
is similar to a truth table, but allows first-order terms in rows. It also allows the
high-level description to construct ITE (If-Then-Else) formulas and CASE formulas.
A table is essentially a series of lists, together with a single final default value. The
first list contains variables and cross-terms. The last element of the list is the output
of the table which must be a variable (either concrete or abstract). For example,
a two input AND gate can be described as the table as shown in Figure 1.2. In the

“*” means “don’t care”. It states that if x1 is equal to false and x2 is DON’T

figure,
CARE then the output y is equal to false, if x1 is equal to true and x2 is equal to

false then the output y is equal to false, otherwise the output y is equal to true.

Most of the components in the MDG-HDL library are compiled into their own
core MDG-HDL code (tabular codes) first. The core MDG-HDL program can then
be compiled into an internal MDG decision graphs (MDGs). Some components, such
as registers, are implemented directly in terms of MDGs. However, in theory these
components also could be implemented as tables to provide general specification
mechanism. We assume the MDG-HDL program is firstly translated into a core

MDG-HDL program and then the core MDG-HDL program is translated into MDG.

10

Table([[x1,x2,y], [0, *, 0], [1, 0, 0]| 1])

INPUTS OUTPUT
|
x1 E X2 y
|
IF I
F | * F

|
T | F F
I
ELSE
-
(@) AND gate table in MDG-HDL and core MDG-HDL
Figure 1.2: The AND Table
MDH-HDL —&) = core MDG-HDL —@ MDG decision graphs

Figure 1.3: Overview of the MDG Translation Phases

In this situation, the MDG system could be specified as in Figure 1.3.

Because the Table constructor allows the high-level description to construct ITE
formulas and CASE formulas, the possible input value of the else condition is not
listed in the table of the core MDG-HDL. For example, the possible input value for
the else condition of the AND gate table should be that if x1 is equal to true and x2
is equal to true then the output y is equal to true. It is not contained in the table.
However, an internal MDG decision graph is determined in terms of all possible
input value of its table which could be represented as a formula representation.
Therefore, the MDG system translates the core MDG-HDL program into its formula
representation first. In the MDG formula representation program, the table not only
contains the input value of the if condition, it also contains the possible input value
of the else condition. For example, an AND gate can be described as shown in the

Figure 1.4.

11

INPUTS OUTPUT

[}
I
x1 ! X2 y
|
IF |
F | * F

I
T : F F
I
|
I
ELSE T : . .
I

Figure 1.4: The AND Gate in the MDG Formula Representation

MDH—HDL$ core MDG—HDL$ MDG formula representation& MDG decision graphs

Figure 1.5: The MDG Translation Phases

In other words, the step (2) in Figure 1.3 could be further divided into two steps.
The core MDG-HDL program is translated into the MDG formula representation
first and the MDG formula representation program can then be translated into
an internal MDG decision graph. Now, the MDG system could be specified as in
Figure 1.5.

Adopting this approach makes the translation phase more amenable to verifica-
tion. We are not verifying the actual MDG implementation. Rather our formaliza-
tion of the translator is a specification of it. Once combined with a translator from
core MDG-HDL to MDGs, it would be specifying the output required from the im-
plementation. This would be used as the basis for verifying such an implementation.
Effectively we split the problem of verifying the translator into the two problems
of verifying that the implementation meets a functional specification, and that the
functional specification then meets the requirement of preserving semantics. We are
concerned with the latter step here. This split between implementation correctness
and specification correctness was advocated by Chirica and Martin [16] with respect

to compiler correctness.

12

In our research, we intend to verify the translation phase of the MDG system
(Figure 1.5) based on the semantics of the MDG input language using the HOL
theorem prover. As we mentioned above, the MDG system can be considered as a
series of translators, translating between different intermediate languages, as shown
in Figure 1.6. The verification process includes the following steps. Firstly, the
syntax and the semantics of the subset MDG-HDL, core MDG-HDL, MDG formula
representation and MDG decision graph will be defined. A set of functions, which
translate the program from MDG-HDL to core MDG-HDL, from core MDG-HDL
to the MDG formula representation and from the MDG formula representation to
the MDG decision graph, will then be defined. For each program in MDG-HDL,
core MDG-HDL or the MDG formula representation, the compilation operators
are defined as functions, which return their core MDG-HDL, the MDG formula
representation or MDG decision graph code. Translation functions TransProgMC,
TransProgCF or TransProgFM are applied to each MDG-HDL program, core MDG-
HDL program or the MDG formula representation so that the corresponding core
MDG-HDL program, MDG formula representation program or MDG decision graph
program is established. In other words, the relations of the translations can be

represented as below:

V p. TransProgMC p = the core MDG-HDL program
or
V p. TransProgCF (TransProgMC p) =
the MDG formula Tepresentation program
or
V p. TransProgFM (TransProgCF (TransProgMC p)) =
the MDG decision graph program

The standard approach to prove a translator between two languages is in terms
of the semantics of the languages, shown in Figure 1.6. Essentially the translation
should preserve the semantics of the source language. This has the traditional form

of compiler specification correctness used in the verification of a compiler [16]. The

13

MDG-HDL omnties MDG-HDL

Semantics
Syntax - o semantics p
(P
TransProgMC
core MDG-HDL
core MDG-HDL Semantics core MDG-HDL
Syntax : semantics (TransProgM C p)
TransProgMC P
TransProgCF

MDG formula representation .
P MDG formula representation

MDG formula representation
Syntax

TransProgCF (TransProgMC p)

semantics
—_—= semantics (TransProgCF (TransProgMC p))

TransProgFM
MDG decision graph
MDG decision graph Semantics MDG decision graph
Syntax -

semantics (TransProgFM (TransProgCF (TranProgMC p)))
TransProgFM (TransProgCF (TransProgMC p))

Figure 1.6: Compilation Correctness

14

analogous method can be used to specify and verify the translation part of the
MDG system. For the translation to core MDG-HDL, the correctness theorem has

the form

V p. Semantics (p) = Semantics (TransProgMC p)

For the translation to the MDG formula representation, the correctness theorem has

the form

V p. Semantics (TransProgMC p) =
Semantics (TransProgCF (TransProglC p))

For the translation to the MDG decision graph, the correctness theorem has the

form

V p. Semantics (TransProgCF (TransProgMC p)) =
Semantics (TransProgFM (TransProgCF (TransProgMC p)))

By combining the three correctness theorems above, we can obtain a correctness
theorem. This theorem states that the semantics of the low level MDGs is equal to
the semantics of the high level MDG-HDL.

VY p. Semantics (p) =
Semantics (TransProgFM (TransProgCF (TransProgMC p)))

The MDG system is based on Multiway Decision Graphs which extend ROBDDs
with concrete sorts, abstract sorts and uninterpreted function symbols. It can also
deal with the boolean subset as other ROBDD tools do. For the sake of easily
applying our method to the other decision graph based verification tools, we will
define the deep embedding semantics for two different subsets of the MDG-HDL

language in this thesis. Both subsets we considered in this thesis do not contain

15

three MDG predefined components (Multiplexer, Driver and Constant) and the
Transform construct used to apply functions. These components are omitted from
our subsets as they have non-boolean inputs or outputs. We make the subset simple

here since we want to explore the feasibility of this method.

The first subset is a boolean subset of the language which corresponds to a
ROBDD system. In this subset, the table representation in the core MDG-HDL
language only can be defined in terms of the corresponding boolean inputs value
(true or false). We consider this subset because it corresponds to a ROBDD system.
The formalization of this subset can be integrated to other ROBDD based tools
with relatively small modification. For this subset, we will concentrate on verifying
the first two translation steps (see (1)(2), Figure 1.5). Detail will be discussed in
Chapter 3.

The second subset is an extension of the first subset. In the rest of this thesis we
will call it the extended subset. This subset allows the program of the MDG-HDL
language to contain concrete sorts. In other words, the subset we considered in
this thesis is a subset language of MDG-HDL whose inputs and outputs of a table
could be boolean sorts and concrete sorts. This is very important because this is
the way the MDG system works. For coping with different types in one list, we
define a new type Mdg Basic in HOL. The value of the type can be either a boolean
value or a string. As a result, the syntax and the semantics of this subset are more
complex and the difficulty of the MDG translator verification will be increased a lot.
For this subset, we will concentrate on verifying the first translation step (see (1),

Figure 1.5). More detail will be discussed in Chapter 4.

1.3.2 The Importing Theorems

Generally, when we use HOL to verify a design, the design is modelled as a hi-
erarchy structure with modules divided into submodules as shown in Figure 1.7.

The submodules are repeatedly subdivided until the logic gate level is eventually

16

Specification Verification
A

Module

Submodule Submodule

Subsubmodule Subsubmodule

Figure 1.7: Hierarchical Verification

reached. Both the structural and the behavioral specifications of each module are
given as relations in higher-order logic. The verification of each module is carried out
by proving a theorem asserting that the implementation (its structure) implements

(implies) the specification (its behavior). They have the very general form:
implementation D specification (1.1)

The correctness theorem for each module states that its implementation down to the
logic gate level satisfies the specification. The correctness theorem for each module
can be established using the correctness theorems of its submodules. In this sense
the submodule is treated as a black-box. A consequence of this is that different
technologies can be used to address the correctness theorem for the submodules. In
particular, we can use the MDG system instead of HOL to prove the correctness of

submodules.

In order to convert the MDG verification results into HOL, we need to formalize
the results of the MDG verification applications in HOL. These formalizations have
different forms for the different verification applications, i.e., combinational verifica-

tion gives a theorem of one form, sequential verification gives a different form and

17

so on. However, the most natural and obvious way to formalize the MDG result
does not give theorems of the form that HOL needs if we are to use traditional HOL
hardware verification techniques. Therefore, we need to be able to convert the MDG
results into a form that can be used. In other words, we need to prove a series of
translation theorems (one for combinational verification and one for sequential ver-
ification, etc.) that state how an MDG result can be converted into the traditional
HOL form:

Formalized MDG result D

(implementation DO specification)

We have formally specified the correctness results produced by several different
MDG verification applications. We have given a general importing theorem for
some MDG applications. These theorems do not explicitly deal with the MDG-
HDL semantics or multiway decision graphs. Rather they are given in terms of
general relations on inputs and outputs. The theorems proved could be applicable for
other verification systems with similar architectures based on reachability analysis

or equivalence checking.

1.3.3 Combining the Translator Correctness Theorems with

the Importing Theorems

In this section, we will introduce the basic idea about how to combine the translator
correctness theorems with the importing theorems based on the deep embedding
semantics. This combination allows the MDG results to be reasoned about in HOL
in terms of the MDG input language (MDG-HDL). Ultimately in HOL we want
a theorem about input language artifacts. However, the MDG verification results
are obtained based on a low level data structure — a MDG representation: that is
what the algorithms apply to. Therefore, the formalization of the MDG verification

results in the importing theorems ought to be based on the semantics of the MDG

18

representations. However, the theorem about the translator’s correctness can be
used to convert the result MDG proves about the low level representation to one
about the input language (MDG-HDL). By combining the translator correctness
theorems with the importation theorems, we obtain the new importing theorems
which convert the low level MDG verification results into HOL to form the HOL
theorems in terms of the semantics of a high level language — MDG-HDL. In other
words, we are not only able to import the MDG results into HOL based on a verified
MDG system, but also the MDG verification results can be converted to the theorems

of HOL in terms of the semantics of MDG-HDL.

For example, if we check that three NOT gates are equivalent to a single NOT gate,
the whole MDG verification process and the importing process can be illustrated
in Figure 1.8. In the Figure 1.8, step (1) gives a main part of the two circuit
description files (the MDG-HDL input language), which are translated into the core
MDG-HDL (tabular representations) language as shown in step (2). The core MDG-
HDL languages are then translated into the MDG formula representation language
(step (3)). The MDG formula representation languages are further translated into
the MDG decision graph language (step (4)). A set of the MDG algorithms is then
applied to the MDGs in order to obtain two canonical MDGs and the MDG tool

checks whether two canonical MDGs are identical and returns true or false (step

(5))-

In our example the MDG tool returns true. The MDG verification results are
obtained based on the low level MDGs rather than the high level language MDG-
HDL. However, the translator correctness theorems state that the semantics of the
low level MDG is equal to the semantics of the high level MDG-HDL (the MDG input
language). By combining the translator correctness theorems, the MDG verification
results can be imported into HOL based on the semantics of the MDG input language
(MDG-HDL). Therefore, the traditional HOL theorem can be obtained in terms of
the semantics of the MDG input language.

In this thesis, we will prove two translators for the boolean subset and one

19

ip ; u ; \ ; op ip ; op

l/ 1. The MDG-HDL language \L
component (not_gate, not (input (ip), output (u)))
component (not_gate, not (input (u), output (v)) component (not_gate, not (input (ip), output (op))

component (not_gate, not(input (v), output (op)))

2. The core MDG-HDL language

ip] u ulv v | op ip | op
0] 1 0|1 0|1 0] 1
110 110 110 110

3. The MDG formula representation

ip| u uj|v v | op ip | op
0] 1 0|1 0|1 01
110 110 110 110
4. The MDGs

(ip) (W (V)

0 1 0 1 0 1

OO © O e ©p

1 0 1 0 1 0
©, ©, @

5. Apply the MDG algorithms
Obtain the canonical MDGs

C
0 1
) @
1 0
@
compare ®
0 1

True

=4

6. importing theorems

Traditional HOL theorems

N
—

Figure 1.8: The MDG Verification Process

20

translator for the extended subset. In order to demonstrate the combination of the
translator correctness theorems and the importing theorems, the formalization of the
MDG results will be in terms of the MDG formula representation for the boolean
subset and the core MDG-HDL for the extended subset. In fact, the principle
is the same. Similar conversion can be done for further translators if we prove
corresponding translators. By combining the translator correctness theorems with
the importation theorems, we obtain the new importing theorems which convert the
low level MDG verification results into HOL to form the HOL theorems in terms of
the semantics of MDG-HDL. The combination also allow the additional assumption
for sequential verification to be proved in terms of the semantics of MDG-HDL and

the conversion theorem to be obtained in terms of the semantics of MDG-HDL.

1.3.4 Proving the Existential Theorem

In the traditional HOL hardware verification, when we prove a design, we need
to prove a theorem stating that the implementation of the design implements its

specification.

V ip op. IMPL ip op D SPEC ip op

However, this representation might meet an inconsistent model that trivially
satisfies any specification. This is sometimes called the “false implies anything
problem” [14]. If the implementation (IMP ip op) of a design is false for all the
inputs and outputs, then this implication is a theorem, no matter what constraint
is imposed on the variables by its SPEC ip op. This is wrong because a theorem like
this provides no meaning to ensure the correctness of the circuit. One solution to
this problem is to verify a stronger consistency theorem against the implementation

as suggested in [58], which has the form:

V ip. 3 op. IMPL ip op

21

This means that for any input ip there is an output op which is consistent with it.

On the other hand, when we formally import the MDG verification results into
HOL to form the HOL theorems [80], we should prove an additional assumption
against the specification. This theorem states that for all possible input traces, the

behavior specification SPEC ip op can be satisfied for some outputs:

V ip. 3 op. SPEC ip op

This means that the machine must be able to respond to whatever inputs are

given.

For ease of importing of MDG results into HOL for sequential verification and
also for avoiding an inconsistent model, we will summarize a general way to prove

theorem which has the form below:

V ip. J op. C ip op

where C represents any circuit, and ip, op represent external input and external
output respectively. We called it the existential theorem [83]. More detail will be

discussed in Chapter 7.

1.4 QOutline of Thesis

The thesis is organized as follows:

In Chapter 2, we give a review of the literature most directly related to our
research. We discuss embedding a hardware description language (HDL) in a proof
system, previous work on verifying verification systems, an overview of compiler
verification work and technologies used in the combination of different verification

systems.

22

In Chapter 3, we investigate the verification of the translation phases of a simpli-
fied version of the MDG system (boolean subset) based on a theorem prover system
(the HOL system). This can be viewed as a simple compiler correctness problem.
We define a deep embedding formal semantics of the MDG-HDL language, the core
MDG-HDL language and the MDG formula representation in higher order logic. A
set of functions for translating the MDG-HDL subset language to their core MDG-
HDL language and translating the core MDG-HDL language to their MDG formula
representation language are given. The correctness theorems of the translation which
quantifies over syntactic structure are verified. In particular, we demonstrate that
this compiler specification preserves the correctness results produced by the MDG

verification system.

In Chapter 4, we investigate the verification of the translation phases for the
extended subset. We extend our formalization to accommodate a list of inputs (the
first argument of the table component) with boolean sorts and concrete sorts. For
this subset, we prove the first translator. We define the formal syntax and semantics
of the MDG-HDL language and core MDG-HDL language. A set of functions for
translating this subset language to their core MDG-HDL equivalent has then been
given. The correctness theorem about the translation, which quantifies over its

syntactic structure, has been proved.

In Chapter 5, we describe how to convert the MDG results into theorems for
use in the HOL system. The MDG system combines a variety of different hardware
verification applications including combinational verification, sequential verification,
invariant checking and model checking. We give a general importing theorem for
converting MDG results of the different applications (except model checking) into
HOL. The theorems proved do not explicitly deal with the MDG-HDL semantics or
multiway decision graphs. They are given in terms of general relations on inputs
and outputs. Thus they are applicable to other verification systems with a similar

architecture.

In Chapter 6, we show how to combine the translator correctness theorems with

23

the importing theorems for two subsets. This combination allows the MDG results
to be reasoned about in HOL in terms of the MDG input language (MDG-HDL).
The two different MDG verification applications have been formalized in terms of
the semantics of the low level language and imported into HOL to form the HOL
theorems in terms of the semantics of MDG-HDL. In other word, the low level
MDG verification result has been converted into a high level form which is usable

in a traditional HOL hardware verification.

In Chapter 7, we summarize a general way of proving the existential theorem for
the implementation and specification of any design based on the syntax and the se-
mantics of MDG-HDL. This theorem is needed when importing the MDG sequential

verification result into HOL and avoiding an inconsistent model be produced.

In Chapter 8, we use a simple example, the verification of the correctness theorem
and usability theorems for a vending machine, to demonstrate the feasibility of our
approach. We have verified the correctness of the vending machine in MDG. This has
been imported into HOL to form the HOL theorem. We have then proved a usability
theorem about a specification of the vending machine in HOL. By combining the
imported theorem and specification based usability theorem, we obtain a usability

theorem about the vending machine implementation.

In Chapter 9, we conclude the thesis and indicate the future work.

Summary

This chapter has motivated our emphasis on dependability of the hybrid system, and
situated our approach which aims to import the MDG results into HOL in a trusted
way. It also has indicated that we are concerned with how great a degree of trust the
MDG system has, how to formally justify the conversion of the MDG results into

the traditional HOL hardware verification theorems and how to formally link two

24

systems in a natural way. This chapter has pointed out that the deep embedding
semantics play a very important role in our research. On the one hand, the deep
embedding semantics could be used to verify the correctness of aspects of the MDG
system using the HOL system. On the other hand, based on the verified MDG
system, the deep embedding semantics is used to combine the translator correctness
theorems with the importing theorems, allowing the MDG results to be reasoned

about in HOL naturally.

25

Chapter 2

Literature Review

Combining theorem proving systems with symbolic state enumeration systems opens
a way for theorem proving systems to be applied more widely to the real world. Many
researchers are working in these areas to contribute their ideas and approaches. In
this thesis, we will focus on the verification of a symbolic state enumeration system
(the MDG system) and provide a theoretical underpinning to the formal linkage
of a symbolic state enumeration system and a theorem proving system (MDG and
HOL). We first verify the correctness of translators of the MDG system by using
the HOL system. This can be viewed as a simple compiler correctness problem.
We next prove theorems that formally convert the MDG verification results of the
MDG different applications into the traditional HOL hardware verification theorems
in the style of Gordon [35]. By combining the translator correctness theorems with
the importing theorems, the MDG verification results can be imported into HOL in
terms of MDG-HDL. Our work is concerned with embedding a hardware description
language (HDL) in a proof system, verifying verification systems, compiler verifica-
tion and trusting combined systems. This chapter gives a literature review which is

related to our research and divided into the corresponding subsections listed below:

e We briefly introduce embedding an HDL in a proof system.

26

e We discuss previous work on verifying verification systems.
e An overview of compiler verification work is given.

e We review the different technologies that have been used to combine the the-
orem proving systems with other systems and talk about the combined ap-
proaches and the degree of trust of the system. We then propose our own

ideas.

2.1 Semantic Embedding

Semantic embedding is an approach to defining precise semantics of HDLs inside the
logic so as to support the use of HDLs within a general theorem proving environ-
ment. Many researchers are aiming to find a tractable semantics for the hardware
description languages such as VHDL [64]. For example, Reetz and Kropf [55] defined
the semantics of a significant subset of VHDL in HOL to formalize a compiler gener-
ator. Gordon [31] defined three different semantics (event semantics, trace semantics

and cycle semantic) for a subset of VHDL for use in the different applications.

There are two ways to represent the semantics of HDLs inside logic: deep em-
bedding and shallow embedding. With a deep embedding, a type syn, is defined
inside the logic to represent HDL texts. A type, sem, that represents the seman-
tics is also defined, and then a semantic function, meaning:syn— sem, is defined, by
structural induction over syn [33] [32] [7]. With a shallow embedding there is no
type syn or semantics function inside the logic. Instead a parser is used to trans-
late HDL texts directly into terms of the logic. Each of these has advantages and
disadvantages. The advantage of deep embedding is that it allows reasoning about
classes of programs and so about the general properties of the programs. However,
setting up types of abstract syntax and semantics is much work. The advantage
of shallow embedding is that this work is avoided, because the process of assigning

meaning to the texts does not have to be encoded as a function inside the logic.

27

A meta-language program can easily compute differently typed terms for different

HDL texts.

Brock and Hunt [10] described a simple hardware description language in the
Boyer-Moore theorem prover. It lacks delays and does not permit recursion: it
thus deals with combinational logic only. However, this is the earliest research
known to us which defines a deep embedding operational semantics for an HDL in
a proof system. In their work, circuits were represented as list constants, which
were interpreted by a semantics function. This semantics function traversed valid
abstract syntax categories. The circuit descriptions were hierarchically composed.
A well-formed predicate was defined to check that these definitions are purely com-

binational.

Melham [58] deeply embedded a denotational semantics of a CMOS circuit in-
side the HOL system, which is an ideal example for getting the general idea about
deep embedding. He defined an abstract data type representation of CMOS circuit
descriptions. A semantics function was given in terms of the environments which
mapped circuits to a formula describing their switch-level behavior. The environ-
ment with the type :string— bool mapped strings string, denoting wire names, to

their values.

Boulton et al [7] embedded semantics of three different hardware description lan-
guages in higher-order logic (HOL-ELLA, HOL-SILAGE, HOL-VHDL). Both the
HOL-ELLA and the HOL-SILAGE projects used shallow embedding. The HOL-
VHDL project used deep embedding. In their paper, they compared the two ap-
proaches used in three different projects and summarized the benefits of the general
technique of embedding a conventional notation in a mechanized formal system and
indicated that embedding the HDL semantics allows the practical tool to act directly
on logic representations and thereby the designs can be reasoned about in a proof

system.

Goossens [30] investigated the integration of HDLs and automated proof systems.

28

His aim was to clarify the semantics of the particular HDL and to present a more
standard interface to formal methodologies. A formal static and dynamic operational
semantics for a subset of the industrial HDL ELLA [28] were embedded within the
LAMBDA proof system.

In this thesis, we deeply embed two subsets of MDG-HDL into HOL. We obtain
the logic representation of each MDG-HDL program, which could be reasoned about
directly into HOL. However, our aim is to verify the correctness of aspects of the
MDG system by using the HOL system and to provide a formal linkage between the
MDG system and the HOL system in terms of the deep embedding semantics. We
use the embedding semantics to prove the translation phases of the MDG system.
Our semantics explicitly represent the relation with the external wires. This rep-
resentation can be used in formalizing the MDG verification results and importing
the MDG results into HOL naturally. We utilize this fact to allow MDG to be used

when it would be easier than obtaining the result directly in HOL.

2.2 Veriftying Verification Systems

Different technologies have been used to ensure the correctness of verification sys-
tems. In a sense, which method is chosen depends on the architecture of the veri-
fication system. The Edinburgh LCF [34] (Logic of Computable Functions) family
of theorem provers (including HOL) uses an abstract data type (Thm) to represent
theorems. The type checker ensures the theorems can only be constructed by ap-
plying a small number of primitive inference rules. There is no method to construct
a theorem except by carrying out a proof based on the primitive inference rules and
axioms. This increases the reliability of the system. For HOL, these primitive infer-
ence rules have been proved sound via a set-theoretic semantics [40]. Pottinger [68]
has also proved that they are complete with respect to Henkin’s general models (the
methods that Henkin used to establish completeness for systems of second-order and

higher-order logic). In this way if we guarantee the primitive inference rules correct

29

then invalid theorems can be avoided.

The LCF approach also permits proofs to be recorded. Proofs can be stored
in files and be represented by lists of inferences. It allows us to make use of the
availability of the sequence of inferences and to check the consistency of each infer-
ence automatically. Wong [77], changed the HOL system so as to be able to record
each proof and store it into proof files. He developed a proof checker to examine
the correctness of the proof files — lists of inferences generated by the HOL sys-
tem. The proof checker first took a proof file as an argument and then checked
whether the proofs were correct or not. A log file was then produced that contained
the hypotheses, lemmas used by the proof and the resulting theorem of the proof.
The application of this method is significant in developing safety-critical and high-
integrity systems where high confidence of correctness is required. Since a proof
checker accepts the proof files containing only primitive inference rules, it may pos-
sibly be verified formally. The proof checker also provided an independent means
of ensuring the validity and consistency of the proof. Some other theorem provers
such as Ngthm [9] and Coq [48] already store proof trees in the system. Boyer and
Dowek [8] specified and implemented a proof checker in Nqthm logic.

Is the proof checker itself correct? If the proof checker can be formally verified,
it will greatly increase the confidence in the consistency of checked proofs. Since
the proof checker is relatively simple, it is easier to verify than a full system. Von
Wright [75] formalized the specification of a proof checker in HOL. In his work, he
carefully analysed what constituted a HOL proof, formalized the syntax of the terms,
types, and theorems, and defined predicates to represent the primitive inference
rules. He also demonstrated how the HOL system had been used to formally verify
the specification of a proof checker for higher-order logic proofs [76]. An alternative
method of using refinement to verify the proof checker was also suggested by von
Wright [74].

The architecture of the symbolic state enumeration based verification systems

is different. In some of these systems, higher level languages such as hardware

30

description languages are used to describe the specifications and implementations.
The specifications and implementations are then translated into decision graphs. A
series of algorithms in the system is used to efficiently and automatically deal with
the decision graphs and obtain the correctness results. For verifying such systems,
we need to prove the translators from the higher level languages into decision graphs,

and to prove the algorithms correct that are used to manipulate the decision graphs.

Homeier and Martin [46] used the HOL system to verify a verification system
called a verification condition generator (VCG) for a simple programming language.
Since the VCG translated the annotated programs to the lists of verification condi-
tions, the proof of the correctness of the VCG could be considered as an example
of a compiler correctness problem. In other words, the proof of the correctness of
the VCG can be obtained by proving a translator. The semantics of the annotated
programs and verification conditions were formalized in HOL. The correctness the-
orems showed that the truth of the verification conditions implied the truth of the

annotated programs.

Chou and Peled [17] used the HOL system to verify a non-trivial algorithm
- the Partial-Order reduction technique, implemented in the protocol tool SPIN.
This algorithm is used to cut down the state-space exploration performed by model
checkers. They built up the groundwork of a formal infrastructure that included the
mathematical support for proving various automatic verification algorithms. Their
results not only gave more confidence in the algorithm but also demonstrated formal

verification is a practical and useful tool.

In this thesis, we investigate the correctness of aspects of the MDG system
(figure (2.1)) by using HOL. Verifying the algorithms is beyond the scope of this
thesis which can be done similarly to Chou and Peled’s work. We consider verifying
the translation process is correct based on the deep embedding semantics. We need
to verify the translator preserves the semantics of a program through the translation
between languages as suggested for Homeier’s work [78] [81] [79]. A difference is that

Homeier used a compiler verification method to verify a software verification system.

31

l MDG input language l

S

Y
| MDG data structure l

MDG verif@

\
| Resut(YesNo) |

Figure 2.1: The MDG Verification System

We used a similar method to verify a hardware verification system. We consider
verifying the correctness of aspects of the MDG system. In the next section, we will

review previous work that has been done on the compiler correctness problem.

2.3 Verifying Compiler Correctness

The literature on compiler correctness is large. The earliest example was described
more than thirty years ago [56]; this reported how McCarthy and Painter successfully
verified the correctness of a simple algorithm for compiling arithmetic expressions
into machine language on an ideal machine. The syntax and semantics of the source
and object language were given. The compiler correctness theorem stated that the
semantics of the source program preserved the semantics of the target code. Their

basic idea is still being used in compiler verification.
At the same time, Burstall and Landin [13] first proposed the use of algebraic

32

methods to verify compiler correctness. The key contribution from the algebraic
approach to compiler correctness was to reject the simple function to be used as
a compiler and impose structure on the program involved. Many researchers have
developed this method including Morris [62] [63] and Chirica [15]. A tutorial intro-
duction to the algebraic method was given by Collier [19]. However, the early work
focused on the basic methodology rather than verifying a real language. People

could not deal with the tedium of formal proof if they verified a compiler by hand.

With the development of mechanical assistance systems, researchers began to
verify some simple imperative languages by using mechanical checking technology.
Milner and Weyhrauch [59] used the Stanford LCF system to mechanically check
the formal verification of a compiler for a simple imperative language. Cohn and
Milner [18] used the Edinburgh LCF system to prove a simple parsing algorithm. In
their paper, a generally mechanized method of deriving structural induction rules
within the system was discussed. Chirica and Martin [16] considered the problem
of proving the correctness of parsing and syntax analysis. They indicated that a
compiler implementation should specify exactly how the compiler was implemented
to generate the object code. The correctness of a compiler implementation is verified
by comparing corresponding object programs generated by the compiler specifica-
tion and implementation. However, most work including those mentioned above
considered a very simple language and the target machine was idealized (no finite

limitations on word size and memory size).

In 1989, Young [85] verified a code generator which was one level of a stack
of verified system components by using a Boyer-Moore theorem prover (the Boyer-
Moore prover is a theorem prover for a quantifier-free first-order classical logic with
equality). Their source language was a subset of Gypsy [29] and the target language
was the Piton [61] assembly level language. The operational semantics for a subset of
Gypsy and Piton was given. Functions were implemented in the Boyer-Moore logic
that translated Gypsy programs into Piton. The correctness of the translator was

mechanically checked. Moore [60] verified that Piton was successfully implemented

33

on a general purpose microprocessor (FM8502) by using the Boyer-Moore theorem

prover.

Other notable work is that of Joyce [50], who described the formal specification
and verification of a compiler for a very simple imperative programming language on
an non-idealized target machine. The semantics for this programming language, the
target machine and the compiler were all specified in higher-order logic. Inference
rules of higher-order logic were used to construct a formal proof showing that com-
piled programs execute according to the semantics of the language. A compilation
process was split into two phases for controlling the complexity of the formal proof
of correctness. The first phase compiled the hierarchically structured program into
a flat intermediate form. The second phase compiled the intermediate form into

target machine code.

At the same time, Gordon [37] did the original work of constructing within
HOL a framework for proving the correctness of a program. He used a shallow
embedding [7] (i.e. only the semantics is represented in the HOL logic) to embed
the program logic in the HOL logic. HOL is a foundational system which means that
one can define new constants in a way that does not affect the logical consistency
of the system. In other words, thus means the embedding of a language can be
obtained by using constant definitions rather than by introducing arbitrary axioms

to describe the semantics.

Curzon [22] successfully used the HOL system to verify compilers for a subset
of the structured assembly language Vista, for a real microprocessor, VIPER. The
compiler correctness work was based on a general model of I/O. The verification of
a generic compiler from a generic version of Vista to a generic flat assembly code
had been considered. This made it possible to verify a compiler from different ver-
sions of Vista to the VIPER microprocessor or to other similar machines easily (i.e.
you just need to change some basic configurations). He also combined the verified
compiler with a derived programming logic so that the corresponding properties of

the compiled code can be automatically derived.

34

Our work concernes with verifying the correctness of the translators that trans-
lates a subset of the MDG input language MDG-HDL into the low level languages.
Curzon et al. [26] did some basic work which verified the MDG components library
in HOL. In their paper, the semantics of the TABLE had been first formalized in
HOL. The semantics of the MDG-HDL components was in the style of Gordon.
They had verified the table implementations of each of the hardware components

that were implemented in terms of tables in the MDG system.

The work presented in this thesis is based on previous work to verify the MDG
components library in HOL [26] and builds on the work of Curzon [22] concerned
with compiler verification. The source and target languages are different to his.
Our source language is a netlist level hardware description language and our target
language is the core MDG-HDL language and the MDG formula representation
language. We only consider the correctness of a compiler specification in this thesis.
We define a deep embedding formal semantics for a subset of MDG-HDL and the
corresponding low level languages in higher-order logic. However, the structures of
the proofs are similar and also have been mechanically checked by using the HOL
system. Most importantly, we are trying to investigate and develop a method that
links compiler correctness to the combination of two different verification systems

(MDG and HOL), rather than just verifies the correctness of a compiler specification.

2.4 Trusting Combined Systems

Recently, researchers have paid much attention to combining theorem provers and
other symbolic computation systems. Theorem provers have been linked to other
theorem provers [49], to model checkers [51] [2] [39] and to computer algebra sys-
tems [42]. Methodologies for co-operation between systems are dependent on prop-
erties of the system. The motivation for combining different systems is to achieve

the benefits of them both and to make the verification simpler and more effective.

35

A common approach to combining proof tools is to use an automated tool as an
oracle to provide results to the interactive proof process. Joyce and Seger [51] pre-
sented a hybrid verification system: HOL-Voss. In their system, several predicates
were defined in the HOL system, which presented a mathematical link between the
specification language of the Voss system (symbolic trajectory evaluation) [44] and
that of the HOL system. As a result this link caused the specification language
of Voss to become a subset of the language of the HOL system. In other words,
trajectory evaluation was used as a decision procedure for the HOL proof system. A
HOL tactic, VOSS_TAC, which was implemented as a remote function, was written.
This tactic enabled some HOL goals to be proved by calling symbolic trajectory
evaluation and mirroring the results (true or false) in HOL. If it is true, then the
assertion will be transformed into a HOL theorem and this theorem can be used by
the HOL system to derive additional verification results. Zhu et al. [87] successfully

applied HOL-Voss to the verification of the Tamarack-3 microprocessor.

In 1995, Seger and Hazelhurst overcame some defects of the HOL-Voss system
and created a new hybrid system called VossProver [43]. VossProver was imple-
mented in £1 (a strongly-typed functional language in the ML family [65]) in typical
LCF style with an abstract datatype for theorems. Its specification language was
a deep embedding in £1 of booleans and integers and shallow embedding of tuples,
lists and other features. The transition from theorem proving to model checking
was done by translating the deeply embedded boolean and integer expressions into
their £1 counterparts and then evaluating the resulting £1 expressions. A number of
case studies, including the verification of a pipelined IEEE-compliant floating-point
multiplier by Aagaard and Seger [3], has demonstrated the success of the approach
of the system. However, the translation from the deeply embedded specification
language used in the theorem proving to the normal £1 used in the model checking
was complicated. The difficulty of evaluating Boolean expressions at the £1 prompt
was a serious detraction when compared to the ease of use provided by specification
in £1. Therefore, they wanted a proof system to use £1 as both the specification and

implementation.

36

In 1999, Aagaard et al developed the Forte verification system [2][1]. Forte is a
combined model checking (in Voss via symbolic trajectory evaluation) and theorem
proving system (ThmTac)'. Both specification and implementation language are
f1 which has been deeply embedded in itself so as to be lifted. In other words,
the system can execute f1 functions in Voss and reason about the behavior of f1
functions in ThmTac. The system has successfully verified the correctness of a

floating-point divider unit of an Intel IA-32 microprocessor [52].

Schneider and Kropf [70] used hardware formulas, which are higher order formu-
las, to express the safety and liveliness properties hierarchically. i.e. each module
either consisted of a set of submodules or a basic module. These formulas could
be easily translated into a model-checking problem of temporal logic. In other
words, these allowed each submodule to be verified by using state enumeration tech-
niques. Finally, the correctness results of the verified hardware could be obtained
by using simple reasoning in HOL. With the same idea, an example, which could
not be handled by decision procedures for temporal logic and was too expensive
to use the theorem prover system, was verified easily with the combined model-
checking/theorem proving approach in less than two hours. With the same idea,
Schneider and Kropf [71] presented an approach for combining different proof ap-
proaches in a unifying framework to develop a hybrid system which is called CQS.
This system was implemented on top of the HOL system and can be connected to
the model checking system SMV (Symbolic Model Verifier) and the inductionless
induction system RRL (Rewrite Rule Laboratory).

The MDG-HOL system [54] is a hybrid system which links the HOL interactive
proof system and the MDG automated hardware verification system. It supports
a hierarchical verification approach and fits the use of MDG verification naturally
within the HOL framework of compositional hierarchical verification. The HOL
system is used to manage the proof. The MDG system is called to verify the sub-
modules of a design. When the MDG-HOL system is used to verify a design, the

!ThmTac is written in £1 and is an LCF style implementation of a higher order classical logic.

37

design is modeled as a hierarchy structure with modules divided into submodules.
The submodules are repeatedly subdivided until the design can be verified by using
the MDG system. If the design of any submodule is sufficiently simple, then the
hierarchical approach can be abandoned for that block and the whole module verified
in one go in MDG. If submodules are all primitive components and the MDG system
still cannot prove them, the HOL system can then be used to do the verification. The
hybrid system is based on an embedding of the MDG hardware description language
in HOL. It allows structural and behavioral specifications to be given in HOL. MDG
style behavioral specifications must be used however. Essentially this means the
specifications must be in the form of a finite state machine or table description. If
a higher level abstraction is unavailable in MDG, a separate HOL proof must be

performed to show that an MDG style specification meets this abstraction.

Gordon [38] [39] integrated the BDD based verification system BuDDY into
HOL in a different way. Since “LCF-Style” general infrastructure was provided,
users could implement their own BDD-based verification algorithms inside HOL
by building on top of primitives provided. By implementing BDD primitives in
HOL - as long as they are correct, not only could the standard state algorithms be
efficiently and safely programmed in HOL, but this also made it possible to achieve
the advantage of theorem reason tools and state algorithms. For example, HOL was
used to formalize the QBF (Quantified Boolean Formulas) of BDDs. The formulas
can be interactively simplified by using a higher-order rewriting tool such as the
HOL simplifier to get simplified BDDs. A table was used to map the simplified
formulas to BDDs. The BDD algorithms can also strengthen its deductive ability

in this system.

Hurd [49] used a different method to combine the strengths of two theorem-prover
systems. One is Gandalf which is a resolution theorem-prover for first-order classical
logic with equality. The other is the HOL system. A tactic GANDALF _TAC was
implemented as a remote function. It called the Gandalf system that was then run as

a child process of the HOL system and mirrored the proof results to the HOL system.

38

Briefly, GANDALF _TAC took the input goal, converted it to a normal form, wrote
it in an acceptable format, sent the string to Gandalf, parsed the Gandalf proof,
translated it to a HOL proof, and proved the original goal. In this way, Gandalf’s
fast proof search can be used in HOL, whilst the translation into HOL ensured that
the proofs were logically correct. Most importantly, in translating the Gandalf proof
to HOL proof, he did not just tag the results proved in Gandalf into HOL to get
HOL theorems. He wrote several functions to simulate the Gandalf proof according
to the Gandalf logged file and did the proof in HOL to form the HOL theorems. As
a result, the Gandalf proof results need not be tagged into HOL and the degree of
trust is high. However, it is very hard to achieve a complex goal since the logged

file might lose some details when the goal is very complex.

Rajan et al. [69] proposed an approach for the integration of model checking with
PVS [21]: the Prototype Verification System. Harrison and Théry [42] combined
the theorem prover system (HOL) and a computer algebra system (Maple). Argon
and McMillan [5] attempted to use the Coq Proof Assistant to formally prove the
soundness of the proof decomposition rules implemented in the SMV system. Gunter
and Obradovic [41] combined a model checker (SPIN) and a theorem prover (HOL)
though a language GAS (for Guarded Assignments).

A key point of combining theorem proving systems with other systems is to make
the use of theorem proving systems more practical. For example, the project PROS-
PER 2 [27] aims to combine different interactive and automated proof tools together
to deliver the benefits of them to industry. A proof management system, which
is an open proof architecture, permits formal methods technology to be combined
in a modular fashion. The Prosper plug-ins allow developers to add specialized
verification tools (like Gandalf, Spin etc.) to the core proof engine in a relatively
uniform way. In this way, different advantages of different techniques can be utilized
according to the different requirement applications, whilst the translation into HOL

ensures that the proofs are logically correct.

2The description of the project is available via the Web page http://www.dcs.gla.ac.uk/ tfm/

39

We have discussed many researchers using different approaches to combine dif-
ferent systems. Some of them, including those mentioned above, are used by the
external tools as an oracle to guarantee the results provided by the external tools
are theorems within the theory of the proof system. Ideally, if we could verify that
the external verification tools are correct and formally convert the corresponding
results into valid theorems in a current proof system, then the degree of trust of the

combining system will increase a lot.

In the work presented in this thesis, we shall use this idea to provide a formal
linkage between the MDG system and the HOL system. We are not using the MDG
system as an oracle to then prove results, already determined, by primitive inference
in HOL as MDG-HOL did, nor are we using HOL to improve the way MDG works.
Furthermore, we are not just farming out general lemmas (e.g., propositional tau-
tologies) that arise whilst verifying a particular hardware module and that can be
proved more easily elsewhere. We are doing theoretical research about how to pro-
vide a formal linkage between MDG and HOL. Our formalization is defined in terms
of the specification of the MDG system and MDG-HOL system. We define deep
embedding formal semantics in HOL for two simplified versions of the MDG input
language, to verify the correctness of translators of the MDG system in the HOL
system. We also prove a series of importing theorems [80], which formally convert
the formalized MDG verification results into a form usable in a traditional HOL
hardware verification, i.e., the structural specification implements the behavioral
specification. By combining the translator’s correctness theorems with the import-
ing theorem, the MDG verification results can be converted into HOL to form the

traditional HOL theorems in terms of the semantics of MDG-HDL.

Summary

In this chapter, we have given a literature review which relates to our research

including embedding an HDL in a proof system, previous work on verifying verifi-

40

cation systems, an overview of compiler verification work and technologies used in
the combination of the different verification systems. We also summarize what we

did in corresponding related fields.

41

Chapter 3

Verifying the MDG Translators

for a Boolean Subset

In this chapter, we will verify the translation phase of the MDG system as shown
in step (1) (2) of Figure 1.5 for a boolean subset. Our aim is to prove the MDG
translators. A standard approach for proving a translator between two languages

will be used.

We will first define the syntax and the semantics of a subset MDG-HDL lan-
guage, a corresponding core MDG-HDL language and the MDG formula represen-
tation language. We then define a set of functions, which translates the program
from the subset MDG-HDL language to the core MDG-HDL language, and from the
core MDG-HDL language to the MDG formula representation language. For each
program in MDG-HDL, the compilation operators are defined as functions, which
return its core MDG-HDL code and MDG formula representation code. The trans-
lation function TransProgMC is applied to each MDG-HDL program p so that the
corresponding core MDG-HDL program is established and the translation function
TransProgCF is applied to a core MDG-HDL program so that the MDG formula

representation program is established. The two correctness theorems for two trans-

42

lation steps of this subset, which quantifies over the syntactic structure, are verified.
By combining these two correctness theorems, we obtain that the semantics of the
MDG-HDL program is equivalent to the semantics of the MDG formula representa-

tion program. The detail will be discussed in the following sections.

3.1 The Syntax of the MDG-HDL Language

In MDG-HDL programs, two kinds of information are provided. One is used in the
MDG algorithm, the other is used in specifying the hardware. We can ignore the
information which is used in the MDG algorithms when we write the syntax and
semantics of programs, since this part is passed directly to the MDG algorithms
and we do not consider the MDG algorithms in this thesis. Following the approach
utilized in other compiler correctness work, we abstract the useful information from
the MDG-HDL program and work with an abstract syntax rather than the concrete
syntax of the language. It would be straightforward to write a parser that translates

the MDG-HDL program into the abstract syntax.

For example, a part of the MDG-HDL file which is used to specify the hardware
of three NOT gates and one register connected in series is given in Figure 3.1. The

information for the algorithms is omitted.

The abstract syntax of this file is

PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV ["u";"v";"w"])
(JOIN (NOT "ip" "u")
(JOIN (NOT "u" "v")
(JOIN (NOT "v" "w") (REG "w" "op"))))

where PROG, EXOUT, EXIN, INV, JOIN, NOT and REG are syntactic constructors of the
subset of the MDG-HDL language. More details will be given later.

43

signal(ip,bool).
signal(op,bool).
signal(u,bool).
signal(v,bool).
signal(w,bool).

component (u_comp ,not (input (ip) ,output (u))).
component (v_comp ,not (input (u) ,output (v))).
component (op_comp ,not (input (v) ,output (w))).

component (reg_comp,reg(input (w) ,output (op))) .

outputs([op]).

Figure 3.1: The Circuit Description File of Three NOT Gates and One Register

The full abstract syntax of the subset of the MDG-HDL language is given in
Appendix A. The abstract syntax of the program is represented by constructor PROG
which is defined in terms of four arguments — an external output wires list, an

external input wire list, an internal wire list and a component term.

Program ::= PROG of Exoutput => Exinput => Invariable => Mdg Hdl

For example, the abstract syntax of a program of one NOT gate circuit is given

below:

PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV [1) (NOT "ip" "op")

where the first argument is a list of external outputs (["op"]), the second is a list

of external inputs (["ip"]1) and the third is a list of internal wires (in a NOT gate

44

circuit, there is no internal wire), and the final argument is the combination of the

circuit components (a NOT gate).

In the syntax of the program, the first three arguments are variable lists. We
define new HOL types Exoutput, Exinput and Invariable to represent the external

output list, external input list and internal list respectively.

Exoutput ::= EXOUT of string list
Exinput ::= EXIN of string list
Invariable ::= INV of string list

The fourth argument (component term) describes how circuits are constructed
from subcircuits except the hiding operations on internal wires. The hiding op-
erations on internal wires will be defined in the semantics of the program. The
component term could be either a predefined MDG-HDL component, an operation
to set the initial value of a variable, a next state variable command, or a compo-
sition operation that denotes a circuit built up by the operation of composition.
The syntax of the component term introduces a specially-defined recursive data type
Mdg Hd1 to provide an explicit representation in logic of the MDG-HDL commands.
We define a recursive type Mdg Hd1l with 33 constructors. The first 27 constructors
are gates, flip-flops and registers. For example, the component term, ‘NOT ip op,

represents a NOT gate with one input labeled ip and one output labeled op.

The constructor FORK represents the equality checker which is used to check the
equality of two or more variables. The constructor INIT represents the initial value
of a state variable. ‘INIT(v,T)’ declares that the initial value of the variable v is
true. The SNXT constructor maps between a state variable and a next state variable.

‘SNXT v nv’ states that nv is the next state variable of the state variable v.

The JOIN constructor represents the composition operation. If c1 and c2 are two
values of type Mdg Hd1, then the term ‘JOIN c1 c2’ represents the composition of the

two terms represented by c1 and c2.

45

INPUT OUTPUT

ipt opt
IF
TABLE_VAL F T
TABLE VALT F
ELSE ARB

Figure 3.2: The Syntax of a NOT Gate Table

Finally, the constructor TABLESYN represents the syntax of the table component.
It has five arguments. The first argument is a list of inputs, and the second is the
single output. The third argument is a list of table rows. Each row is a list itself,
giving one allocation of values to the inputs. The fourth argument is a list of output
values that correspond to the values in input rows. We called the third argument an
“if condition”, which means if the value of input matches the corresponding row of
the table then the output value will be one of the elements in the fourth argument’s
list. The final argument is the default value, which is taken by the output if the input
values do not match any row of the third argument. We called those input values
as the “else condition”. The “else condition” is not listed in the third argument of
constructor TABLESYN. For example, the abstract syntax of a NOT gate table is given

below:

TABLESYN ["ip"] (NOWV "op") [[TABLE VAL F];
[TABLE VAL T]]
[T; F]1 (DENORMAL ARB)

where "ARB" is the predefined HOL term representing an arbitrary value of a given
type. Alternately, we can use a diagram to represent the abstract syntax of the NOT

gate table, such as the one shown in Figure 3.2.

46

The first argument of the constructor TABLESYN is a list of inputs. In a NOT gate
table, it has only one input which is "ip". The second argument is the single output
"op" whose value could be either a current state variable or a next state variable.

We define a new HOL type Out_Type to represent these options:

Out_Type ::= NOWV of string|
NEXTV of string

The output in the NOT gate table is a current state variable NOWV "op". The third
argument lists all the “if condition”. In a NOT gate, the “if condition” is [[TABLE VAL
F1, [TABLE_VAL T]]. The entries in the list can be either actual values or a special

don’t care marker. This is realized by defining a new type (as given in [26]).

Table Val ::= TABLE VAL of « | DON’T_CARE

Fdey TableVal to Val (TABLEVAL (v:a)) = v

The fourth argument is a list of output values that correspond to the values in input
rows (the “if condition”). The final argument could be an arbitrary boolean value,
a current state variable or a next state variable. Again we define a new HOL type

Default_Type in terms of the type Out_Type.

Default _Type ::= DENORMAL of bool|
DEOUT of Out_Type

Corresponding to our NOT gate table, if the value of input is false (TABLE VAL F
from the third argument) then the value of the output is true (T from the fourth
argument), if the value of input is true (TABLE VAL T) then the value of the output

is false (F), otherwise the value of the output could be an arbitrary value.

47

3.2 The Syntax of the Core MDG-HDL Language

The core MDG-HDL language that we translate to is a subset of the MDG-HDL
language. The abstract syntax of the program is also defined in terms of four
arguments — an external output wire list, an external input wire list, an internal
wire list and a core component term. A core component term only consists of four
constructors. i.e. INITC (initialise), SNXTC (state variable), TABLESYNC (table) and
JOINC (component composition) which correspond to the constructors INIT, SNXT,
TABLESYN and JOIN in MDG-HDL.

Mdg Hdl Core :: =
INITC of (string#bool) |
SNXTC of string=>stringl|
TABLESYNC of (string list)=> Out_Type=> ((bool Table_Val list) list)
=> (bool 1list)=> Default_Type]
JOINC of Mdg Hdl Core=> Mdg Hdl Core

The syntax of the core MDG-HDL program is

Program Core ::=

PROGC of Exoutput => Exinput => Invariable => Mdg_Hdl_Core

For example, the abstract syntax of the core MDG-HDL of the three NOT gates

and one REGISTER is given in Figure 3.3.

3.3 The Syntax of the MDG Formula Represen-

tation Program

The structure of the MDG formula representation program is similar to the structure

of the core MDG-HDL language. It consists of four constructors. i.e. INITF, SNXTF,

48

PROGC (EXQUT ["op"]) (EXIN ["ip"]) (INV ["u";"v";"w"])
JOINC (TABLESYNC ["ip"] (NOWV "u") [[TABLE VAL F];
[TABLE_VAL T]]
[T; F] (DENORMAL ARB)
JOINC (TABLESYNC ["u"] (NOWV "v") [[TABLE VAL F];
[TABLE_VAL T]]
[T; F] (DENORMAL ARB)
JOINC (TABLESYNC ["v"] (NOWV "w") [[TABLE_VAL F];
[TABLE_VAL T1]
[T; F] (DENORMAL ARB))))
(TABLESYNC ["w"] (NOWV "op") [[TABLEVAL T];
[TABLE_VAL F]]
[T; F] (DENORMAL ARB))))

Figure 3.3: The Abstract Syntax of a Core MDG-HDL Program

TABLESYNF and JOINF which correspond to the constructors INIT, SNXT, TABLESYN
and JOIN in MDG-HDL. A difference is that the constructor TABLESYNF consists of
six arguments rather than five arguments. It adds one more argument which lists
the input values of the “else condition”. In other words, this argument lists all the
possible input values whose corresponding output value is equal to the default value.
This is very important because the system needs this information for building up
the MDGs.

Mdg_Hdl Formula :: =
INITF of (string#bool) |
SNXTF of string=> string|
TABLESYNF of (string list)=> Out_Type=> ((bool Table_Val list) list)
=> (bool list)=> ((bool Table Val list) list)=> Default Type|
JOINF of Mdg Hdl Formula=> Mdg_Hdl Formula

49

For example, consider an AND gate table. When it represents MDG-HDL code
and core MDG-HDL code, it has five arguments. It does not list input values for the
“else condition” (Figure 3.4 (a)). However, when it represents the MDG formula rep-
resentation, it lists all the input values including those values whose corresponding

output value is equal to the default value (the else condition) (Figure 3.4 (b)).

The abstract syntax for an AND gate component in the MDG formula represen-

tation program is shown below:

TABLESYNF ["ip1"; "ip2"] (NOWV "op")
[[TABLE_VAL F; DONT_CARE];
[TABLEVAL T; TABLE_VAL F]] [T]
[[TABLE_VAL T; TABLE VAL T]] (DENORMAL (BOOL F))

The syntax of the MDG formula representation program is defined in a very

similar way

Program Formula ::=

PROGF of Exoutput => Exinput => Invariable => Mdg_Hdl Formula

3.4 Translating MDG-HDL into the Core MDG-
HDL Language

The first step in specifying a translator for MDG-HDL is to define a set of functions
to translate the MDG-HDL program into the core MDG-HDL language. For each
component in MDG-HDL, a compilation operator is defined as a set of functions,
which returns its core MDG-HDL code. For example, a NOT gate is compiled as

follows:

a0

INPUTS OUTPUT

[}
I
iplt ! ip2t opt
|
IF |
F | * F

I
T | F F
:
ELSE T

(@) AND gate table in MDG-HDL and core MDG-HDL

INPUTS OUTPUT
[}
I
iplt | ip2t opt
|
IF |
= I * F

I
I
T | F F
|
I
I

(b) AND gate in the MDG formula representation.

Figure 3.4: The Syntax of an AND Gate Table

ol

Fdey TRANS NOT (ip:string) op =
TABLESYNC [ip] (NOWV op) [[TABLE VAL F];
[TABLE_VAL T]] [T; F] (DENORMAL ARB)

For the MDG-HDL component term, we define a function TransGT inductively
over the syntactic structure and this function translates the MDG-HDL component

term into the equivalent core MDG-HDL component term.

Fdey (TransGT (NOT ip op) = TRANSNOT ip op) A

(TransGT (TABLESYN yi1 y2 y3 y4 y5) = TRANS_TABLE y1 y2 y3 y4 y5) A
(TransGT (JOIN (codel:Mdg Hdl) code2) =
JOINC (TransGT codel) (TransGT code2))

For the MDG-HDL program, a function TransProghC is defined in terms of the

function TransGT
Fdeyf TransProgMC (PROG exv exi inv c) = PROGC exv exi inv (TransGT c)

For example, the following theorem as shown in Figure 3.5, which is obtained by
rewriting with the definitions, illustrates the translation of the MDG-HDL program

of three NOT gates discussed above.

3.5 Translating the Core MDG-HDL Program into
the MDG Formula Representation Program

For doing such translation, we need to specify a translator which translates the core
MDG-HDL language into the MDG formula representation program. This translator

consists of a set of functions.

52

Fihm TransProgMC (PROG ["op"]l ["ip"] ["v_B"; "uB"]
(JOIN (NOT "ip" "v_B") (SEQ (NOT "v_B" "uB")
(NOT "uB" "op")))) =
PROGC ["op"] ["ip"] ["vB"; "uB"]
(JOINC (TABLESYNC [ip] (NOWV uB) [[TABLE VAL F];
[TABLE_VAL T]]
[T; F] (DENORMAL ARB)
JOINC (TABLESYNC [uB] (NOWV v_B) [[TABLE_VAL F];
[TABLE_VAL T]]
[T; F] (DENORMAL ARB)
TABLESYNC [v_B] (NOWV op) [[TABLE VAL F];
[TABLE_VAL T]]
[T; F] (DENORMAL ARB))))

Figure 3.5: Translating the MDG-HDL program into the Core MDG-HDL program

A TABLE in MDG-HDL can be used to specify “if-then-else” conditions. It only
lists the input values for those “if condition”s that are true and the corresponding
output value of each input value is given in the corresponding output list. For the
“else condition”, because the output value is the same, a default value is given as
the output value. The semantics of the TABLE states that if the input value is equal
to one of the elements that are listed in the table, the corresponding output value is
in the output list, otherwise the output value is equal to the default value. However,
when the MDG tool translates the core MDG-HDL into MDG, there is a compiler
which automatically finds all other possible input values for the “else condition”.
In our translator, we have to find all the input values for the “else condition”. For

these input values, the output value is the default value.

For finding the input value for the “else condition”, we need to find all the input
values in terms of the length of the input list or the length of each element of the
table first. The input values for the “else condition” can be obtained in terms of all

the possible input values and the input values for the “if condition”.

23

First of all, we begin to find out all the possible input values. Because we consider
the boolean subset here, each input has two possible values (T/F). All the possible
input values are determined by the length of the list. We define a function nlists

for generating the list of enumerations of a given length.

Figef (nlists 0 = [[11) A
(nlists (SUC n) = APPEND (MAP (CONS (TABLE_VAL T)) (nlists n))
(MAP (CONS (TABLE_VAL F)) (nlists n)))

For example, SIMP_CONV list_ss [nlists_def] ‘‘nlists (SUC (SUC (SUC 0)))’’;

lists the combination of three elements list.

nlists (SUC (SUC (SUC 0))) =

[[TABLE_VAL T; TABLE VAL T; TABLE VAL T];
[TABLE VAL T; TABLE VAL T; TABLE VAL F];
[TABLE_VAL T; TABLE VAL F; TABLE VAL T];
[TABLE VAL T; TABLE VAL F; TABLE VAL F];
[TABLE VAL F; TABLE VAL T; TABLE VAL T];
[TABLE_VAL F; TABLE VAL T; TABLE_VAL F];
[TABLE VAL F; TABLE VAL F; TABLE VAL T];

[TABLE_VAL F; TABLE VAL F; TABLE VAL F]]

We then need to find out all the input values which are not listed in the “if con-
dition”. We use Table match to check the matching of input value to value listed in
the table of the “if condition”. A match occurs if either the table value is don’t-care,
or the value on the input is identical to the table value. If there is a match on a
given row, this input value has been listed in the table. Otherwise, we must check
the next row. If there is no match, this input value is not listed in the table. In
other words, this input value belongs to the “else condition” and the correspond-

ing output equals the default value. This is defined by a function Table match Lists.

o4

Fdey (Tablematch Lists inputs [] = F) A
(Table_match Lists inputs (CONS v vs) =

(Table match inputs v) V (Table match Lists inputs vs))

We need to check whether all the possible input values are in the “if condition”
or the “else condition”. This is implemented by function Path_Check. It obtains all

the input value lists for the “else condition”.

Fgef (Path_Check [1 V_outs = [1) A
(Path Check (CONS ip ips) V_outs =
if (~(Tablematch List (MAP TableVal to_Val ip) V_outs))
then CONS ip (Path_Check ips V_outs)
else (Path Check ips V_outs))

As we mentioned before, all the combinations of a list are determined by the
length of the listand the possible values of each element in the list. Since we consider
a boolean subset here, all the combinations of a list are determined by its length
(the length of input list). Therefore, the input values for the “else condition” can

be defined in term of the functions Path_Check, nlists_def which is given below:

Fdeyf (Else_Conditions n (V_out:bool Table Val list list) =
((Path_Check (nlists n) V_out)))

where n is the length of the input list. Now, we can define a function TRANS_TABLEC
which translates the TABLESYNC component to the corresponding MDG formula rep-

resentation.

Fdey TRANS_TABLEC ip op y1 y2 d =
TABLESYNF ip op yl y2 (Else_Conditions (LENGTH ip) y1) d

35

The function TransCF is defined for translating the core MDG-HDL component term

into the MDG formula representation term.

Fdef (TransCF (INITC p) = INITF p) A
(TransCF (SNXTC s sO) = SNXTF s s0) A
(TransCF (TABLESYNC y1 y2 y3 y4 y5) =
TRANS_TABLEC y1 y2 y3 y5 y5 A
(TransCF (JOINC codel code2) =
JOINF (TransCF codel) (TransCF code2))

Finally, the core MDG-HDL program can be translated into the MDG formula

representation program by the function TransProgCF.

Fdey TransProgCF (PROGC exv inv state p) =

PROGF exv inv state (TransCF p)

3.6 The Semantics of the MDG-HDL Program

In this section, we will show how to define a relational semantics [36] of the MDG-
HDL program for this subset. First of all, the semantics of the MDG-HDL program
is defined in terms of an environment [58] [57]. An environment is a function that
has type :string —¢. This function maps a variable name (modeled by strings) to the
value of that variable. In our language, the environment env is for state variables and
signals. Its value is a history function and has a type :num—bool, which represents

functions from time (natural numbers) to the value at that time.

A semantic function SemProgram for MDG-HDL programs is defined in terms of
the semantics of the MDG-HDL component term (SemMdghdl). For each component
in the MDG-HDL component library, we define a specific semantic function. The

semantics of the MDG-HDL component term (SemMdghdl) is defined based on the

26

semantic functions of each component. In the rest of this section, we will first define
the semantic functions for each component in the MDG-HDL component library. We
then define the semantics of the MDG-HDL component term (SemMdghdl). Finally,
we will define the semantics of the MDG-HDL program (SemProgram).

We first define the semantic function for each component. The first 27 primitive
components of the MDG-HDL component are mainly logic gates and flip-flops. The
traditional hardware semantics can be given [35]. The semantics of these components
are relations between the input values and the output values. For example, the NOT

gate can be expressed by

Fdef SEMNOT ip op = (V t. op t = ~ (ip t))

The semantics of FORK represents the equality of two state variables. On each cycle,

the output value ‘op’ and input value ‘ip’ are identical at that time.

Fdey SEMFORK ip op = (V t. op t = ip t)

The constructor INIT has two arguments. They are represented as a pair whose first
component (FST y) is a state variable and whose second component (SND y) is a
boolean value. The semantics of INIT assigns an initial value (at time zero) to the

value of the variable.

Fdey SEM_INIT (y:(num->bool)#bool) = ((FST y) 0 = SND y)

The semantics of SNXT represents a relation between a state variable y and a next
state variable ny. It declares that the next state variable of y is ny. In other words,
the value of the variable y at the time t is equal to the value of the variable ny at

the following time.

57

Fdey SEMSNXT ny y = (V t. ny (t+1) =y t)

The semantics of the table was initially given by Curzon et al [26]. Since we
need to use the induction theorem, we adapt their table definition for adding one
more base case. In their definition, they define a predicate Table match to check if

the input values match the table values.

Fdef (Tablematch inputs [1 t = T) A
(Tablematch inputs (CONS v vs) t =
(((HD (inputs) t) = TableVal to Val v) V (v = DON’T_CARE)) A
(Tablematch (TL inputs) vs t))

The function table is defined in terms of Table match. It has five arguments.
The first argument is a list of the inputs, the second is the single output, the third
is a list of table rows. Each row is a list itself, giving one allocation of values to
the inputs. The fourth argument is a list of output values. Each is the value on
the output when the inputs have the values in the corresponding row. The final
argument is the default value, taken by the output if the input values do not match
any row. It checks if there is a match on each row. If there is, the output has the
corresponding value. Otherwise, the output equals the default value. Since the third
and fourth argument are lists, they may have unequal lengths. When either list is

empty, the output value equals the default value.

Fdey (table ip op [] V_out default t = (op t = default t)) A

(table ip op vs [] default t = (op t = default t)) A
(table ip op (CONS v vs) V_out default t =
(if (Tablematch ip v t)
then (op t = (HD V_out) t)

else (table ip op vs (TL V_out) default t)))

28

The above definition refers to the time of interest, t. Function TABLE defines a given
table which will relate a given input to a given output if the table relation is true

at all time.

Fdey TABLE ip op V.outs V.out default =
V t. table ip op V_outs V_out default t

As we mentioned before, the second argument of the table is the single output.
Its output could be either a current state variable or a next state variable. We
define a new HOL type Out_Type to represent these options. The final argument is
the default value, which is taken by the output if the input values do not match
any row. The default value could be an arbitrary value, a current state variable or
a next state variable. We also define a new HOL type Default_Type in terms of the
type Out_Type. We define two functions SEM_OUTVAR and SEM DEFAULTVAR, in order to

access the corresponding values.

Faey (Sem Outvar (NOWV y) env = (env y)) A
(Sem_Outvar (NEXTV y) env = (env y) o NEXT)

Faey (Sem Defaultvar (DENORMAL y) env = (A(t:num). y)) A

(Sem Defaultvar (DEOUT x) env = (Sem Outvar x env))

The values give in the list of the outputs are signals, which are functions from
time to a value. Function CONST_TO_FUNCT is used to lift the constant list to a signal
list.

Fdey (CONST_TO_FUNCT [c] = [A(t:num). c]) A
(CONST_TO_FUNCT (CONS v vl) =
CONS (A(t:num). v) (CONST_TO_FUNCT v1))

Now, the semantics of the MDG-HDL component term (SemMdghdl) can be defined

in terms of functions that we defined above as shown below.

29

Fgef (SemMdghdl (NOT ip op) env = SEMNOT (env ip) (env op)) A
(SemMdghdl (TABLESYN y1 y2 y3 y4 y5) env =
TABLE (MAP env y1) (SEM_OUTVAR y2 env) y3
(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env)) A
(SemMdghdl (JOIN codel code2) env =
((SemMdghdl codel env) A (SemMdghdl code2 env)))

From the definition of SemMdghdl we know that the semantics of TABLESYN is

defined in terms of the function TABLE:

Fdey SemMdghdl (TABLESYN ip (op:out_type) y3 y4 y5) env =
TABLE (MAP env ip) (SEM_OUTVAR op env) y3
(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env)

For example, the semantics of the Table code of the NOT gate is

Finm SemMdghdl (TABLESYN [ip] (NOWV op) [[TABLE VAL F]; [TABLE VAL T]]
[T;F] (DENORMAL ARB)) env =
TABLE (MAP env [ip]) (SEM_OUTVAR (NOWV op) env)
[[TABLE_VAL F]; [TABLE VAL T1]
(CONST_TO_FUNCT [T;F1)
(SEM_DEFAULTVAR (DENORMAL ARB) env)

The semantics of sequencing (JOIN) is defined inductively in terms of the primary
component commands. The semantics of JOIN is the conjunction of the correspond-

ing semantics of each sub-command.

60

Fdey SemMdghdl (JOIN c1 c2) env =
((SemMdghdl c1 env) A (SemMdghdl c2 env))

Finally, the semantics of a full program can be defined in terms of some auxiliary
functions. Firstly, the function of Dsem Int is defined in terms of the semantics of
the component term (SemMdghdl). It uses existential quantification to hide the local
variable from the environment of the circuit. It adds an extra entry to environment
env for each internal wire. This effectively hides the internal wires in a component

term (code).

Fdey (Dsem_Int [] code env = SemMdghdl code env) A
(Dsem_Int (CONS (w:string) ws) code (env:string->num->bool) =

(3 v.(Dsem_Int ws code (Awv.if (wv = w) then v else (env wv)))))

The semantics of a circuit is a relation on the external inputs and outputs. In
order to explicitly represent the relation with the external wires, we define a function
Dsem Ext. It adds an extra entry to the environment env for each external wire (input
or output). This function assigns all the values of external inputs or all the values of
external outputs to a list (var: (num—bool)list). In other words, each element in
the list var indicates a value of an external input or a value of an external output.
This function makes it possible to represent the semantics of a circuit explicitly as

the relation between the external inputs and outputs.

Faey (Dsem Ext [] env (var:(num->bool)list)= env) A
(Dsem Ext (CONS (v:string) vs) env var =
(Dsem Ext vs (Awv.if (wv = v) then (HD var)
else (env wv)) (TL var)))

We also define functions SemExoutput, SemExinput and SemInvariable to access

values of the external output and input wires and internal wires.

61

]
o]

Fdey SemExoutput (EXOUT x)
Fdey SemExinput (EXIN x) = x

I
™

Fdes SemInvariable (INV x)

Finally, the semantics of a program SemProgram is based on the functions we
introduced above. We first apply function Dsem Ext to the external inputs, which
adds an entry to the environment for all external inputs and assigns the value of
each external input to an element of a list ip. We then apply the function Dsem Ext
to the external outputs. Similarly, this adds an entry to the environment for all
external outputs and assigns the value of each external output to an element of a
list op. Finally, the function Dsem_Int gives the semantics of the circuit in terms of
the semantics of the component term (SemMdghdl) and uses existential quantification

to hide the local variable from the environment of the circuit.

Fdey SemProgram (PROG exoutput exinput inv code) ip op =
let envl = Dsem Ext (SemExinput exinput) EmptyEnv ip
in
let env2 = Dsem Ext (SemExoutput exoutput) envl op
in

Dsem_Int (SemInvariable inv) code env2

where EmptyEnv is the initial value of environment env.

The semantics of a program explicitly represents the relation between the exter-
nal inputs and outputs. Our semantics is not only used to verify the correctness of
the translation, but is also used to formally import the MDG results into HOL to
form the HOL theorem. During the importation process, we have to formalize the
different MDG applications (combinational verification, sequential verification and
property checking and so on) and add some extra assumptions. All these formaliza-
tions are explicitly concerned with the external inputs and outputs. Our semantics

make it possible to do so.

62

For example, the semantics of a circuit of three NOT gates and one REGISTER can

be expressed as:

SemProgram (PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV ["u";"v";"w"])
(JOIN (NOT "ip" "u")
(JOIN (NOT "u" "v")
(JOIN (NOT "v" "w") (REG "w" "op"))))) ip op

By expanding the definitions, this circuit can actually be formalized as

du v w.
Wt. ut=~HDip t) A (Vt. v t=r~ut)A
Wt. wt=~vt) AVt. HDop (¢t + 1) =w t)

It can be simplified further to

Vt. HD op (t+1) = ~ HD ip t

Obviously, the semantics of this circuit explicitly represents the relation between the

external input list ip and output list op in the circuit.

3.7 The Semantics of the Core MDG-HDL Pro-

gram

Similar to the last section, the semantics of the core MDG-HDL program
(SemProgram Core) is defined in terms of the semantics of core component term
(SemMdghdl Core) and functions Dsem Ext, Dsem Int _Core. Since the core component
term only consists of four components, the semantics of it is determined in terms of

its four semantic functions.

63

Faey (SemMdghdl Core (INITC init) env =

SEM_INIT ((env (FST init)), (SND init)) A
(SemMdghdl Core (SNXTC op st) env = SEM_SNXT (env op) (env st)) A
(SemMdghdl Core (TABLESYNC yi y2 y3 y4 y5) env =

TABLE (MAP env y1) (SEM_OUTVAR y2 env) y3

(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env)) A
(SemMdghdl Core (JOINC codel code2) env =
((SemMdghdl Core codel env) A (SemMdghdl Core code2 env)))

In the semantic function of the program (SemProgram Core), function Dsem Ext
adds an entry to the environment for all external inputs and outputs, and assigns
the value of each external input to an element of a list ip and each external output to
an element of a list op. Function Dsem Int _Core gives the semantics of the circuit in
terms of the semantics of the component term (SemMdghdl Core) and uses existential

quantification to hide the local variable from the environment of the circuit.

Fdey SemProgram Core (PROGC exoutput exinput inv code) ip op =
let envl = Dsem Ext (SemExinput exinput) EmptyEnv ip
in
let env2 = Dsem Ext (SemExoutput exoutput) envl op
in

Dsem_Int_Core (SemInvariable inv) code env2

3.8 The Semantics of the MDG Formula Repre-

sentation Program

The semantics of the MDG formula representation program (SemProgram Formula)
is also defined in terms of the semantics of its formula component term
(SemMdghdl Formula) and functions Dsem Ext, Dsem_Int Formula. The semantics of

the formula component term (SemMdghdl Formula) is defined based on its compo-

64

nent’s semantic functions. Among those semantic functions, the semantic function
for the constructor TABLESYNF is different to the semantic function for the constructor

TABLESYNC (TABLE) in the last section.

For defining the semantic function for the constructor TABLESYNF, we need to
define a function Table Formula first. This function is defined in terms of
Table match List and table. It checks if there is a match on the “if condition”
for any input. If there is, the output has the corresponding value. Otherwise, the
Table Formula is the conjunction of the Table match List on the “else condition”

and the output equals the default value.

Fdey Table Formula inps out ift u elt default t =
if (Tablematch List (MAP1 inps t) ift)
then (table inps out ift u default t)

else ((Table match List (MAP1 inps t) elt) A (out t = default t))

The above definition refers to the time of interest, t. Function TABLE FORMULA defines
a given table which will relate a given input to a given output if the Table Formula

relation is true at all time.

Fdey TABLE_FORMULA ip op ift ifout elt default =

V t. Table Formula ip op ift ifout elt default t

The semantic functions for the constructors INITF and SNXTF are the same as we
defined for the constructors INIT, INITC, SNXT and SNXTC in the last two sections.
The semantics of the formula component term can be defined in terms of the above

semantic functions.

65

Fdef (SemMdghdl Formula (TABLESYNF y1 y2 y3 y4 y y5) s =
(TABLE_FORMULA (MAP s y1) (Sem Outvar y2 s) y3
(CONST_TO_FUNCT y4) y (SemDefaultvar y5 s))) A
(SemMdghdl Formula (INITF init) s =
SEM_INIT (s (FST init),SND init)) A
(SemMdghdl Formula (SNXTF op st) s = SEM_SNXT (s op) (s st)) A
(SemMdghdl Formula (JOINF ml m2) s =
(SemMdghdl Formula ml s A SemMdghdl Formula m2 s))

Finally, the semantics of the MDG formula representation program can be defined

in a very similar way.

Fdey SemProgram Formula (PROGCF exoutput exinput inv code) ip op =
let envl = Dsem Ext (SemExinput exinput) EmptyEnv ip
in

let env2 = Dsem Ext (SemExoutput exoutput) envl op
in

Dsem_Int _Formula (SemInvariable inv) code env2

3.9 Translator Correctness Theorems

To verify the correctness of translators as we suggested at the beginning of this
section, we have to obtain two theorems that quantify over their syntactic structure,
which state that the semantics of the source program is equivalent to the semantics

of its translation form.

For verifying the first translator of this subset language, we have proved three
theorems using HOL. The first theorem we have proved is Component TermC_THM,
which specifies the semantics of the component term is equivalent to the semantics

of its core MDG-HDL component term.

66

Fihm V' c. SemMdghdl c env = SemMdghdl Core (TransGT c) env

in which ¢ represents any MDG-HDL component term, TransGT is the function which
translates the MDG-HDL component term to its core MDG-HDL codes and env is
the environment for variables. The correctness theorem is proved by structural

induction on the syntax domain of the MDG-HDL component term.

The second theorem we have proved is Circuit DsemC_THM, which is obtained in
terms of the theorem Component_TermC_THM. It states that the semantics of a circuit

is equivalent to the semantics of its translation form.

Fivm V inv ¢ env . Dsem_Int inv ¢ env =

Dsem_Int_Core inv (TransGT c) env

where inv represents the internal wires of the circuit and c is a sequence of the

MDG-HDL components.

The third theorem is the correctness theorem of the program ProgC_THM, which is
proved in terms of the theorems Component_TermC_THM and Circuit DsemC_THM. The
meaning of this theorem is similar to that of the theorem Dsem_THM, i.e., the semantics
of a circuit is equivalent to the semantics of its translation form. However, the
differences are that the external input list ip and output list op of the circuit are

explicitly represented in the semantics of the program.

Fivm V exv exi inv c.
SemProgram (PROG exv exi inv c¢) ip op =

SemProgram Core (TransProgMC (PROG exv exi inv c)) ip op (3.1)

For verifying the second translator of this subset language, We need to prove
another three theorems in a similar way. The first theorem we have proved is
Component_TermCF_THM, which specifies that the semantics of the core component

term is equivalent to the semantics of its MDG formula component term.

67

Fihm Ve s. SemMdghdl Core ¢ s =
SemMdghdl Formula (TransProgCF c) s

The second theorem is Circuit_DsemCF_THM, which states that the semantics of a
circuit (core MDG-HDL program) is equivalent to the semantics of its translation

form (MDG formula representation program).

Finm V inv ¢ env. Dsem Int_Core inv ¢ env =

Dsem_Int_Formula inv (TransProgCF c) env

Similarly, the last theorem is ProgCF_THM, which is explicitly represented as the
external input list and output list of the circuit, states that the semantics of a circuit
of the core MDG-HDL program is equivalent to the semantics of its translation form

(MDG formula representation program).

Finm V exv exi inv c.
SemProgram Core (PROGC exv exi inv c) ip op =

SemProgram Formula (TransProgCF (PROGC exv exi inv c)) ip op (3.2)

We have proved two translators are correct and obtained two correctness the-
orems (3.1)(3.2). By combining the above two correctness theorems, we obtain
a new correctness theorem (3.3), which states that the semantics of a circuit of an
MDG-HDL program is equivalent to the semantics of a corresponding MDG formula

representation program.

Fivm V exv exi inv c.
SemProgram (PROG exv exi inv c¢) ip op =
SemProgram Formula

(TransProgCF (TransProgMC (PROG exv exi inv c))) ip op (3.3)

68

Summary

In this chapter, we have investigated a way to verify the correctness of aspects
of a decision graph system (the MDG system) based on a theorem prover system
(the HOL system). We have defined a deep embedding formal semantics for a
boolean subset of MDG-HDL language, its core MDG-HDL codes and MDG formula
representation language. Functions for translating the MDG-HDL subset languages
to core MDG-HDL code and for translating the core MDG-HDL language to the
MDG formula representation language are given. Two correctness theorems for two
translators have been proved. By combining two translation correctness theorems,
we obtain a new theorem states that the semantics of the MDG-HDL program is
equivalent to the semantics of the MDG formula representation program. This
combination allows the low level representation (the MDG formula representation
language) to be converted to the high level language MDG-HDL. We will show,
in Chapter 6, how such a translator correctness theorem can be combined with

importing theorems.

69

Chapter 4

Verifying the MDG Translator for
the Extended Subset

In the last chapter, we defined the syntax and the semantics of the boolean subset
MDG-HDL language. We obtained a theorem (3.3), which states that the semantics
of the MDG-HDL program is equivalent to the semantics of the MDG formula
representation program used in the MDG implementation. However, this subset
could not cope with many MDG applications. As a matter of fact, the formal logic
used in MDG-HDL is a many-sorted first-order logic, which contains abstract sorts
and concrete sorts. The concrete sort of boolean values is treated separately as it
is predefined in MDG and used with most components. It is therefore treated as
a special case. The inputs and outputs of the component TABLE could be different
sorts. These sorts could be boolean sorts, concrete sorts and abstract sorts. In this
chapter, we will extend our formalization to accommodate a list of inputs (the first
argument of the table component) with boolean sorts and concrete sorts. We did
not consider the abstract sort because the Montreal MDG-HOL system can only
deal with the concrete sort and boolean sorts. Also the subset we consider is similar

to that of BDD systems so has wide application.

70

In this chapter, we will verify the translation phase of the MDG system as
shown in step (1) of Figure 1.5 for the extended subset. Similarly, the formal syntax
and semantics of the MDG-HDL language and core MDG-HDL language of this
subset will be defined. A set of functions for translating this subset language to
its core MDG-HDL equivalent will then be given. The correctness theorem about
the translation, which quantifies over its syntactic structure, will be proved. Before
we start proving the correctness of the translation, we will introduce an example.
It is a state transition diagram of the Timing block of the Fairisle ATM switch
fabric [66] [26]. This example will explain why it is necessary to embed the extended
subset into HOL.

4.1 State Transitions of the Fairisle Switch Fabric

Timing Block

The Fairisle Switch Fabric is a real switch fabric designed and in use at University
of Cambridge for multimedia applications. The Fairisle switch forms the heart of
the Fairisle network. Curzon [23] formally verified this Fairisle Switch Fabric using
HOL. Tahar et al [73] reverified it using MDG. The Fairisle Switch Fabric can be
split into 3 sub-modules namely Acknowledgement, Arbitration and Data Switch.
The Timing Block is a sub-module of the Arbitration. Pisini et al [67] verified the
Timing Block using a hybrid system (HOL and MDG).

The Timing block controls the timing of the arbitration decision based on the
frame start signal and the time the routing bytes arrive. Figure 4.1 shows the finite
state machine of the behavior of this timing block, which is described using a state
transition function and output function. The specification of the Timing block in
MDG are as shown in Figure 4.2. An MDG table is used to represent the behavior
of the Timing block. This MDG table is taken from [67].

71

frameStart = 1/routeEnable = 0

Figure 4.1: State Transitions of the Fairisle Switch Fabric Timing Block

table [[anyActive, frameStart, timng state, n_timing_state],
[*, 1, RUN, WAIT],
[*, 0, RUN, RUN],

[1, O, WAIT, RQUTE],

[*, 1, ROUTE, WAIT] | WAIT]

INPUTS OUTPUT
T |
| |
anyActive | frameStart | timing_state pn_timing_state
| |
: :
IF * | T | RUN WAIT
__________ R
| |
* | F ' RUN RUN
__________ R
| |
T : F ' WAIT ROUTE
__________ R
| |
* | T ' ROUTE WAIT
| |
ELSE WAIT

Figure 4.2: The Behavior of the Fairisle Switch Fabric Timing Block

72

In the table, anyActive and frameStart are of boolean sort, timing state and
n_timing state are of a concrete sort with the enumeration: RUN, WAIT, ROUTE. In
order to formalize the behavior of the Timing block, we need to redefine the definition
of TABLE to accommodate the different sorts, as the version considered so far only
allowed boolean values in the table. In the following section, we will redefine the
syntax and semantics of the MDG-HDL language and the core MDG-HDL language

to meet those requirements.

4.2 The Syntax of the MDG-HDL Language

In this section, we will define the syntax of the MDG-HDL language for the extended
subset. This subset allows the program to contain concrete sorts. A concrete sort is a
set, of distinct constants of that sort. We use a string to represent them. However,
the inputs and outputs of many basic components in the MDG-HDL library are
of boolean value. Therefore, we use the function Hol datatype to define a new
type Mdg Basic in HOL to meet this requirement. Since we use a boolean value
to represent the inputs and outputs of some basic components and use a string to
represent each element of a concrete sort (except the boolean type), this new type
Mdg Basic can be either a boolean value or a string. In other words, for any term
with type Mdg Basic, it could be a BOOL bool term, a CONCRETE string term or a
base case UNBOUND term. In the rest of this thesis, if a variable x is a (BOOL bool)
term, we say x is of a bool sort. If a variable x is a (CONCRETE string) term, we say

x is of a concrete sort. If a variable x is a (UNBOUND) term, we say x unbound.
Mdg Basic ::= UNBOUND | BOOL of bool | CONCRETE of string

Therefore, the common type for all the input variables of the Timing block is
Mdg Basic. The anyActive and frameStart are of BOOL bool terms, the timing state

and n_timing state are of CONCRETE string terms.

73

The full abstract syntax of the extended subset is given in Appendix B, which
is similar to that we gave before. In this version’s syntax, the third argument of
the constructor TABLESYN has the type of ((Mdg Basic Table Val list) list) rather
than ((bool Table.Val list) list). This is because each element of this argument
gives one allocation of values to the inputs, while each input is of an Mdg Basic
term. In other words, it could be a (BOOL bool) term or a (CONCRETE string) term.
Similarly, the fourth argument of it has the type of ((Mdg Basic) 1list) rather than
(bool list). The final argument could be an arbitrary Mdg Basic value, a current
state variable or a next state variable. The syntax of the table can therefore be used
to formalize those designs whose MDG-HDL program contain concrete sort such
as Timing block as shown below (Timing TABLESYN). However, the syntax and the

semantics will be complicated.

Timing TABLESYN =

(TABLESYN

["anyActive"; "frameStart"; "timing state"]

(NEXTV("n_timing state"))

[[DONT_CARE; TABLE_VAL (BOOL T); TABLE_VAL (CONCRETE "RUN")];
[DONT_CARE; TABLE_VAL (BOOL F); TABLE_VAL (CONCRETE "RUN")];
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL F); TABLE_VAL (CONCRETE "WAIT")];
[DONT_CARE; TABLE_VAL (BOOL F); TABLE_VAL (CONCRETE "ROUTE")];
[DONT_CARE; TABLE_VAL (BOOL F); TABLE_VAL (CONCRETE "ROUTE")]]
[(CONCRETE "WAIT"); (CONCRETE "RUN"); (CONCRETE "ROUTE");
(CONCRETE "RUN"); (CONCRETE "WAIT")]

(DENORMAL (CONCRETE "WAIT")))

where we use Timing TABLESYN to informally represent the syntax of the Fairisle
Switch Fabric Timing Block. We can notice that the third argument in the table of
the Timing Block contains DONT_CARE, boolean value (eg. TABLE VAL (BOOL T)) and
concrete sort value (eg. TABLE_VAL (CONCRETE "ROUTE")).

74

The abstract syntax of the program is given by the constructor PROG, which is
similar to the PROG in the last chapter. It consists of an external output wire list,

an external input wire list, an internal wire list and a component term.
Mdg_Program ::= PROG of Exoutput => Exinput => Invariable => Mdg Hdl
For example, the syntax of the Timing block is

PROG (EXOUT ["n_timing state"])
(EXIN ["anyActive"; "frameStart"; "timing state"])
(INV [1) (Timing TABLESYN)

4.3 The Syntax of the Core MDG-HDL Language

The syntax of the core MDG-HDL language for the extended subset is similar to
the syntax of the core MDG-HDL language for the boolean subset. However, their
syntactic categories are different. The syntactic category for the extened subset
is wider than the boolean subset, because the syntax for the extended subset can

accommodate both concrete sort and boolean sort.

The abstract syntax of the program is also defined in terms of four arguments
— an external output wire list, an external input wire list, an internal wire list and
a core component term. A core component term only consists of four constructors.

i.e. INITC, SNXTC, TABLESYNC and JOINC.

Mdg_Hdl Core ::=
INITC of (string#Mdg Basic) |
SNXTC of string=> string]
TABLESYNC of (string list)=> Out_Type=> ((MdgBasic Table_Val list) list)
=> (MdgBasic list)=> Default_Typel
JOINC of Mdg Hdl Core=>Mdg Hdl Core

75

The syntax of the core MDG-HDL program is

Mdg_Core Program ::=
PROGC of Exoutput => Exinput => Invariable => Mdg_Hdl_Core

4.4 Compiling MDG-HDL into the Core MDG-
HDL Language

As we mentioned in the last chapter, we specified a translator for MDG-HDL to
translate the MDG-HDL program into the core MDG-HDL language. However, the
syntactic category is different to that in the last chapter.

Similarly, we first define a set of functions for each component. Thses functions
apply to each component and return its core MDG-HDL code. For example, a NOT

gate is compiled into

Fdey TRANS NOT (x:string) y =
TABLESYNC [x] (NOWV y) [[TABLE_VAL (BOOL T)];
[TABLE VAL (BOOL F)]]
[BOOL F; BOOL T] (DENORMAL ARB)

We then define a function TransGT for the MDG-HDL component terminductively
over the syntactic structure. This function translates the MDG-HDL component

term into the equivalent core MDG-HDL form.

Fdey (TransGT (NOT ip op) = TRANSNOT ip op) A
(TransGT (TABLESYN yi y2 y3 y4 y5) = TRANS_TABLE yi y2 y3 y5 y5 A
(TransGT (JOIN (codel:Mdg Hdl) code2) =
JOINC (TransGT codel) (TransGT code2))

76

Finally, a function TransProgMC is defined in terms of the function TransGT which

translates the MDG-HDL program into its core MDG-HDL program.

Fdey TransProgMC (PROG exv exi inv p) = PROGC exv exi inv (TransGT p)

4.5 The Semantics of the MDG-HDL Program

In this section, we will define the semantics of the MDG-HDL language for the
extended subset. We will first define the semantic functions for each component
in the MDG-HDL component library. We then define the semantics of the MDG-
HDL component term (SemMdghdl). We next define some predicates to check if all
the external wires have proper values. Finally, we will define the semantics of the

MDG-HDL program (SemProgram).

Firstly, we begin to define the semantics of the MDG-HDL components. The
primitive components of the MDG-HDL component term are logic gates, flip-flops,
table, initial value etc. The semantics of the logic gates and flip-flops are similar to
the semantics we defined for the boolean subset. However, they are more complex
now because we consider a different subset. The variables in this subset have different
sorts. We have to define some predicates to ensure each variable does not get sort
mismatched. For example, a NOT gate can only have boolean values. It is meaningless
to have non boolean input. In other words, the type of inputs and outputs of the
component in this subset is Mdg Basic, we need to check if the input or output is
either a BOOL bool term, a CONCRETE string term or an UNBOUND term for the different
components and different applications. Three predicates IS_BOOL, IS_CONCRETE and
IS_UNBOUND are defined to find out what kind of sort an Mdg Basic term has.

Fdey (ISBOOL (BOOL v) = T) A
(IS_BOOL (CONCRETE u) = F) A
(IS_BOOL UNBOUND = F)

7

Fdef (IS_CONCRETE (BOOL v) = F) A
(IS_CONCRETE (CONCRETE u) = T) A
(IS_CONCRETE UNBOUND = F)

F4es (IS_UNBOUND (BOOL v) = F) A
(IS_UNBOUND (CONCRETE u) = F) A
(IS_UNBOUND UNBOUND = T)

The semantics of the logic gates and flip-flops are then a conjunction of the sort
judgment of its inputs and outputs and a relation between the input values and the

output values. For example, the NOT gate can be expressed by

Fdeyf SEMNOT ip op =
(V t. ISBOOL (x t) A (ISBOOL (y t)) A
((MDG_TOBOOL (y t)) = (~ MDG_TO_BOOL (x t))))

where predicate IS_BOOL is used to check if a value of Mdg Basic term is BOOL T or
BOOL F, and function MDG_TO_BOOL converts the Mdg Basic terms BOOL T and BOOL F

to boolean values T and F.

Fdes (MDG_TO_BOOL (BOOL v) = v)

We define the semantics of the AND gate in a similar way.

Fdey SEM_AND x1 x2 y =
(V t. (ISBOOL (x1 t) A ISBOOL (x2 t) A ISBOOL (y t)) A
((MDG_TOBOOL (y t)) =
((MDG_TO_BOOL (x1 t)) A (MDG_TO_BOOL (x2 t))))

The semantics of other logic gates and flip-flops are also defined in a similar way.

The semantics of the TABLESYN is extended to deal with the type Mdg Basic. It is

78

also defined in terms of the definitions of TABLE and table. The table function for
the extended subset is defined in a similar way to the function we defined for the
boolean subset, except that the type of the inputs and output are num—Mdg Basic
(see Figure 4.2) . In other words, for any input and output of a table, their values
are history functions from time, a natural number, to the value an Mdg Basic term
at that time. An Mdg Basic term could be either a (BOOL bool) term or a (CONCRETE
string) term. We define predicates to check that the value of inputs and output is

whether (num— BOOL bool) term or (num— CONCRETE string) term.

The function TABLE for the extended subset is slightly different. It states that at
all time each input and each output of the MDG table has a proper sort (bool sort,

concrete sort or is unbounded) and the relation of the table is true.

Fgey TABLE inps out V_outs V_out default =
Vt.
SortCheck Input inps V_outs t A
SortCheck _Output out (HD V_out) t A

table inps out V_outs V_out default t

where functions SortCheck_Input and SortCheck_Output are defined to check the sort

of each input and output.

As we mentioned in section 3.6, the third argument of a table is a list of table
rows. Each row is a list itself, giving one allocation of values to the inputs. The
values in each column of the table determines the possible sorts of one input (either
(BOOL bool) term, (CONCRETE string) term or don’t_care). We can check the sort of
each input in the corresponding elements in the table. We first check each row by

defining a recursive function SortCheck Inputil.

79

Fdey (SortCheck Inputl (ins:(num->Mdg Basic) list) [(t:num) = T) A
(SortCheck Inputl ins (CONS v vs) t =
(if (IS_BOOL (TableVal_to_Val v))
then (IS BOOL ((HD ins) t))
else (if (IS_CONCRETE (TableVal to_Val v))
then (IS_CONCRETE ((HD ins) t)) else T) A
(SortCheck Inputl (TL ins) vs t)))

The predicate SortCheck_Inputl checks whether each input is a bool sort or con-
crete sort in terms of a table row. If function Table_to_Val applies to an element
in the table row and obtains a (BOOL bool) term, this input will be a (num—BOOL
bool) term. If it obtains (CONCRETE string) term, the corresponding input will be

a (num—CONCRETE string) term. If it is don’t_care, it returns T.

The predicate SortCheck Input is defined in terms of the predicate

SortCheck Inputl. It checks whether all the inputs are bool sorts or concrete sorts.

Fdey (SortCheck Input (ins:(num->MdgBasic) list) [] (t:num) = T) A
(SortCheck Input ins (CONS v vs) t =

(SortCheck_Inputl ins v t) A (SortCheck_Input ins vs t))

The fourth argument of a table is a list of output values. The predicate
SortCheck Output is defined to check whether the output is a bool sort or a concrete

sort.

Fdef SortCheck Outputout outval (t:num) =
(if IS BOOL (outval t) then IS BOOL (out t)
else IS_CONCRETE (out t))

The definition of other components such as FORK are very similar to the definition

we gave for the boolean subset. The only difference is that the type of its inputs

80

and output are (num— BOOL bool) and (BOOL bool) terms instead of (num—bool)

and bool terms.

Secondly, the semantics of the MDG-HDL component term (SemMdghdl) is defined
in a very similar way except that the syntactic category is different to that of the

definition in the boolean subset.

Fdey (SemMdghdl (NOT x y) env = SEMNOT (env x) (env y)) A

(SemMdghdl (TABLESYN y1 y2 y3 y4 y5) env =
TABLE ((MAP env y1)) ((SEM_OUTVAR y2 env)) y3
(CONST_TO_FUNCT y4) ((SEM_DEFAULTVAR y5 env)) envstbl) A
(SemMdghdl (JOIN (codel:Mdg Hdl) code2) env =
SemMdghdl codel env A SemMdghdl code2 env)

Thirdly, we define some predicates to check that each external wire has a proper
sort. The type of the inputs and outputs of any component is (num—Mdg Basic).
However, for any components, their inputs and outputs must be either (num—BOOL

bool) terms, (num—CONCRETE string) terms or UNBOUND term.

For example, the input and output value of the NOT gate must be num—B0OL bool
terms, which is corresponding to the boolean value. However, the type of input and
output are (num—Mdg Basic). The value of the input and output could therefore
be (num— CONCRETE string) terms. If one of the input value or output value is an
external wire and a (num— CONCRETE string) term, the semantics of the circuit will
return false. If the specification of a design returns false, the correctness theorem of
this design will be always true. This is because false implies anything. In other
words, an inconsistent model will be produced. When we define the semantics of
the program for the extended subset, we have to add assumptions so as to avoid the
sort, of each variable being mismatched and the inconsistent model being produced.
The assumptions are to make sure each external input and output has proper sort

(either (BOOL bool) term or (CONCRETE string) term).

81

Since we only need to judge external wires, we define check to check if a variable

is an external wire or not.

Faey (check x [] =T) A
(check x (CONS 1 1s) = if (x = 1) then F else (check x 1s))

where CONS 1 1s lists all the internal variables.

Predicate BOOL_NOT is defined to make sure that if the input or output of a NOT

gate is an external variable then it must be a (BOOL bool) term.

Fdef BOOLNOT (x:string) (y:string) 1 s =
(V t. (if (check x 1) then IS BOOL(s x t) else T) A
(if (check y 1) then IS BOOL(s y t) else T))

Predicates for checking the sort of external inputs and outputs for other logic

gates and flip-flops have been defined in a very similar way.

For checking the sort of the external inputs and output for a table, we have
to define some auxiliary functions (Check Input Sortl, Check Input Sort and
Check Output_Sort). The principle of the definition of those predicates is similar
to the predicates SortCheck_Inputl, SortCheck Input and SortCheck Output. How-
ever, a difference is that we have to check each variable to establish whether it is
an external variable first. We then check the sort of each external variable in the

corresponding elements in the table.

The predicate Check_Input_Sortl first checks whether an input of a table (the
first argument of the table) is an external wire. If it is, it finds out the sort of input
in terms of a table row (the third argument of the table). If an element in the table
row is a (BOOL bool) term, the value of this input will be a (num—B0OOL bool) term.
If it is a (CONCRETE string) term, the corresponding input will be a (num—CONCRETE

string) term. If it is don’t_care, it returns T.

82

Fdey (Check Input_Sortl (ins:string list) [J s 1 =T) A
(Check_Input_Sortl ins (CONS v vs) s 1 =
(V t. (if (check (HD ims) 1))
then (if (v = DONT_CARE) then T
else if (IS BOOL (TableVal to Val v))
then (IS_BOOL ((HD ins) t))
else if (IS_CONCRETE (TableVal to_Val v))
then (IS_CONCRETE ((HD ins) t)) else T)
else T) A
(Check_Input_Sortl (TL ins) vs s 1))

The predicate Check_Input_Sort is defined in terms of Check Input _Sorti. It

checks the sort of all the external wires in the table.

Fdef (Check_Input_Sort (inputs:string list) [1 s 1 =T) A
(Check_Input_Sort inputs (CONS v vs) s 1 =
(Check_Input_Sortl inputs v s 1) A
(Check_Input_Sort (inputs) vs s 1))

The fourth argument of a table is a list of output values. Similarly, the predicate
Check Output_Sort first checks whether the output is an external wire or not. If it
is, the sort of the external output is determined in terms of the output value (the

fourth argument of the table).

Fdey Check Output_Sort out outval s 1 =
Vt. (if (check (Outvar_Val out))
then (if (IS_BOOL (outval t))
then IS BOOL ((Sem_Outvar out s) t)
else IS_CONCRETE ((Sem Outvar out s) t))
else T)

83

Predicate Bool_Concrete_Table is defined for checking the sort of external inputs

and outputs for the TABLE component. It is in terms of the above predicates.

Fdeyf Bool Concrete Table inps out V.outs V.out s 1 =
((Check_Input_Sort inps V_outs s 1) A
Check Qutput_Sort out (HD V_out) s 1)

The predicate Check External _Sort is defined inductively over the syntactic struc-
ture for checking the sort of the external wires of a circuit. It is in terms of those

predicates for checking the sort of each component. The definition is given below.

Fdey (Check External Sort (NOT x y) s 1 = BOOLNOT x y s 1) A

(Check External Sort (TABLESYN y1 y2 y3 y4 y5) s 1 =
Bool_Concrete_Table y1 y2 y3 (CONST_TO_FUNCT y4) s 1) A
(Check External Sort (SEQ (codel:Mdg Hdl) code2) s 1 =
((Check_External Sort codel s 1) A
(Check_External_Sort code2 s 1)))

Finally, we define the semantics for the MDG-HDL program of this extened
subset. The semantics of a program is described by SemProgram, which is defined in
terms of the predicates Dsem Ext, Dsem_Int and Check External Sort. The definition
of the first two predicates are similar to that we defined before except that their

syntactic categories are wider than before.

As we mentioned at the beginning of this section, the semantics of the program
is defined in terms of the one environment. The environment maps a syntactic
object to a history function (num—Mdg Basic). We use function Dsem Ext adding an
extra entry to this environment for each external wire (input and output). A list
ip is used to represent all the values of the external inputs and a list op is used

to represent all the values of the external outputs. Therefore, the semantics of the

84

program can be represented explicitly with the external inputs ip and outputs op.
The function Dsem_Int uses existential quantification to hide the local variable from
the environment. The entries for internal variables are added to the environment.
The function Check External Sort make sure that the external wires do not get sort
mismatched. The semantics of the MDG-HDL program is defined in terms of those

functions.

Fdey SemProgram (PROG exoutput exinput inv c) ip op =
let envl = (Dsem_Ext (SemExinput exinput) EmptyEnv ip)
in
let env2 = Dsem Ext (SemExoutput exoutput) envl op
in
((Check External Sort c¢ env2 (SemInvariable inv)) D

Dsem_Int (SemInvariable inv) ¢ env2)

Comparing this with the semantics of the MDG-HDL program for the boolean
subset (section 3.6), we notice that the semantics of the MDG-HDL program for
extended subset has added an additional assumption (Check External Sort). This
is because the variable in this subset can be either a boolean sort or a concrete sort.

The assumption makes sure that all the external variables have proper sorts.

4.6 The Semantics of the Core MDG-HDL lan-

guage

For defining the semantics of the core MDG-HDL language, we need to define the
semantics of the core component term first (SemMdghdl Core). It is defined in terms

of the semantic function for each component.

85

Faey (SemMdghdl Core (INITC init) env =

SEM_INIT ((env (FST init)), (SND init))) A
(SemMdghdl Core (SNXTC op st) env = SEM_SNXT (env op) (env st)) A
(SemMdghdl Core (TABLESYNC y1 y2 y3 y4 y5) env =

TABLE (MAP env y1) (SEM_OUTVAR y2 env) y3

(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env)) A

(SemMdghdl Core (JOINC codel code2) env =

((SemMdghdl Core codel env) A (SemMdghdl Core code2 env)))

where functions SEM_INIT, SEM_SNXT and TABLE are semantic functions for compo-

nents as we defined in the last section.

The predicate Check External Sort_Core is defined in a similar way to the pred-
icate Check External Sort we defined in the last section. It is defined inductively
over the syntactic structure for checking the sort of the external wires of a circuit. It
is in terms of the sort checking predicates defined in the last section. The definition

is given below.

Faey (Check External Sort_Core (INITC init) s 1 = BOOL_INIT init s 1) A
(Check External Sort_Core (SNXT op st) s 1 = BOOL_SNXT op st s 1) A
(Check_External _Sort_Core (TABLESYNC yl1 y2 y3 y4 y5) s 1 =

Bool_Concrete_Table y1 y2 y3 (CONST_TO_FUNCT y4) s 1) A
(Check External Sort_Core (SEQ codel code2) s 1 =
((Check External Sort Core codel s 1) A
(Check External Sort_Core code2 s 1)))

As in the last section, for defining the semantics of the program, we need func-
tions Dsem Ext, Dsem_Int_Core and Check External_Sort_Core. Function Dsem Ext
adds an entry to the environment for all external inputs and outputs, and assigns
the value of each external input to an element of a list ip and each external output
to an element of a list op. Function Dsem_Int_Core gives the semantics of the circuit

in terms of the semantics of the core component term (SemMdghdl Core) and uses

86

existential quantification to hide the local variables from the environment of the
circuit. The function Check _External Sort_Core find the proper sort for the external
wires of the circuit. The semantics of the core MDG-HDL language is defined in

terms of the above functions.

Fdey SemProgram Core (PROGC exoutput exinput inv code) ip op =
let envl = Dsem Ext (SemExinput exinput) EmptyEnv ip
in
let env2 = Dsem Ext (SemExoutput exoutput) envl op
in
((Check _External Sort_Core c env2 (SemInvariable inv)) D

Dsem_Int_Core (SemInvariable inv) code env2

4.7 Translator Correctness Theorem

We also prove the correctness theorem for this translator. We have proved a the-
orem which quantifies over its syntactic structure and states that the semantics
of the MDG-HDL program is equivalent to the semantics of the core MDG-HDL
program used in the MDG implementation. For proving the correctness theorem
PROG_THM, we have proved three theorems Component TermC THM, Circuit DsemC_THM
and Check External _Sort_THM using HOL. The first two theorems are similar to the
theorems we proved for the boolean subset except that their syntactic category is
different. In this subset, the table can be used to formalized the design whose vari-
ables are concrete sort and boolean sort rather than just boolean sort. The third
theorem states that the sort of each external wire of a circuit ¢ is equivalent to the
sort of the corresponding external wire in its translation form TransGT c. This is

because the sorts of the external variables do not change after the translation.

VYV ¢ s 1. CheckExternal Sort c s 1 =
Check_External_Sort_Core (TransGT c) s 1

87

The correctness theorem of the program PROG_THM is proved in terms of the above

three theorems.

Fihm V exv exi inv c.
SemProgram (PROG exv exi inv c¢) ip op =

SemProgram Core (TransProgMC (PROG exv exi inv c)) ip op (4.1)

Summary

In this chapter, we have extended our formalization to accommodate a list of inputs
of the component table with boolean sorts and concrete sorts. This allows our
formalization to cope with many MDG applications. We have defined the syntax
and the semantics for this extended subset of the MDG-HDL language and its core
MDG-HDL code. Functions for translating the MDG-HDL subset languages to core
MDG-HDL codes are given. The correctness theorem of the translation for this
subset which quantifies over the syntactic structure is verified. Our semantics of the
program is represented explicitly with the external inputs ip and outputs op. The
semantic function can be used to combine the translator correctness theorem with

the importing theorems in Chapter 5.

38

Chapter 5

Importing Theorems

Each formal hardware verification system has its own advantages and disadvantages.
Many hybrid tools have been developed to reap the benefits of the different verifi-
cation systems presented in Chapter 2. Normally, the verification results from one
system need to be translated to another system. In other words, there is a linkage

between the two systems. How can we ensure that this linkage is trusted?

Many different technologies have been used to link two different systems in a
trusted way, such as the work presented in [39]& [49]. We provide another way
to make the linkage more natural and trustworthy. The linkage between the two
systems is based on a series of importing theorems [80], which formally convert
the formalized automated verification results to a form usable in a traditional HOL
hardware verification, i.e., the structural specification implements the behavioral

specification.

Formalized verification result DO

(implementation D specification) (5.1)

The importing theorems are based on the MDG verification applications. The for-
malizations have different forms for the different verification applications, i.e., com-

binational verification gives a theorem of one form, sequential verification gives a

89

Bl B2

Figure 5.1: The Hierarchy of Module A
different form and so on.

To illustrate why we need a particular form of result in HOL consider the HOL
verification of a system A. A theorem that the implementation satisfies its specifi-

cation needs to be proved, i.e. semi formally
Alimp D A_spec (5.2)

where A_imp and A_spec express the implementation and specification of system A,
respectively. Suppose system A consists of two subsystems A1 and A2 and A1 is
further subdivided as shown in Figure 5.1. The structural specification of A will be

defined by the equation:
Aiimp = Al_imp A A2_imp (5.3)
where A1l_imp is defined in a similar way. Thus (5.2) can be rewritten to
Al_imp A A2_imp D A_spec (5.4)

The correctness theorem of the system A can be proved using the correctness state-
ments about its subsystems. In other words, we independently prove the correctness
theorems:

Al_imp D Al_spec (5.5)

A2 imp D A2 spec (5.6)

90

As these are implications, to prove (5.4) it is then sufficient to prove
Al_spec A A2_spec D A_spec (5.7)

Thus we verify A by independently verifying its submodules, then treating them as

blackboxes using the more abstract specification of A1 and A2 to verify A.

Suppose now that A1 is verified using MDG instead of HOL, but that we still
wish to use the result in the verification of A. To make use of the result, we need

MDG to also prove results of the form
Al imp D Al_spec (5.8)

so that the implementation can be substituted for a specification. However, results
from MDG are not of this form!. For example, with sequential verification MDG
proves a result about “reachable states” of a product machine. We need to show
how such a result can be expressed as an implication about the actual hardware
under consideration as above. If A1 MDG_RESULT is such a statement about a product

machine, then we need to prove
A1 MDGRESULT D (Al_imp D Al_spec) (5.9)

Theorems such as this convert MDG results to the appropriate form to make the

step between (5.4) and (5.7).

Ideally, we want a general theorem of this form that applies to any hardware
verified using MDG’s sequential verification tool. We also want similar results for
the other MDG verification applications. In this chapter, we will consider each of
the verification applications of the MDG system in turn, describing the conversion
theorem required to convert results to a form useful within a HOL proof. Each of

these theorems has been proved within the HOL system.

'We give details of the form of theorems that MDG does prove in the next section.

91

5.1 Combinational Verification

The simplest verification application of MDG is the checking of equivalence of input-
output for two combinational circuits. A combinational circuit is a digital circuit
without state-holding elements or feedback loops, so the output is a function of
the current input. Combinational verification can also be used to compare two
sequential circuits when a one-to-one correspondence between their registers exists
and is known. In this situation, the output is also a function of the current input.
The MDGs representing the input-output relation of each circuit are computed by
a relational product algorithm to form the MDGs of the components of the circuit.
Because an MDG is a canonical representation, we can check whether the two MDGs
are isomorphic and so the circuits are equivalent. It is simple to formalize this
in HOL. We use M ip op and M’ip op to represent the circuits (machines) being
compared. M is a relation on input traces (given by ip) and output traces (given by
op). The relation is true if op represents a possible output trace for the given input
trace ip and is false otherwise. M’ is a similar relation on inputs (ip) and outputs

(op). An MDG combinational verification result can be formalized as:
Vip op. M ip op = M’ ip op (5.10)

It verifies that the two circuits are identical in behavior for all inputs and outputs.
If ip and op are possible input and output traces for M, then they are also possible
traces for M’, and vice versa. This is not in the form of an implication as described
above. However, the MDG result does not need to be converted to a different form
for it to be useful in a HOL hardware verification, since an equality can be used just

as well as an implication.

5.2 Sequential Verification

The behavioral equivalence of two abstract state machines (Figure 5.2) is verified

by checking that the machines produce the same sequence of outputs for every

92

' 0 |
I M : !
ip] EQ H—— flag (T/F)
; M 1
I op’ :

Figure 5.2: The Product Machine used in MDG Sequential Verification

sequence of inputs. The same inputs are fed to the two machines M and M’ and
then reachability analysis is performed on their product machine using an invariant
asserting the equality of the corresponding outputs in all reachable states. This
effectively introduces new “hardware” (see Figure 5.2) which we refer to here as
PSEQ (the Product machine for SEQuential verification). PSEQ has the same inputs
as M and M’, but has as output a single Boolean signal (flag). The outputs op and
op’ of M and M’ are input into an equality checker. On each cycle, PSEQ outputs true
if op and op’ are identical at that time, and false otherwise. PSEQ can be formalized

as

PSEQ ip flag op op’ M M’ =

M ip op A M’ ip op’ A EQ op op’ flag (5.11)

Because the number of inputs and outputs of different PSEQ is different, we use a list

to represent input ip, output op. Where EQ is the equality checker defined as:

"def EQ op op’ flag =

(V t. flag t = ((MAP1 op t) = (MAP1 op’ t))) (5.12)

MAP1 is a function that applies every element of a list to the variable t, returning

a list of the function’s results:

Faey (MAP1 ([1:(a->B) list) (t:a) = ([1:B list)) A

(MAP1 ((x:a=>B)::1) t = (x t) :: MAP1 1 t)

93

The result that MDG proves about PSEQ is that the flag output is always true, i.e.,
the outputs are equal for all inputs. This can be formalized as
Y ip op op’.

PSEQ ip flag op op’ M M’ D (V t. flag t = T) (5.13)
Note that this is not of the form P_imp O P_spec, (i.e., implementation implies
specification) for M and M’ but is of that form for the fictitious hardware PSEQ. To
make use of such a result in a HOL hardware verification, we need to convert it to
that form for M and M’. This can be done in a series of steps starting from (5.13).
Expanding the definitions and rewriting with the value of flag, we obtain

YV ip op op’.

M ip op A M’ ip op’ D (V t. MAP1 op t = MAP1 op’ t) (5.14)
i.e., we have proved a lemma:

VMM,
(V ip op op’ flag .
PSEQ ip flag op op’ M M’ DV t. flagt =T) D
(V ip op op’. M ip op A M’ ip op’ D
(Vt. MAP1 op t = MAP1 op’ t)) (5.15)
This is still not in an appropriate form. The theorem should also be in the form of
(1.1). The machine M can be considered as the structural specification (implemen-

tation) and machine M’ the behavioral specification (specification). Based on this

consideration, the theorem that HOL needs is as follows:
Vip op. M ip op D M’ ip op (5.16)

i.e., for all input and output traces if the relation M ip op is true, then the relation
M’ ip op must be true. As mentioned above, the converting theorem from MDG
to HOL should be in the form of (5.1). For sequential verification the conversion

theorem should be
(5.13) D (5.16).

94

To prove this, given (5.15) it is sufficient to prove
(5.14) D (5.16).

However, this can only be proved with an additional assumption. Namely, for all
possible input traces, the behavior specification M’ can be satisfied for some output

(i.e., there exists at least one output for which the relation is true):
V ip. J op’. M’ ip op’ (5.17)

This means that the machine must be able to respond to whatever inputs are given.
This should always be true for reasonable hardware. You should not be able to give
inputs which break it. For any input sequence given to this machine, at least one
output will correspond. Therefore, we can actually only prove Fp,, (5.13) A (5.17)
D (5.16),
Fihm VMM,
((V ip op op’ flag.
PSEQ ip flag op op’ M M’ D V t. flag t = T) A
(Vip. Jop’. M’ ip op’)) D
(Vip op. M ip op D M’ ip op) (5.18)

With the same reasoning, the machine M’ could have been considered as the struc-

tural specification and machine M could have been considered as the behavioral

specification. We would then need the assumption
Vip. J op. M ip op (5.19)
We would obtain the alternative conversion theorem (5.20)

Fihm VM M.
((V ip op op’ flag.
PSEQ ip flag op op’ M M’ DV t. flagt =T) A
(Vip. 3 op. M ip op)) D

(V ip op. M’ ip op D M ip op) (5.20)

95

TESTPRO

: flag (T/F)
: (PROPERTY)

Figure 5.3: The Machine Verified in Invariant Checking

Both these theorems have been verified in HOL. As with combinational verification,
the universal quantification of M and M’ means the theorems can be instantiated for
any hardware under consideration. The symmetry in these equations is as might be

expected given the symmetry of PSEQ.

5.3 Invariant Checking.

Systems such as MDG also provide property/invariant checking. Invariant checking
is used for verifying that a design satisfies some specific requirements. This is useful
since it gives the designer confidence at low verification cost. In MDG, reachability
analysis is used to explore and check that a given invariant (property) holds in all
the reachable states of the sequential circuit under consideration, M. We consider

one general form of property checking here.

As was the case for sequential verification, we introduce new “hardware” (see
Figure 5.3) which we refer to as PINV (Product machine for INVariant checking). It
consists of the original hardware and hardware representing the test property? wired
together so that the property circuit has access to both the inputs and outputs of

the circuit under test. PINV checks whether the outputs of the machine M satisfy the

2Invariants in MDG must be written in or converted to the same hardware description language

as the actual hardware.

96

specific property or not. It is formalized as follows:

PINV ip flag op M PROPERTY =

M ip op A TESTPRO ip op flag PROPERTY (5.21)
where

Faey ~ TESTPRO ip op flag PROPERTY =
(V+t. flag t = PROPERTY (MAP1 ip t) (MAP1 op t)) (5.22)
i.e., TESTPRO is a piece of hardware which tests if its inputs and outputs satisfy
some specific requirements given at each time instance by PROPERTY. PROPERTY is a
relation on input and output values. Again in discussing correctness it is actually

a result about this different hardware that we obtain from the property checking.

The result that the property checking proves about PINV can be stated as:
V ip flag op.
PINV ip flag op M PROPERTY D V t. flagt =T (5.23)
i.e., its specification is that the flag output should always be true. Note that this
is not of the form (1.1) (i.e., implementation implies specification) for M but in

that form for the fictitious hardware PINV. To make use of such a result in a HOL

hardware verification we need to convert it to the form:
V ip op. M ip op D V t. PROPERTY (ip t) (op t) (5.24)

i.e., for all input and output sequences, if the relation M ip op is true then the
relation PROPERTY must be true for the input and output values at all times. In other
words, the machine M satisfies the specific requirement V t. PROPERTY (ip t)
(op t). Hence the conversion theorem for invariant checking is:
Fthm VM PROPERTY.
(V ip flag op.
(PINV ip flag op M PROPERTY D V t. flagt =T)) D
(Vip op. M ip op D

V t. PROPERTY (MAP1 ip t) (MAP1 op t)) (5.25)

97

We have proved this general conversion theorem in HOL. Once more the theorems

can be instantiated for any hardware and property under consideration.

We have looked explicitly at the MDG and HOL systems. However, the general
approach could be applied to the results importation between other systems. The
results could also be extended to other verification applications. Furthermore, our
treatment is very general. The theorems proved do not explicitly deal with the
MDG-HDL semantics or multiway decision graphs. Rather they are given in terms
of general relations on inputs and outputs. Thus they are applicable to other verifi-
cation systems with a similar architecture based on reachability analysis, equivalence

checking and/or invariant checking. This could include a pure BDD based system.

Summary

In this chapter, we introduced how to formally specify the correctness results pro-
duced by three different hardware verification applications using HOL. We have in
each case proved a general theorem that translates them into a form usable in a tra-
ditional HOL hardware verification, i.e., that the structural specification implements
the behavioral specification. The first application considered was combinational ver-
ification. The next application considered was sequential verification, which checks
that two abstract state machines produce the same sequence of outputs for every
sequence of inputs. Finally, we considered a general form of the checking of invariant

properties of a circuit.

98

Chapter 6

Combining the Compiler
Correctness Theorems with the

Importing Theorems

As we mentioned in the last chapter, the main idea of the importing theorem can

be represented as below.

Formalized MDG result D

(implementation D specification)

MDG verification results are obtained by applying the MDG algorithms to MDG
decision graphs. The MDG algorithms really prove properties of the low level data
structures (MDGs). However, specifications and implementations are not described
directly as decision graphs. A high level language, MDG-HDL, is used to specify
specifications and implementations, which are translated into the multiway decision
graphs (MDGs) via intermediate languages. If the MDG algorithms are correct,
MDG results can be formalized in terms of the semantics of the MDG decision

graphs. If the translations are correct, the semantics of the MDG decision graphs

99

|
MDG-HDL——== core MDG-HDL ———= MDG formula representation ———=

T/

translator correctness theorems

Ajdde

The HOL theorems in Formalize the MDG results
in terms of the MDG formula | —+——=
terms of MDG-HDL convert representations

importing theorems

Figure 6.1: Combining the Translator Correctness Theorems with Importing Theo-

rems for a Boolean Subset

is equal to the semantics of MDG-HDL. By combining the translator correctness
theorems with the importing theorem, the MDG results can be imported into HOL
to form the HOL theorems in terms of the semantics of the high level language

MDG-HDL rather than in terms of the semantics of the low level language MDGs.

We have partly proved the translators for two different subsets. For the boolean
subset, we have proved two translators which are correct. We have obtained a theo-
rem which states that the semantics of the MDG-HDL program is equivalent to the
semantics of the MDG formula representation program (3.3). In order to demon-
strate the combination of the translator correctness theorems and the importing
theorems, the formalization of the MDG results for the boolean subset will be in
terms of the MDG formula representation (see Figure 6.1). In fact, the principle is
the same. Similar conversion can be done for further translators if we prove corre-
sponding translator correctness theorems. In other words, the formalization of the
MDG verification results we consider in this chapter is based on the semantics of the
low level MDG formula representation. However, by using the translator correct-
ness theorems, the additional assumption can be proved in terms of the semantics

of MDG-HDL and the HOL theorem we imported is in terms of the semantics of

100

MDG-HDL core MDG-HDL ——————=

translator correctness theorems

3

=3)
The HOL < Formalize the
theorems MDG results in
in terms of convert terms of core
MDG-HDL MDG-HDL

importing theorems

— =

Figure 6.2: Combining the Translator Correctness Theorems with Importing Theo-

rems for an Extended Subset

MDG-HDL.

With the same reasoning, for the extended subset, we have obtained a theorem
(4.1) which states that the semantics of the MDG-HDL program is equivalent to
the semantics of the core MDG-HDL program. Therefore, the formalization of the
MDG results for the extended subset will be in terms of the core MDG-HDL (see
Figure 6.2). By using the translator correctness theorem, the verification of the

additional assumption and importation theorem are based on the semantics of the

MDG input language (MDG-HDL).

The reason we are doing such a conversion is that the syntax and the semantics
of a low level program are more complex and unreadable than those of a program
in a high level language such as MDG-HDL. It will be more convenient, readable
and direct if we prove theorems in terms of the semantics of MDG-HDL and obtain
the HOL theorems in terms of the semantics of MDG-HDL. We do not take it for
granted. We formally convert it from the semantics of a low level language to the

semantics of a high level language in terms of the translator correctness theorems.

101

In this chapter, we will focus on combining the importing theorems with the
translator correctness theorems. We will first instantiate the importing theorems
with the syntax and semantics of a low level program for two subsets (the MDG
formula representation program for the boolean subset and the core MDG-HDL
program for the extended subset). We then combine the importing theorem with
the translator correctness theorems and obtain the new importing theorems. The
importation turns the MDG verification results based on the semantics of the low
level program into HOL to form HOL theorems based on the semantics of the high
level language (MDG-HDL).

6.1 Combining the Translator Correctness The-
orems with the Importing Theorems for a

Boolean Subset

In this section, we will firstly instantiate importing theorems with the semantics of
the MDG formula representation for the combinational verification and sequential
verification. By combining the translator correctness theorems, we can obtain the
new importing theorems which convert the MDG verification results into HOL to

form the HOL theorems in terms of MDG-HDL.

6.1.1 Combinational Verification

In combinational verification, the MDG result does not need to be converted to a
different form for it to be useful in a HOL hardware verification, since an equality
can be used just as well as an implication. In this situation, we just need to formalize
the MDG result in terms of the semantics of the MDG formula representation. We
use C1 and C2 to represent the abstract syntax of the circuits in MDG-HDL being

compared.

102

The abstract syntax in the MDG formula representation will be (TransProgCF
(TransProgMC C1)) and (TransProgCF (TransProgMC €2)). This is because the MDG
system uses functions (TransProgMC) and (TransProgCF) which translate the MDG-
HDL program to the MDG formula representation program. The semantics of
the corresponding circuits is represented as (SemProgram Formula (TransProgCF
(TransProgMC C1)) ip op) and (SemProgram Formula (TransProgCF (TransProgMC
€2)) ip op). Therefore, by instantiating (SemProgram Formula (TransProgCF
(TransProgMC C1))) and (SemProgram Formula (TransProgCF (TransProghMC C2)))
for the machine M and M’ in the combinational verification, the MDG verification

result can be stated as shown below:

V ip op.
SemProgram Formula (TransProgCF (TransProgMC C1)) ip op =

SemProgram Formula (TransProgCF (TransProgMC C2)) ip op (6.1)

where the formalization is in terms of the low level language (the MDG formula
representation). However, as long as the MDG system returns true, this theorem can
be tagged into HOL. With the help of the translator correctness theorem (3.3), we
have proved a theorem Formalize Eqcb_Thm (6.2) which states that the formalization
of the MDG result based on a low level language is equivalent to the formalization
of the MDG result based on the high level language (MDG-HDL). Therefore, the
MDG verification results can be converted into HOL to form the HOL theorems in

terms of the semantics of MDG-HDL.

Fthm (V ip op.
SemProgram Formula (TransProgCF (TransProgMC C1)) ip op =
SemProgram Formula (TransProgCF (TransProgMC C2)) ip op) =

V ip op. SemProgram Cl ip op = SemProgram C2 ip op (6.2)

Example 1. Consider the two circuits shown in Figure 6.3. Assume they have
been verified to be equivalent using MDG combinational equivalence checking. We

will show in the following how to convert a MDG result to a useful HOL theorem.

103

'p_DO op
> oot ot o2

Figure 6.3: Two Equivalent Combinational Circuits

The first circuit is a single NOT gate. Its abstract syntax can be specified as:

NOT1 = PROG (EXOUT ["op"]) (EXIN ["ip"]1) (INV [])
(NOT n ipll Ilopll)

where NOT1 is an informal abbreviation for representing the abstract syntax of this
circuit. The second circuit consists of three NOT gates in series and its abstract

syntax can be formalized as:

NOT3 = PROG (EXOUT ["op"1) (EXIN ["ip"1) (INV ["u";"v";"w"])
(JOIN (NOT "ip" "u")
(JOIN (NOT "u" ")
(JOIN (NOT "v" "w") (REG "w" "op"))))

where NOT3 is an informal abbreviation for representing the abstract syntax of this

circuit. The MDG verification result can be stated as

V ip op. SemProgram (TransProgCF (TransProgMC NOT3)) ip op =
SemProgram (TransProgCF (TransProgMC NOT1)) ip op

The formalization can be directly tagged into HOL to form a HOL theorem. Rewrit-

ing with the theorem Formalize Eqcb_Thm (6.2), we obtain a new importing theorem
which is in terms of the semantics of MDG-HDL.

Fihm Vip op. SemProgram NOT1 ip op = SemProgram NOT3 ip op

104

6.1.2 Sequential Verification

For sequential verification, we have obtained a general importing theorem as shown
in (5.18) or (5.20). If we use IMP to represent an informal abbreviation of the ab-
stract syntax of the implementation file in MDG-HDL and use SPEC to represent
an informal abbreviation of the abstract syntax of the specification file in MDG-
HDL, the corresponding informal syntax to their MDG formula representation will
be (TransProgCF (TransProgMC IMP)) and (TransProgCF (TransProgMC SPEC)). The
semantics of the corresponding machine can be represented as SemProgram Formula
(TransProgCF (TransProgMC IMP)) ip op and SemProgram Formula (TransProgCF
(TransProgMC SPEC)) ip op. Therefore, (SemProgram Formula (TransProgCF
(TransProgMC IMP))) and (SemProgram Formula(TransProgCF (TransProgMC SPEC)))
can be instantiated for the machine M and M’ in the conversion theorem (5.18) or
(5.20). Therefore, we obtain the importing theorem based on the semantics of the

MDG formula representation as shown below:
Finm ¥V IMP SPEC.
(V ip flag op op’.
PSEQ ip op op’ flag
(SemProgram Formula (TransProgCF (TransProgMC IMP)))
(SemProgram Formula (TransProgCF (TransProgMC SPEC)))
O (Vt. (flagt = T))) A
(V ip. 3 op’.
SemProgram Formula (TransProgCF (TransProgMC SPEC)) ip op’) D
(V ip op.
(SemProgram Formula (TransProgCF (TransProgMC IMP)) ip op) D
(SemProgram Formula (TransProgCF (TransProgMC SPEC)) ip op)) (6.3)
When we formally import the MDG result into HOL to form the HOL theorem, we

first need to formalize the MDG result in terms of the MDG formula representation

and tag it into HOL.

105

We then need to prove an additional assumption. Namely, for all possible input

traces, the behavior specification can be satisfied for some output and state traces:

(V ip. 3 op’.

SemProgram Formula (TransProgCF (TransProgMC SPEC)) ip op’) (6.4)

By using the translator correctness theorem (3.3), we have proved a theorem
Exist_Eq_Thm (6.5) which states that the additional assumption based on the seman-
tics of a low level language is equivalent to that based on the semantics of a high
level language (MDG-HDL). Therefore, the additional assumption can be proved in
terms of the semantics of MDG-HDL.

Fihm (V ip. 3 op’.
(SemProgram Formula (TransProgCF (TransProgMC SPEC))) ip op’) =

(V ip. 3 op’. SemProgram SPEC ip op’) (6.5)

Similarly, we have also proved a theorem Imp Eq_Thm, which converts the trandi-
tional HOL theorem (implementation D specification) based on the semantics of

the low level language to that based on the semantics of MDG-HDL.

Fivm (¥ ip op.
(SemProgram Formula (TransProgCF (TransProgMC IMP))) ip op D
(SemProgram Formula (TransProgCF (TransProgMC SPEC))) ip op) =

(V ip op. (SemProgram IMP) ip op D (SemProgram SPEC) ip op) (6.6)

Rewriting theorem (6.3) with the theorems (6.5) and (6.6), we obtain a new
importing theorem (6.7). This theorem states that the formalization of the MDG
results based on the semantics of the MDG formula representation can be imported

into the HOL to form a HOL theorem based on the semantics of MDG-HDL.

106

Fim V¥ IMP SPEC.
V ip flag op op’.
PSEQ ip op op’ flag
(SemProgram Formula (TransProgCF (TransProgMC SPEC)))
(SemProgram Formula (TransProgCF (TransProgMC IMP)))
D (Vt. (flagt =T)) A
V ip. 3 op’. SemProgram SPEC ip op’ D

(V ip op. SemProgram IMP ip op D SemProgram SPEC ip op) (6.7)

Therefore, the additional assumption for the design can be proved in terms of the

semantics of MDG-HDL
V ip. 3 op’. SemProgram SPEC ip op’ (6.8)

The converted theorem which we obtain in HOL is in terms of the semantics of

MDG-HDL too.
(V ip op. SemProgram IMP ip op D SemProgram SPEC ip op) (6.9)

Working with the semantics of a high level language (such as MDG-HDL) makes
verification easier and more readable. Combining the importing theorem (5.18) or
(5.20) with the translator correctness theorem (3.3) allows our additional assumption
to be proved in terms of the semantics of MDG-HDL and the theorem we obtain
in HOL to be imported in terms of the semantics of MDG-HDL. Therefore, the low
level MDG verification results can be converted into HOL in terms of the semantics
of a high level language (MDG-HDL).

In the rest of this section, we give a simple example to illustrate the technical
detail about how to formally import the verification results proved in the MDG
systems to results about circuits in a form that can be reasoned about in the HOL

system.

107

| op :
. REGNOT3M !

P EQ H—— flag (T/F)
E REGNOTM Qop, |

Figure 6.4: The Machine used for Sequential Verification of the REGNOT3M Circuit

Example 2. Consider verifying the sequential circuits in Figure 6.4 using sequential
verification. We check that three not gates and a register are equivalent to a single
not gate and register. We first prove that the two circuits are equivalent in the MDG
system. We next prove the additional assumption in HOL based on the MDG input
language — MDG-HDL. Finally, we convert the MDG results into HOL to form the
HOL theorem.

Firstly, we prove the circuits using the MDG system. When we use the MDG
system to prove the equivalence of these two circuits, we need to specify the circuit
description files. The main part of the circuit description file for one NOT gate and

one register is

signal(ip,bool).

signal(op,bool).

signal(x,bool).

component (not_A,not (input (ip) , output (x))).
component (reg_A,reg(input (x), output(op))).
init_val(op,0).

outputs ([op]) .

st nxst (op,x).

108

The main part of the circuit description file for three NOT gates and one register is

signal(ip,bool).

signal(op,bool).

signal(u,bool).

signal(v,bool).

signal(w,bool).

component (u_comp ,not (input (ip) ,output(u))).
component (v_comp ,not (input (u) ,output (v))).
component (op_comp ,not (input (v) ,output (w))).
component (reg_comp,reg(input (w) ,output (op))) .
outputs ([op]) .

st_nxst (op,x) .

We also need to provide the algebraic specification file, the symbol order file and
the invariant specification file. We input these five files into the MDG system. The
MDG verification tool will take the MDG-HDL programs and translate them into
two MDG representations. A set of MDG algorithms will be applied to them to
obtain their canonical MDG representations. The MDG system will check whether
two canonical MDG representations are identical or not and return true or false
respectively. In our example, the MDG verification tool returns true so that the two

circuits have been successfully proved.

We then define the syntax of the two circuits. The abstract syntax of the first

circuit REGNOT3M is:

IMP = PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV ["u";"v";"w"])
(SEQ (NOT "ip" "u")
(SEQ (NOT "u" "v")
(SEQ (NOT "v" "w") (REG "w" "op"))))

109

The abstract syntax of the second circuit REGNOT1M is

SPEC = PROG (EXOUT ["op’"]) (EXIN ["ip"]) (INV ["x"])
(SEQ (NOT nipn "X") (REG LTl llopll))

Since the MDG tool returns ture, we can formalize MDG result into HOL in
terms of semantics of the MDG formula representation: the result that MDG proves
about PSEQ is that the equality checker is always true. The formalization can be

tagged into HOL to form a HOL theorem as shown below:

Fihm V ip flag op op’.
PSEQ ip op op’ flag
(SemProgram Formula (TransProgCF (TransProgMC SPEC)))
(SemProgram Formula (TransProgCF (TransProgMC IMP)))

D (Vt. (flagt =T)) (6.10)

The next step is to prove the additional assumption based on the semantics of
MDG-HDL. Namely, for all possible input traces, the behavior specification REGNOT1

can be satisfied for some output and state traces:
Fihm V ip. 3 op’. SemProgram SPEC ip op’ (6.11)

By instantiating the syntax of the two circuits into the importing theorem for se-

quential verification (6.7), we obtain a theorem.

Fivm (V ip op op’ flag.
PSEQ ip op op’ flag
(SemProgram Formula (TransProgCF (TransProgMC SPEC)))
(SemProgram Formula (TransProgCF (TransProgMC IMP))) D
(Vt. flag t = T)) A
(VY ip. 3 op’. SemProgram SPEC ip op’) D
(Y ip op. SemProgram IMP ip op D SemProgram SPEC ip op)

110

Finally, we obtain the conversion theorem by discharging the theorem of formal-
izing the MDG result (6.10) and the existential theorem (6.11). This theorem states

that the implementation implies the specification.

Fivm V¥V ip op. SemProgram IMP ip op D SemProgram SPEC ip op

6.2 Combining the Translator Correctness Theo-
rem with the Importing Theorems for an Ex-

tended Subset

The main idea of this section is similar to that of the last section. However, the
syntax and the semantics are different, because we consider an extended subset.
Since we only proved the first translator for this subset, the formalization of the
MDG result is based on the core MDG-HDL language rather than the MDG formula

representation (Figure 6.2).

6.2.1 Combinational Verification

As we mentioned in section 6.1.1, for combinational verification, we only need to
formalize MDG verification result and tag it into HOL. The tagged theorem is in the
form the HOL system needed. The formalization of MDG verification result based

on the semantics of the core MDG-HDL can be given as below:

V ip op.
SemProgram Core (TransProgMC C1) ip op =

SemProgram Core (TransProgMC C2) ip op (6.12)

By using the translator correctness theorem (4.1), we have proved a theorem

Formalize Eqce_Thm (6.13) which states that the formalization of the MDG result

111

based on the core MDG-HDL language is equivalent to the formalization of the
MDG result based on MDG-HDL.

Fthm (V ip op.
SemProgram Core (TransProgMC C1) ip op =
SemProgram Core (TransProgMC C2) ip op) =
V ip op. SemProgram Cl ip op = SemProgram C2 ip op (6.13)

Therefore, the MDG verification results can be converted into HOL to form the

HOL theorems in terms of the semantics of MDG-HDL.

6.2.2 Sequential Verification

Similar to the section 6.1.2, we first instantiate the two machines in terms of the
semantics of the core MDG-HDL language in the importing theorem (5.18) or (5.20).
Therefore, we obtain the importing theorem based on the semantics of the core
MDG-HDL language as shown below:

Fim ¥V IMP SPEC.
(V ip op op’ flag.
PSEQ ip op op’ flag
(SemProgram Core (TransProgMC SPEC))
(SemProgram Core (TransProgMC IMP))
D (Vt. (flagt =T))) A
(V ip. 3 op’. SemProgram Core (TransProgMC SPEC) ip op’) D
(V ip op.(SemProgram Core (TransProgMC IMP) ip op) D

(SemProgram Core (TransProgMC SPEC) ip op)) (6.14)

Secondly, we need to prove an additional assumption.
Finm (V ip. 3 op’. SemProgram Core(TransProgMC SPEC) ip op’) (6.15)

112

By using the translator correctness theorem (4.1), we prove a theorem Exist Eqe Thm
(6.16). This theorem states that the additional assumption based on the semantics
of the core MDG-HDL language is equivalent to that based on the semantics of
MDG-HDL. In other words, we can prove the additional assumption in terms of the

semantics of MDG-HDL.

Fim (¥ ip. 3 op’. (SemProgram Core (TransProgMC SPEC))) ip op’) =

(V ip. 3 op’. SemProgram SPEC ip op’) (6.16)

Thirdly, we prove the theorem Imp_Eqe_Thm, which states that the tranditional HOL
theorem based on the semantics of the core MDG-HDL language is equivalent to

that based on the semantics of MDG-HDL.

Fihm (V ip op.
(SemProgram Core (TransProgMC IMP)) ip op D
(SemProgram Core (TransProgMC SPEC)) ip op) =
(V ip op. (SemProgram IMP) ip op D

(SemProgram SPEC) ip op) (6.17)

Finally, the new importing theorem Import Mdghdl Thm is obtained by rewriting the-
orems (6.14) with the theorem (6.16) and (6.17).

Fium ¥V IMP SPEC.
(V ip op op’ flag.

PSEQ ip op op’ flag
(SemProgram Core (TransProgMC SPEC))
(SemProgram _Core (TransProgMC IMP))

O (Vt. (flagt =T))) A
(V ip. 3 op’. SemProgram SPEC ip op’) D
(V ip op. SemProgram IMP ip op D

SemProgram SPEC ip op) (6.18)

113

As a result, combination of the translator correctness theorem and importing
theorems allows MDG verification result to be imported into HOL in terms of se-
mantics of MDG-HDL. An example for importing MDG verification result into HOL
for the extended subset will be given in Chapter 8.

Summary

We have combined the compiler correctness theorems with the importing theorems
based on the deep embedding semantics. This combination allows the MDG results
to be reasoned about in HOL in terms of the MDG input language (MDG-HDL).
The two different MDG verification applications for two subsets have been formalized

in terms of the low level language and imported in a way that corresponds to the
semantics of MDG-HDL.

114

Chapter 7

Existential Theorems

As we stated in Chapter 5, the importing theorem for sequential verification has the

form:

Finm Formalized MDG result A
V ip. 3 op. SPEC ip op D
(V ip op. (IMPL ip op D SPEC ip op))

where SPEC represents the behavioral specification and IMPL represents the structural
specification. The first assumption is discharged by the MDG verification. However,
for importing the sequential verification results into HOL, a user of the hybrid system
strictly needs to prove an additional assumption (an existential theorem) to ensure
the correct HOL theorem can be made. This theorem states that for all possible
input traces, the behavioral specification SPEC can be satisfied for some outputs (i.e.,

there exists at least one output for which the relation is true):

V ip. 3 op. SPEC ip op (7.1)

When we convert the MDG results into HOL to form the HOL theorems, the

theorems actually state that the implementation of the design implements its spec-

115

ification as shown in (7.2).
V ip op. (IMPL ip op D SPEC ip op) (7.2)

This representation might meet an inconsistent model that trivially satisfies any
specification. We need to verify a stronger consistency theorem against the imple-

mentation as suggested in [58], which has the form:
V ip. 3 op. IMPL ip op (7.3)

This means that for any set of input values ip there is a set of output values op
which is consistent with it. This shows that the model does not satisfy a specification

merely because it is inconsistent.

In this chapter, we investigate a way of proving the additional assumption and
the stronger consistency theorem based on the syntax and semantics of the MDG
input language [82]. As we mentioned above, we prove the additional assumption
because we want to make the linking process easier and remove the burden from the
user of the hybrid system. We prove the stronger consistency theorem because we
want to avoid an inconsistent model occurring. The above two theorems actually
have the same form. In the rest of this thesis, we call them existential theorems.
If we use C to represent any specification or implementation of a circuit, ip and op
to represent the external inputs and outputs, the existential theorem should have

the form:
VY ip. J op. C ip op (7.4)

For example, if we consider a circuit consisting of two NOT gates in series, the exis-

tential theorem for this circuit should be:

Fivm V ip. 3 op. (3 opl. SEMNOT ip opl A SEMNOT opl op)

In fact, the stronger consistency theorem (7.3) is an existential theorem for the
structural specification, whereas the additional assumption (7.1) for the importing

theorem is an existential theorem for the behavioral specification.

116

The goal of the existential theorem is existentially quantified. We can remove
hidden lines in goals of this form using EXISTS_TAC, which strips away the leading
existentially quantified variable and substitutes term for each free occurrence in the
body. This term is called the existential term. An existential term of a vari-
able is determined by one or several output representations of the corresponding
MDG-HDL components. An output representation of a component represents an
output function of this component, which depends on its input value and output
value at the current time or an earlier time instance. There is a HOL tactic, EX-
ISTS_ELIM_TAC [6], which is used to eliminate existentially quantified variables in
a goal. This tactic corresponds to a theorem EXISTS_ELIM given below.

Fim (3 x. (x=t) A (AX)) =At (7.5)

In other words, if the existentially quantified variable (x) is explicitly represented by
its value as in (7.5) with (x = t) in the goal, the tactic EXISTS_ELIM_TAC can be used
to remove the hidden lines. The general purpose simplification tactic, SIMP_TAC can
similarly be used to eliminate existentially quantified variables. However, for dealing
with those existentially quantified variables such as (x) which are not represented

as (x = t), we need to find their output representations.

In this chapter, we concentrate on proving the existential theorems based on
the syntax and semantics of MDG-HDL [82] [26]. However, a similar method can
be used to solve other existentially quantified goals. This is because we provide
the output representation for each component (mainly logic gates and flip-flops).
The existential term of a design, which reduces the goal 3 x. t to t[u/x], is
determined in terms of the corresponding output representations. We also pro-
vide tactics for expanding the semantics of the circuit and proving the existential

theorem.

We have defined semantic functions for two subsets MDG-HDL. For giving a
corresponding importing theorem for sequential verification, we need to prove the
existential theorem for the implementation of the design in term of the semantics.

We need to provide the general output representation for each component of the

117

two subsets of the MDG-HDL library. Because the main ideas of defining the output
representation for each component of the two subsets are same, we will only give
the detail about how to define the output representation for the extended subset.
In other words, we will talk about how to prove the existential theorem for the

extended subset.

7.1 Existential Theorem for the Extended Subset

In this section, we provide the general output representation for each component
in the MDG-HDL library. Because the existential term for a design is determined
in terms of the output representation of its components, these provide a toolkit for
then proving the existential theorem of the design. We also provide three tactics
EXPAND_SEMANTICS_TAC, PROVE EXIST_TAC and PROVE_TABLE EXIST TAC which automat-
ically expand the semantics of the program and prove the goal. The first tactic is
used for expanding the semantics of the program (design) and obtaining a goal of the
form3 al ... an. body. The tactics PROVE_EXIST_TAC and PROVE_TABLE EXIST TAC

are used for verifying goals.

The proof process for proving an existential theorem is divided into three steps.
We first expand its semantics and rewrite away the abstract syntax, and obtain the
existentially quantified goal. We then strip away the existential quantified variable.

Finally, we prove the goal.

Example 1. Consider a circuit that only consists of one NOT gate. The abstract

syntax of this circuit is represented as:

(PROG (EXQUT ["op"1) (EXIN ["ip"1) (INV [1) (NOT "ip" "op"))

The existential theorem for this circuit is

118

Fihm V ip. 3 op.
SemProgram (PROG (EXOUT ["op"]) (EXIN ["ip"])
(Inv [1) (NOT "ip" "op")) ip op

Expanding the semantics of the program using the tactic EXPAND_SEMANTICS_TAC,

we obtain a subgoal which has the form 3 a1 ... an. body. Here:

3 op. V t. ISBOOL (HD ip t) A IS_BOOL (HD op t) O
Vt. MDG_TO_BOOL (HD op t) = ~ MDG_TO_BOOL (HD ip t)

The existential theorem of this circuit is existentially quantified by its external

output op. More detail will be given later.

In the rest of this chapter, we first define the output representation for each
component in the MDG-HDL library apart from the TABLE. We then provide a
method to find the output representation for the TABLE component. We next deal
with the existentially quantified internal variable. Finally, we give an example that
demonstrates how to apply our approach to prove the existential theorem of a

whole circuit.

7.2 The Output Representation for the Basic MD G-
HDL Components

In the MDG-HDL library, there are two classes of non-table component. In one the
output of the component is a signal variable (ie non state holding), in the other the
output of the component is a state variable. The existential terms for the two

classes are slightly different.

(1) The output of a component is signal variable.

119

Most components in the MDG-HDL library belong to this class having no state
component: their output is a signal variable. For stripping away the existentially
quantified variable, we have defined the output representation for each component.

For example, the general output representation for the NOT gate is defined as

Fdey existnot (ip:Mdg Basic) =
(Booll Mdg ~ (Awv. (if wv = BOOL T then T else F)) ip)

where Booll Mdg is an auxiliary function, which converts a boolean value to a
Mdg Basic value. This definition states that the function is related to the input
ip. We use this term as the basis of the witness term for existential quantification

elimination (EXISTS_TAC in HOL).

In Example 1 above, both external inputs and external outputs are one element
lists. The input of the circuit is therefore (HD ip) (taking the first element of list ip);
we therefore use (HD ip) to represent our input variable in the existential term rather
than ip. The output op is a (num->Mdg Basic) list. We use [A(t:num). existnot
(HD ip (t:num))] to represent the existential term of the circuit. It is used to
strip away the existentially quantified goal. The second tactic PROVE_EXIST_TAC can
then be used to prove the goal. The output representation for other components

in this class can be defined in a very similar way.

(2) The output of a component is a state variable.

In this class, the output value of a component refers to values at an earlier time
instance. When we strip away the existentially quantified variable op, the time value

in the existential term must be one instance earlier.

Example 2. Consider proving an existential theorem for a one register circuit.

The output representation for a register existreg is given below:

120

Faey existreg (ip:Mdg Basic) =
(Booll Mdg(Awv. (if wv = BOOL T then T else F)) ip)

We first use the tactic EXPAND_SEMANTICS_TAC[SEM REG] which expands the se-
mantics of the circuit. The existential quantifier elimination tactic EXISTS_TAC is
then used to strip away the existentially quantified variable op. However, the exis-
tential term [(A(t:num). existreg (HD ip ((t-1):num)))] is different to the one
we described above. Because the output value of the register refers to values at
an earlier time instance, the time in function existreg is (t—1) rather than t.
Finally, the existential theorem for one register can be proved by using tactic

PROVE_EXIST_TAC.

7.3 The Output Representation for TABLE Com-

ponents

The predefined TABLE component must be dealt with separately. There exist three
different situations. In each of these situations, the output representation of the

TABLE is based on the output function existtable whose definition is given below:

Fdey (existtable input [] u_out default t = default t) A
(existtable input vs [] default t = default t) A
(existtable input (CONS v vs) (CONS u u_out) default t =

(if (Tablematch input v t) then (u t)

else (existtable input vs u_out default t)))

This definition represents the output value of the table. In the definition, the
input of the table input is a list. Each element in the list could be used to rep-
resent the output value at an earlier time instance. From this definition, we have

proved a theorem which states the relation between the predicate table and predi-

121

cate existtable. A table’s output value at time t is equal to the value of predicate

existtable at time t.

Fihm V u_outs u_out t.
table input op u.-outs u_out default t =

(op t = (existtable input u outs u out default t))

Now, we will consider how to use existtable to give the output representation

for the three different table situations in turn.

(1) The output of a TABLE is a signal variable.

In this situation, the output is a relation of the input and the other three ta-
ble arguments. The output representation for TABLE is existtable ip vs u_out

default. In other words, the function existtable represents the output relation.

For example, if we want to prove an existential theorem for the TABLE of a NOT

gate circuit, the existential term for the table specifying a NOT gate is

[existtable [(HD ip) :(num -> Mdg Basic)]
[[TABLE_VAL (BOOL T)]; [TABLE VAL (BOOL F)]]
[(At. BOOL F); (At. BOOL T)1 (At. ARB)]

(2) The output of a TABLE is a state variable and the input of the TABLE

does not contain the output variable.

In this case, the output of the TABLE at the current time does not depend on itself
at an earlier time instance. The existential term refers to the values at an earlier
time instance, which is At. existtable ip vs u_out default (t-1). The time in
function existtable is (t—1) rather than t. For example, if we want to prove an
existential theorem for the TABLE of a Register circuit, the existential term which

refers to values at an earlier time instance for this circuit is

122

[At. existtable [(HD ip) :(num -> Mdg Basic)]
[[TABLE_VAL (BOOL T)]; [TABLE_VAL (BOOL F)1]
[(At. BOOL T); (At. BOOL F)] (At. ARB) (t-1)]

(3) The output of a TABLE is a state variable and the input of the TABLE

contains the output variable.

In this situation, the output value of the TABLE not only depends on inputs
but also depends on its own value at an earlier time instance. We cannot give
the general output representation for this kind of TABLE. However, we provide a
method through an example to explain how to obtain an output representation

for the TABLE.

Example 3. We consider the following goal for a program containing a table
in which the table output value not only depends on inputs but also depends on its

own value at an earlier time instance (see Figure 7.1).

After using the tactic EXPAND_SEMANTICS TAC to expand the semantics of the syn-

tax, we obtain:

J op. (Vt. (ISBOOL (HD ip t) A ISBOOL (HD op t)) A
IS BOOL ((HD op o NEXT) t)) D
TABLE [HD (ip :(num -> Mdg Basic) list); HD op] (HD op (t + 1))
[[TABLE_VAL (BOOL F); TABLE_VAL (BOOL F)];
[TABLE_VAL (BOOL F); TABLE_VAL (BOOL T)];
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL F)];
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL T)]]
[(A(t :num). BOOL F); (A(t :num). BOOL T); (A(t :num). BOOL T);
(A(t :num). BOOL T)] (A(t :num). ARB)

We notice that the output value at the time t+1 depends on the output value at

the time t. For stripping away the existentially quantified variable op, we have to

123

V ip.
3 op. SemProgram (PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV [1)
(TABLESYN ["ip"; "op"] (NEXTV "op")
[[TABLE_VAL (BOOL F); TABLE VAL (BOOL F)I;
[TABLE_VAL (BOOL F); TABLE VAL (BOOL T)I;
[TABLE VAL (BOOL T); TABLE VAL (BOOL F)I;
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL T)]]
[BOOL F;BOOL T;BOOL T;BOOL T] (DENORMAL ARB))) ip op

INPUT OUTPUT
ipt i opt op (t+1)
IF BOOL F i BOOL F BOOL F
__________ U
BOOLF | BOOLT BOOL T
__________ T
BOOLT | BOOLT BOOL F
__________ Y
BOOL T E BOOL T BOOL T
ELSE ARB

Figure 7.1: The Output of a TABLE is a State Variable and Contains in the Input list

124

define a new constant existtable_next of the form:

existtable next ip (SUC t) =
existtable [HD ip; (la. existtable next ip a)l
[[TABLE_VAL (BOOL F); TABLE_VAL (BOOL F)];
[TABLE_VAL (BOOL F); TABLE_VAL (BOOL T)];
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL F)];
[TABLE_VAL (BOOL T); TABLE_VAL (BOOL T)]]
[(A(t :num). BOOL F); (A(t :num). BOOL T); (A(t :num). BOOL T);
(A(t :num). BOOL T)] (A(t :num). ARB) t

where ((SUC t) = t+1). However, we cannot define this function directly in HOL
by using the Define function because it is not well-defined. In particular, it is of the

form

f (SUCt) =g f

where f is existtable next applied to arguments, and g is existtable applied to
arguments. The function is passing £ (a functional value of type:num->Mdg Basic)
to another function. In order to make this valid, we have to show that the functions
called by g are only called in ways that decrease some measure function. Therefore,
we expand the definition first and obtain a well-defined function so as to use Define

to define this function.

We first expand the definition of the existtable, Tablematch, HD, TL and
TableVal to_Val in order to define existtablenext by using REWRITE_CONV. We
can then obtain a well-defined function and use Define to define the function

existtable next. We next obtain the existential term which is

[((existtable next (ip:(num->MdgBasic) list)) :num->Mdg Basic)]

Finally, the existential goal can be proved by using PROVE_TABLE EXIST_TAC. There-

fore, we can prove the existential theorem of the above circuit by using the above

125

three steps as long as we find its output representations.

7.4 Dealing with the Existential Quantified Inter-

nal Variables

When we prove the existential theorem for a circuit, if the circuit contains internal
wires, we also need to strip away these wires. The existential terms for these wires
are nearly the same as we described above. A difference is that the type of these
wires is :num -> Mdg Basic rather than : (num -> Mdg Basic) list. This is because

we do not use a list to represent an internal wire.

Example 4. We consider the proof of the existential theorem for a circuit

consisting of one AND gate and one REGISTER. The semantics of this circuit is

VY ip. 3 op.
SemProgram (PROG (EXOUT ["op"]) (EXIN ["ipi"; "ip2"]) (INV ["u"])
(JOIN (AND "ipi" "ip?" nun) (REG gt "Op"))) 1p op

By expanding the semantics using EXPAND_SEMANTICS_TAC[SEM_AND, SEM_REG], we

obtain

3. x1 op.

(V t. TIS_BOOL (HD ip t) A IS_BOOL (HD (TL ip) t)) A
IS BOOL (HD op (t + 1))) D

vV t.
ISBOOL (x1 t) A
(MDG_TOBOOL (x1 t) =
MDG_TO_BOOL (HD ip t) A MDG_TO_BOOL (HD (TL ip) t))) A
ISBOOL (x1 t) A (MDG_TO_BOOL (HD op (t + 1)) = MDG_TO_BOOL (x1 t))

126

Table code
: el

X2

: . X3

L i Op
ip3—] > E

NOT OR AND NOT

ipl

Figure 7.2: A Circuit

where x1 is an internal wire which is the output of the AND gate and the input of the
REGISTER. It is a (num -> Mdg Basic) term. The existential term of x1 (x1_exist)

depends on the output representation of the AND gate (existand).
x1 exist = (A(t:num). existand (HD ip (t:num)) (HD (TL ip) t))

op represents an external output, it is a (num -> Mdg Basic) list term. The output
of the REGISTER is the only element of this list. Thus the corresponding existential

term depends on the output representation of the REGISTER.

[(A(t:num). (existreg (xl_exist (t-1))))]

The tactic EXISTS_TAC can then be used to strip away the existentially quantified
external variable op and internal variable x1. Finally, the theorem can be proved by

using tactic PROVE_EXIST_TAC.

7.5 An Example

Example 5. Consider the circuit shown in Figure 7.2. We will prove the existential
theorem of this circuit to illustrate how our approach is deployed with a circuit

containing a combination of the situations considered: internal wires, a table, a

127

register and combinational components. The existential theorem for this circuit is

represented as:

Fivm YV ip.
3 op.
SemProgram(PROG (EXOUT ["op1"]) (EXIN ["ipl"; "ip2"; "ip3"])
(INV ["x1"; "x2"; "x3])
(JOIN (TABLESYN ["ip"] (NOWV "op")
[[TABLE VAL (BOOL T)]; [TABLE VAL (BOOL F)]]
[BOOL F; BOOL T] (DENORMAL ARB))
(JOIN (OR "x1" "ip2" "x2")
(JOIN (AND "x2" "ip3" "x3")
(NOT "x3" "opl")))) ip op

The proof process can be divided into three steps. We first use the tactic
EXPAND_SEMANTICS_TAC to expand the semantics of the syntax. We obtain:

3 x1 x2 x3 op.
(Vt. IS_BOOL (HD ip t) A IS_BOOL (HD (TL ip) t) A
IS_BOOL (HD (TL (TL ip)) t) A ISBOOL (HD op t)) D
TABLE [HD ip] x1 [[TABLE_VAL (BOOL T)]; [TABLE_VAL (BOOL F)]]
[(At. BOOL F); (At. BOOL T)] (M\t. ARB) A
(Vt. (ISBOOL (x1 t) A ISBOOL (x2 t) A
(MDG_TO_BOOL (x2 t) =
MDG_TO_BOOL (x1 t) V MDG_TOBOOL (HD (TL ip) t))) A
(ISBOOL (x2 t) A IS_BOOL (x3 t) A
(MDG_TO_BOOL (x3 t) =
MDG_TO_BOOL (x2 t) A MDG_TO_BOOL (HD (TL (TL ip)) t))) A
IS BOOL (x3 t) A (MDG_TO_BOOL (HD op t) = ~ MDG_TO_BOOL (x3 t)))

where x1, x2, x3 are internal wires, op is an external wire list which is one element
list [op1]. ip is an external input list, which contains three elements [ipl; ip2;

ip3].

128

We then strip away the existential quantified goal. The internal variable x1 is
the output of the NOT gate (TABLE representation) and the input of the OR gate.
The output representation for stripping away this variable is determined by the

NOT TABLE, which is represented as x1_exist.

x1_exist = existtable [(HD ip)] [[TABLE_VAL (BOOL T)];
[TABLE_VAL (BOOL F)1]
[(At. BOOL F); (At. BOOL T)] (\t. ARB)

The internal variable x2 is the output of the OR gate and the input of the AND
gate. The existential term is determined by the output representation of the OR

gate, which is represented as x2_exist.

x2 exist = (A (t:num). existor (xl exist t) (HD (TL ip) t))

where x1 _exist is the input of the OR gate. The output representation is in terms
of its input. Similarly, the internal variable x3 is the output of the AND gate and
the input of the NOT gate. The existential term is determined by the output

representation of the AND gate, which is represented as x3_exist.

x3_exist = (A (t:num). existand (x2_exist t) (HD (TL (TL ip)) t))

Finally, the external output is the output of a NOT gate; the existential term is

determined by output representation of the NOT gate.

op-exist = (A (t:num). existnot (x3_exist t)

After stripping away the existentially quantified variables using the above terms,

we can finally prove the goal using tactic PROVE_EXIST_TAC.

129

This example demonstrates that knowing the output representation for each
component in the MDG-HDL component library is practically useful when finding
a proper existential term of the whole circuit. For any circuit in MDG-HDL, as
long as we find the corresponding existential term of the circuit, the existential

theorem of this circuit can be proved.

Although we concentrate on proving the existential theorem for the specification
and implementation of a design based on the syntax and semantics of MDG-HDL
in this thesis, our methods can be used to solve other HOL goals which are ex-
istentially quantified. In fact, we have developed a library for giving the output
representation of each component in a boolean subset. It can be used to construct
the existential term, which strips away the existentially quantified variable in the
HOL goal. In other words, our existential terms and output representations

can be used to solve some existential quantified HOL goal in other applications.

Summary

In this chapter, we investigate existential theorems based on the syntax and seman-
tics of the MDG input language (MDG-HDL) in HOL. We define an output repre-
sentation for each component in the MDG-HDL component library. We summarize
a general method which is used to prove the existential theorem for any MDG-HDL

program. The method can also be used to solve other existentially quantified goals.

130

Chapter 8

Case Study: Verification of the
Correctness and Usability

Theorems of a Vending Machine

Up to now, we have proved some translator correctness theorems and some importing
theorems. We have combined the translator correctness theorems with the importing
theorems. The combination allows the MDG verification results to be imported into
HOL in terms of the semantics of MDG-HDL. However, how can we ensure this
method is feasible in practice? In other words, how can we ensure the low level
MDG verification results can be imported into HOL to form the traditional HOL

theorems? Moreover, can the importing theorems be used in HOL?

In this chapter, we will use a simple example, the verification of a correctness
theorem and a usability theorem of a vending machine (chocolate machine), to an-
swer the above questions. This example was originally used to verify the absence of
post-completion errors within the framework of a traditional hardware verification
by Curzon and Blandford [25] [24]. In this work, the correctness of the vending ma-

chine was verified, ie it was proved that the implementation of the vending machine

131

meets its specification. A usability property based on its specification was then
proved. By combining the above two theorems, the usability theorem based on its

implementation was proved. All the formalization and verification were implemented

in HOL.

In our case study, we follow their steps. However, we use the MDG system to
verify the correctness of the chocolate machine and formally import the MDG veri-
fication result into HOL to form the HOL theorem based on the deep embedding se-
mantics of the MDG input language (MDG-HDL). We then prove the specification
based usability theorem in the HOL system. By combining those two theorems, one
the correctness theorem of the chocolate machine which is verified in MDG (the
importing theorem), the other the specification based usability theorem which is
proved in HOL, we obtain the implementation based usability theorem. Therefore,
the importing theorem (the correctness theorem) can not only be imported into

HOL but also can be used in HOL.

When we use the MDG system to verify the chocolate machine, we give a hard-
ware implementation of the machine and verify it against the specification of a
finite state machine. Both are described in the MDG input language (MDG-HDL)
and verified in the MDG system. After we verify the correctness of the chocolate
machine in the MDG system, the theorem about the formalization of the MDG
verification result can be tagged into HOL in terms of the syntax and semantics of
the core MDG-HDL language. The importing theorem for the chocolate machine
can be obtained by instatiating the theorem (6.18) with the syntax (MDG-HDL)
of the implementation and specification of the chocolate machine. We also prove
the existential theorem based on semantics of MDG-HDL for the implementation
of the chocolate machine using the method we proposed in Chapter 7. Finally, a
correctness theorem based on the semantics of MDG-HDL of the chocolate machine,

which states that the specification implies the implementation, is obtained.

When we prove the usability theorem based on its specification in HOL, we

follow the idea of Curzon & Blandford [24]. However, the specification of the choco-

132

late machine is different to theirs. This is because the specification in MDG must
be in the form of a finite state machine or table description. Another difference is
that we have to add some reasonable assumptions to cope with the different sorts of
inputs of the TABLE. By combining the correctness theorem and the specification
based usability theorem, we can obtain the implementation based usability theorem.

More detail will be discussed in section 8.3.

During this case study, we will show the detail about how to define the syntax
and the semantics of the specification and implementation, how to use a new type
Mdg Basic to accommodate the different sorts of the inputs for the TABLE, how to
prove the existential theorem and how to formally import the MDG verification
results into HOL to form the HOL theorems and make use of the theorems. We
will also explain why the assumptions of the usability theorem are reasonable. In
other words, we will go though the methods proposed in Chapter 4, Chapter 5,
Chapter 6 and Chapter 7. We will use this example to prove the feasibility of the
methodology of our research. This is very important. Since we formally import the
MDG verification results into HOL on the trusted MDG system, the degree of trust
of the linkage between the MDG and HOL system is high. If our methodology is
feasible, it can be used in developing a hybrid system. This will greatly increase the

trustworthiness of the hybrid system.

In the rest of this chapter, we will first briefly introduce the chocolate machine in
section 8.1. We then verify the machine using the MDG system in section 8.2. We
next consider the importation process which formally imports the MDG verification
results into HOL to form the HOL theorems in section 8.3. In section 8.4, we prove
the specification based usability theorem in HOL and prove the implementation

based usability theorem by making use of the above two proved theorems.

133

8.1 Chocolate Machine

The chocolate machine is used to sell chocolate as shown in Figure 8.1. It takes
pound coins only, returning 20p change. To get the change a button must be pressed.
Similarly a further button must be pressed to get the chocolate. The machine has
lights next to the coin slot and 2 buttons to indicate the order things should be
done. The lights light up to indicate the next action the user should perform. The
order of operation is that a coin is inserted, the change button is pressed and the
change removed, and then finally the chocolate button is pressed and the chocolate
removed. If the user does not press the appropriate button the machine does nothing

until the correct button is pressed.

The chocolate machine has three inputs which correspond to the buttons being
pressed and a coin inserted. It has five outputs which correspond to three lights and

a signal each to release change and chocolate.

8.2 Proving the Chocolate Machine using the
MDG System

In this section, we will use the sequential verification of the MDG system to prove
the correctness of the chocolate machine. For sequential verification, we need to
provide five kinds of input files: the circuit description files (the implementation file
and the specification file), the algebraic specification file, the symbol order file and
the invariant specification file. The implementation file and the specification file
have the same inputs (InsertCoin, PushChange, PushChoc) but different outputs.
We use (CoinLight_a, ChocLight_a, ChangeLight_a, GivenChoc_a, GivenChange_a)
to represent the outputs in the implementation file and (CoinLight, ChocLight,
ChangeLight, GiveChoc, GiveChange) to represent the outputs in the specification

file. We will explain the four different files in turn in the following subsections.

134

CHOCOLATE - 80p

O @
1 Insert Coin
£1 ONLY
O @
2. Push for Change
O @

3. Push for Chocolate

Figure 8.1: The Chocolate Machine

135

8.2.1 The Implementation

The chocolate machine is implemented in hardware as shown in Figure 8.2. We
can use the predefined components in the MDG-HDL library to represent the cor-
responding circuit as described in [25]. In the circuit, two registers (X and Y) are
needed to store the 4 internal states of the chocolate machine (reset, coin, choc,
change). The inputs are connected to wire xin and yin and their outputs to wires
x and y, respectively. In MDG-HDL, we use command component to specify their

specifications.

component (reg x,reg(input (xin) ,output(x))).

component (reg_y,reg(input (yin) ,output(y))).

The following representation of abstract states is used:

X Y
reset 0 O
coin 0 1
change 1 1
choc 1 0

The output side of the circuit involves using NOT gate and AND gate to turn the x

and the y values into 4 signals representing these states.

component (out_inv_x,not (input (x) ,output (xbar))) .

component (out_inv_y,not (input (y) ,output (ybar))).

component (out_and xy, and(input(x,y),output(change))).
component (out_and xybar, and(input(x,ybar),output(choc))).
component (out_and xbary, and(input(xbar,y),output(coin))).

component (out_and xbarybar, and(input (xbar,ybar) ,output(reset))).

136

InsertCoin PushChange PushChoc

reset
coin |
]
AND AND NOT
12 11 change 13
OR OR AND
15
14 Xin
OR REG
X
yin
REG NOT
y xbar
NOT AND AND
| change
ybar reset
—
AND AND
| coin
choc
FORK FORK FORK FORK FORK
GiveChoc CoinLight ChangeL ight ChocLight GiveChange

Figure 8.2: The Circuit of the Chocolate Machine

137

These signals are then wired to the appropriate outputs. The coin light is wired
to the reset signal, the change light to the coin signal, the chocolate light and the

mechanism to release the change to the change signal.

component (wire_choc_givenchoc,fork(input (choc) ,output (GivenChoc.a))) .

component (wire_choc_changlight,fork(input (change) ,output (ChocLight a))).
component (wire_change_givechange,fork(input (change) ,output (GivenChange a))).
component (wire_coin_choclight ,fork(input(coin) ,output (ChangeLight_a))).

component (wire reset_coinlight,fork(input (reset) ,output(CoinLight.a))).

The input side of the circuit combines the inputs with the signals representing

the states. Signal x is 1 in the next state if
(1) we are in the coin state AND the change button is pressed OR
(2) we are in the change state.

This is given as:

component (x_and, and (input (coin,PushChange) ,output (11))).

component (x_or ,or (input (change,11) ,output (xin))).

Signal y is 1 in the next state if
(1) we are in the coin state OR
(2) we are in the change state AND the chocolate button is NOT pressed OR

(3) we are in the reset state AND a coin is inserted.

component (y_and rein, and(input(reset,InsertCoin), output(12))).

component (y_or_col2, or(input(coin,12),output(14))).

138

~PushChange ~PushChoc

~InsertCoin

InsertCoin PushChoc
—_—

CoinLight ChangeL ight ChocLight GiveChange GiveChoc

Figure 8.3: The State Transition Diagram of the Chocolate Machine

component (y_inv, not (input (PushChoc) ,output(13))).
component (y_and_chl3, and(input (change,13),output(15))).
component (y_or_1415, or(input(14,15), output(yin))).

We thus obtain the hardware implementation.

8.2.2 The Specification

The MDG specification description is given by a tabular representation of the tran-
sition/output relation TABLE. We formally specify the chocolate machine as a finite

state machine with 4 states — (RESET, COIN, CHANGE, CHOC) (see Figure 8.3).

The RESET state is the initial state. Each of the other states represent the cor-
responding action having been done: in the COIN state a coin has been accepted;
in the CHOC state the chocolate is dispensed and in the CHANGE state the change is

dispensed.

We first define a table which specifies the relations among the current state,
inputs and next state. If the machine is in the RESET state with the insert coin light
lit, the next state is COIN. If the machine is in the COIN state without the insert light
lit, the next state is RESET. If the machine is in the COIN state with the push change
light lit, the next state is CHANGE. If the machine is in the COIN state without the

139

push change light lit, the next state is COIN. If the machine is in the CHANGE state
with the push chocolate light lit, the next state is CHOC. Otherwise the next state is

RESET. The “ % ” is used to represent don’t care

component (choc_machine,
table ([[ChocSt,InsertCoin,PushChange,PushChoc, n_ChocSt],
[RESET,1,*,*,COIN], [RESET,0,*,*,RESET],
[COIN,*,1,*,CHANGE], [COIN,*, O, *, COIN],
[CHANGE,*,*,1,CHOC] , [CHANGE, *,*,0,CHANGE] ,
[CHOC,*,*,*,RESET]])).

For each state we define a table to represent the relation between the states and
the outputs. If the machine is in the RESET state then the coin light should be on,

otherwise the coin light should be off.

component (coin 1light, table([[ChocSt,CoinLight], [RESET, 1] | 0])).

If the machine is in the COIN state then the change light should be on, otherwise
the change light should be off.

component (change 1ight, table([[ChocSt,ChangeLight], [COIN, 1] | 0])).

If the machine is in the CHANGE state, the chocolate light should be on and the
change should be given. Otherwise, the chocolate light should be off and the change

should not be given.

component (give_change, table([[ChocSt,GiveChange], [CHANGE, 1] | 0])).
component (choc_light, table([[ChocSt,ChocLight], [CHANGE, 1] | 01)).

If the machine is in the CHOC state then the chocolate should be given, otherwise

the chocolate should not be given.

140

component (give_choc, table([[ChocSt,GiveChoc], [CHOC, 1] | 01)).

8.2.3 Three Other Specification Files

We have provided the specification file and the implementation file of the chocolate
machine. We also need to provide the algebraic specification file, the symbol order
file and the invariant specification file. The algebraic specification file declares sorts,
function types and generic constants.The algebraic specification file of the chocolate

machine specifies the new concrete sort ChocStates which has four different states.
conc_sort (ChocStates, [RESET, COIN, CHOC, CHANGE]).

The symbol order file provides the custom (user-defined) symbol order for all the
variables and cross-operators which would be used in the MDG algorithms. The
invariant specification file specifies the invariant condition to be checked during

reachability analysis. The full MDG-HDL programs are given in Appendix C.

We input these five files into the MDG system. The MDG verification tool begins
to check whether the outputs of the specification file are identical to those of the
implementation file or not and returns true or false respectively. In our verification,
the MDG system returns true. In other words, the correctness of the chocolate

machine has been successfully proved by using the MDG system.

8.3 The Importation Process of the Verification

Results

In the last section, the chocolate machine was verified by using the MDG system.
In this section, we will show how to import the MDG result into HOL to form the
HOL theorems. As we described in Chapter 6, the MDG verification result can be

141

formalized and tagged into HOL in terms of the semantics of the core MDG-HDL. In
order to do so, we need to define the syntax and semantics of the specification and
implementation of the chocolate machine in HOL. We make use of the importing
theorem for sequential verification (6.18) and prove the existential theorem for the
implementation of the chocolate machine. The correctness theorem in the traditional
HOL form can be obtained. This theorem states that the implementation implies

the specification.

8.3.1 The Syntax and the Semantics of the Chocolate Ma-

chine

The abstract syntax of MDG-HDL for the specification and implementation of the
chocolate machine can be given as we mentioned in Chapter 4 in terms of the MDG
input files — the algebraic specification file, the specification file and the implemen-
tation file. As we mentioned before, the algebraic specification file declares sorts,
function types and generic constants used in the hardware description. When we
define the abstract syntax for the specification and implementation files, this part
of information should be provided in the declaration of the specification and imple-
mentation files respectively. However, since we only consider declaring a sequence
of concrete sorts at present, there is no need to declare it in the declaration. We
can use any string to represent one concrete sort as we discussed for the extended

subset.

The abstract syntax of the MDG-HDL program consists of an external output
string list, an external input string list, an internal string list and a component term.
In both the specification and implementation files of the chocolate machine, we
use a three element list ["InsertCoin"; "PushChange"; "PushChoc"] to represent
the abstract syntax of the external inputs and a five element list ["CoinLight";
"ChocLight"; "ChangeLight"; "GiveChoc"; "GiveChange"] to represent the exter-

nal outputs. The internal wires list and the component term of both files are different

142

as described below.

In the specification file, a one element list ChocSt is used to represent the internal
variable, whose value could be one of the four states. Its component term consists of
six TABLESYN constructors that are composed by constructor JOIN. The full syntax
of the specification file of the chocolate machine is given in Figure 8.4. For conve-
nience, in the rest of this section we will use Choc_Spe_Syn to informally represent

the abstract syntax of the specification.

In the implementation file, there are 15 internal variables. They are repre-
sented by a string list ["11"; "12"; "13"; "14"; "15"; "xin"; "yin"; "x"; "y";
"xbar"; "ybar"; "choc"; "change"; "coin"; "reset"]. The component term con-
sists of some basic logic gates (AND, NOT, OR gate), FORK and REGISTER which are
composed by constructor JOIN. The full syntax of the implementation file of the
chocolate machine is given in Figure 8.5. In the rest of this section we will use

Choc_Imp_Syn to informally represent the syntax of the implementation

As we mentioned in Chapter 3 and 4, the semantics of any circuit is described
by SemProgram, which explicitly represents the relation between the external inputs
and the external outputs. In the semantic function, we use a list ip to represent
external inputs and a list op to represent external outputs. In this case, all the
formalizations can be represented explicitly with the external inputs ip and outputs

op. The semantics of the specification and implementation files are given below:

Fdgef V ip op. CHOC MACHINE SPEC ip op = SemProgram Choc _Spe Syn ip op

Fdef V ip op. CHOCMACHINE IMPL ip op = SemProgram Choc_Imp _Syn ip op

By expanding the semantics of the program in HOL, we obtain the specification
and implementation of the chocolate machine which represent the relation between

the external inputs and external outputs.

As we mentioned in Chapter 4, when we define the semantics of the program

143

(PROG

(EXOUT ["CoinLight"; "ChocLight"; "ChangeLight"; "GiveChoc"; "GiveChange"])

(EXIN ["InsertCoin"; "PushChange"; "PushChoc"])

(INV ["ChocSt"])

(JOIN (TABLESYN ["ChocSt"; "InsertCoin"; "PushChange"; "PushChoc"]
(NEXTV("ChocSt"))
[[TABLE_VAL (CONCRETE "RESET"); TABLE VAL (BOOL T); DONT_CARE; DONT_CARE];
[TABLE_VAL (CONCRETE "RESET"); TABLE_VAL (BOOL F); DONT_CARE; DONT_CARE];
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE_VAL (BOOL T); DONT_CARE];
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE_VAL (BOOL F); DONT_CARE];
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE; TABLE_VAL (BOOL T)];
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE; TABLE_VAL (BOOL F)];
[TABLE_VAL (CONCRETE "CHOC"); DONT_CARE; DONT_CARE; DONT_CARE]]
[(CONCRETE "COIN"); (CONCRETE "RESET"); (CONCRETE "CHANGE");
(CONCRETE "COIN"); (CONCRETE "CHOC"); (CONCRETE "CHANGE");
(CONCRETE "RESET")]
(DENORMAL (CONCRETE "RESET")))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("CoinLight"))
[[TABLE_VAL (CONCRETE "RESET")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("ChangeLight"))
[[TABLE_VAL (CONCRETE "COIN")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("GiveChange"))
[[TABLE_VAL (CONCRETE "CHANGE")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("ChocLight"))
[[TABLE VAL (CONCRETE "CHANGE")1] [BOOL T] (DENORMAL (BOOL F)))

(TABLESYN ["ChocSt"] (NOWV ("GiveChoc")) [[TABLE VAL (CONCRETE "CHOC")]]

[[TABLE_VAL (CONCRETE "CHOC")]] [BOOL T] (DENORMAL (BOOL F)))))))))

Figure 8.4: The Abstract Syntax of the Specification File

144

(PROG (EXOUT ["CoinLight"; "ChocLight"; "ChangeLight"; "GiveChoc"; "GiveChange"])

(EXIN ["InsertCoin"; "PushChange"; "PushChoc"])

(INV [llll"; "12" ; "13" ; ||14|| ; "15" ; "Xin" ; "yin" ; "X" ; "yll ;
"xbar"; "ybar"; "choc"; "change"; "coin"; "reset"])

(JOIN (AND "coin" "PushChange" "11")

(JOIN (OR "change" "11" "xin")

(JOIN (AND "reset" "InsertCoin" "12")

(JOIN (OR "coin" "12" "14")

(JOIN (NOT "PushChoc" "13")

(JOIN (AND "change" "13" "15")

(JOIN (DR ||14|| H15ll Ilyinll)

(JOIN (REG "xin" "x")

(JOIN (REG "yin" "y")

(JOIN (NOT "x" "xbar")

(JOIN (NOT "y" "ybar")

(JOIN (AND "x" "y" "change")

(JOIN (AND "x" "ybar" "choc")

(JOIN (AND "xbar" "y" "coin")

(JOIN (AND "xbar" "ybar" "reset")

(JOIN (FORK "choc" "GiveChoc")

(JOIN (FORK '"change" "ChocLight")

(JOIN (FORK "change" "GiveChange")

(JOIN (FORK "coin" "ChangeLight")
(FORK "reset" "CoinLight")))))))))))))))))))))

Figure 8.5: The Abstract Syntax of the Implementation File

145

for the extended subset, we have to add assumptions so as to avoid the sort of each
variable being mismatched and inconsistent model being produced. The assumptions
are to make sure each of the external inputs and outputs has proper sort (either
(BOOL bool) terms or (CONCRETE string) terms). For example, the semantics of the
specification of the chocolate machine (Figure 8.6) states that if the external inputs
and outputs are boolean values then the semantics of the program will be six TABLEs
connected together. In Figure 8.6, one of the inputs of the first TABLE is ChocSt. The
value ChocSt can only be one of the four states, but the value of the external inputs
can only be a boolean value. The new type Mdg Basic is defined to deal with this

situation. Similarly, the implementation of the chocolate machine can be obtained.

8.3.2 Importing the MDG Results into HOL

As we stated in Chapter 6, the importing theorem for the chocolate machine can be
obtained by instantiating theorem (6.18) with the syntax of its implementation and

specification (Choc_Spe_Syn and Choc_Imp_Syn).

val Import_Choc_Thm =
(SPECL[--‘Choc Spe_Syn‘--, —-¢ Choc_Imp_Syn ‘--]Import Mdghdl_Thm);

We obtain the theorem Import_Choc_Thm

Fivm (¥ ip flag op op’.
PSEQ ip flag op op’
(SemProgram Core (TransProgMC Choc_Imp_Syn))
(SemProgram Core (TransProgMC Choc_Spe_Syn))
D (Wt. (flagt =T)) A
V ip. 3 op’. SemProgram Choc_Spe_Syn ip op’ D
(V ip op. SemProgram Choc_Imp Syn ip op D

SemProgram Choc_Spe_Syn ip op) (8.1)

146

(V t. ISBOOL (HD ip t) A ISBOOL (HD (TL ip) t) A
IS_BOOL (HD (TL (TL ip)) t) A IS_BOOL (HD op t) A
IS_BOOL (HD (TL op) t) A IS_BOOL (HD (TL (TL op)) t) A
IS_BOOL (HD (TL (TL (TL op))) t) A
ISBOOL (HD (TL (TL (TL (TL op)))) t)) D

(3 ChocSt.

(TABLE [ChocSt; (HD ip); (HD (TL ip)); (HD (TL(TL ip)))] ((ChocSt) o NEXT)
[[TABLE_VAL (CONCRETE "RESET"); TABLE_VAL (BOOL T); DONT_CARE; DONT_CARE];
[TABLE_VAL (CONCRETE "RESET"); TABLE_VAL (BOOL F); DONT_CARE; DONT_CARE];
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE_VAL (BOOL T); DONT_CARE];
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE_VAL (BOOL F); DONT_CARE];
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE; TABLE_VAL (BOOL T)];
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE; TABLE_VAL (BOOL F)1;
[TABLE_VAL (CONCRETE "CHOC"); DONT_CARE; DONT_CARE; DONT_CARE]]

[(A\t. CONCRETE "COIN"); (At. CONCRETE "RESET");
(Xt. CONCRETE "CHANGE"); (\t. CONCRETE "COIN");
(Xt. CONCRETE "CHOC"); (Mt. CONCRETE "CHANGE");
(At. CONCRETE "RESET")] (At. (CONCRETE "RESET")) t) A
(TABLE [ChocSt] (HD op) [[TABLE_VAL (CONCRETE "RESET")]] [TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD(TL(TL op))) [[TABLE_VAL (CONCRETE "COIN")]]
[TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD(TL(TL(TL(TL op))))) [[TABLE_.VAL (CONCRETE "CHANGE")]]
[TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD (TL op)) [[TABLE_VAL (CONCRETE "CHANGE")]]
[TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD(TL(TL(TL op)))) [[TABLE VAL (CONCRETE "CHOC")I]
[(TSIG1)] (FSIG1)

Figure 8.6: The Semantics of the Specification File

147

Since the MDG tool have verified the correctness of the chocolate machine, the
theorem about the formalization of the MDG verification result can be tagged into

HOL in terms of the semantics of core MDG-HDL.

Fim (¥ ip flag op op’.
PSEQ ip flag op op’
(SemProgram Core (TransProgMC Choc_Imp_Syn))
(SemProgram Core (TransProgMC Choc_Spe_Syn))

D (Vt. (flagt =T))) (8.2)

We then prove the additional assumption by using the method we proposed in
Chapter 7. This theorem states that for all possible input traces, the behavior
specification (SemProgram Choc _Spe Syn ip op’) can be satisfied for some output
and state traces (i.e., there exists at least one output and state trace for which the

relation is true):
V ip. 3 op’. (SemProgram Choc_Spe_Syn ip op’) (8.3)

After expanding the semantics by using EXPAND_SEMANTICS_TAC [], we obtain a sub-
goal as shown in Figure 8.7. It is existentially quantified by two variables x1, op.
Variable x1 is an internal wire variable with type : (num -> Mdg Basic), but variable

op is an external output with type :((num -> Mdg Basic) list).

Firstly, we need to find the existential term for internal variable x1. The vari-
able x1 is a state variable, it is an output of a TABLE and the input of the other TABLES.
As we mentioned in section 7.2, the output value of the TABLE not only depends on
inputs but also depends on its own value at an earlier time instance. In this situation,
the existential term for the variable x1 can be obtained as we introduced in Chap-
ter 7. We use REWRITE_CONV to expand the semantics of existtable, Table match,
HD, TL, TableVal_to_Val so as to obtain a well-defined function and use the Define
to define the function existtable next. Therefore, the existential term for the

TABLE is determined by the function existtable next, i.e. existtable next ip.

148

3 x1 op. (V t.

(ISBOOL (HD ip t) A ISBOOL (HD ip t) A ISBOOL (HD (TL ip) t) A

ISBOOL (HD (TL ip) t) A ISBOOL (HD (TL (TL ip)) t)) A

IS_BOOL (HD op t) A ISBOOL (HD (TL (TL op)) t) A

ISBOOL (HD (TL (TL (TL (TL op)))) t) A IS_BOOL (HD (TL op) t) A

IS_BOOL (HD (TL (TL (TL op))) t)) D

TABLE [x1; HD ip; HD (TL ip); HD (TL (TL ip))] (x1 o NEXT)

[[TABLE_VAL (CONCRETE "RESET"); TABLE VAL (BOOL T); DONT_CARE;
DONT_CARE] ;
[TABLE VAL (CONCRETE "RESET"); TABLE VAL (BOOL F); DONT_CARE;
DONT_CARE] ;
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE VAL (BOOL T);
DONT_CARE] ;
[TABLE_VAL (CONCRETE "COIN"); DONT_CARE; TABLE_VAL (BOOL F);
DONT_CARE] ;
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE;
TABLE VAL (BOOL T)];
[TABLE_VAL (CONCRETE "CHANGE"); DONT_CARE; DONT_CARE;
TABLE_ VAL (BOOL F)];
[TABLE_VAL (CONCRETE "CHOC"); DONT_CARE; DONT_CARE; DONT_CARE]]
[(AXt. CONCRETE "COIN"); (At. CONCRETE "RESET");
(M\t. CONCRETE "CHANGE"); (At. CONCRETE "COIN");
(At. CONCRETE "CHOC"); (At. CONCRETE "CHANGE");
(Xt. CONCRETE "RESET")] (At. CONCRETE "RESET") A

TABLE [x1] (HD op) [[TABLE_VAL (CONCRETE "RESET")]] [(At. BOOL T)]
(Mt. BOOL F) A

TABLE [x1] (HD (TL (TL op))) [[TABLE VAL (CONCRETE "COIN")]]
[(At. BOOL T)]1 (At. BOOL F) A

TABLE [x1] (HD (TL (TL (TL (TL op))))) [[TABLE_VAL (CONCRETE "CHANGE")]]
[(At. BOOL T)1 (At. BOOL F) A

TABLE [x1] (HD (TL op)) [[TABLE.VAL (CONCRETE "CHANGE")]] [(At. BOOL T)]
(M\t. BOOL F) A

TABLE [x1] (HD (TL (TL (TL op)))) [[TABLE_VAL (CONCRETE "CHOC")]]
[(At. BOOL T)] (At. BOOL F)

Figure 8.7: The Existential Theorem of the Specification of the Chocolate Machine

149

Secondly, we need to find the existential term for the output op. The connected
five TABLEs are quantified by external output op. Each output of a TABLE decides
one element of the output list. Because all the outputs of the TABLE are signals,
the existential term for the TABLEs is determined by the function existtable. For
example, the first element of the existential term is defined in terms of the TABLE
whose output is (HD op) and is defined by the function existtable, which is given

below:

(existtable [(existtable next ip)] [[TABLE VAL (CONCRETE "RESET")]]
[(At. BOOL T)] (At. BOOL F))

Other elements in the existential term list can be obtained in a very similar
way. They are also defined in terms of corresponding TABLE and function existtable.

Therefore, the existential term for the output op can be given below:

[existtable [(existtable next ip)] [[TABLE_VAL (CONCRETE "RESET")]]
[(At. BOOL T)] (At. BOOL F);

existtable [(existtablenext ip)] [[TABLE_VAL (CONCRETE "CHANGE")]]
[(At. BOOL T)] (At. BOOL F);

existtable [(existtable next ip)] [[TABLE VAL (CONCRETE "COIN")1]
[(At. BOOL T)] (At. BOOL F);

existtable [(existtablenext ip)] [[TABLE_VAL (CONCRETE "CHOC")]1]
[(At. BOOL T)] (At. BOOL F);

existtable [(existtablenext ip)] [[TABLE_VAL (CONCRETE "CHANGE")]]
[(At. BOOL T)] (At. BOOL F)]

After stripping away the leading existentially quantified variable x1, op using
the above terms, the existential theorem for the specification of the chocolate ma-

chine (8.3) has been proved using tactic PROVE_ EXIST TABLE TAC.

Finally, the conversion theorem can be obtained by discharging the formalization

theorem (8.2) and the existential theorem (8.3) from the importing theorem (8.1).

150

This theorem states that the implementation implies the specification.

Fihm V ip op. SemProgram Choc _Imp Syn ip op D

SemProgram Choc_Spe_Syn ip op (8.4)

We have translated the MDG verification result into HOL to form a traditional
HOL theorem. The translation process is based on the importing theorem. In other
words, the linkage between the MDG system and the HOL system is the importing

theorem.

8.4 Verification of the Usability Theorems

In the previous section, we imported the MDG verification result into HOL and
formed the HOL theorem. How can we ensure this theorem is usable in HOL?
In this section, we will use this theorem with other HOL theorems to prove the
implementation based usability theorem to demonstrate the use of the importing

theorem.

As we mentioned at the beginning of this chapter, this example was originally
used by Curzon & Blandford [24], to prove the absence of post-completion errors
within the framework of a traditional hardware verification. In their work, they
define a formal general user model which describes the behavior of a rational user.
It specifies concrete types for the machine and user state, a list of pairs of lights and
the actions associated with them, history functions that represent the possessions
of the user, functions that extract the part of the user state that indicates when the
user has finished and has achieved their main goal and an invariant that indicates
the part of the state that the user intends to be preserved after the interaction. More
details can be found in [25] [24]. The general user model for a chocolate machine
is defined as CHOC_MACHINE_ USER ustate op ip which specifies the relation between

the arguments discussed above.

151

Fg4ey CHOC_MACHINE USER ustate op ip =
USER
[(CoinLight,InsertCoin); (ChocLight,PushChoc) ;
(ChangeLight ,PushChange)]
(CHOC_POSSESSIONS UserHasChoc GiveChoc CountChoc UserHasChange
GiveChange CountChange UserHasCoin InsertCoin CountCoin)
UserFinished

UserHasChoc

(VALUE_INVARIANT (CHOC_POSSESSIONS UserHasChoc GiveChoc CountChoc
UserHasChange GiveChange CountChange
UserHasCoin InsertCoin CountCoin))

ustate op ip

The usability of a chocolate machine is defined as CHOC_MACHINE USABLE ustate op
ip in terms of a user-centric property. It states that if at any time, t, a user
approaches the machine when its coin light is on, then they will at some time, t1,

have both chocolate and change.

ey CHOC_MACHINE USABLE ustate op ip =
YV t. ~ (UserHasChoc ustate t) A
~ (UserHasChange ustate t) A
(UserHasCoin ustate t) A
(VALUE_INVARIANT (CHOC_POSSESSIONS UserHasChoc GiveChoc
CountChoc UserHasChange GiveChange CountChange
UserHasCoin InsertCoin CountCoin) ustate t) A
((CoinLight op t)= BOOL T) D
3 t1. (UserHasChoc ustate t1) A

(UserHasChange ustate t1)

The specification based usability theorem states that if a user acts reactively and

the machine behaves according to its specification, then the usability property will

152

hold. As a matter of fact, this theorem has been proved in [25]. However, we
can not make use of the usability theorem directly because the specification of the
chocolate machine is different and the new type has to be defined to accommodate
the different sorts. In MDG, the specifications must be in the form of a finite state
machine or table description. However, the advantage of it is its speed. In HOL,
the formalization is more flexible and reasonable. It need not deal with extra stuff

although it might slow hardware verification.

Using our method, we have to prove a slightly different usability theorem in HOL.
In the syntax of the MDG-HDL program, we use a new type Mdg Basic, defined in
Chapter 4, to represent the concrete type and boolean value. This is because the
inputs of a TABLE could be either a concrete type variable or a boolean value variable.
Since all the inputs and outputs of the chocolate machine are boolean values, we
add additional conditions in the usability theorem to specify this fact. Hence, the
usability theorem asserts the usability of an abstract specification of a chocolate

machine as proved below.

Fivm V ustate op ip.
(V t. IS_BOOL ((HD op) t) A

IS BOOL ((HD (TL op)) t) A
IS.BOOL ((HD (TL (TL op))) t) A
IS BOOL ((HD (TL (TL (TL op)))) t) A
IS_BOOL ((HD (TL (TL (TL (TL op))))) t) A
IS BOOL ((HD ip) t) A ISBOOL ((HD (TL ip)) t) A
IS BOOL ((HD (TL (TL ip))) t)) A

CHOC_MACHINE_USER ustate op ip A

CHOC_MACHINE SPEC ip op D

CHOC_MACHINE USABLE ustate op ip (8.5)

Therefore, the main differences are that we need to add assumptions so as to

153

avoid the sort of each external variable being mismatched and to ensure the spec-
ifications are in the form of a finite state machine. In practice, we can formalize
the design according to this requirement at the very beginning. Although the for-
malization of a design is a little bit harder than the formalization of it directly in
HOL, the MDG proof is quicker than HOL proof. In other words, we have to pay
the price for the speed.

In the last section, we proved the correctness of the chocolate machine by using
the MDG system, and formally imported it into HOL to form a HOL theorem. This
theorem states that the implementation meets its specification (8.4). We also prove
the specification based usability theorem (8.5) in HOL. The implementation based
usability theorem can be proved in terms of the above two theorems (8.4)(8.5). This
theorem (8.6) states that if the inputs and outputs are boolean value, a user acts
rationally according to the user model and the machine behaves according to its

implementation, then the usability property will hold.

Finm V ustate op ip.
(V t. ISBOOL ((HD op) t) A
IS_BOOL ((HD (TL op)) t) A
IS.BOOL ((HD (TL (TL op))) t) A
IS BOOL ((HD (TL (TL (TL op)))) t) A
IS_BOOL ((HD (TL (TL (TL (TL op))))) t) A
IS_BOOL ((HD ip) t) A
IS.BOOL ((HD (TL ip)) t) A
IS BOOL ((HD (TL (TL ip))) t)) A
CHOC_MACHINE USER ustate op ip A
CHOC_MACHINE_IMPL ip op D

CHOC MACHINE USABLE ustate op ip (8.6)

From this example, we have shown that a system can be verified in two parts. One

154

part of proof can be done in MDG, the other part of the proof can be done in HOL.
The division allows MDG to be used when it would be easier than obtaining the
result directly in HOL. We have provided a formal linkage between the MDG system
and the HOL system, which allows the MDG verification results to be formally
imported into HOL to form the HOL theorem. We do not simply assume that
the results proved by MDG are directly equivalent to the result that would have
been proved in HOL. The linkage is based on the importing theorems being given
a greater degree of trust. We have made use of the importing theorem. In other
words, the MDG verification result not only can be imported into HOL to form the
HOL theorem, it also can be used as part of hierarchical hardware verification proof
in HOL. We have also shown that two different applications (hardware verification

and usability verification) suited to two different tools can be combined together.

However, for importing the MDG verification result into HOL, we need to prove
the existential theorem for the specification of the design. The behaviour specifi-

cations must be in the form of a finite state machine or table description.

Summary

In this chapter, we have proved the usability theorem of a chocolate machine to
demonstrate the feasibility of our methodology. We have verified the correctness of
the chocolate machine in MDG, and this result has been imported into HOL to form
the HOL theorem. We have proved the specification based usability theorem in
HOL. By using the importing theorem and specification based usability theorem,

we obtain the implementation based usability theorem.

155

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we have produced a methodology which can provide a formal linkage
between the symbolic state enumeration system and the theorem proving system
based on a verified symbolic state enumeration system. The methodology involves

the following three steps.

First, we verify aspects of correctness of the symbolic state enumeration system
in an interactive theorem proving system. In fact, some symbolic state enumeration
based systems, such as MDG, consist of a series of translators and a set of algorithms.
We need to verify the translators and algorithms to ensure the correctness of the
whole system. For verifying the translators, we need to define the deep embedding
semantics and translation functions. We have to make certain that the semantics
of a program is preserved in its translated form. This work greatly increases the

degree of trust of the symbolic state enumeration system.

Secondly, we prove importing theorems in the theorem proving system about

the results from the symbolic state enumeration system. We need to formalize the

156

correctness results produced by different hardware verification applications using
the theorem proving system. The formalization is based on the semantics of the
low level language (decision graph). We need to prove a theorem in each case that
translates them into a form usable in the theorem proving system. In other words,

we have to provide the theoretical justification for linking two systems.

Thirdly, we combine the translator correctness theorems with importing theo-
rems. This combination allows the verification results from the state enumeration
system to be formalized in terms of the semantics of a low level language (decision
graph) and imported in terms of the semantics of a high level language (HDL).
Therefore, we are able to import the result into the theorem proving system based
on the semantics of the input language of a verified symbolic state enumeration
system. This makes formalization, importation and verification easier, more direct

and trustworthy.

We have also summarized a general method to prove the existential theorem
of the design, which is needed for importing the sequential verification results into
the theorem proving system. This work makes the linking process easier and remove

the burden from the user of the hybrid system.

We have partly implemented this methodology in two simplified versions of the
MDG system (the boolean subset and the extended subset) and the HOL system,

and provide a formal linkage by using the above mentioned steps.

The standard approach of proving a translator has been used to prove the aspects
of correctness of the MDG system using the HOL system. For the boolean subset, we
have proved that two translators are correct (Figure 1.5). The syntax of the MDG-
HDL language, the core MDG-HDL language and the MDG formula representation
language have been defined in higher order logic. The semantic functions are defined
by structural induction over their syntactic structure. The translation functions that
translate the syntax of an MDG-HDL program to the syntax of the core MDG-HDL
language and translate the syntax of the core MDG-HDL program to the syntax

157

of the MDG formula representation language have been defined. The correctness
theorem ((3.1)(3.2)) for each translator, which quantifies over its syntactic structure,
has been verified. By combining these two correctness theorems we obtain a new
theorem (3.3). This theorem states that the semantics of the original MDG-HDL
program is equivalent to the semantics of the MDG formula representation program

used in the MDG implementation.

For the extended subset, we have extended our formalization to accommodate
a list of inputs of the TABLE component with boolean sorts and concrete sorts. We
have proved that the first translator is correct (Figure 1.5). Similarly, the formal
syntax and semantics of the MDG-HDL language and core MDG-HDL language of
this subset has been defined. A set of functions for translating this subset language
to their core MDG-HDL equivalence has then been given. The correctness theorem

about the translation, which quantifies over its syntactic structure, has be proved.

In doing such a translator verification, we do more than just to prove the correct-
ness of the system, but also build a solid foundation to formally import the MDG
verification results into HOL to form the HOL theorem in terms of MDG-HDL.
Our semantics of the program is represented explicitly with the external inputs and

outputs, which allows the semantic function to be used in the importing theorems.

We have formally proved the general importing theorems for three different hard-
ware verification applications using HOL. We have in each case proved a theorem
that translates them into a form usable in a traditional HOL hardware verification,
i.e., that the structural specification implements the behavioral specification. The
first applications considered were the checking of input-output equivalence of two
combinational circuits. The next application considered was sequential verification,
which checks that two abstract state machines produce the same sequence of outputs
for every sequence of inputs. Finally, we considered a general form of the checking
of invariant properties of a circuit. These theorems are very general because they
do not explicitly deal with the MDG-HDL semantics or multiway decision graph.

They are given in terms of general relations on inputs and outputs. Thus they are

158

applicable to other verification systems with a similar architecture based on reach-
ability analysis, equivalence checking and/or invariant checking. This could include

a pure BDD based system.

The two general importing theorems for each subset, combinational verification
and sequential verification, have been instantiated for the semantics of the low level
language. In theory, the formalization of the MDG verification result should be in
terms of the MDG decision graph. However, we just proved some translators. In
order to demonstrate the combination of the translator correctness theorems and
the importing theorems, the formalization of the MDG results we considered here
is in terms of the MDG formula representation (see Figure 6.1) for the boolean
and the core MDG-HDL for the extended subset. We have combined the translator
correctness theorems with the importing theorems. The combination allows the
low level formalization of the MDG verification results to be imported into HOL to
form the HOL theorems in terms of the semantics of MDG-HDL and the existential
theorem for sequential verification to be proved in terms of the semantics of MDG-
HDL. In other words, we have obtained the different theorems for two different
MDG applications which explicitly deal with the MDG-HDL semantics. We thus
obtain theorems that convert the low level results, which actually proved in the
MDG system, to results about circuits in the high level languages in a form that

can be reasoned about in HOL.

For ease of importing of MDG results into HOL for sequential verification and
also for avoiding an inconsistent model, we summarize a general way to prove the ex-
istential theorem for the implementation or specification of designs based on the syn-
tax and the semantics of MDG-HDL. We have defined the output representation
for each component in the MDG component library. The existential term of a de-
sign, which strips away the leading existentially quantified variable and substitutes
term for each free occurrence in the body, is determined in terms of those output
representations. Since we directly deal with the syntax and semantics of the MDG-

HDL program, we use a tactic EXPAND_SEMANTICS_TAC to expand the semantics of the

139

program (design) and obtain a HOL goal of the form 3 a1 ... an. body. The
existential term can then be used to strip away the existentially quantified vari-
able and substitute term for each free occurrence in the body. Two further tactics
PROVE_EXIST TAC and PROVE_TABLE EXIST TAC are used to solve the goal which strips
away the existentially quantified variables. Although we concentrate on proving the
existential theorem for the specification and implementation of a design based on the
syntax and semantics of MDG-HDL, our methods can be used to solve other HOL
goals which are existentially quantified. In other words, our existential terms and
output representations can be used to solve existentially quantified HOL goals in

other applications.

An example, the verification of correctness and usability theorems of a vend-
ing machine, has demonstrated the feasibility of our method. We have verified the
correctness of the chocolate machine in MDG. The verification result has been im-
ported into HOL to form the HOL theorem. We have proved the specification based
usability theorem in HOL. By using the importing theorem and specification based

usability theorem, we obtain the implementation based usability theorem.

From this example, we have shown that our method supports the hierarchical
hardware verification approach as we mentioned in section 1.3.2. The MDG verifi-
cation results can be fitted naturally within the HOL framework with great security
using the importing theorem. We have used the importing theorem in verifying a
property of a system. In other words, the MDG verification result not only can be
imported into HOL to form the HOL theorem, it also can be used as part of hier-
archical hardware verification proof in HOL. Furthermore, we have shown that two
different applications (hardware verification and usability verification) suited to two
different tools can be combined together. However, for importing the MDG verifica-
tion result into HOL, we need to prove the existential theorem for the specification

of the design.

The main difficulty we encountered is the formalization of the TABLE. This is

because the inputs could be of different types. As a result, the formalization of a

160

design is more complex than the formalization of it direct in HOL. This experience
tells us when we design a new tool, the designers should try their best to make the

tool easy to be proved at the very beginning.

9.2 Future work

We have provided a formal linkage between MDG and HOL based on a trusted MDG
system. There are many opportunities for further work on verifying the correctness
of the MDG system and building a verified linkage between MDG and HOL.

e Verify the MDG algorithms. In MDG, a set of the MDG algorithms is used
to manipulate the MDGs. If the correctness theorems of the algorithms have
been proved, the degree of trust of the system will increase considerably and
the importing theorems which is based on the high level language (MDG-
HDL) will be more reliable. Chou and Peled [17] have verified a partial-order
reduction technique for model checking. Similar methods can be used to verify

the MDG algorithms.

e Verify the translators. We have proved the translators from the MDG-HDL
language to the MDG formula representation language for the boolean subset
and have proved the translator from the MDG-HDL language to the core
MDG-HDL language for the extended subset. Similar verifications can also be
done for other translation, such as from the MDG formula representation to
MDG for the boolean subset and from the core MDG-HDL to MDG for the
extended subset. The more translators have been proved, the higher the degree
of trust the system will have. Of course we need to use the deep embedding
semantics of the corresponding language in HOL and to define the translation

functions between the languages.

® Verifying the MDG implementation. We split the problem of verifying the

translator into two problems of verifying that the implementation meets a

161

functional specification, and that the functional specification meets the re-
quirement of preserving semantics. This split was advocated by Chirica and
Martin [16] with respect to compiler correctness. We are concerned with the
latter step here. We are not verifying the actual MDG implementation. Our
formalization of the translator is a specification of it. Once combined with
the translators from the core MDG-HDL to MDGs or from the MDG formula
representation to MDGs, it would be specifying the output required from the
implementation. It is possible to verify the MDG implementation based on

the compiler specification theorems.

e Expanding the subset language to the whole language. The subset language
we considered here did not consider three MDG predefined components (Mul-
tiplexer, Drivers and Constant) and the Transform construct used to apply
functions. These components are omitted from our subset as they have non-
boolean inputs or outputs. Furthermore, the subset considered does not in-

clude abstract sorts. It is possible to extend the subset to the whole language.

® Making a linkage between two different specifications. In MDG, the spec-
ifications must be in the form of a finite state machine or table description.
This is not very abstract. The advantage of HOL is that it allows much more
abstract specification. The complex MDG specification might lead to difficulty
in the HOL proof. Since two different specifications formalize the same de-
sign, it may be possible to investigate the feasibility of proving the equivalent
of two specifications. Or it is possible to write the tactics to simplify the MDG

specification.

e The importing theorems for model checking. We have formally proved the
general importing theorems for three different hardware verification applica-
tions using HOL. These were the original MDG tools. More recently a model
checking tool was added [84]. The importing theorems for model checking can

be obtained using the similar method.

162

e Making use of our importing theorems with MDG-HOL. Our importing theo-
rems have built a solid theoretical underpinning for the linkage of HOL and
MDG. It can be used in MDG-HOL or another combined system. Indeed, the
MDG-HOL system shallowly embeds the semantics of MDG-HDL into HOL.
It is possible to use our deep embedding semantics instead of the shallow

embedding semantics so as to make use of our importing theorems.

e Applying the methodology to a BDD based tool and theorem prover. Our
methodology works for the MDG system and the HOL system which greatly
increase the degree of trust of the linkage between the two systems. Similar
work can be applied to other similar automated verification tools and theorem

proving systems.

Summary

The contribution of this thesis is that we have produced a methodology which can
provide a formal linkage between a symbolic state enumeration system and a the-
orem proving system based on a verified symbolic state enumeration system. The
methodology has been partly realized in two simplified versions of the MDG system
and the HOL system. We have verified aspects of correctness of two simplified ver-
sions of the MDG system. We have provided a formal linkage between the MDG
system and the HOL system based on importing theorems. We have combined the
translator correctness theorems with the importing theorems. This combination al-
lows the low level MDG verification results to be imported into HOL in terms of the
semantics of a high level language (MDG-HDL). We have also summarized a general
method which is used to prove the existential theorem for the specification and
implementation of the design. The feasibility of this approach has been demon-
strated in a case study: the verification of the correctness and usability theorems of

a vending machine.

163

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

M. D. Aagaard, R. B. Jones, R. Kaivola, and C. J. H. Seger. Formal verification

of iterative algorithms in microprocessors. DAC, June 2000.

M. D. Aagaard, R. B. Jones, and C. H. Seger. Lifted-FL: A pragmatic im-
plementation of combined model checking and theorem proving. In Theorem
Proving in Higher Order Logics, number 1690 in Lecture Notes in Computer

Science, pages 323-340. Springer-Verlag, September 1999.

M. D. Aagaard and C. J. H. Seger. The formal verification of a pipelined
doubleprecision IEEE floating-point multiplier. ICCAD, IEEE Comp. Soc.,
pages 7-10, November 1995.

S. B. Akers. Binary decision diagrams. I[EEFE Transactions on Computers,

¢-27(6):509-516, June 1978.

P. Argon and K. McMillan. Deriving a special-purpose prover for compositional
model checking in Coq. In TPHOLs 2000 Supplemental Proceedings, pages 1-5.
Oregon Graduate Institute, 2000.

G. Birtwistle, S. Chin, and B. Graham. new_theory ‘HOL’;; An Introduc-
tion to Hardware Verification in Higher Order Logic. Unpublished, 1994.
http://www.comp.leeds.ac.uk/graham /research/hv/hvbooks.html.

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van-Tassel.
Experience with embedding hardware description language in HOL. In T. F.

164

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Melham and R. T. Boute, editors, Theorem Provers in Circuit Design, pages

129-156. North-Holland, 1992.

R. S. Boyer and G. Dowek. Towards checking proof checkers. In Workshop on
Types for Proofs and Programs (Type’93), 1993.

R. S. Boyer and J. Moore. A Computational Logic Handbook. Academic Press,
London, 1997.

B. C. Brock and W. A. Hunt. The formalization of a simple hardware descrip-
tion language. In Luc Claesen, editor, Applied Formal Methods for Correct VLSI
Design, pages 778792, Amsterdam, November 1989. IMEC-IFIP International
Workshop, Elsevier Science Publishers.

R. Bryant. Graph-based algorithms for boolean function manipulation. /EEE
Transactions in Computers, 35(8):677-691, August 1986.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computer Surveys, 24(3), September 1992.

R. S. Burstall and P. J. Landin. Programs and their proofs: an algebraic ap-
proach. In B. Meltzer and D. Mitchie, editors, Machine Intelligence, number 4,
pages 17-43. Edinburgh University Press, 1969.

A. Camilleri, M. Gordon, and T. Melham. Hardware verification using Higher-
Order Logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed
Correct Circuit Designs: Proceedings of the IFIP WG 10.2 Working Conference,
pages 43-67, Grenoble, September 1986.

L. M. Chirica. Contributions to Compiler Correctness. Number Report UCLA-
ENG-7697. Computer Science Department, University of California, Los Ange-
les, October 1976. Ph.D. thesis.

L. M. Chirica and D. F. Martin. Toward compiler implementation correctness
proofs. ACM Transactions on Programming Languages and Systems, 8(2):185—
214, April 1986.

165

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

C. T. Chou and D. Peled. Formal verification of a partial-order reduction
technique for model checking. In T. Margaria and B. Steffen, editors, Tools
and Algorithms for the Construction and Analysis of Systems, number 1055 in
Lecture Notes in Computer Science, pages 241-257, 1996.

A. Cohn and R. Milner. On using Edinburgh LCF to prove the correctness of
a parsing algorithm. Technical Report 20, University of Edinburgh Computer
Science, 1982.

P. A. Collier. Simple compiler correctness - a tutorial on the algebraic approach.

The Australian Computer Journal, 18(3), August 1986.

F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision
graphs for automated hardware verification. Formal Methods in System Design,

10(1):7-46, 1997.

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction
to PVS. http://www.dcs.gla.ac.uk/prosper/papers.html, 1999.

P. Curzon. A verified Vista implementation. Technical Report 311, University
of Cambridge, Computer Laboratory, September 1993.

P. Curzon. The formal verification of the Fairisle ATM switching element.
Technical Report 329, University of Cambridge, Computer Laboratory, March
1994.

P. Curzon and A. Blandford. Using a verification system to reason about post-
completion errors. In Participants Proceedings of DSV-IS 2000: 7th Interna-
tional Workshop on Design, Specification and Verification of Interactive Sys-

tems, at the 22nd International Conference on Software Engineering.

P. Curzon and A. Blandford. Reasoning about order errors in interaction. In
TPHOLs 2000 Supplemental Proceedings, Technical Reprot CSE-00-009, pages
33-48. Oregon Graduate Institute, August 2000.

166

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

P. Curzon, S. Tahar, and O. Ait-Mohamed. Verification of the MDG compo-
nents library in HOL. In Jim Grundy and Malcolm Newey, editors, Theorem
Proving in Higher-Order Logics: Emerging Trends, pages 31-46. Department

of Computer Science, The Australian National University, 1998.

L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind,
G. Robinson, M. Gordon, and T. Melham. The PROSPER toolkit.
http://www.dcs.gla.ac.uk /prosper/papers.html, 1999.

Computer General Electronic Design. The ELLE Language Reference Manual,
Issue 4.0. Greenways Business Park, Bellinger Close, Chippenham, Wiltshire,
SN15 1BN, England, 1989.

D. I. Good, R. L. Akers, and L. M. Smith. Report on Gypsy 2.05. Technical
Report CLI-1, Computational Logic, Inc., 1986.

K. Goossens. Embedding Hardware Description Languages in Proof Systems.
Laboratory for Foundations of Computer Science, Department of Computing

Science , University of Edinburgh, December 1992. Ph.D. thesis.

M. J. Gordon. Synthesizable verilog syntax and semantics. Techni-
cal report, University of Cambridge, Computer Laboratory, January 1997.
www.cl.cam.ac.uk/users/mjcg/V/V.html.

M. J. Gordon. Notes on the representation of state machines in higher or-
der logic. Technical report, University of Cambridge, Computer Laboratory,

January 1999.

M. J. Gordon, T. Kropf, and D. Hoffmann. PROSPER ESPRIT LTR project
26241, semantics of the intermediate language IL. Technical report, University

of Cambridge, Computer Laboratory, February 19909.

M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A mechanised

logic of computation. Number 78 in Lecture Notes in Computer Science, 1979.

167

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. J. C. Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal
Aspects of VLSI Design: the 1985 Edinburgh Workshop on VLSI, pages 153
177. North-Holland, 1986.

M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis, pages 73-128. Kluwer Academic, 1988.

M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
P. A. Subrahmanyam and G. Birtwistle, editors, Current Trends in Hardware
Verification and Automated Theorem Proving, number 7, pages 387-489, New
York, 1989. Springer-Verlag.

M. J. C. Gordon. Combining deductive theorem proving with sym-
bolic state enumeration. Presented at 21 Years of Hardware Ver-
ification, Royal Society Workshop to mark 21 years of BCS FACS,
http://www.cl.cam.ac.uk/users/mjcg/BDD, December 1998.

M. J. C. Gordon. Reachability programming in HOL98 using BDDs. In Mark
Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics,
number 1869 in Lecture Notes in Computing Science, pages 179-196. Springer-
Verlag, Aug. 2000.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-order Logic. Cambridge University Press, 1993.

E. L. Gunter and D. Obradovic. Towards the integration of model checking and
theorem proving: Embedding a subset of Promela into HOL. In TPHOLs 2000
Supplemental Proceedings, Technical Reprot CSE-00-009, pages 75-85. Oregon
Graduate Institute, August 2000.

J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279-294, 1998.

168

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

S. Hazelhurst and C. J. H. Seger. A simple theorem prover based on symbolic
trajectory evaluation and BDDs. IEEE Trans. on CAD, April 1995.

S. Hazelhurst and C. J. H. Seger. Symbolic trajectory evaluation. Springer
Verlag. New York, 1997.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1990.

P. V. Homeier and D. F. Martin. A verified verification condition generator.

The Computer Journal, 38(2):131-141, July 1995.

A. Hu. Formal hardware verification with BDDs: An introduction. In IEEFE

Pacific Rim Conference on Communications, Computers, and Signal Processing

(PACRIM), pages 667-682, 1997.

G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq proof assistant - a tutorial,
version 6.1. Technical Report 204, INRIA, August 1997.

J. Hurd. Integrating GANDALF and HOL. Technical Report 461, University
of Cambridge, Computer Laboratory, April 1999.

J. Joyce. A verified compiler for a verified microprocessor. Technical Report

167, University of Cambridge, Computer Laboratory, March 1989.

J. Joyce and C. Seger. Linking BDD-based symbolic evaluation to interactive
theorem-proving. In the 30th Design Automation Conference, 1993.

R. Kaivola and M. D. Aagaard. Divider circuit verification with model checking
and theorem proving. In Mark Aagaard and John Harrison, editors, Theorem
Proving in Higher Order Logics, number 1869 in Lecture Notes in Computer
Science, 13 International Conference, TPHOLs 2000, Portland, OR, USA, Au-
gust 2000. Springer-Verlag.

S. Kort, S. Tahar, and P. Curzon. Hierarchical hardware verification using a

hybrid tool. Technical report, Dept. of Electrical and Computer Engineering,

169

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Concordia University, 1455 De Maisonncuve West, Montreal, Quebee - H3G
LMS8, Canada, 2000.

S. Kort, S. Tahar, and P. Curzon. Hierarchical verification using an MDG-
HOL hybrid tool. In T. Margaria and T. Melham, editors, 11th IFIP WG
10.5 Advanced Research Working Conference (CHARME’2001), number 2144
in Lecture Notes in Computer Science, pages 244-258, Livingston, Scotland,

UK, September 2001. Springer-Verlag.

T. Kropf and R. Reetz. Simplifying deep embedding: A formalised code gen-
erator. In J. Camilleri and T. Melham, editors, Higher Order Logic Theorem
Proving and its Applications, number 859 in Lecture Notes in Computer Sci-

ence. Springer-Verlag, September 1995.

J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expres-
sions. In J. Schwartz, editor, A Symposium on Applied Mathematics, pages
33-41, 1967.

T. F. Melham. Automating recursive type definitions in Higher Order Logic.
In Current Trends in Hardware Verification and Automated Theorem Proving,

pages 341-386. Springer Verlag, 1989.

T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge
Tracts in Theoretical Computer Science 31. Cambridge University Press, 1993.

R. Milner and R. Weyhrauch. Proving compiler correctness in a mechanized
logic. In B. Meltzer and D. Mitchie, editors, Machine Intelligence, number 7,
pages 51-70, Edinburgh, Scotland, 1972. Edinburgh University Press.

J. Moore. A mechanically verified language implementation. Journal of Auto-
mated Reasoning, (5):461-492, 1989.

J. S. Moore. A mechanically verified language implementation. Technical Re-

port CLI-22, Computational Logic, Inc., 1988.

170

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

F. L. Morris. Correctness of Translations of Programming Languages. Report
STAN-CS-72-303. Computer Science Department, Stanford University, August
1972. Ph.D. thesis.

F. L. Morris. Advice on structure compilers and proving theorem correct. In
The ACM Symposium on Principles of Programming Languages, pages 144—152,
Boston, October 1973.

Institute of Electrical and Electronics Engineers. IEEE standard VHDL lan-
guage Reference Manual. IEEE press. New York, 1988.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

V. K. Pisini and S. Tahar. Integration of HOL and MDG for hardware verifi-
cation. Technical report, Dept. of Electrical and Computer Engineering, Con-
cordia University, 1455 De Maisonncuve West, Montreal, Quebee - H3G LMS,
Canada, March 1999.

V. K. Pisini, S. Tahar, P. Curzon, and O. Ait-Mohamed. A hybrid approach to
formal verification using HOL and MDG. Technical report, Dept. of Electrical
and Computer Engineering, Concordia University, 1455 De Maisonncuve West,

Montreal, Quebee - H3G LM8, Canada, November 1999.

G. Pottinger. Completeness for the HOL logic: Preliminary report. In Posted
to info-hol mail list on 28th Jan 1992., 1992. Available in the info-hol archive

by anonymous FTP from ftp.cl.cam.ac.uk in directory hvg/info-hol-archive.

S. Rajan, N. Shankar, and M. K. Srivas. An integration of model-checking
with automated proof checking. In Pierre Wolper, editor, Computer-Aided
Verification, number 939 in Lecture Notes in Computer Science, pages 84-97.

Springer-Verlag, 1995.

K. Schneider and T. Kropf. Verifying hardware correctness by combining theo-
rem proving and model checking. Technical Report SBF 358-C2-5/95, Univer-
sity of Karlsruhe, Department of Computer Science, 1995.

171

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

K. Schneider and T. Kropf. Unified approach for combining different formalisms
for hardware verification. Technical Report SBF 358-C2-6/96, University of

Karlsruhe, Department of Computer Science, January 1996.

C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design, 6(2):147-190,
March 1995.

S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin, and O. Ait-Mohamed.
Modeling and automatic formal verification of the Fairisle ATM switch fabric
using MDGs. To appear in IEEE Transactions on CAD of Integrated Circuits

and Systems.

J. von Wright. Program refinement by theorem prover. In Proc. 6th Refinement

Workshop, London, January 1994. Springer—Verlag.

J. von Wright. Representing higher-order logic proofs in HOL. The Computer
Journal, 38(2):171-179, July 1995.

J. von Wright. The formal verification of a proof checker. SRI internal report,

November 1998.

W. Wong. Validation of HOL proofs by proof checking. Formal Methods in
System Design, 14(2):193-212, March 1999.

H. Xiong and P. Curzon. The verification of a translator for MDG’s components
in HOL. In MUCORTY98, Third Middlesex University Conference on Research
in Technology, pages 55-59, April 1998.

H. Xiong, P. Curzon, and A. Blandford. Combining verification systems in a
trusted way to reap the benefits of both. In Automated Reasoning-Bridging the
Gap between Theory and Practice The 6th Workshop, pages 71-73, April 19909.

H. Xiong, P. Curzon, and S. Tahar. Importing MDG verification results into
HOL. In Theorem Proving in Higher Order Logics, number 1690 in Lecture
Notes in Computer Science, pages 293-310. Springer-Verlag, September 1999.

172

[81]

82]

[83]

[84]

[85]

[86]

[87]

H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Verification of a translator for
MDG'’s library in HOL. In 15th British Colloquium for Theoretical Computer
Science, April 1999.

H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Embedding and verification
of an MDG-HDL translator in HOL. In TPHOLs 2000 Supplemental Proceed-
ings, Technical Reprot CSE-00-009, pages 237-248. Oregon Graduate Institute,
August 2000.

H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Proving existential theorems
when importing results from MDG to HOL. In Richard J. Boulton and Paul B.
Jackson, editors, TPHOLs 2001 Supplemental Proceedings, Informatic Research
Report EDI-INF-RR~0046, pages 384-399. Division of Informatics, University
of Edinburgh, Edinburgh, UK, September 2001.

Y. Xu. Model Checking for a Forst-order Temporal Logic Using Multiway De-
cision Graphs. 1455 De Maisonncuve West, Montreal, Quebee - H3G LMS,
Canada, 1999. Ph.D. thesis.

W. D. Young. A mechanically verified code generator. Journal of Automated

Reasoning, (5):493-519, 1989.

7. Zhou and N. Boulerice. MDG Tools (V1.0) User Manual. University of
Montreal, Dept. D’'TRO, 1996.

7. Zhu, J. Joyce, and C. Seger. Verification of the Tamarack-3 microprocessor
in a hybrid verification environment. In Higher-Order Logic theorem proving
and Its Applications, The 6th International Workshop, number 780 in Lecture
Notes in Computer Science, pages 252-266. B. C., Canada, August 1993.

173

Appendix A

The Abstract Syntax of a Boolean
Subset

The full abstract syntax of the boolean subset of the MDG-HDL language is given

below:
out_type ::= NOWV of string |
NEXTV of string

default_type ::= DENORMAL of num->bool |
DEOUT of out_type |
DECONST of string

Table Val ::= TABLE_VAL of o | DON’T_CARE

mdg_hdl ::= NOT of string=>string |

AND of string=>string=>string |
OR of string=>string=>string |
NAND of string=>string=>string |

XO0R of string=>string=>string |

174

NOR of string=>string=>string |

AND3 of string=>string=>string=>string |

OR3 of string=>string=>string=>string |

NAND3 of string=>string=>string=>string |

NOR3 of string=>string=>string=>string |

AND4 of string=>string=>string=>string=>string |

OR4 of string=>string=>string=>string=>string |

NAND4 of string=>string=>string=>string=>string |

NOR4 of string=>string=>string=>string=>string |

AND5 of string=>string=>string=>string=>string=>string |

OR5 of string=>string=>string=>string=>string=>string |

NANDS of string=>string=>string=>string=>string=>string |

NOR5 of string=>string=>string=>string=>string=>string |

AND6 of string=>string=>string=>string=>string=>string=>string |

OR6 of string=>string=>string=>string=>string=>string=>string |

NAND6 of string=>string=>string=>string=>string=>string=>string |

NOR6 of string=>string=>string=>string=>string=>string=>string |

JKFF of string=>string=>string |

RSFF of string=>string=>string |

JKFFE of string=>string=>string=>string |

A0 of string=>string=>string=>string=>string |

REGCON of string=>string=>string |

REG of string=>string |

FORK of string=>string |

INIT of (string#bool) |

SNXT of string=>string |

TABLESYN of (string list)=>out_type=>((bool Table Val list) list)
=>((num->bool) list)=>default_type |

JOIN of mdg hdl=>mdg hdl

Exoutput ::= EXOUT of string list
Exinput ::= EXIN of string list
Invariable ::= INV of string list

175

program ::= PROG of PROG of Exoutput=>Exinput=>Invariable=>Mdg Hdl

176

Appendix B

The Abstract Syntax of an
Extended Subset

The full abstract syntax of the extended subset of the MDG-HDL language is given
below:

Out_Type ::= NOWV of string |
NEXTV of string

Default_Type ::= DENORMAL of num->bool |
DEOUT of out_type |
DECONST of string

Table Val ::= TABLE_VAL of o | DON’T_CARE
Mdg Basic ::= UNBOUND | BOOL of bool | CONCRETE of string
Mdg Hdl ::= NOT of string=>string |

AND of string=>string=>string |

OR of string=>string=>string |

177

NAND of string=>string=>string |

XO0R of string=>strin=>string |

NOR of string=>string=>string |

AND3 of string=>string=>string=>string |

OR3 of string=>string=>string=>string |

NAND3 of string=>string=>string=>string |

NOR3 of string=>string=>string=>string |

AND4 of string=>string=>string=>string=>string |

OR4 of string=>string=>string=>string=>string |

NAND4 of string=>string=>string=>string=>string |

NOR4 of string=>string=>string=>string=>string |

ANDS of string=>string=>string=>string=>string=>string |

OR5 of string=>string=>string=>string=>string=>string |

NANDS of string=>string=>string=>string=>string=>string |

NOR5 of string=>string=>string=>string=>string=>string |

AND6 of string=>string=>string=>string=>string=>string=>string |

OR6 of string=>string=>string=>string=>string=>string=>string |

NAND6 of string=>string=>string=>string=>string=>string=>string |

NOR6 of string=>string=>string=>string=>string=>string=>string |

JKFF of string=>string=>string |

RSFF of string=>string=>string |

JKFFE of string=>string=>string=>string |

A0 of string=>string=>string=>string=>string |

REGCON of string=>string=>string |

REG of string=>string |

FORK of string=>string |

INIT of (string#Mdg Basic) |

SNXT of string=>string |

TABLESYN of (string list)=>0ut_Type=>((Mdg Basic Table_Val list) list)
=>((num->bool) list)=>Default_Type |

SEQ of Mdg Hdl=>Mdg Hdl |

INTERNAL of string => Mdg -Hd1l

178

Exoutput ::= EXOUT of string list

Exinput ::= EXIN of string list
Invariable ::= INV of string list
Mdg Program ::= PROG of Exoutput =>Exinput => Invariable => Mdg Hdl

179

Appendix C

The MDG-HDL programs of the
verification of the Chocolate

Machine

When we verify the correctness of the chocolate machine in MDG, we need to provide

four MDG-HDL files. Those files are given below:

(1). The Circuit Specification File.

% Multifile declaration required by Prolog system.’

:- multifile signal/2.

multifile component/2.

:- multifile st nxst/2.

:- multifile next_state_partition/1.
:- multifile output_partition/1.

:- multifile outputs/1.

:-— multifile init_val/2.

:- multifile init_var/2.

:- multifile par_strategy/2.

180

%--- Common signals ---Y%

signal (insertCoin,bool) .

signal (pushChoc,bool) .

signal(chocSt, chocStates).

signal (giveChange,bool) .

signal (pushChange,bool) .

signal (chocLight,bool).

signal(coinLight,bool).

signal(giveChoc, bool).

signal (changeLight ,bool).

%--- Components of X ---%

component (choc_machine,

table([[chocSt,insertCoin,pushChange,pushChoc, n_chocSt],

[reset,1,*,*,coin], [reset,0,*,*,reset],
[coin,*,1,*,change], [coin,*,0,*,coin],
[change,*,*,1,choc], [change,*,*,0,changel],
[choc,*,*,* ,reset]])).

component (coin_light, table([[chocSt,coinLight], [reset, 1] | 0])).

component (change 1ight, table([[chocSt,changeLight], [coin, 1] | 0])).

component (give_change, table([[chocSt,giveChange], [change, 1] | 0])).

component (choc_light, table([[chocSt,chocLight], [change, 1] | 01)).

component (give_choc, table([[chocSt,giveChoc], [choc, 1] | 01)).

%--- Initial state ---%

init_val (chocSt,reset).

outputs([coinLight,chocLight, changeLight,giveChoc,giveChange]).

%-—- Partitions ---%

output_partition([[[coinLight]], [[chocLight]], [[changeLight]],

[[giveChocl], [[giveChangell]) .

next_state_partition([[[n_chocSt]11]).

%-—- State variables to next state variables mapping ---%

st_nxst (chocSt, n_chocSt).

%--- Partition strategy ---%

par_strategy(auto,auto) .

181

(2). The Circuit Implementation File

% Multifile declaration required by Prolog system.’
:- multifile signal/2.

:- multifile component/2.

:- multifile st_nxst/2.

:- multifile next_state_partition/1.
:- multifile output_partition/1.
:- multifile outputs/1.

:- multifile init_val/2.

:- multifile init_var/2.

:- multifile par_strategy/2.
%--- Common signals ---%

signal (insertCoin,bool) .

signal (pushChange,bool) .

signal (pushChoc,bool) .
signal(1l1,bool).
signal(choc_a,bool).
signal(xin,bool).

signal(coin_a, bool).
signal(reset_a,bool).
signal(12,bool).
signal(14,bool).
signal(13,bool).
signal(15,bool).
signal(yin,bool).
signal(x,bool).

signal (givenChoc.a,bool).
signal(y,bool).

signal (xbar,bool) .

signal (ybar,bool) .
signal(change_a,bool).

signal (givenChange a,bool).

182

signal (chocLight_a,bool).

signal (changeLight_a,bool).

signal(coinLight_a,bool).

%--- Components of X ---%

component (x_and,and (input (coin_a,pushChange) ,output (11))).

component (x_or,or (input (change a,11) ,output (xin))).

%---Components of Y---%

component (y_and rein, and(input(reset_a,insertCoin), output(12))).
component (y_or_col2, or(input(coin_a,12),output(14))).

component (y_inv, not(input (pushChoc),output(13))).

component (y_and_ch13, and(input (change a,13),output(15))).

component (y_or_1415, or(input(14,15), output(yin))).

%-—-Component of Register--/

component (reg x,reg(input (xin) ,output (x))).

component (reg_y,reg(input (yin) ,output (y))).

%-—-Component of Output from the register--

component (outreg_inv_x,not (input (x) ,output (xbar))) .

component (outreg_inv_y,not (input (y) ,output (ybar))).

component (outreg_and xy, and(input(x,y),output(changea))).

component (outreg_and xybar, and(input(x,ybar),output(choca))).

component (outreg_and _xbary, and(input(xbar,y),output(coina))).

component (outreg_and xbarybar, and(input (xbar,ybar) ,output(reset.a))).
%---Wire output---%

component (wire_choc_givenchoc,fork(input (choc.a) ,output(givenChoc_a))).
component (wire_choc_changlight ,fork (input (change_a) ,output (chocLight.a))).
component (wire_change _givechange,fork (input(change_a) ,output(givenChange a))).
component (wire_coin_choclight,fork(input(coin_a),output(changelight._a))).
component (wire reset_coinlight ,fork(input (reset_a) ,output(coinLight a))).
%--- Initial state ——-%

init_val(x, 0).

init_val(y, 0).

outputs([coinLight_a,chocLight_a, changelight_a,givenChoc_a,givenChange_a]).

h-—- Partitions ---%

183

output partition([[[coinLight all, [[chocLight al]l, [[changelLight all,
[[givenChoc_all, [[givenChange alll).

next_state partition([[[xin]], [[yin]]]1).

%-—— State variables to next state variables mapping -—-%

st nxst(x, xin).

stnxst(y, yin).

%--- Partition strategy ———Y%

par_strategy(auto,auto) .

(3).The Algebraic Specification File

% Multifile definition for Prolog predicates.} :- multifile abs_sort/1.

multifile conc_sort/2.
:- multifile function/3.
:- multifile gen_const/2.
:- multifile rr/3.

:- multifile ucrr/2.

% Algebraic specification) conc_sort(chocStates, [reset, coin, choc, change]).

(4). The Symbol Order File

order main ([
insertCoin,
pushChoc,
pushChange,
%---internal---J,
chocSt,
n_chocSt,

coin_a,

11,

choc_a,

reset_a,

184

12,

14,

13,

15,

xin,

X,

yin,

Y

xbar,

ybar,
change_a,
%-—--outputs---%,
giveChange,
givenChange_a,
chocLight,
chocLight_a,
coinLight,
coinLight_a,
giveChoc,
givenChoc_a,
changeLight,
changeLight_a
.

(5). The Invariant Specification File

signal (insertCoin,bool) .
signal (pushChoc,bool) .
signal (pushChange,bool) .
signal (coinLight,bool).
signal(coinlight_a,bool).
signal (u_CoinLight,bool).
signal(chocLight ,bool).

185

signal (chocLight_a,bool).

signal (u_ChocLight ,bool).

signal (changeLight ,bool).

signal (changeLight_a,bool).

signal (u_ChangeLight,bool) .

signal(giveChoc,bool).

signal (givenChoc_a,bool).

signal (u_GivenChoc,bool).

signal (giveChange,bool) .

signal (givenChange a,bool).

signal (u_GivenChange,bool) .

%--- Components ---%,

component (coinLight forkl,fork(input (uCoinLight) ,output(coinLight))).

component (coinLight fork2,fork(input (u_CoinLight) ,output(coinLight._a))).

component (chocLight forkl,fork(input (u_ChocLight) ,output(chocLight))).

component (chocLight fork2,fork(input (u_ChocLight) ,output(chocLight._a))).

component (changeLight forkl,fork(input (u_ChangeLight) ,output(changelLight))).

component (changeLight fork2,fork(input (u_ChangeLight) ,output (changeLight a))).

component (givenChoc fork1l,fork(input (u_GivenChoc) ,output(giveChoc))).

component (givenChoc fork2,fork(input (u_GivenChoc) ,output(givenChoc.a))).

component (givenChange forkl,fork(input (u_GivenChange) ,output(giveChange))).

component (givenChange fork2,fork(input (u_GivenChange) ,output (givenChange a))).

%--- Outputs ---%

outputs([coinLight,coinLight.a, chocLight, chocLight_a, changeLight,
changelight_a, giveChoc,givenChoc._a, giveChange, givenChange.al).

%——- Order of condition signals -—-%

order_cond ([

insertCoin,

pushChoc,

pushChange,

u_CoinLight,

coinLight,

coinLightl,

186

u_ChocLight,
chocLight,
choclLight_a,
u_ChangeLight,
changeLight,
changelLight_a,
u_GivenChoc,
giveChoc,
givenChoc._a,
u_GivenChange,

giveChange,

givenChange a]) .

187

