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1 Introduction and Motivation 

Two important aspects of program verification are testing and the use of formal methods. 

Traditional testing techniques, however are very ad hoc and do not allow for formal 

specification and verification of high level logical properties that as system needs to 

satisfy.  On the other hand, traditional formal methods such as model checking and 

theorem proving are rarely used in practise.  

The general idea of the runtime analysis is extracting the relevant events from the 

executing Java multithreaded application program, and then analyzing the events 

(collected in trace) for properties or antipatterns.  Here in this thesis, we collected trace of 

Java multithreaded application and then analyzed the trace for multithreaded antipatterns, 

whose presence in the target program can cause concurrency related errors such as 

deadlocks, livelocks and dataraces.  The Java language is quite popular programming 

language in web applications on the internet as well as distributed mostly client/server 

applications and it is multithreaded in nature.   

The runtime analysis can be defined as combining testing and formal methods.  By 

merging testing and formal methods, runtime analysis achieve the benefits of both the 

approaches, while avoiding some of the pitfalls of the ad-hoc testing and the complexity 

of the theorem proving and state explosion problem of model checking.  We developed 

two runtime approaches namely custom based and model based runtime analysis 

approach. The custom based approach is semiformal and model based approach is formal 

approach.  The main difference between these two approaches is in the antipatterns 

detection approach. In the model based approach we generate the model of execution 
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trace and then analyse the generated model using SPIN model checker against the MT 

antipatterns specified in LTL.  Whereas in custom-based analysis approach, first 

antipatterns are coded in Java and then execution trace is analyzed for antipatterns, using 

these java detectors.     

 

In the end we compare these two approaches based on criteria such as quality of analysis, 

resource consumption, time usage, complexity, easy of usage and other factors.  

The aim of formal verification (such as model checking) and testing is to check whether a 

program is correct.  In other words formal verification and testing attempts to ensure that 

all the possible executions of software yield correct results. But run-time analysis assures 

of the current execution of a program.  However there is the shortcoming of this 

approach: the entire state space of the system cannot be covered.  The suggested runtime 

analysis framework can only be used to examine single execution traces, and therefore 

cannot be used to prove a system correct.  

 

However the single execution trace contains much more information than what appears.  

Model based analysis approach exploits this hidden information and thus can perform 

predictive trace analysis, it can explore the various possible events interleaving.   

The run-time formal analysis can cause undesirable side effects to a target program; run-

time formal analysis can slow down the target program and alter the behaviour of the 

program.  Delay in the target program execution due to probes might alternate behaviour 

of the concurrent program 
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Motivation to conduct such a work is to study the feasibility of the application of formal 

methods in the runtime analysis of MT java application.   

 

The paper is organized as follows. We discuss related work in section 2 and 3 and section 

4 outline the instrumentation approaches, while section 5 describes the custom based 

detection approach.  Section 6 describes model checking in general and section 7 

describes in detail model based trace analysis approach, while in section 8 a detailed 

comparison is made between two approaches namely custom based detection with model 

based trace analysis approach.  Finally section 9 contains conclusion and a description of 

future work   
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2 Chapter 2 Java Multithreading 

2.1 Introduction to Java Multithreading 

2.1.1 Definition of Java Multithreading and Related Terms 

 

Multithreading is a way of building applications with multiple threads.  Multithreading 

enables concurrent execution of several threads within the same program.  Thus, it is a 

convenient way to decompose large programs into relatively independent smaller tasks 

and increase the overall efficiency [MT Java].  Multithreading is a necessity for all but 

the most trivial programs.   

In multithreaded program, each thread is a different stream of control that can execute it 

instructions independently, allowing a multithreaded process to perform numerous tasks 

concurrently.  For example one thread can run the GUI, while a second thread performs 

some I/0 and third performs some calculation [MT Java].   

Developing analyses for multithreaded programs can be a challenging task.  The primary 

complication is characterizing the effect of the interactions between threads.  The obvious 

approach of analyzing all interleaving of statements from parallel threads fails because of 

the resulting exponential analysis times. A central challenge is therefore developing 

efficient abstractions and analyses that capture the effect of each thread's actions on other 

parallel threads. 

The Java language provides extending support for multithreading. 
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2.1.2 Benefits of writing multithreaded programs  

• Performance gains from multiprocessing hardware/parallelism 

Computers with more than one processor offer the potential for enormous application 

speedup.  MT is an efficient way for developers to exploit the parallelism of the 

hardware.  Different threads can run on different processors simultaneously with no 

special input from user.                

• Increased application throughput 

In single threaded program, when a request for service is made, it must wait till the 

service is complete, which makes CPU idle.  In such a situation the multithreaded 

program can utilize the CPU idle time by utilizing second thread to service another 

request. For example the second thread can handle I/O operation 

• Increased application responsiveness 

In the case of single threaded application, where a single thread performs most of the 

operation.  If that one part of that single thread operation is stopped /freezed, then the 

whole operation administered by that thread is stopped.  Such a blocking situation is 

decreased user responsiveness.  To prevent such a blocking situation, multithreaded 

program comes handy, that is even is one thread is stopped /freezed then other threads 

can still continue there operation.   

• Replacing process-to-process communication 

In an application where multiple processes are used for communication purpose, 

multiple threads can replace those processes to accomplish the same task. In the 

traditional multi process environment the communication is done thro sockets, pipes 
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etc, and the same communication can be performed by multiple threads thru shared 

variables.   

• Efficient use of System Resources 

• One binary that runs well on both uniprocessors and multiprocessors 

 

2.1.3 Java implementation of Multithreading 

A thread is a stream of execution in a program. The Java Virtual Machine allows an 

application to have multiple threads of execution running concurrently.  

Every thread has a priority.  Threads with higher priority are executed in preference to 

threads with lower priority.  Each thread may or may not be marked as a daemon. When 

code running in some thread creates a new Thread object, the new thread has its priority 

initially set equal to the priority of the creating thread, and is a daemon thread if and only 

if the creating thread is a daemon.  

Threads functionality is implemented in Java using the class java.lang.Threads and there 

are two ways to create a new thread of execution.  One is to declare a class to be subclass 

of Thread.  This sub class should override the run method of class Thread.  An instance 

of the subclass can then be allocated and started.  Another is that another thread can be 

created, which implements the runnable interface.   That class then implements the run 

method.  One can then create a thread object with this runnable as the argument and call 

start () on the thread object. 
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Public MyRunnable implements Runnable { 

Public void run ( ) { 

doWork ( ); 

} 

} 

Runnable r = new MyRunnable () 

Thread t = new Thread (r); 

t.start ( ); 

Figure 2.1: Code sample to Run a Runnable in a Thread 

2.2 Related Terms of Multithreading  

2.2.1 Locks  

Multithreaded application use locks to synchronize and communicate there behaviour to 

one another. To prevent the multiple access condition the threads acquire or release the 

lock before accessing the shared resource [IBM01].  Lock around shared variable allows 

the java threads to easily synchronize and communicate.  The threads that holds the lock 

on an object knows that and will not allow another threads to access this object.   Even is 

the thread holding the lock is pre-empted another threads cannot access the object, until 

the original thread wakes up finish his work and release the lock. 

 

Thread that accepts to acquire the lock in use, got to sleep until the thread holding the 

lock release it, when the lock is release the threads sleeping wakes up and moves to 

ready-to-run queue. 

 

In java programming, each object has a lock; a thread can acquire the lock using the 

synchronized keyword.   
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2.2.1.1 Thread Synchronization in Java 

Java offers a concept called monitors to prevent that two threads access the same resource 

at the same time. A monitor is a programming language construct providing abstract data 

types and mutually exclusive access to a set of procedures.  In Java, a statement block, 

method or class can be declared synchronized.  In java programming, each object has 

a lock; a thread can acquire the lock using the synchronized keyword.  Let o be an 

object.  When entering a section that is synchronized on o, the current thread tries to 

acquire the lock (“enters the monitor”) for o.  

By calling o.wait the current thread temporarily releases the locks it holds on o and 

is added to the wait set of o.  It is suspended until another thread calls o.notify, 

o.notifyAll or if an optional specified amount of time has elapsed. wait can be 

useful if the current thread is waiting for a certain condition that can only be met by 

another thread that needs access to the monitor. When the waiting thread resumes 

execution, the locks are automatically reacquired. As it is not guaranteed that the 

condition has been met, wait is often called within a while loop. 

Note that if t is a Thread object, then calling t.wait does not necessarily suspend 

the execution of t. Instead, the current thread is suspended until another thread calls 

t.notify or  t.notifyAll. Only in the case that t is the current thread, calling 

t.wait is equivalent to this.wait and t is suspended by itself. 

o.notifyAll wakes up all threads in the wait set of o. It is used when it cannot be 

guaranteed that each thread in the wait set of o can continue execution. 
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2.3 Multithreaded Problems 

Multithreaded programming cause many problems to developers, in many cases the 

developers are falling prey to incorrect application behaviour or deadlocked conditions. 

Here we will discuss the common multithreaded problems and the solution to the 

common pitfalls. 

2.3.1 Common Locking Problems 

The use of lock, brings with it many problems, here we discuss the problems and there 

solutions. 

Deadlock: Deadlock conditions, arises when one shared variable in already locked and 

another threads tries to access this resource again. 

 Thread 1       

Synchronized (A) {      

Synchronized (B) { }       

}        

Thread 2        

Synchronized (B) {           

Synchronized (C) {}      

}        

Thread 3        

Synchronized (C) {      

Synchronized (A) {}       

}         

   Figure 2.2: A simple deadlock example [Art01] 
For proving the absence of deadlock, lockgraph is examined which shows the order in 

which thread acquires the lock.  As depicted above in lockgraph, Thread1 first acquires 

the lock for the object “A” and then acquires the lock for object “B”.  While 
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simultaneously Thread 2 is require to acquire lock for object “B” and then the lock for 

object “C”.  Such a case will lead to deadlock condition.  It is thus seen that absence of a 

loop in the lockgraph guarantee the absence of a deadlock. 

Broadly, deadlock could results because of one of the following reasons: 

1. Unrelated locks were used to protect a single shared variable 

2. Test-and-set primitives were confused with mutexes at the application level 

3. Locks were not ever released 

4. Threads tried to reacquire locks that they already held 

2.3.2 Other Multithreaded Problems 

2.3.2.1 Race conditions 

Races occur when the several threads access the same resource simultaneously without 

proper coordination [SBN97] [CS98].  As a result the program might end up producing 

output far different from the desired one.  In example, a race condition occurs when two 

concurrent threads access a shared variable and when a least one access is write, and the 

threads use no mechanism to prevent the access to be simultaneous. 

Detection: 

For proving the absence of a race condition, a checker examines the lock set L.  This is 

the set of locks held at a certain time, by each thread when accessing a field. A checker 

has to ensure that a field is: 

 1) Only read when a thread holds at least one lock in Lf and  

2) Only written when a thread holds all locks in Lf. 

The most common cause of data races can be compiled because of the following reasons 
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• When a shared variable was not protected by a lock 

• Data race can arose when a lock was not acquired to protect an access even though 

one existed.  Most frequently this happened when a lock was acquired outside a loop, 

but released within 

• Data race can also arose from accidental sharing: one group made what should have 

been an automatic variable 

2.3.2.2 Livelocks 

A livelock occurs when one thread takes control (e.g., locks an object of a shared 

resource) and enters an endless cycle.  In other words, a livelock is a condition in which 

two or more threads continuously change their state in response to change in the other 

thread(s) without doing any useful work [BAU03].   

A livelock is similar to a deadlock in that no progress is made but differs in that neither 

process is blocked or waiting for anything. 

Due to the similarity between a deadlock and a livelock the task of identifying and 

detecting livelocks in a program becomes complex as well. An example of a livelock is 

the famous dining philosopher problem [MAG99]. Consider, in a dining philosophers 

program, the scenario where all the philosophers pick up the fork on their right at the 

same time.  Then, they all put the fork back simultaneously.  By repeating this endlessly 

the program enters in a livelock where all the philosophers are active but none is eating. 

The justification is that all the philosophers were trying to avoid a deadlock (when they 

all take the fork to the right and do not release it). However, they ended up with a 

livelock.  
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2.3.2.3 Efficiency and Quality Problems 

The main factor affecting the efficiency of MT applications is synchronization. As much 

as it is needed in MT programs, synchronization causes a significant overhead that 

usually accounts to 5-10% of the total execution time in some cases [Ald99].  This results 

from the fact that managing synchronization in Java MT applications requires the Java 

Virtual Machine (JVM) to perform some internal tasks (writing any modified memory 

locations back to main memory) that could impair the efficiency of the application. 

The following is a list of the most common examples of overusing monitors for 

synchronization in multithreaded Java applications [ALD99]: 

• Reentrant monitors 

• Enclosed monitor  

• Thread-Local monitor 

• Read-only methods.  

Another aspect that affects the efficiency of MT applications, is the use of notify() 

method instead of the notifyAll() method (whenever it is possible). The notifyAll() method 

is more expensive.  

2.4 Antipatterns-based Detection Approach 

The concept of patterns has been widely used in software design and development.  In 

other word a pattern is “a consistent, characteristic form, style, or method” [Eng00].  A 

general characterises of these patterns are  

• When developers write a code, they usually follow some pattern.  The pattern 

followed is derived from there previous experience  

• Some developers follow the same pattern 
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• Some patterns could lead to success and some bad patterns could lead to failure 

• Usually patterns exist within a small amount of time and space 

• Patterns instance are recognizable 

Design Patterns are often used in software design and development particularly in the 

object-oriented design and development, it offers timeless and elegant solutions to 

common problems in software design.  It usage helps in saving the software productions 

and maintenance cost.  It describes patterns for managing object creation, composing 

objects into larger structures, and coordinating control flow between objects.   

Recently in the software verification and validation domain, the concept of predefined 

error description (known as antipatterns or bug patterns) has been introduced to help 

reduce the effort spend in verification or debugging the software. 

The notion of an antipatterns can be stated as “something that looks like a good idea, but 

which backfires badly when applied” [AntiPattern] 

 

Two types of antipatterns are identified so far: 

2.4.1 Design antipatterns 

Common software designs that have been proven to occur repeatedly, i.e., models of 

syntactic constructions (in particular) representing potential or confirmed sources of 

problems in a program [SMI00].  From this viewpoint, antipatterns solutions mostly 

generate mostly negative consequences.  Antipatterns are useful for refactoring, 

migration, update and reengineering.    
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2.4.2 Errors or Bug Patterns 

A bug pattern is a pattern which again and again leads to errors/faults in software 

applications.  In the multithreaded context we view that bug patterns which could lead to 

MT problems e.g. deadlock, livelocks and race conditions as discussed before.  An Bug 

which repeats itself over and over again the in the java program can be classified as bug 

patterns 

2.5 Antipattern Library  

Here we present the antipatterns, we have catalogued so far in our library classified in 

their corresponding groups.  We also report, for each class of antipatterns, our experience 

in using the antipatterns.  We have identified 38 different antipatterns that relates to 

concurrency, synchronization and other common multithreaded java problems. This was 

a collaborative work of CRIM and Sap Labs Canada which aims at finding appropriate 

techniques and tools to analyze Java multithreaded programs developed in Eclipse 

development environment.   

2.5.1 Classification of Antipatterns 

Antipatterns can be classified into the following categories [TR1].  This classification is 

based on the MT problems the antipatterns address. 

1. Deadlocks,  

2. Livelocks,  

3. Race Conditions,  

4. Efficiency Problems,  

5. Quality and Style Problems. 
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A particular antipattern may belong to several categories. At the same time, some 

antipatterns might not be the elements of any of the above categories, i.e., they lead to 

unpredictable consequences in the application. Such antipatterns will be put into a sixth 

category, problems with unpredictable consequences, which we introduce here.  

6. Problems with unpredictable consequences. 

It is important to note that program analysis does not reduce to antipattern detection. 

Actually, we believe the process of antipattern detection should be followed by checking 

whether the application possesses some user-defined features; which, generally, relate to 

the functional requirements of the application. In this regard, the work could be steered in 

the direction of devising sound detection techniques and building libraries of user-defined 

properties to be verified in a MT application. In particular, we can build on the existing 

results in this domain, mainly on our previous work […] as well the work by Dwyer et al. 

[Dwy], who define a library of generic patterns that could be instantiated in a wide 

variety of specific applications. 

2.5.2 Antipattern Template: 

 

To archive the antipatterns in our library, we defined the following template.   

We propose the following template to represent antipatterns of problematic situations in 

the MT Java code. Each template provides information about a particular antipattern 

including the definition (name, description, and category), an example of occurrence 

(when possible), the re-factoring solution, potential conflicts of applying the solution, 

possible detection technique(s), and some comments. 
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Table 2.1: Antipattern Template 

Name A concise definition of the problem. 

Description The situations in which this problem could appear. 

The effects it has on the code and the application. 

Category Deadlock, Livelock, Race Condition, Efficiency problem, Quality and 
Style Problem, Problem with unpredictable consequences. 

Example If available, sample code where the problem is illustrated. 

Detection How to detect the problem in the Java code. A high level description 
of the proposed algorithm to be used in the detection process. 

Re-Factoring Solution: How to solve the problem once detected in the program.  

Conflicts: Sometimes solving one problem of a certain class can 
cause another problem of a different class. For example, Blob threads 
and over synchronization. 

Comments The source of this pattern. 

Any comments that could be helpful in the detection or re-factoring. 

    

The information provided in the template helps both the developers of MT applications 

and professionals building tools to detect the antipatterns in MT applications.  

The template is easy to be understood by programmers.  It contains useful information for 

using antipatterns in programming practice, as most of the fields are directly related to 

programming practice.  It can be used to teach programmers how to avoid writing buggy 

programs.  Next will be give example of few antipatterns. 

2.5.3 Antipatterns: 

Some would argue that an antipattern library could never be completed.  Actually, as long 

as antipatterns are related to programming styles (which are not well defined themselves), 

one may keep coming up with new additions to a library. Here we list few antipatterns 

and then make the summary of the most commonly considered antipatterns in the 

literature and the analysis tool, by which it was detected.  
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Synchronized method call in cycle of lock graph 

Name Synchronized method call in cycle of lock graph 
Description When a synchronized method makes part of a cycle in the lock 

dependency graph, the cycle could lead to a deadlock. This antipattern 
is the result of bad synchronization between threads of an application. 

Category Deadlock 
Example Public class Deadlock  

{ Object a = new Object( ); 
  Object b = new Object( ); 
 

Public void foo ( ) 
{ synchronized (a)   

{ synchronized (b) { } } 
} 

 
public void foo ( )  
{ synchronized (a)   

{ synchronized (b) { } } 
} 

} 
Detection 1. Compute the lock graph 

2. Detect cycles in the lock graph 
3. Identify synchronized methods that make part of the cycles 
Detectable by JLint.  

Re-Factoring Solution: Proper reordering of lock acquisition among the threads 
involved in the deadlock. 
Conflicts: Reordering the lock acquisition might lead to data races. 

Comments Source: http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm   
The detection results highly depend on the expressiveness of the 
computed lock graph. Moreover, the presence of a cycle in the lock 
graph is a necessary condition for deadlock, but not a sufficient one. 
Therefore, there is high risk of numerous false positives. 

      

Table 2.2: Synchronized method call in cycle of lock graph 

2.5.4 Antipattern Detection Summary  

The following table 2.3 list most commonly used antipatterns, and for each one shows the 

corresponding techniques/tool used to detect them. 

Table 2.3: Summary of detection techniques and tools 

Antipattern Techniques and Tools 
Synchronized method call in a 
cycle of Lock graph 

Abstraction-based static analysis 
Detectable by Jlint 
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Method call leads to a cycle in 
lock graph 

Abstraction-based static analysis 
Detectable by Jlint 

Cross synchronization Linear program scanning 
Abstraction-based static analysis 
Detectable by Jlint 

Overriding a synchronized 
method 

Linear program scanning  
Detectable by Jlint 

A non synchronized method 
called by more than one thread 

Linear program scanning 
Abstraction-based static analysis.  
Detectable by Jlint 

A non volatile field used by 
more than one thread 

Linear program scanning  
Detectable by Jlint 

Non synchronized run() 
method 

Linear program scanning 
Abstraction-based static analysis 
Detectable by Jlint 

Overuse of synchronized 
methods 

Linear program scanning 
Abstraction-based static analysis 

Method wait() invoked with 
another object locked 

Linear program scanning 
Detectable by Jlint 

Call sequence to method 
potentially causing deadlock in 
wait() 

Linear program scanning 
Abstraction-based static analysis 
Detectable by Jlint 

Identifier.wait() 
method called without 
synchronizing on identifier 

Linear program scanning 
Abstraction-based static analysis 
Detectable by Jlint 

Synchronized read only 
methods 

Abstraction-based static analysis 

Internal call of a method Linear program scanning 
Abstraction-based static analysis 

Locked but not used object Linear program scanning 
Abstraction-based static analysis 
Dynamic analysis 

Synchronization abuse Abstraction-based static analysis  
Wait() not in loop Linear program scanning 

Detectable by FindBugs 
Unconditional wait() Linear program scanning 

Detectable by FindBugs 
Unconditional notify() or 
notifyAll() 

Linear program scanning 
Detectable by FindBugs 

Reference Value is changed 
when it is used in 
synchronization block 

Linear program scanning 
Detectable by Jlint 

Overthreading Linear program scanning 
Dynamic analysis 

Blob Thread Linear program scanning 
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Dynamic analysis 
Complex computation within an 
AWI/Swing thread 

 
Dynamic analysis 

Misuse of notifyAll() Linear program scanning 
Abstraction-based static analysis 
Dynamic analysis 

The double-check locking for 
synchronized initialization 

Linear program scanning 
Detectable by FindBugs 

Synchronized atomic operations Linear program scanning 
Synchronized immutability 
object 

Abstraction-based static analysis  

Unnecessary notification Linear program scanning 
Dynamic analysis 

Double call of the start method 
of a thread 

Linear program scanning  
Abstraction-based static analysis 

Waiting forever Linear program scanning 
Dynamic analysis 

Unsynchronized spin wait Linear program scanning  
Detectable by FindBugs 

Start() method in constructor Linear program scanning 
Detectable by FindBugs 

Get-Set methods with different 
declaration 

Linear program scanning 
Detectable by FindBugs 

Improper method calls Linear program scanning 
Detectable by FindBugs 

 
Wait stall 

Dynamic Analysis 
Detectable by JProbe Threadalyzer 

Premature join() call Data flow analysis 
Dynamic analysis 
Detectable by FLAVERS 

Dead interactions Data flow analysis 
Dynamic analysis 
Detectable by FLAVERS 

Join() with immortal thread Data flow analysis 
Dynamic analysis 
Detectable by FLAVERS 

 

 

 

 



 28

 

 

 

 

 

 

 

 

 

 

 

3 Chapter 3 MT Java Analysis approaches 

3.1 Introduction 

In this chapter we discuss tools/techniques to detect the Antipatterns listed before.  The 

tools/technique can be broadly classified as two types: namely dynamic checkers and 

static checkers.   

Dynamic Analysis requires the execution of the program and then analysis the execution 

trace for the property verification. In static analysis, one does not run the program, but is 
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based on the analysis of the code (source code or bytecode) and are normally independent 

of the input order or thread scheduling since the code is analyzed without execution.   

3.2 Dynamic Analysis 

We tried to find the classified antipatterns/properties with both the static checkers and 

dynamic checker.   But we conclude that most of the antipatterns can be detected by 

dynamic analysis, but dynamic analysis gave significant edge over static analysis in 

detection of certain antipattern/properties.   

The advantages of dynamic analysis [Hav03] 

• The possibility of detecting errors which are actually happened (on specific data, 

platform, and JVM); 

• The ability to detect errors which are impossible or too difficult to detect statically; 

• Source code is not required. 

At the same time, implementing the dynamic analysis approach faces a number of 

challenges, among which are [Hav03] 

• Observation of a program behavior requires special efforts (instrumentation); 

• Instrumentation of points of observation may cause side effects on behavior and 

timing characteristics 

• The results concern only the executions taken during the observation period and not 

much can be said about other executions 

• Similarly, the results are valid only for a scheduling performed while the program 

was executed 

• Errors are often difficult to reproduce 
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Before discussing the advantage of dynamic analysis over static analysis, we would like 

list the most popular dynamic based tool (both commercial and research based) here. 

In the following, we provide a list of most common dynamic tools (both commercial and 

research)  

MaC: (Monitoring and Checking) is a monitor running systems against a formal 

specification [ART01].  It was developed by the Real-time systems group (RTG) at the 

University of Pennsylvania.  It combines a high-level requirement specification and a 

low-level monitoring script that verifies the given requirements at source code level.  The 

requirements are expressed in an extended form of linear temporal logic; the monitoring 

script is written in a simple event definition language.  An Instrumentor generates a 

runtime checker based on the given data.  This checker verifies the given properties after 

each method call. MaC has been applied to a couple of small test programs. 

MaC is available for research purposes, including source code.  It is written in Java and 

platform independent.  It requires the JTrek library from Digital Equipment Corporation. 

The tool is downloadable from http://www.cis.upenn.edu/~rtg/mac.  

However, MaC does not yet have a framework for systematically testing multi-threaded 

programs. 

Visual Threads is a tool created with a purpose to detect concurrency errors in multi-

threaded programs, which uses POSIX Threads. Visual Threads is a part of the 

development toolset of Compaq’s Tru64 Unix. Visual Threads is a diagnostic tool used to 

analyze and refine multi-threaded applications. 
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It can be used to debug potential thread-related logic problems, such as race conditions 

and deadlocks that only occur due to slight timing differences.  It can also pinpoint 

bottlenecks and performance problems by using its rule-based analysis and statistics 

capabilities and visualization techniques. Some support for user-defined rules is provided. 

The tool has been used on an experimental OS kernel, the AltaVista indexing engine, and 

a couple of other projects. 

Visual Threads is available for Tru64 Unix system under Developers Toolkit license. The 

OpenVMS, Linux and HP-UX downloads are free (evaluation license), however, Linux 

and HP-UP versions offer a limited Java support.  

The tool is downloadable from 

http://www5.compaq.com/products/software/visualthreads/ 

Java PathExplorer (JPaX) is developed by the Automated Software Engineering Group 

at NASA Ames Research Center; main authors are Klaus Havelund and Grigore Rosu. 

Java PathExplorer is a tool for monitoring the temporal behavior and finding concurrency 

faults (such as deadlocks and dataraces).  The tool facilitates automated instrumentation 

of a program's bytecode, which then emits events to an observer during its execution.  

The observer checks the events against user provided high-level requirement 

specifications, for example, temporal logic formulae, and against lower level error 

detection procedures, usually concurrency related, such as deadlock and data race 

algorithms.  It can be used during the development process to provide verification and 

can also be used during operations to further optimize systems as they mature.  It also 
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includes automated test-case generation as well as automated generation of assertions and 

properties corresponding to test cases. 

JPaX consists of the three modules: 

1. Instrumentation Module – performs a script-driven automated instrumentation of the 

program to be verified. 

The Java byte code instrumentation in JPaX is performed using JTrek a Java byte code 

engineering tool from Digital. 

JTrek developed at Digital Equipment Corporation consists of the Trek class library that 

provides features to examine and modify Java class files.  It also includes a set of console 

applications based on the Trek library. 

JTrek reads Java class files (bytecode files), traverse them as abstract syntax tree and 

insert new code in highly flexible manner.  The inserted code can access the contents of 

the method call-time stack at run-time and thus giving access to information needed in 

the analysis [Hav01b].  The extracted information is transmitted in the events.  The 

observer receives the events and dispatches them to a set of observer rules, each rule 

performing a particular analysis. 

2. Observer Module – performs two kinds of verification. 

Logic-based monitoring module checks execution events against a user-provided 

requirement specification.  These specifications are defined in Maude, a modularized 

specification and verification system.  JPaX supports linear temporal logic (LTL), both 
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future time and past time.   Future time LTL provides execution traces as models making 

it convenient for program monitoring.  Past time is useful for verification of safety 

properties. 

Similarly to Visual Threads, the tool performs error pattern detection, namely, prediction 

of deadlocks by lock graph analysis and race conditions with a modification of the Eraser 

algorithms. 

Error pattern analysis explores an execution trace and detects potential problems such as 

error-prone programming techniques like locking practices that may lead to data races 

and/or deadlocks.  The important and appealing aspect of error pattern analysis 

algorithms is that they find error potentials even in the case where errors do not explicitly 

occur in the examined execution trace. At the same time, the tool may generate false 

positives.  

JPaX contains two algorithms focusing on concurrency errors: a data race analysis 

algorithm “Eraser” [Sav97] and a deadlock analysis algorithm. 

3. Interconnection Module - receives information about potential errors and transmits 

them to the observation module 

Usage:  An initial prototype of this tool has been applied to two major case studies, the 

K9 rover developed at NASA Ames Research Center and the Deep-Space 1 attitude 

control system. The main challenge of the tool is an overhead to the normal execution of 

programs created by monitoring, and of course, the problem of the false positives. 

To the best of our knowledge this tool is not available for download from the web.  
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JMPaX analyzes a multithreaded program against the safety properties expressed using 

temporal logic [Sen03].  The tool is developed within Formal Systems Laboratory at the 

University of Illinois at Urbana-Champaign; main authors are Koushik Sen, Grigore Rosu 

and Gul Agha.  In fact, the limitations of JPaX motivated this development.  

JMPaX is a prototype tool for runtime safety analysis of multithreaded programs.  It can 

predict violations of safety properties expressed in temporal logic from executions of 

multithreaded programs.  

The user of JMPaX specifies the safety properties of his interest, using a past time 

temporal logic, regarding the global state of the multithreaded program (which is 

assumed in compiled form).  Then, JMPaX calls an instrumentation script which 

automatically instruments the executable multithreaded program to emit relevant state 

update events to an external observer, and finally runs the program on any JVM and 

analyzes the safety violation messages reported by the observer [SEN03].  An appealing 

aspect of this approach is that a single execution, or interleaving, of a multithreaded 

program is observed, a comprehensive analysis of all possible executions is performed; a 

possible execution is any execution which does not violate the observed causal 

dependency partial order on state update events.  The tool JMPaX built on this approach 

has the ability to predict safety violation errors in multithreaded programs by observing 

successful executions.  

The instrumentation module uses BCEL [DAH01] Java library to modify Java class file.  

The BCEL library is used to get a better handle for a Java class file.  It enables to insert 
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vector clocks as static member fields in a class, which is otherwise not possible with the 

tool JTreK (an instrumentation tool used in JPaX).  

Usage: This tool is intended for use on real-world NASA-related large applications.  

The tool is available for download from http://fsl.cs.uiuc.edu/jmpax/. 

3.3 STATIC ANALYSIS 

3.3.1 Definition 

Static Analysis - detects runtime errors and unpredictable code constructs without 

executing code.  In other words, it is based on the analysis of code (source code or 

bytecode) and are normally independent of input order or thread scheduling since the 

code is analyzed without execution.  Static analysis tools of various types, including 

formal analysis tools, are being developed, which can detect faults in the multi-threaded 

domain [NASA02] [HAL04].  Common static analysis techniques include data flow 

analysis, control flow analysis, type checking as performed by modern programming 

language compilers, abstract interpretation and type and effects analysis. 

In additional to errors, discussed before, static analysis can also detect the following type 

of errors [NASA02]: 

 

1. Attempt to read a non-initialized variable – read access to non-initialized data may 

cause non-determinism.  Static Analysis tools locate code sections using data that is 

not initialized. 

2. Access conflicts for unprotected shared data 
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3. Referencing through null or out-of-bound pointers 

4. Out of bound arrays - out of bound array errors occur when an index goes outside the 

range of an array.  Static Analysis checks whether the loop incrementing the index 

can exceed the array size. 

5. Division by zero – Static Analysis can check that a division equation is properly 

coded with if statements to prevent the denominator from equalling zero.  It can also 

provide a list of possible denominator variables to check the equation. 

6. Invalid arithmetic operations (square root of negative number) – Arithmetical 

exceptions caused by procedural entities like modulo computation, square root and 

logarithm can be checked using Static Analysis. 

7. Overflow, underflow of arithmetic operations for integers and floating-point numbers 

– overflow and underflow occur in numerical computation when a result is not 

compatible with the variable that stores it.  Therefore, it cannot be represented in 

memory.  Static Analysis locates and reports these problems. 

8. Unreachable (dead) code – Static Analysis can locate and report codes segments that 

are never executed.  For example: if statement never executed because its condition is 

never met. 

9. Illegal type conversion – occurs when a result does not match its assignment 

10. Unpredictable behaviour of multi-threaded applications with shared data.  Depending 

upon the order in which threads read and update shared data, different results can 

occur for the same input 
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3.3.2 Benefits 

Verification can begin earlier in the Software Life Cycle resulting in early detection/ 

resolution of problems and thus reduction in development cost [NASA02]. 

3.3.3 Challenges 

The biggest challenge for Static Analysis is generation of false positives sometimes due 

to overapproximation [NASA02].  However, while the number of false positives may 

seem large in some cases, subsequent errors can be the result of an initial or upstream 

error. Correcting this error can eliminate some false positives.  

For example, assume that the analysis only tracks the sign of some integer variables. If a 

positive and a negative value are added, the algorithm cannot tell the sign of the result 

and will consider both alternatives to error on the safe side. One of them may lead to 

error that corresponds to no actual feasible execution of the real program. 

Here we provide a short summary of the several tools that rely on static analysis 

Tool: Bandera 

Purpose: Build a model suitable for model checkers from Java source code 

[ART01]. 

Producer: Laboratory for Specification, Analysis, and Transformation of Software in 

the CIS Department at Kansas State University. 

 

Technologies:  Program slicing, program abstraction, static model checking; two-

way conversion between abstraction levels. 
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Overview: Bandera tries to bridge the gap between software source code and an 

abstract representation of it.  A special annotation language allows to express assertions 

and temporal or quantified properties in the source code. Predicate definitions for each 

method are used in property specifications which contain the program properties 

(invariants or sequences of states through which the program always has to go). 

Using program analysis (slicing), the first stage of Bandera generates a simplified version 

of the program, containing only the statements of interest for the correctness of the 

program.  This can drastically cut down the complexity of the model that is generated 

from the program. 

The second stage reduces the model size further via data abstraction. It generates an 

intermediate representation of a finite-state model in an intermediate format. 

This format is then translated into the specification language of a model checker 

of choice; so far, SPIN is supported.  Translators for the Symbolic Model Verifier 

(SMV), developed in the Carnegie Mellon University, and Stanford’s forthcoming SAL 

model checker are under construction.  

A newer component is the counter-example generator that checks faults found in the 

abstract model for their validity in the actual program, and reports where in the source 

code the fault was found. 

Availability:  Available for free download from http://bandera.projects.cis.ksu.edu/ 

 

Usage: Bandera has been applied, in conjunction with JPF, to a couple of small 

programs, including Doug Lea’s concurrency package. 

Tool: ESC/Java 
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Purpose: Detect common programming errors at compile-time [Art01]. 

Producer: Compaq Systems Research Center 

Technologies:   Generator of background predicates and verification conditions, simplify 

theorem prover 

Overview: The “Extended Static Checker” for Java has been developed by Digital 

Equipment Inc. (now part of Compaq). The first version has been written for checking 

Modula-3 programs. ESC/Java statically checks a program for null reference errors, array 

bounds errors, potentially incorrect type casts and race conditions. 

ESC/Java requires annotations in the source code in its own annotation language. In an 

internal study, the annotation overhead in the source code was about 13.6% [38].  

However, less scrupulous annotations can be made, ignoring certain types of faults. 

The checker first generates type-specific background predicates to encode data types and 

type relations for each class and interface. Then, each routine is translated into a 

verification condition. As an intermediate step, a sequence of commands similar to 

Dijkstra’s guarded commands is produced. The Simplify theorem prover then tries to 

disprove each one of these verification conditions. If it succeeds, the front end transforms 

the counter-example context into a warning and (optionally) a counter-example [36]. 

 

Availability: The checker has recently been released and is freely available for research 

and educational use.  A binary version can be downloaded for Alpha Unix, Solaris, Linux 

andWindows 9x/NT.  The front end has been written in Java while the theorem prover 

Simplify is written in Modula-3. – A Modula-3 front end is also available, but for Alpha 

Unix and Intel Windows 9x/NT only. 
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Usage:  ESC/Modula has successfully found fault in several small projects, being 

totally 20 K LOC in size. There are no numbers available yet for ESC/Java. 

URL: http://research.compaq.com/SRC/esc/ 

 

Tool:  Jlint  

Purpose: Semantic verifier detecting certain deadlocks, race conditions and a few 

other faults [Art01]. 

Producer: Moscow State University, Research Computer Center; main author: 

Konstantin Knizhnik. 

Technology: Control flow/lock dependency analysis, specialized checks for other faults. 

Overview: Jlint comes as two programs, a simple syntax verifier (AntiC) and a 

semantic verifier (Jlint). The former checks for a few common potential syntax errors. 

The latter is much more interesting, for it extracts information from (non-annotated, 

normally compiled) Java class files and performs consistency and flow analyses on them. 

Jlint is capable of dealing with missing debugging information which some Java 

compilers cannot (yet) generate.  It also allows a hierarchical selection of the checks that 

should be performed. 

The core algorithm checks Java class files for loops in the lock dependency graph. This 

graph includes both static and dynamic methods.  It also makes sure the programs follow 

certain consistency rules when using the wait method in Java.  Race conditions are found 

by building the transitive closure of methods which can be executed concurrently and the 

methods they call.  Then, all field accessed by such methods which fulfill certain 

conditions are reported as possible race conditions in data access.  Jlint is rather 
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conservative at reporting errors, since it does not allow annotations which could eliminate 

false positives. 

Availability: Freely available for download at http://artho.com/jlint/ ; written in C and 

C++, and should work on any platform. 

Usage: No other numbers are available, but Jlint has been applied successfully at Trilogy 

to large scale software (several projects of several ten thousand LOC each). 

URL: http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm 

 

Tool: JPF 

Purpose: Integrate model checking, analysis and testing. 

Producer: Automated Software Engineering Group (ASE) at NASA; main author: 

Klaus Havelund. 

Technologies:  Slicing, abstraction; 1.0: Java to PROMELA translator; 2.0: special 

JVM (MC-JVM) and model checker 

Overview: The “Java PathFinder” has been developed at the Automated Software 

Engineering (ASE) department at NASA. Currently, JPF can only check invariants 

and deadlocks.  Invariants are given as a Boolean Java method.  

After an abstraction and a slicing stage, which both reduce the state space of the program 

a lot, a depth-first search is performed on the program stages.  A special JVM, which 

allows to move forward and backward one state in the bytecode execution, is used for 

this. 

The first version was a translator from Java to PROMELA []. Special assertion and error 

methods specify the properties to be checked.  It has, however, only supported a fairly 
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restricted subset of Java. Because it was too difficult to extend the program to support 

more Java constructs, a different approach has been taken for the second version, which 

works directly on bytecode. It can therefore fully support all Java features []. 

Availability: It is not available for free download   

Usage:  JPF has been applied to the Remote Agent Spacecraft Controller (RAX), 

where it found a deadlock, and the DEOS Avionics Operating System. After the slicing 

stage, the largest package was 1443 LOC in size []. 

URL: http://ase.arc.nasa.gov/jpf/ 

3.4 Model Checking  

Model Checking - automated technique for verifying finite state concurrent systems.  The 

model checker evaluates the model by beginning with the initial states and repeatedly 

applying transitions to reach all possible states [NASA02].  In order to explain Model 

Checking, we define the following terms: 

• Formal Model – computer model of system 

• State – snapshot of the system that captures values of variables at a particular instant 

in time 

• Transition – the change described by the state before an action occurs and the state 

after the action occurs 

To use a model checker, an engineer must create a model of the system.  This model 

represents valid states and transitions of the system.  The model checker evaluates the 

model beginning with the initial states and repeatedly applying transitions to reach all 

possible states.  If a property violation occurs, the model checker reports the error via an 
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execution trace called a counterexample.  Counterexamples show where the violation 

occurred. 

Model checkers verify properties of dynamic operations using the Temporal Logic 

formalism. Two kinds of Temporal Logic are described: 

• Linear Temporal Logic (LTL) – time is described in a linear fashion with no 

branching 

• Computational Tree Logic (CTL) – time is described in a branching fashion 

Three Model Checking tools are: 

• SPIN – an explicit model checker that enumerates all individual states to be verified. 

This approach is limited by the size of the state space of the system. Although SPIN 

provides many optimizations to cover very large state spaces (millions of states and 

more), it is unlikely to scale well for very complex models. 

• SMV – a symbolic model checker that uses efficient data structures (binary decision 

diagrams, or BDDs) to represent and process sets of states in a single operation. The 

symbolic processing allows SMV to explore much larger state spaces than explicit 

state tools such as SPIN. However, SMV is still limited by the complexity of the 

generated BDD structures, which can vary wildly and are hard to optimize. 

• UPPAAL - a toolbox for validation and verification of real-time systems described as 

networks of timed automata 

3.4.1 Benefits 

1. Fast, automated method for exploring all relevant execution paths of non-

deterministic Systems.  This is very important because it is virtually impossible for 
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humans to conceive every test scenario required to verify a nondeterministic system 

in a plausible time frame for software development [NASA02]. 

2. Model checker can backtrack to explore alternative paths from a common 

intermediate state, avoiding the costly reset between tests required in traditional 

scenario based testing.  

It stores and compares states to detect those already explored, thus exploring all states 

exactly once even in the case of looping executions.   

3. Detects problems in the early stages of development; thereby greatly reducing overall 

development costs.  

3.4.2 Challenges 

There are two challenges associated with model checking [NASA02]: 

• Models must be translated into special model checking language like PROMELA (for        

SPIN) or SMV    

• State space explosion – Because of the way software components interact with each 

other and because data structures can have different values, it is common for a model 

checker to run out of memory before exploring the entire state space. 

The following tools/techniques mitigate state space explosion [NASA02]: 

1. Symbolic model checkers, like SMV, offer a technique for mitigating state space 

explosion.  Instead of generating and exploring every state like explicit model 

checkers, symbolic model checkers manipulate whole sets of states at a time. 

2. A set of states is evaluated for each transition by implicitly representing the states as 

the logical conditions the states satisfy. Sets of states are encoded as Binary Decision 
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Diagrams (BDDs).  BDDs are a special representation for Boolean formulas that is 

often more compact than 

3.5 Theorem Proving  

Theorem Proving – use of logical induction over the execution steps of the program to 

prove system requirements. In other words, system requirements can be translated into 

complex mathematical equations and solved by verification experts. Solving these 

equations proves that the system is accurate [NASA02]. 

3.5.1 Benefits 

It can use the full power of mathematical logic to analyze and prove properties of any 

design. 

3.5.2 Challenges 

Requires significant effort and expertise making Theorem Proving suitable for analysis of 

smallscale 
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4 Chapter 4  Java Trace Collection 

4.1 Introduction 

Here we discuss advantages and drawbacks of existing trace collection approaches and 

tools. Based on this comparison we outline our approach, which combines the best 

features of custom bytecode instrumentation and of an industrial strength profiler. 

4.2 Instrumentation Approaches  

As discussed before, that for the runtime time analysis of the program, we need to extract 

the relevant events and then analyze the properties in question, based on the information 

provided by the extracted events.   

The event collection could be performed (with an added instrumentation) on the 

following levels: 
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• Operating system  
• Java Virtual Machine (we include standard instrumentations such as profiling and 

debugging services in this category) 
• Source code or 
• Compiled code (bytecode)  
 
Often, instrumentation is not a part of the system design, but is added to existing systems.  

An instrumentor [KIM01] is a tool that receives as input the program (source code or 

bytecode) and instruments it, at different locations with additional statements for 

monitoring purposes.  

During the execution of the program, the instructions embedded by the instrumentor are 

executed.  The relevant execution events generated by instrumentation are saved in a file. 

The JVM instrumentation is the least portable, since JVM implementation of different 

producers could vary.  Since bytecode is simpler than Java, instrumentation at the 

bytecode level is easier than at source code level, and is, therefore, most common 

[KIM01].  

Now we will briefly discuss the different instrumentation approach in detail.  

4.2.1 Custom JVM Instrumentation 

Java Virtual Machine (JVM) instrumentation consists in modifying the existing JVM to 

provide the required data collection. An attractive feature of JVM instrumentation is 

access to information, which is unavailable with internal methods, such as byte and 

source code instrumentation.  

At the same time, custom JVM level instrumentation suffers from the following 

disadvantages [KIM01]: 
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• The reengineering of an existing JVM requires special efforts.  The process could be 

error-prone without deep knowledge of the application. 

• The JVM uses Just-In-Time (JIT) compilation and Hot Spot dynamic compilation 

[Arm98] for performance enhancement. However, when these features are enabled, 

simple modification of the bytecode interpreter unit is not sufficient [Kim01]. One 

has also to modify compilation, inlining, and interpreter units. This increases the 

complexity of JVM modification.  

• JVM has been updated frequently (there have been four major and two minor 

updates through the last four years – v1.0 to v1.3 being major and v1.4 to v1.5 being 

minor updates); modification of the JVM for monitoring should be done as 

frequently.  

Therefore, custom modification/instrumentation of the JVM does not seem to be a 

practical solution. 

To alleviate the above-mentioned difficulties of custom instrumentation, modern JVMs 

are already instrumented with standardized and extensible profiling (JVMPI) and 

debugging (JPDA) services.  With the development of the JVM profiling interface, 

custom JVM instrumentations have become rare.  In fact, some tools, such as JinSight, 

abandoned them in favor of JVMPI.  

The use of the standard debugging and standardizing profiling architectures of JVM is 

discussed below.  
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4.2.2 Java Profiling Interface 

The JVMPI is a two-way function call experimental interface between the Java virtual 

machine and an in-process profiler agent.  On one hand, the virtual machine notifies the 

profiler agent of various events, corresponding to, for example, memory allocation, 

thread start, lock contention etc.  On the other hand, the profiler agent issues control 

requests for more information through the JVMPI.  For example, the profiler agent can 

turn on/off a specific event notification, request a dump (snapshot) of objects, threads, or 

lock (monitor) status, based on the needs of the profiler front-end. A proof of concept 

agent is provided within Sun SDK since version 1.2; some JVMPI support is provided by 

other JVM producers.  

The possible monitored events are: 

• Method enter and exit 
• Object alloc, move, and free 
• Heap arena create and delete 
• Garbage Collection start and finish 
• JNI global reference alloc and free 
• JNI weak global reference alloc and free 
• Compiled method load and unload 
• Thread start and end 
• Class file data ready for instrumentation 
• Class load and unload 
• Contended Java monitor wait to enter, entered, and exit 
• Contended raw monitor wait to enter, entered, and exit 
• Java monitor wait and waited 
• Monitor dump 
• Heap dump 
• Object dump 
• Request to dump or reset profiling data 
• Java virtual machine initialization and shutdown 
 
Aiming mainly at performance issues, JVMPI does not provide logging of monitor 

entry/exit and variable access events required for data race detection, as well as 
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scheduling. In order to increase the level of observed details, different techniques could 

be applied. For example, a Linux Monitoring Tool used in conjunction with JVMPI in the 

development of Java Profiling [MEI03] tool is able to observe even the execution thread 

scheduling. 

The JVMPI allows the profiler agent to instrument every class file before it is loaded by 

the virtual machine. The profiler agent may, for example, insert custom byte code 

sequence that records method invocations, control flow among the basic blocks, or other 

operations (such as object creation or monitor operations) performed inside the method 

body. 

Along with event logging, JVMPI provides a sampling mechanism, that gives, on request, 

the program snapshots. Sampling suits better for performance evaluation purposes; 

however, it could be employed in correctness problem detection; e.g., deadlocks could be 

detected with thread/lock dumps.  

The JVMPI is used by the profiler agent that runs in the same process as the Java virtual 

machine. Programmers who write the agent must be careful in dealing with threading and 

locking issues in order to prevent data corruption and deadlocks. 

Events are sent in the same thread where they are generated. For example, a class loading 

event is sent in the same thread in which the class is loaded. Multiple events may arrive 

concurrently in different threads. The agent program must, therefore, provide the 

necessary synchronization in order to avoid data corruption caused by multiple threads 

updating the same data structure at the same time [JVMPI]. 
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4.2.3 Java Debugging Architecture 

JPDA is a three-tiered debugging architecture that allows tool developers to easily create 

remote debugger applications, which run portably. The architecture is standardized and 

supported by most JVM implementations [JPDA]. 

JPDA is somewhat similar to JVMPI, and certain functionalities overlap. However, it 

allows more control and interaction, namely, to manipulate (suspend, resume, stop, ...) 

threads, add/remove breakpoints, get/set the value of a local variable, watch field access, 

and change memory allocation scheme, as well as line by line execution. 

The observed events are: 

• method entry and exit 
• field access and modification 
• thread end and start 
• class load, unload and preparation 
• death and initialization of virtual machine 
• single step execution and breakpoint events 
 
Local variables and arrays are not observed. Often, source code modification is 

recommended to transform arrays and local variables into observable entities. 

Controls over the Virtual Machine allow class redefinition, this makes class 

instrumentation possible. 

Until the SUN SDK version 1.4 a program could only be debugged in interpreter mode. 

Since SDK 1.4, the interpreter mode is only used when breakpoints are inserted. Setting a 

breakpoint only inhibits compilation (full speed execution) for the method containing the 

breakpoint.  
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Since JPDA does not track lock accession events [LEE03] extended (instrumented) JPDA 

of Sun SDK 1.3 for model checking Java. 

Another way of overcoming JPDA limitations for lock entry/exit events is single step 

execution mode and breakpoints.  With proper breakpoints and source code analysis, 

thread synchronization and collaboration events could be traced without intrusive Virtual 

Machine instrumentation. However, such a solution could be rather sluggish and does not 

apply to code whose source is not available. Breakpoint debugging works well for 

programs that do not interact with any other dynamic entities (other programs or real-

world devices). However, programs in distributed and real-time domains may have their 

behavior and results altered if interrupted by a debugger. Events may go undetected, 

message queues may overflow, and moving parts may fail to stop in time, causing real-

world damage to machines or people.  

Sun SDK includes a proof-of-concept JPDA based command line debugger, JDB, and a 

method call tracing tool, Trace. 

4.2.4 Java Platform Profiling Architecture of J2SE 5.0 

The J2SE 5.0 (a latest version of Java) release provides comprehensive monitoring and 

management support: instrumentation to observe the Java virtual machine, Java 

Management Extensions (JMX) framework and remote access protocols [J2SE 5.0].  

The JVM Monitoring & Management API specifies a comprehensive set of 

instrumentation of JVM internals to allow a running JVM to monitored.  This information 

is accessed through JMX (JSR-003) MBeans and can accessed be locally within the Java 

address space or remotely using the JMX remote interface. 
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J2SE 5.0 provides the following APIs for monitoring and management [J2SE 5.0]: 

• Java Virtual Machine Monitoring and Management API 

The java.lang.management API enables monitoring and managing the Java virtual 

machine and the underlying operating system.  The API enables applications to monitor 

themselves and enables JMX-compliant tools to monitor and manage a virtual machine 

locally and remotely 

• Sun Management Platform Extension 

The com.sun.management package contains Sun Microsystems' platform extension to the 

java.lang.management API and the management interface for some other components of 

the platform 

• Logging Monitoring and Management Interface 

The java.util.logging.LoggingMXBean interface enables you to retrieve and set logging 

information 

• Java Management Extensions (JMX) 

The JMX API defines the architecture, design patterns, interfaces, and services for 

application and network management and monitoring in Java.  The APIs are based on the 

JMX Specification. 
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4.3 Source Code Level Instrumentation 

Source code instrumentation is to add code (particular instructions, packages etc) called 

probes to report the events in the program to be analyzed [CAI03].  

Automatic source-code transformation usually requires parsing and analysis of the 

abstract syntax tree of an application. 

Java language provides already some logging capabilities with the package 

java.util.logging. The core package includes support for delivering plain text or 

XML-formatted log records to memory, output streams, consoles, files, and sockets. In 

addition, the logging APIs are capable of interacting with logging services that already 

exist on the host operating system.   

Advantages of source code instrumentation are: 

• Source code is more naturally understood and thus allows a custom instrumentation. 

• Source code instrumentation eliminates the need for understanding the JVM and the 

actions of the compiler. 

• Source code instrumentation is portable over platforms and machines.  

Among the disadvantages of source code instrumentation is the need for source code that 

is not always available.  

4.4 Java Bytecode  

Before discussing the Bytecode instrumentation, we give a brief introduction about the 

Java Bytecode format and related terms. 
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4.4.1 Java Bytecode Definition  

Bytecode is the intermediate representation of Java programs just as assembler is the 

intermediate representation of C or C++ programs.  This knowledge is crucial when 

debugging and doing performance and memory usage tuning. Knowing the assembler 

instructions that are generated by the compiler for the source code you write, helps you 

know how you might code differently to achieve memory or performance goals [HAG01] 

4.4.2 Java Bytecode Format 

Here we give the brief details about the format of classfile and the bytecode instruction.  

The format of classfiles and the byte code instruction set are described in more detail in 

the Java Virtual Machine specification [JVM].    

The content of a Java class file starts with a header containing a "magic number" 

(0xCAFEBABE) and the version number, followed by the constant pool, which can be 

roughly thought of as the text segment of an executable, the access rights of the class 

encoded by a bit mask, a list of interfaces implemented by the class, lists containing the 

fields and methods of the class, and finally the class attributes [DAH01].  Attributes are a 

way of putting additional, user-defined information into class file data structures.  For 

example, a custom class loader may evaluate such attribute data in order to perform its 

transformations.   

The Bytecode translation of a well-known statement “System.out.println (“Hello 

World”)” is:    

getstatic java.lang.System.out 
Idc           “Hello World” 
invokeVirtual java.io.printstream.Println  
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The first instruction loads the contents of the field out of class java.lang.System onto 

the operand stack. This is an instance of the class java.io.PrintStream.  The ldc 

("Load constant") pushes a reference to the string "Hello world" on the stack.  The next 

instruction invokes the instance method println which takes both values as parameters 

(Instance methods always implicitly take an instance reference as their first argument) 

4.4.3 Bytecode Instrumentation 

4.4.3.1 Overview 

The Java compiler converts the Java source code into the class file format [JVM].  

Instead of the source code, the resulting Java bytecode is modified. The Java bytecode is 

a stack based programming language. One can modify the bytecode without changing the 

semantics of the program, if he introduces statements into the bytecode that have no 

effect on the stack. Actions, which perform loading of values onto the operand stack, 

such as iload and getField, are followed by operations, which indicate the reference 

of the variable. In this case, the inserted code must not affect the operand stack. The 

generation of the modified bytecode can be performed either by a customized compiler or 

by using an existing compiler and modifying its resulting bytecode 

4.4.3.2 Supported Events 

Bytecode instrumentation can guarantee to fully track the access and/or modification of 

variables. It is possible to instrument all Java class files with probes, so libraries and third 

party components can be instrumented. This, however, will result in anomalies being 

reported for code beyond the user control. 



 57

One could distinguish dynamic and static instrumentation of bytecode. Dynamic 

instrumentation is performed during program execution, while static instrumentation is 

performed prior the execution. 

Bytecode instrumentation offers numerous advantages: 

• A class file, the unit of Java bytecode contains the rich symbolic information about 

the system such as method names, global variable names and local variables that is 

useful for automatic instrumentation. 

• Many of the issues of interest for run-time monitoring (actual access to variables, 

power consumption of instructions) are revealed precisely at the bytecode level. 

• Java bytecode prohibits pointer arithmetic, which enables the detection of the 

updating of variables and also it is strongly typed. 

• Bytecode instrumentation adds the least overhead to a Java programs execution. 

• Java Bytecode is platform independent. 

• Many high level languages like Ada and Lisp compile their source code to Java 

Bytecode. Thus techniques and tools developed for Java could apply to Ada and 

Lisp. 

• The tool support for byte code instrumentation is better than source code or JVM 

level instrumentation support.  

The main disadvantage in developing of bytecode instrumentation tool seems to be a 

need for deep knowledge of Java bytecode language. 
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4.5 Instrumentation Tools  

In this section, we discuss tools designated for event collection as well as event collection 

parts of tools for profiling and trace analysis, and general-purpose Java instrumentation 

tools. 

4.5.1 Java Virtual Machine Instrumentation Based Tools  

4.5.1.1 Tool: JinSight 

Source: IBM AlphaWorks 

Overview: JinSight is a tool to visualize and explore a Java program's run-time behavior. 

It is useful for performance analysis and debugging of Java program. It displays 

performance bottlenecks, object creation and garbage collection, execution sequences, 

thread interactions, and object references.  

JinSight consists of two parts:  

• Instrumented Java Virtual Machine, which generates trace data as Java program runs. 

As the program runs, it produces a Jinsight trace file with information about the 

execution sequence and objects of the program. The user can choose options to turn 

tracing on and off, to limit the type of information recorded, and to mark significant 

events in the trace file. Filtering and control over level of details are particularly 

useful since tracing every detail of a program's execution will generate trace 

information rapidly (30MB/min); the resulting traces quickly running into the 

hundreds of megabytes and more.  
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• JinSight visualizer, which reads the trace data and presents graphical views of 

program execution, recurring method call patterns, object interconnection, call graph 

etc.  

The latest version of JinSight (for Java 2) is based on JVMPI platform. 

Availability: Only Windows 95/NT and AIX are supported. The tool is free for 

download (90 days evaluation period) from IBM. 

http://www.alphaworks.ibm.com/tech/jinsight . 

4.5.2 Profiling Interface Based Tools 

4.5.2.1 Tool: Hyades 

Producer: The tool is an Eclipse project. 

Overview: The Hyades project provides an open source platform for Automated 

Software Quality (ASQ) tools, and a range of open source reference implementations of 

ASQ tooling for testing, tracing and monitoring software systems. Hyades provides an 

extensible framework and infrastructure that embraces automated testing, trace, profiling, 

monitoring, and asset management. The goal of the Hyades project is to bring ASQ tools 

into the Eclipse environment in a consistent way that maximizes integration with tools 

used in the other processes of the software lifecycle.  

Since Hyades launch in December 2002, its development has been actively supported by 

IBM, Parasoft, Telelogic, and Scapa Technologies. 

The Hyades project offers a Java Profiling Agent that collects the following events: 
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• trace start/end 
• method call/return/entry/exit 
• thread start/end 
• exception throw 
• object allocation/free/move 
• JVM initialization/shoutdown 
• garbage collection start/end 
 
Lock contention events are not supported. The collected events can be stored in XML 

compliant files, in the following fashion: 

The above fragment of the trace produced by an instrumented SAP vending machine 

server shows that along with detailed events of class definitions, object allocations, 

method enter/exit, the trace presents information on the used data collection options and 

filters. Hyades also provides statistics and graphical views on the results of profiling.   

The instruments to create Analysis Engines and Log Analyzers are provided. 

Availability: The platform is downloadable for free from http://hyades.eclipse.org and 

covered by Common Public License. 

Among other JVMPI based tools, we could mention the free method call profiler EJP 

(http://ejp.sourceforge.net/), which presents the method call trace in an hierarchic form 

with the method execution time. 

4.5.3 Tools for Source-Code Level Instrumentation 

4.5.3.1 Tool: JavaScope 

Producer: Sun Microsystems. 

Overview: JavaScope is a set of software programs to determine how well a Java 

program or one or more Java source files are tested (test coverage measurement).  It 
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provides a tool to instrument the application and a browser to view resulting data.  It can 

instrument everything, but offers no control over instrumentation techniques, location, or 

ability to add probes.  

Availability: Unavailable for download. 

Some tools, like the open-source (LGPL) tool RECODER automate a general source 

code transformation. However, a complete automation of software changes is far beyond 

today’s possibilities: In general, it is impossible to do certain design decisions 

automatically. For example, in general, it is not possible to analyze the behavior of 

reflective programs (analyzing reflection requires value analysis, which is not always 

computable). Therefore, no guarantees can be given that the observable behavior of 

reflective programs is retained. 

4.5.4 Java Bytecode Instrumentation Tools/Toolkits 

Tools described here provide an ability to modify Java bytecode. While some tools are 

ready to perform instrumentation (e.g., ProbeMeister), others are tools or libraries, which 

could be used to implement a custom instrumentation tool. 

4.5.4.1 Tool: JProbe Threadalyzer 

Producer: Quest Software 

Overview: JProbe Threadalyzer detects thread problems that can threaten the application 

performance. It analyzes the Java code to:  

• pinpoint the cause of stalls, deadlocks and race conditions;  
• predict deadlocks with advanced lock analysis; 
• visualize the status of all running threads; 
• view precise source location, where problems occur; 
• avoid data corruption due to race conditions.  
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The event collection is performed by instrumentation. The events relevant to the property 

under analysis are logged into “snapshot” files, and could be visualized (see Figure 4.1) 

or converted into text or XML formats. 

Figure 4.1: A trace snapshot of JProbe 
Here, we discuss the thread stall and data races that JProbe Threadalyzer reports. 

JProbe Threadalyzer reports the following possible thread stalls: 

• A thread blocks, waiting to acquire a lock and does not acquire the lock within a 

user-defined time; 

• A thread waits (wait() is called with no timeout value) for a notify() event that 

is not sent within a user defined time. 

Threadalyzer flags thread stalls as potential problems in the analyzed programs. 

Threadalyzer leaves it to the programmer to control how long a thread must be inactive 

before being flagged as stalled. This is done in the Threadalyzer tab of the Run Settings 

dialog. 
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Threadalyzer identifies and flags any data races it encounters while running the program. 

The data race detection process is usually resource intensive and may slow down 

Threadalyzer performance. 

Powerful lock analyzers help in identifying thread problems before they happen.  

JProbe supports Java 2 broad platform and Eclipse. 

Availability: It is available online for free download at 

“http://www.quest.com/solutions/download.asp” (trial version only). 

4.5.4.2 Tool: ByteCode Instrumentation Tool (BIT)  

Authors: Han Lee and Ben Zorn. 

Overview: Bytecode Instrumenting Tool (BIT) is a collection of Java classes for building 

tools to instrument Java Virtual Machine (JVM) bytecodes [LZ97]. BIT employs an 

instrumented program-based technique for extracting dynamic behavior of Java Virtual 

Machine (JVM) bytecodes.  BIT allows the user to insert calls to analysis methods 

anywhere in the bytecode, so that information can be extracted from the user program 

while it is executed.  This information, in turn could be used in performance 

measurement and optimization.  BIT is an effective framework for understanding a 

dynamic behavior of JVM bytecodes. 

The architecture of BIT is based on the observation that many of the dynamic behaviors 

of a program can be obtained by instrumenting a few key locations, e.g., before and after 

methods, before and after basic blocks, and before and after instructions. Thus, BIT 

provides classes and methods for inserting a method invocation at each of these key 

locations. BIT uses an internal representation of the bytecode, to which modification can 

be made and then written back to a class file. 
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BIT consists of two Java packages. One for performing low-level operations such as 

reading and writing class files, interpreting constant pool entries, reading code buffers, 

and other low-level class file parsing.  Another package is used for performing higher-

level operations such as finding and constructing basic blocks, decoding instructions from 

the code buffer, inserting method calls, and navigating through higher intermediate 

representations. The first package provides a low-level representation of a class file while 

the second package provides higher-level functionality. 

BIT is implemented using the Java programming language. BIT consists of 43 Java 

classes. Various program analysis tools for measuring and understanding the dynamic 

behavior of the program can be built using BIT classes 

Availability: It is available for download at 

 http://www.cs.colorado.edu/~hanlee/BIT/index.html 

4.5.4.3 Tool: JTrek 

Producer: Digital Corporation. 

Overview: JTrek was developed at Digital Corporation (Digital has now merged with 

Compaq and Hewlett-Packard). JTrek is a platform independent advanced technology 

written in Java for troubleshooting Java applications. JTrek consists of the Trek class 

library, which enables Java developers to write Java applications that analyze and modify 

Java class files.  

Usage: It is used as an instrumentation tool in Java PathExplorer (JPaX), a Run-time 

Verification Tool. JTreK reads Java classfiles, traverses them as abstract syntax trees 

while examining their contents and inserts new code. The inserted code can access the 



 65

contents of the method call-time stack at run time. JTreK is also used as an 

instrumentation tool in Java-Mac “A run-time assurance tool for Java Programs” 

developed at University of Pennsylvania, U.S.A. 

Availability: It is available for free download at “http://www.cis.upenn.edu/~rtg/mac/” 

4.5.4.4 ToolKit: Byte Code Engineering Library (BCEL) 

Overview: The Byte Code Engineering Library (formerly known as JavaClass) is a 

toolkit for the static analysis and dynamic transformation of Java class files [DAH01]. It 

enables developers to implement the desired features on a high level of abstraction 

without handling the internal details of the Java class files. It is intended to give users a 

convenient possibility to analyze, create, and manipulate Java class files.  

BCEL was designed to model bytecode in an object-oriented way by mapping each part 

of a class file to a corresponding object. Particular bytecode instructions may be inserted 

or deleted by using instruction lists and applying changes to existing class files. Efficient 

bytecode transformations can be done by using compound instructions as a substitute for 

a whole set of instructions of the same category. For example, an artificial push 

instruction can be used to push arbitrary integer values to the operand stack. With the aid 

of run-time reflection, i.e., meta-level programming, the bytecode of a method can be 

reloaded at run time.  

BCEL consists of several components such as: 

• org.apache.bcel.util.Class2HTML, which generates nice HTML pages for a class 
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• org.apache.bcel.util.JavaWrapper, which replaces standard java interpreter to use 

own class loader to let one modify a loaded class via modifyClass method that can be 

overloaded 

• org.apache.bcel.verifier.GraphicalVerifier, which allows to verify the class file with 

verbose output 

Usage: Java MultiPathExplorer (JMPaX), a trace verification tool, uses BCEL Java 

library to modify Java class files for collecting data access events and maintaining a 

vector clock, which identifies a partial order among events.  

Availability: It is available for free download at http://jakarta.apache.org/bcel/ under 

Apache Software License (open source). 

4.5.4.5 Tool: JIAPI: Java Instrumentation API 

Producer: Open source project. 

Overview: A high level API to instrument Java bytecode based on BCEL.  

The goal of the project is to provide:  

• A framework to implement instruments which manipulate Java bytecode  

• Implementations for common bytecode manipulations 

• A abstraction of some details in bytecode structure  

• Easy to use event-based API and run-time hooks 

• Instrumentation configuration tool  

• ClassLoaders utilizing bytecode instrumentation  

• Class loading plugins for application servers  

 

The event model includes  
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• Method exit/entry 

• Field access 

• Exception throw  

Availability: Available for free download from http://jiapi.sourceforge.net/ under lesser 

Public GNU License 

Table 4.1: The summary of the analyzed instrumentation tools 

Tool Availability Source Byte/Source 
code/JVM 
level 

Usage 

BIT Free for 
Download  

By Han Lee 
and Ben Zorn 
at University of 
Colorado  

Bytecode  Used for research 
purposes and 
making 
customized tools 

Jikes  Download for 
free (90 days 
evaluation 
period) 

IBM Alpha 
Works 

Bytecode Development of 
tools for 
customized 
instrumentation  

JOIE  Free for 
download (beta 
version) 

Duke 
University, 
USA 

Bytecode Used in projects 
like Ivory, Safkasi 
and Naccio 

Hyades Free download Eclipse Project JVMPI  
JProbe 
Threadalayzer  

Download for 
Free (trial 
version) 

Quest Software Bytecode  Used by SAP 

Jiapi  Free Public project Bytecode  
BCEL  Free for 

download, 
Apache open 
source 

Apache Open 
Source 
Community 

Bytecode Used in JMPaX, 
JContractor, JRaT 

Omniscient 
debugger 

Free download  Bil Lewis Bytecode Used to debug its 
own code 

ProbeMeister  Free for non 
commercial 
purpose only 

Object services 
& Consulting, 
MD 

Bytecode To monitor 
distributed 
applications 

CFParse  Download for 
free (90 days 
Evaluation 
period)  

IBM Alpha 
works 

Bytecode Used for 
debugging service 
and controlling the 
functionality of a 
applet 

AspectJ  Free for Tool available Source code  Custom logging 
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Download  at Mozilla 
Public license 

JTreK  Not available 
for download 

Hewlett 
Packard 

Bytecode  Used in JPaX and 
Java.Mac 

JSpy  Not available 
for download 

NASA Ames 
Research 
Center 

Bytecode  To be used in 
JPaX 

       

4.6 Our Instrumentation and trace collection Approach  

4.6.1 Introduction  

In our runtime analysis approach, for instrumentation purposes we use integrated 

approach, combining both the approaches (i.e profile interface based approach – Hyades 

base and bytecode instrumentation based approach – JTREK).  In this way we can use 

best of both the two approaches.  As discuss before, Hyades framework consist of Java 

profiling interface which provides non-intrusive trace collection. With this approach, 

events for example such as method entry/exit, trace start/end, exception throw are 

collected. These events are emitted as XML fragments, when Java profiling agent 

attaches to JVM to capture and record the Java application behaviour.  

The limitation of Hyades based approach is that, we can only collect limited types of 

events.  The events such as monitor enter/exit, variable updates (either write and read) 

could not be collected, these events we require for monitoring of concurrency errors, such 

as deadlocks and data races.  To improve the Hyades based trace collection approach we 

supplement it with bytecode instrumentation tool –JTREK.   

To record monitorenter and monitorexit events, JTreK instrument the bytecode with 

empty methods Object.lockentry and Object. lockexit before the start of synchronized 

statement.  Similarly to record variable updates JTrek instrument the bytecode with 
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empty methods such as variable_write and variable_read before the monitored variable 

write or read operation.             

When this instrumented bytecode is executed using the Profile interface tool (Hyades 

framework), the additional events are logged in Java trace (in XML format).   

4.6.2 Hyades Profiling and Tracing 

The Hyades Profiling and Tracing Tool consist of the Profiling and Logging Perspective.  

It enables to profile the application, to work with profiling resources, to interact with the 

application when profiling, and to examine the application for concurrency or memory 

related problems.  The Profiling Tool collects data related to the Java program's run-time 

behaviour.  Data collected from a profiling session is saved to a file in .xml format for 

later analysis. To profile an application/program, it needs to be running, an agent (Java    

profiling agent) needs to be associated with it, and we need to attach to that agent.  If the 

application is already running, we only need to attach to its agent.   Attach means that a 

monitor is created to record runtime behaviour of an application.  The Java Profiling 

Agent is an agent instance that is deployed with the Agent  Controller.  The Application 

Process is the Java Virtual Machine that executes the Java application.  If the application 

is not running, then we need to launch it.  Launch means that the application is started, an 

agent is associated with the process, and a monitor is created to record runtime behaviour 

of an application.  

4.6.2.1 Event Structure and there Attributes  

Here we briefly discuss the event structure (which is in XML format) of the Java trace.  

The data output of the Java Profiling Agent ( Hyades Tracing)  is a set of XML elements, 
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that are either emitted as fragments within a non-XML trace stream or as part of a valid 

XML document.  

The event structure consists of the following elements   

• IDs 
• Common attributes 
• Structural elements 
• Trace behaviour elements 
• Class elements 
• Object elements 
• Method elements 
• Line elements 
• Memory management elements 
• Exception elements 
• JVM elements 
• Monitor elements 
• All trace elements 

4.6.2.1.1   IDs 

Attributes of the elements has various kinds of IDs. Threads, classes, methods, and   

objects each have unique IDs.  Each ID has a defining element and an undefining   

element. A defining element provides the information related to an ID.  For example, the 

defining element for a thread ID contains, among other entries, the name of the thread.  

An ID is valid until its undefining element arrives. An undefining element invalidates the 

ID, whose value may be reused later as a different kind of ID. The value of a thread ID, 

for example, may be redefined as a method ID after the thread ends.  

4.6.2.1.2 Common attributes 

Many event elements share the same attributes. The following attributes appear on    

more than one element:  

Time  
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The time at which the event starts, the format of the time attribute is "utc.fff" where utc is 

the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated 

universal time, according to the system clock.  Expressed as an unsigned 32-bit value 

formatted as a string  

fff is the fraction of seconds to the highest precision that can be retrieved. Expressed as an 

unsigned 32-bit value formatted as a string  

ThreadId/ThreadIdRef  

ThreadId defines and threadIdRef refers to the thread that the element occurred in.  

ThreadId's are unique within the scope of a trace regardless of how many threads are 

started and ended. Expressed as an unsigned 32-bit value formatted as a string   

MethodId/MethodIdRef  

MethodId defines and methodIdRef refers to the method that the element is associated 

with. Expressed as a 32-bit unsigned value in string format   

ObjId/ObjIdRef  

ObjId defines and objIdRef refers to the object associated with the event.  Expressed as a 

32-bit unsigned value in string format   

ClassId/ClassIdRef  

ClassId defines and classIdRef refers to the class associated with the event. Expressed as 

a 32-bit unsigned value in string format   

TraceId/TraceIdRef  

TraceId defines and traceIdRef refers to a UUID (Universal unique identifier) that 

uniquely identifies the trace instance  

4.6.2.1.3 Structural elements 
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When emitted as part of a valid XML document, the trace information is contained under 

a root TRACE element. 

<TRACE> 
<node/> 
<processCreate/> 
<agentCreate/> 
      ... 
 all other events 
      ... 
<agentDestroy/> 
</TRACE> 
The information conforms to the associated DTD (trace.dtd) and schema (trace.xsd), 

which declare these elements such as TRACE, code, tag and methodbody. 

4.6.2.1.4 Trace Behaviour Elements 

 The following elements provide information about the trace as a whole:  

• Node  
• ProcessCreate  
• AgentCreate  
• AgentDestroy  
• TraceStart  
• TraceEnd 
• ProcessSuspend  
• ProcessResume  
• Option  
• Filter 

4.6.2.1.5 Thread elements 

The following elements provide information about threads.  Other elements will point to 

a THREAD element's thread_id to identify the thread they are running in. 

ThreadEnd  
ThreadStart  

4.6.2.1.6 Class Elements 

ClassDef  
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MethodDef  
Although technically part of the classDef event, the method element is broken out into a 

separate element so that it can be optionally output only when referenced. 

4.6.2.1.7 Object Elements 

The element objAlloc traces storage allocation. It has its own section because it also 

holds identity information for an object, which can be referred to by method events 

associated with the object, such as a methodEntry event. 

4.6.2.1.8 Method elements 

The following elements provide information about methods: 

• MethodEntry  
• MethodExit  
• MethodCall (Deprecated)  
• MethodReturn (Deprecated)  
• InvocationContext  
• ObjDef  
• Value  
• MethodCount  
 
MethodEntry and methodExit are output when a method is entered, and when the method 

returns respectively. MethodCall and methodReturn are output when a method is about to 

be called, and after a method returns.    

The InvocationContext element holds identity information so that a methodEntry can 

determine who invoked the method irregardless of location. InvocationContext 

information will identify either a methodCall or methodEntry of a remote agent for 

distributed invocations. 

The objDef element holds identity information for an object, which can be referred to by 

elements associated with the object, such as the value element. 
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The value element is used to reference a data value, either for parameter values in a 

methodCall, or for the return value of a methodReturn.  

MethodCount tracks the number of times a particular method has been invoked. This 

element is designed to aid in collecting code coverage information.  A methodCount 

element is produced for every method for every class loaded by the application.    

4.6.3 Bytecode Instrumentation using JTrek 

Here we describe in detail the bytecode instrumentation, using JTrek.  

An executable Java program consists of a set of classfiles.  One classfile contains 

definition of one class.  A Java classfile is loaded into running Java virtual machine at 

run-time.  Thus classfiles are linked dynamically at run-time rather than statically.  In 

order to link classfiles dynamically, a classfile contains symbolic information such as 

string constants, class names, field names, method names, local variable names, and other 

constants that are referred to within the classfile. This information in a classfile helps the 

instrumentor.   

A instrumentor takes two inputs namely, Java classfile (*.class) and instrumentation 

script, which contain information such as monitored variables/methods.  Based on these 

two inputs, the instrumentor inserts methods into the target program. The Java bytecode 

instrumentation is performed using the JTrek Java bytecode engineering tool [JTrek].  

JTrek makes easily possible to process Java class files, examination of their contents and 

insertion of new code.  The inserted code access the contents of various runtime data 

structures, such as the call-time stack, and when executed (either on Hyades 

framework/platform) emit events carrying this extracted information to the trace or 

console output.   
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The process works as follows, JTrek iterates through the bytecode instructions of the 

target program and uses callbacks to perform user-specific instrumentation.  Iteration 

may be at the level of Java statements or individual bytecode instructions. 

JTrek allows insertion of certain types of code, but does not allow definition of new local 

variables, fields, or methods.  For each class, and for each method in that class, JTrek 

iterates though the bytecode.  At each byte code, JTrek calls a method void at (Instruction 

instr), which we override and to which the current instruction is passed as parameter.  

JTrek provides a large variety of classes, each targeting a particular Java construct that 

can be accessed from an instruction, such as for example Statement and Method, with 

each method containing various kind of information, that is either integers or strings, or 

other objects that can be used for further navigation.  For example, in the Instruction 

class, the method Statement getStatement() returns an object of the class Statement, 

representing the statement in which the instruction occurs.  Further in the Statement class 

in turn contains a method, Method getMethod(), returning the method in which the 

statement occurs.  

As an example, the method in which an instruction instr occurs can be obtained by the 

expression:  instr.getStatement().getMethod(). 

In the void at (Instruction instr) overridden method, a switch-statement branches out 

depending on what is the opcode of the instruction.  In case an instruction is for 

instrumentation, JTrek inserts the call of a method either after or before the instruction.  

For each kind of bytecode that we want to instrument we have defined a class that 

contains essentially one methods: void instrument (Instruction instr), which performs the 

required instrumentation by inserting a call to the second method.  
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4.6.3.1 Additional Events logged using the bytecode Instrumentation:  

Here we list the additional events logged in the Java trace, and how we precisely did the 

instrumentation:  

4.6.3.1.1 Variable Updates 

For data race analysis, we need to extract additional information, such as when and which 

variables are accessed and also there updated values. Further we also require to extract 

information as these variables are accessed by which threads. 

For example we are interested to monitor a class variable x of type int and log the event 

<methodEntry variableWrite> and it’s (updated) value in Java trace.  To achieve this, 

JTrek iterates through bytecode and search for putstatic instruction (an instruction 

updating a class variable) which has class variable name, type of the variable and the type 

of the parent class as operand.  The JTrek iterates using dotrek method. 

The empty methods such as variable_write or variable_read are inserted after the putstatic 

instruction.   In the operand of the variable_write or variable_read methods we pass 

parameters such as variable type and variable value.  When the instrumented bytecode is 

executed on Hyades platform (which contain Java Profiling Agent) the events such as 

<method Entry variable_write> or <method Entry variable_read > are logged at the Java 

trace and there parameters such as variable type, variable value are printed at the console 

output.  

For data race analysis and other concurrency errors analysis we combine both the traces 

namely the Java trace (in XML format) and the updated value, obtained at the console 

output.  



 77

We monitor two types of variables namely primitive field variable and Local Variables. 

Below we discuss about there variable and way to instrument it.     

4.6.3.1.1.1 Primitive Field Variables 

A field variable is either a class variable or instance variable.  A class variable is updated 

by putstatic instruction.  An instance variable is updated by putfield instruction.  Both 

instructions (putstatic and putfields) have variable name and a parent class name as 

parameters. Both instructions take top stack operand value as updated value of the 

variable.  The instrumentation process is similar as described before that is instrumentor 

iterates the bytecode and search for putstatic or putfield instruction and inserts 

instruction/probe to fetch the updated value of the monitored variable from the operand 

stack during runtime.   

4.6.3.1.1.2 Local Variables: 

Local variable values are updated by instructions such as <T>store, <T>store_n and iinc 

where <T> stands for primitive type and <n> € {0, 1, 2, 3}.  These instructions contain an 

index to a local variable as an operand.  

When we recognize that an instruction (for example call it i) is recognized as updating 

the monitored variable, monitorenter instruction is inserted right before i and monitorexit 

instruction is inserted right after i for making the update of the variable.   

Then the probe invoking void Variable_update (Object parentAddress, <T> value, string 

varName) (parentAddress is an address of an object whose member field varName is 

monitored) is inserted right before i.    
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When the instrumented program is executed on the Hyades platform/framework,  the 

event <methodEntry Variable_write> is printed on Java trace it’s parameters such as 

variable (updated) value and variable name is printed to console output.   

4.6.3.1.2 Monitor Enter and Exit 

For monitoring of concurrency errors, such as deadlocks and data races, we need to 

extract information, as when locks are acquired and released.  

At the JVM level, locks are obtained when a synchronized method or monitorenter 

instruction is executed.  As stated in the JVM specification [JVM]: “Normally, a 

compiler for the Java programming language ensures that the lock operation implemented 

by a monitorenter instruction executed prior to the execution of the body of the 

synchronized statement is matched by an unlock operation implemented by a monitorexit 

instruction whenever the synchronized statement completes, whether completion is 

normal or abrupt.”   

For a monitorenter instruction, which indicate that a thread takes a lock when entering a 

synchronized statement, we extract information as which object is locked and which 

thread does it, and similarly we get this information when monitorexit is executed.  Thus 

instrumenting all monitorenter and montitorexit correctly tracks the number of locks held 

by a thread on an object relating to synchronized statements. This emit these events when 

executed: Object. lock (t; o) (thread t locks object o) and Object. unlock (t; o) (thread t 

unlocks object o).  When this instrumented bytecode is executed by Hyades Framework, 

these additional events e.g. <method entry LockAcquire > and < method exit 

LockRelease> are logged in the Java trace.  
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Thus instrumenting all monitorenter and montitorexit correctly tracks the number of 

locks held by a thread on an object relating to synchronized statements.  However if a 

synchronized method abruptly terminates, then the lock obtained on entry to the method 

is released by the JVM, but there is no way to instrument the bytecode to record the 

release of the lock.  The possible fix to this problem is to modify the body of each 

synchronized method to surround the whole body with as try block that catches all 

throwables, logs the release of the lock, and re-throws the exception. 

Below we show two same methods of the class, the first method contain the instrumented 

bytecode and the second method contains the uninstrumented bytecode.  The 

instrumented bytecode is shown in bold letter.  First is shown the source code, which is 

then compiled to the bytecode  

private void forksAvailable(int i) { 
synchronized (convey[i]) { 
convey[i].notify(); 
 } 

} 

 Figure 4.2: Sample of the source code 

private void forksAvailable(int i) 
{ 
//    0    0:aload_0          
//    1    1:getfield        #36  <Field Object[] convey> 
//    2    4:iload_1          
//    3    5:aaload           
//    4    6:dup              
//    5    7:astore_2         
//    6    8:monitorenter     
//    7    9:aload_0          
//    8   10:getfield        #36  <Field Object[] convey> 
//    9   13:iload_1          
//   10   14:aaload           
//   11   15:invokevirtual   #130 <Method void Object.lock1Acquired()> 
// try 18 49 handler(s) 49 
//   12   18:aload_0          
//   13   19:getfield        #36  <Field Object[] convey> 
//   14   22:iload_1          
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//   15   23:aaload           
//   16   24:invokevirtual   #100 <Method void Object.notify()> 
//   17   27:getstatic       #47  <Field PrintStream System.out> 
//   18   30:ldc1            #102 <String "notify method is entered here"> 
//   19   32:invokevirtual   #65  <Method void PrintStream.println(String)> 
//   20   35:aload_2          
//   21   36:monitorexit      
//   22   37:aload_0          
//   23   38:getfield        #36  <Field Object[] convey> 
//   24   41:iload_1          
//   25   42:aaload           
//   26   43:invokevirtual   #133 <Method void Object.lock1Release()> 
//   27   46:goto            52 
// finally 
//   28   49:aload_2          
//   29   50:monitorexit      
//   30   51:athrow           
//   31   52:return           
} 
   

Figure 4.3: Sample of instrumented Bytecode 

private void forksAvailable(int i) 
{ 
//    0    0:aload_0          
//    1    1:getfield        #36  <Field Object[] convey> 
//    2    4:iload_1          
//    3    5:aaload           
//    4    6:dup              
//    5    7:astore_2         
//    6    8:monitorenter     
// try 9 31 handler(s) 31 
//    7    9:aload_0          
//    8   10:getfield        #36  <Field Object[] convey> 
//    9   13:iload_1          
//   10   14:aaload           
//   11   15:invokevirtual   #100 <Method void Object.notify()> 
//   12   18:getstatic       #47  <Field PrintStream System.out> 
//   13   21:ldc1            #102 <String "notify method is entered here"> 
//   14   23:invokevirtual   #65  <Method void PrintStream.println(String)> 
//   15   26:aload_2          
//   16   27:monitorexit      
//   17   28:goto            34 
// finally 
//   18   31:aload_2          
//   19   32:monitorexit      
//   20   33:athrow           
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//   21   34:return           
} 

 

  Figure 4.4: Sample of uninstrumented Bytecode 

This is sample of source code of the instrumentor, to insert the empty method 

Object.lockAcquire after the monitorenter instruction.  As we see from the sample of 

instrumented bytecode, instructions such as aload_0, getfield <Field Object [] convey>, 

iload_1, aaload and invokevirtual   <Method void Object.lock1Release ()> are inserted.  

To insert aload_0 (a bytecode instruction), we write the instrumentor code code.append 

(42), which inserts the bytecode instruction “aload_0” where opcode “42” refers to 

aload_0.   Similarly to insert the getfield <Field Object [] convey > we write instrumentor 

code such as code.append (180, filterLock) where the opcode “180” refers to instruction 

“getfield” and filterLock refers to <Field Object [] convey>. Similarly to insert the 

invokevirtual <Method void Object.lock1Release we write instrumentor code such as 

code.append (182, monitorenter2) where the opcode “182” refers to instruction 

“invokevirtual” and monitorenter2 refers to the < Method void Object.lock1Release>. 

protected final void monitorEnterAfter 2(Instruction instruction) 

{     
                
Code code = null; 
if(instruction.next() != null) 
code = Code.addAt(null, instruction.next()); 
else 
code = Code.addAfter(null, instruction.getStatement()); 
code.append(42); 
code.append(180,filterLock); 
code.append(182,monitorenter2); 
code.done(); 
          
 }      

Figure 4.5: Sample of the Instrumentor code 
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Below is shown the sample of the Java trace, obtained by executing the      

instrumented bytecode on the Hyades platform/framework.  As we see in the trace lock is 

acquire before the notify instruction and the <lockAcquire methodentry> refers to the 

same objectIdRef that is “8605” as that of <notify methodEntry>.        

      

<! -- below are the additional events obtained by instrumentation --!>       

<methodDef name="lock1Acquired" signature="()V" startLineNumber="247" 
endLineNumber="248" methodId="107" classIdRef="120"/> 

<methodEntry threadIdRef="7" time="1093561048.943165800" methodIdRef="107" 
objIdRef="8605" classIdRef="120" ticket="994" stackDepth="5"/> 

<methodDef name="notify" signature="()V" methodId="103" classIdRef="120"/> 

<methodEntry threadIdRef="7" time="1093561048.957960600" methodIdRef="103" 
objIdRef="8605" classIdRef="120" ticket="1162" stackDepth="5"/> 

<methodDef name="lock1Release" signature="()V" startLineNumber="262" 
endLineNumber="264" methodId="105" classIdRef="120"/> 

<methodEntry threadIdRef="6" time="1093561048.974705000" methodIdRef="105" 
objIdRef="8605" classIdRef="120" ticket="880" stackDepth="4"/> 

Figure 4.6: Sample of the trace obtained after instrumentation (it contains the additional 
events logged) 

4.6.4 Trace Reduction 

The Java trace obtained by the Hyades framework is of large size, usually of the order of 

6-20 MB.  It becomes difficult to unmarshall, handle and further verify the property on 

such a large size of trace.   The large size of the trace is because most of the irrelevant 

events are filtered in.  These events are irrelevant from the certain property verification.       

To reduce the size of the trace, we used fine-tuned filters of Hyades framework to filter in 

the relevant events and filter out the irrelevant one to reduce the trace size.  For example 

if we are required to only obtain the wait and notify methodentries in Java trace.  We 

write filter such as “Java.lang.Thread.*  Wait  Include” , “Java.lang.Thread.* Notify 
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Include” and “* * Exclude”. This filter setup will only include wait and notify 

methodentries in trace, excluding most other methodentries, except for few.   

         

After using these filters, we were able to get the smaller size trace of the order of 63-200 

Kb.  The size of the reduced trace depends upon the type of filters used, no of the filters 

used, size of the original program and other factors.  The reduction in trace size, lessen 

the property verification time.   

4.6.5 Benefits/Limitations of our Instrumentation Approach: 

By using our combined approach, we can reap the benefits of both the approaches, and 

lessen there shortcomings.  Because our in the combined approach we individually list 

the advantages and limitation of both the approach.   

4.6.5.1 Hyades Tracing  

Here we will discuss the advantages/limitation of Hyades Tracing  

4.6.5.1.1 Benefits of the Hyades tracing: 

1) Events obtained from the program execution are in XML format, to analyze this trace 

we need to parse it and there are available many Java-XML parsers such as SAX, 

DOM etc.  

2) Along with events such as <method entry> and <method exit> logged, these events 

contain timestamp information. These timestamps helps in verifying certain 

properties in which one need to compare there values. 
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3) Filtration option is available in Hyades, to filter out the irrelevant events and filter in 

the relevant event.  This filtration, reduces the size of the Java trace, which further 

lessen the property verification time (). 

4) Hyades tracing is non-intrusive one, which save us from complicated and error-prone 

process of custom instrumentation 

5) Hyades 3.0 (a latest version of Hyades) also provides support for bytecode 

instrumentation known as Java probe insertion kits  

4.6.5.1.2 Limitation of the Hyades tracing 

1) There is the limit to the type of events we can obtain in a trace, using the Hyades 

tracing. 

2) With current Hyades version, we cannot obtain the updated values of variables in the 

XML trace, but these values are printed at the console output.  To analyze the trace, 

we need to combine both the traces namely the Hyades XML trace and the trace 

obtained at console output.  

4.6.5.2 Bytecode instrumentation based tracing  

Here we discuss the benefits and limitations of bytecode instrumentation based tracing  

4.6.5.2.1 Benefits of bytecode instrumentation based tracing 

1) We can customize the bytecode instrumentation, to obtain the type of events and there 

attributes as per our requirement.    

2) The approach was employed successfully in several projects (JRat, JMPaX etc) 

3) Any events of interest could be recorded and collected  
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4.6.5.2.2 Limitation/side effect of bytecode instrumentation based tracing 

1) For the instrumentation, we need to write instrumentation code, to first read the XML 

file and insert the bytecode instructions where required 

2) We need to understand the Java bytecode language to have the proper bytecode 

instrumentation. Learning such low-level language requires additional efforts (as 

opposed to other approaches) 

3) A speed of the target program can be slowed due to the instrumentation.  A real time 

application may violate temporal requirements because the instrumentation slows 

down the application. 

4) Thread Scheduling: The execution order among the thread of the program may get 

disturbed due to the slowed execution speed.  This changed order may violate certain 

requirements.  It might give a synchronization error (it is highly improbable) when 

the extra delay become large 

4.7 Execution of the Instrumented Program 

As described above, the Java class file (bytecode) is instrumented with calls to methods 

such as Object.lockAcquire/Object.lockRelease and these methods are written to Java 

trace when the instrumented program is executed.  In addition, other classes can be 

constructed “on the fly” as required, and added to user packages containing the target 

code to be instrumented.  The instrumented program is started as usual, e.g. an 

application is started by invoking the “main” method of the specified class.  When an 

instrumentation method is first encountered in the code, the instrumentation class is 

loaded and a static initializer for the class is executed.     
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4.8 Conclusion and Future work  

We presented the instrumentation approach/package used in our runtime analysis 

approach.  Our is an integrated instrumentation approach, which helps us to get the 

benefit of both the approaches.  Through this instrumentation approach we were able to 

extract the required information from the target program for our analysis.  But there are 

few immediate tasks which we want to accomplish, listed here.    

Explore the best possible way to integrate the two traces namely one obtained at the 

console output and other Java trace obtained in XML format 

 

Also there is some other future work.  

1. Experiment instrumentation using the bytecode instrumentation toolkit plugin 

integrated in the recent version of Hyades (Hyades 3.0) and compare it with out 

instrumentation approach 

2. Explore ways to reduce the overhead caused by instrumentation on the target program 

execution. 

3. Explore the aspect base instrumentation approach and is possible look for the way to 

integrate in our instrumentation package. 

We are planning to investigate ways by which we can further reduce the overhead.   Our 

possible we domain we are interested to explore the aspect based instrumentation.  The 

work on the aspect based instrumentation is already being carried at the NASA, we 

further are interested to explore we can used the aspect based instrumentation approach in 

our instrumentation package and  

 



 87

5 Chapter 5: Custom Based Detection Approach 

5.1 Introduction and Motivation 

The custom based detection is a semiformal approach to analyze the execution trace of 

java program (collected in XML format) against certain properties/antipatterns.  The 

custom based detection is a post-mortem/offline-trace analysis approach. In this approach 

first the MT antipatterns to be analyzed are formally specified at EFM or EFSM.  The 

formally specified antipatterns are shown in section 3.  Then these antipatterns are coded 

as java detectors.  Sample of such detectors are shown in section 4.  The execution trace 

of the program collected in XML format is unmarshaled using XML-Java technology 

called JAxB.  The java trace is then analyzed for antipatterns using the Java detectors. 

The output of such analysis is a (possibly empty) set of antipatterns/property violations 

printed on console output.         

Motivation of custom based analysis approach is to develop a semi-formal runtime 

analysis approach based on the idea of concluding antipatterns/properties of interest in a 

target program from the single run of the program.  Our approach is a semiformal one 

because antipatterns/properties to be detected are first formally specified as FSM or 

EFSM.   

Reduce the overhead caused by the instrumentation in the target program.  The 

instrumentation approach followed in our approach helps in reducing overhead compared 

to other instrumentation.  Because our is an integrated instrumentation approach which 

combine two instrumentation approach namely bytecode instrumentation (a lightweight 

approach) and Hyades tracing, which is a non-instruction trace collection approach.  
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Reduce the trace analysis time.  The collected trace in our approach is of XML format.  

Because of this, trace analysis is comparatively faster as data in XML format is quite 

representative (in XML, the data is collected in tags).  Also there are available many 

parsers such as SAX and DOM parser, which make it easier and faster to read and 

analyze.  XML has being accepted as de-facto standard for the data inter-exchange over 

the internet.  In the particular case of runtime analysis in multiprocessor environment and 

where the inter processor communication is over the internet, the XML-base trace 

analysis proves to be very handy and extendable.  

5.2 Approach Overview  

The architecture of custom based approach is shown in Figure 5.1.  The input to tool 

consists of two entities:  the Java program in byte-code format to be monitored (created 

using a standard Java compiler) and the properties/antipatterns to be verified.   

The tool can be regarded as consisting of three main modules:  event collection module, 

parsing module and an analysis module. 

Event Collection Module: 

In event collection module, Java application (instrumented/uninstrumented) is executed 

on Hyades platform/framework.  Hyades framework, contain a library known as Java 

Profiling Agent that attaches to a Java virtual machine (JVM) to capture and record the 

behaviour of a Java application. The output from the agent (events) is emitted as XML 

fragments.  There is an option for mode selection and event filtration in Java Profiling 

agent.  It can run in one of the four modes namely standalone, enabled, controlled and 

application.   
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Parsing Module: 

In this the obtained XML trace is read and unmarshalled using JAXB package.  JAXB 

package is a XML-Java technology developed by Sun Microsystems to unmarshall the 

java trace.  

Analysis Module: 

Here the generated java execution trace is analyzed against the properties/antipatterns.  

First we formally specify the properties/antipatterns as FSM or EFSM.  Then these 

properties/antipatterns are implemented in Java.  The advantage of formally specifying 

the property (in FSM or EFSM format) is that it helps us to properly understand the 

property and thus one can correctly implement it in java.  

 

Verification

Instrumentation 

Hyades  monitoring 

Compilation 

Analysis with a 
property specific 
Java program 

Java MT 
program 

Instrumented 
code 

Java Detector   

Trace umarshalled 
using JAxB 
Technology 

Property 
violations 

Antipattern 

Bytecode 

Trace (in 
XML) 

Formally specified and then 
coded in Java  

 

Figure 5.1: Offline custom based trace analysis architecture 
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5.3 AntiPattern Formalization 

5.3.1 Formalization of the “double call of start ( ) method” antipattern 

5.3.1.1 FSM Formalization of “double call of start () method“ 

In order to implement pattern correctly and efficiently we started from formal, automata 

like description.  Formal description of the pattern is necessary step in model checker 

based trace verification, and, as we believe, beneficial in custom detector development. 

This antipattern can be instantiated in a set of automata (finite state machines), where 

each automaton corresponds to a thread present in a trace, or in single trace-independent 

extended automaton.  In the first case, we can build the following automaton, where 

black state indicates that the antipattern is detected.  

 

 

 

Figure 5.2: FSM formalization of double start () 

Implementation of a double start antipattern detector based on the above automaton 

involves trace pre-processing to build the list of thread Ids (more exactly ids of 

corresponding objects), and then scanning the trace with evaluation of a set of automata. 

(Meanwhile, we skipped the identification of the start method id – once created, methods, 

objects, classes, and threads are refereed by ids.) Similar preprocessing will be required 

for property verification, based on model checker, unless the former provides a richer 

language than automata.  

Entry of the start 
method of a thread T  

Entry of the start 
method of a thread T 
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5.3.1.2 EFSM Formalization of “double call of start () method” 

In a single extended machine the antipattern “double call of start () method” can be 

formalized as 

Start method 
is declared 
with id started 
Thread list L 
is  set empty 

Entry of a 
method with id 
mid of a thread T 
from the list L 

Entry of a 
method with id 
startId of a thread 
T which is not 
from the list L 
 

Add T into L 
 

Figure 5.3: EFSM formalization of double start () 

The formal descriptions were found helpful both for antipattern understanding and 

detector implementation. 

5.3.2 Formalization of the “PREMATURE JOIN CALL” antipattern 

5.3.2.1 FSM Formalization of “premature join call” antipattern 

Here we give the formal, automata like description of the “premature join () call” 

antipattern.  This antipattern can be represented in a set of automata (finite state 

machines), where each automaton corresponds to a thread (refered by threadId) present in 

a trace.  Firstly we build the following automata in which black state, when reached 

indicates that the antipattern is detected.  
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Entry of the join 
method of a 
Thread 

Entry of start 
method of a 
thread 

T1

T2 

                          

Figure 5.4: FSM formalization of premature join () 

Implementation of a premature join () call antipattern detector based on the above 

automaton involves trace pre-processing to build the list of thread Ids (more exactly ids 

corresponds to objects), and then scanning the trace with evaluation of a set of automata.  

Informally it can be said that the methodEntrys of join () and start () method are located 

for each thread T.  Then timestamps of methodEntry for join () method and start () 

method are compared.  If the join () methodEntry happened before start () methodEntry 

on a particular thread T, then “premature call of join () method” message is printed 

5.3.2.2 EFSM Formalization of “premature join call” antipattern 

In a single extended machine (EFSM) the antipattern can be formalized as: 
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Join method 
declared with 
id joinId of 
Thread T 
Thread List L 
is set empty  

Entry of start 
method with 
Id startId of 
same thread T 

Entry of a method 
with id joinId of a 
thread with an 
object identifier 
which is not from 
the list L 
Add 
objectIdentifier of 
T into 

T1

T3

T2 

 

Figure 5.5: EFSM formalization of premature join () 

5.3.3 Formalization of Wait Stall 

5.3.3.1 FSM Formalization of wait stall 

Here we give the formal, automata like description of the “wait stall” antipattern.  

Informally this antipattern can be described as “A wait stall can occur when a thread calls 

a wait () method with no timeout specified”.   

This antipattern can be represented in a set of automata (finite state machines), where 

each automaton corresponds to a thread (refered by threadId) present in a trace.  Firstly 

we build the following automata in which black state, when reached indicates that the 

antipattern is detected.  
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Entry of 
wait 
method of 
a Thread 

Timeout

T1 T2

 

Figure 5.6: FSM formalization of wait stall  

5.3.3.2 EFSM Formalization of wait stall 

In a single extended machine (EFSM) the “Wait Stall” antipattern can be formalized as: 

Timeout 

Entry of a method with id 
WaitId of a thread with an 
object identifier which is 
not from the list L 
Add objectIdentifier of T 
into 

Wait method 
declared with id 
waitId of 
Thread T 
Thread List L is 
set empty  

T1 

T2 

T3 

 

Figure 5.7: EFSM formalization of wait stall 



 95

     

5.4 Custom Detectors Implementation 

5.4.1 Double Start () Implementation in Java  

Here we discuss the algorithm for the detection of double start ().  Before we formally 

specified this antipatterns as FSM and EFSM.  As shown below in figure 5.8 a sample of 

the double start () detector code, initially we define the variable start_count = 0.  Then for 

each thread (refered by threadIdi, where i is threadId no) we iterate and look if there is 

call for start methodEntry twice.  If we found such an instance then we compare there 

respective objectIds.  If the objectId are found same we print the double call of start() 

method detected for threadIdi. Otherwise we print that double call of start(0 method not 

detected for threadIdi.    

for (int k = 0; k<threadId_count; k++){ 
System.out.println("Checking double start for threadId = " + threadId[k]); 
start_count =0 ; 
for (int j=0; j<mentry_objId_count;j++) { 
             
if (thread_objId[k].equals(mentry_objId[j])) 
{ 
start_count++; 
} 
} 
        
if (start_count==2) 
System.out.println ("Double call of the start method detected for threadId = "  
 + threadId[k]); 
else 
System.out.println ("No Double call of start method detected for thread id =   " +                     
threadId[k]); 
                
} 
 

Figure 5.8: Code sample for detection of double start () 
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5.4.2 Premature Join () Implementation in Java  

As we know from the definition of the premature call of the join () method. It consists in 

invocation of the join method to the thread, which is not yet started [Hal04].  In the Java 

trace thread should terminate (runExit event) should happen after the corresponding 

joinEntry and before it joinExit event.  In the Java trace we verify this ordering for every 

threadId and if we see any instance where this ordering is violated, premature call of join 

( ) message is printed. 

As shown in the figure 5.9 for every thread, represented by the threadIdi (where i is an 

integer of value 2, 5, 6 etc) we compare the time stamp of the runExit event with the 

corresponding joinExit event.  The comparison is made using the compareTo, and if the 

timestamp of runExit is greater than that of joinExit timesamp, the message "Premature 

call of join () method detected for threadId = i" is printed.  Otherwise the message "No 

Premature call of join () method detected for threadId = i" is printed.        

  // start of first for loop (runexit_count) 
   for ( int j = 1; j < event_list.runexit_count; j++) 
   { 
   compare_time = false; 
  // start of second for loop (joinexit_count) 
   for( int i = 1; i < event_list.joinexit_count &&   
 compare_time == false; i++) 
  { 
 // starting (if loop) comparing objectid of runexit and joinexit array 
  if ( event_list.runexit_obj_array[j].equals(event_list.joinexit_obj_array[i])  
  ) 
  { 
 //System.out.println("comparing the object Id"); 
 // starting (if loop) comparing threadid of runexit and joinexit array 
 if(event_list.runexit_thread_array[j].compareTo(event_list.joinexit_thr  
  ead_array[i]) < 0 || 
event_list.runexit_thread_array[j].compareTo(event_list.joinexit_thread_array[i]) > 0) 
   { 
   //System.out.println("comparing the time"); 
   compare_time = true; 
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   if (event_list.runexit_time_array[j].compareTo 
  (event_list.joinexit_time_array[i]) > 0) 
   { 
 System.out.println("Premature call of join() method  detected for  threadId = " +  
  event_list.joinexit_thread_array[i]);  
   } 
 else if (event_list.runexit_time_array[j].compareTo 
   (event_list.joinexit_time_array[i]) < 0 ) 
   { 
 System.out.println("No Premature call of join() method for  threadId =  " +  
   event_list.joinexit_thread_array[i]);  
                  } 
   } 
 // starting (if loop) comparing threadid of runexit and joinexit array 
 } // end (if loop) comparing objectid of runexit and joinexit array 
 } // end of second for loop (joinexit_count) 
 } // end of first for loop (runexit_count) 

 

Figure 5.9: Code sample for detection of premature join ()  

5.5 Custom Detection Results 

Although with custom based detection approach we can verify most of the antipatterns 

identified before, but it gave significant edge in the detection of certain antipatterns such 

as double call of start () method, premature call of join ( ) method and wait stall( ).    

Here we will mostly discuss about these antipatterns detection.  The following 

technologies were used for the custom based trace analysis are:  

1. Compiler: Java 1.4 
2. IDE: Eclipse 
3. Java - XML Tool: JAXB (Java Architecture for XML Binding) 
 
The experiments were performed on the following the system configuration: 

1. Operating System: Window 2000 
2. CPU: AMD Athlon 900 MHz 
3. RAM: 512 Mbytes 
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5.5.1 Antipattern: Double Call of Start () method  

Description: The start () method is not supposed to be used more than once for the 

same Thread.  

Application: It is a fragment of Java multi-threaded platform Guest [Mag02] 

Trace size Execution time  Total time ( Execution + 
Compile Time) 

63.6 KB (using fine tuned 
filters) 

4s (approx) 27 second 

Table 5.1: Analysis time for double start () detection 
The custom detection gave a significant edge over static analysis particularly in the 

double call () detection. Here we explain the in detail the detection by static analysis and 

then compare it detection using the custom based detection approach.   

Double call of start () method antipattern was detected by static analysis tool Extended-

JLin at the following location. 

FILE NAME=ca/crim/guest/main/NativeAgentSupport.java..POSITION COLUMN=17 
LINE=225 
TESTNAME=MultiStartMethodCallPattern. 
MESSAGE=Another start method Call 
FILE NAME=ca/crim/guest/main/NativeAgentSupport.java. POSITION COLUMN=9 
LINE=261 
TEST NAME=InternalMethodCallPattern. 

 

The message Another start method Call, is emitted corresponding to the Double call of 

the start method of a thread antipattern, is a false positive.  The tool detects the 

antipattern in the following segment of the code.  Actually, it is signaled for the second 

start() method call in line [9].  However, the method is not called for the same thread, 

since the variable t received a new thread object in line [8]. 
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public void execute() { 
[1]       t = new Thread(guestAgent); 
[2]       t.start(); 
[3]       while (agentState != 0) { // stop 
[4]           if (agentState==2) { // resume 
[5]               agentState = -1; 
[6]               if (t!=null) 
[7]                   t.interrupt(); 
[8]               t = new Thread(guestAgent); 
[9]               t.start(); 
[10]            } 
[11]            //guestAgent.timerMan.execute(); 
[12]            GuestSystem.pause(1000); 
[13]        }  
 

Figure 5.10: Sample of Guest application code 

Based on the information (like methodIdRef,ObjectIdRef) provided by the events 

methodEntry and threadStart the false positive given by static analysis for double call of 

the start() method antipattern is detected.  The events of the trace which were used for 

detection are given below.  

<methodDef name="start" signature="()V" methodId="302" classIdRef="325"/> 

“First methodEntry for start method” 

<methodEntry threadIdRef="2" time="1074266683.224861900" methodIdRef="302" 
objIdRef="7532" classIdRef="325" ticket="11188" stackDepth="3"/> 

<methodExit threadIdRef="2" methodIdRef="302" objIdRef="7532" classIdRef="325" 
ticket="11188" time="1074266683.225230500" overhead="0.000021641"/> 

“Second methodEntry for start method” 

<methodEntry threadIdRef="2" time="1074266683.833227200" methodIdRef="302" 
objIdRef="7679" classIdRef="325" ticket="12388" stackDepth="3"/> 

<methodExit threadIdRef="2" methodIdRef="302" objIdRef="7679" classIdRef="325" 
ticket="12388" time="1074266683.833581400" overhead="0.000018102"/> 

“ThreadStart event for first methodEntry” 

<threadStart threadId="5" time="1074266683.298559400" threadName="Thread-0" 
groupName="main" parentName="system" objIdRef="7532"/> 

“ThreadStart event for second methodEntry” 
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<threadStart threadId="6" time="1074266683.981886600" threadName="Thread-1" 
groupName="main" parentName="system" objIdRef="7679"/> 

Figure 5.11: Sample of Java trace for double start () detection 
 
From the XML element <methodDef> we get the methodId = “302” corresponding to the 

start method.  The methodEnty event and it attribute objIdRef corresponding to the 

methodIdRef = “302”(start) is located.  The objIdRefs attribute of the corresponding 

methodEntry event is compared and found not the same.  These objIdRefs are also 

referring to different threads.  Thus we conclude from the analysis that the double call of 

the start() method is not on the same thread.  Thus using the dynamic analysis false 

positive from the static analysis is detected. 

5.5.2 Antipattern: Premature Call of Join () Method 

Description: A call to the join () method of a thread is premature if this thread has not 

been started at the time of the call [TR2]. 

Application: Custom Race program from [JPROBE] 

Trace size Execution time  Total time ( Execution + 
Compile Time) 

29.3 KB (fine tuned 
filters) 

4s (approx) 26 seconds 

Table 5.2: Analysis time for premature join () detection 
A Snapshot of the console output for “premature join” detection based on custom 

detection Approach is shown in appendix A 

5.5.3 Antipattern:  Wait Stall  

Description: The thread should not wait (after calling the wait method) for more the 

user specified amount of time [TR2]. 
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Detection: Initially as for start method, from the XML element <methodDef> we get 

the methodId = “302” ( a method identifier) for the wait method.  The methodEntrys and 

its methodExits of wait method for a particular thread ( refered by threadId) are located.  

Then time difference between methodEntry and its methodExit is calculated and 

compared with the user specified time period (in this detector it is 0.5 seconds).  If the 

calculated time difference is more than the user specified period then “wait stall” 

message is printed. 

This antipattern can only be detected by Dynamic Analysis, because of the timestamp 

information provided by the methodEntry, methodExit and threadstart event in the XML 

trace. 

The relevant events for the “wait stall” detection are given below:  

“methodDef” element for wait method 

<methodDef name="wait" signature="()V" startLineNumber="429" 
endLineNumber="430" methodId="109" classIdRef="116"/> 

“First methodEntry” 

<methodEntry threadIdRef="5" time="1074463868.267297000" methodIdRef="109" 
objIdRef="5983" classIdRef="116" ticket="263" stackDepth="4"/> 

“First methodExit” 

<methodExit threadIdRef="5" methodIdRef="109" objIdRef="5983" classIdRef="116" 
ticket="263" time="1074463869.072965900" overhead="0.000015904"/> 

Figure 5.12: Sample of java trace for wait stall detection 

5.6 Advantages/Limitations of custom based approach: 

5.6.1 Advantages of Custom Based Detection Approach 

1) It could detect most of the antipatterns identified by us.  

2) It could detect false positive message given by static analysis particularly in the 

detection of “double call of start () method” antipattern.  Thus this approach gave a 
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significant edge over static analysis.  It could detect false positive because the trace 

provide the information that two start methodenties are referring to different objects 

(objectIdRef). 

3) It is scaleable (i.e. it can used to analysis execution traces of large size applications).  

But it gave memory exception, when the trace size exceeds 25MB or so. 

4) This approach has also been used in other runtime analysis tools such as JPaX to 

detect errors.  

5) Do not require heavy bytecode instrumentation, because most of the information from 

a Java application is collected and recorded using the Hyades platform. 

5.6.2 Limitations of Custom Based Detection Approach  

Provides less coverage than heavyweight formal methods: 
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6 Chapter 6: Model Checking with Spin 

6.1 Introduction 

6.1.1 Model – Checking  

Model checking is a push-button technique for verifying finite state concurrent systems 

against required specification of the system. The tasks involved in model checking are as 

follows [SEN03]: 

A formal model of the system is build in terms of a state transition system. The state 

transition system is a tuple M = (S, S0, R, L) where  

• S is the finite set of states 

• S0 a subset of S is the set of initial states from which system can start its execution 

• R S× S is a total relation, describing the possible transitions from one state to another 

state of the system, and 

• L : S → P(AP) is a labelling function, stating the atomic propositions (AP) that 

hold in a given state 

The state transition system of a concurrent program can be constructed automatically by 

exploring all possible states of the system that can be reached from the initial state 

[SEN03]. 

 

• The properties that the model must satisfy are stated as a specification. The 

specification is usually given in some logical formalism. The commonly used logics 

are temporal logics 
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• After expressing the model and the formal specification, the verification task involves 

checking the conformance of the model to the given specification. In case of a 

negative result, a counter-example is generated. This task is completely automatic 

In model checking, all possible computations of the systems are analyzed. So the method 

is rigorous and complete. Model checking discovers a bug if it is present in the system. 

 

Theoretically, model-checking is very efficient.  However, in practice model-checking 

may require the entire state space of the system to be stored before bug can be detected. 

This problem is called the state space explosion problem.  In sequential programs input 

variables may have many possible values leading to a large number of possible states.  In 

concurrent programs, nondeterministic execution can lead to a large number of states.  If 

the total number of possible states of the system is large, model checking becomes 

intractable which makes this technique not scalable.  We take the formal logics used to 

specify safety properties and incorporate the logics in our approach.  This makes our 

approach more formal compared to the ad hoc testing used in traditional debugging. 

6.2 Spin Model-Checker 

Spin is a widely used model-checker that supports the formal verification of distributed 

systems.  This model checker was developed at Bell Laboratories in the formal methods 

and verification group. 

Spin has been used to trace logical design errors in distributed systems design, such as 

operating systems, data communications protocols, switching systems, concurrent 

algorithms, railway signalling protocols, etc.  The tool checks the logical consistency of a 
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specification.  It reports on deadlocks, unspecified receptions, flags incompleteness, race 

conditions, and unwarranted assumptions about the relative speeds of processes. 

6.2.1 Language of SPIN  

PROMELA is input language for SPIN Model-checker.  PROMELA (Process Meta 

Language) is a non-deterministic language, loosely based on Dijkstra’s guarded 

command language notation and Hoare’s language CSP.  It contains the primitives for 

specifying asynchronous (buffered) message passing via channels, with arbitrary numbers 

of message parameters.  It also allows for the specification of synchronous message 

passing systems (rendezvous).  Mixed systems, using both synchronous and 

asynchronous communications, are also supported. 

The language can model dynamically expanding and shrinking systems: new processes 

and message channels can be created and deleted on the fly.  Message channel identifiers 

can be passed from one process to another in messages. 

Correctness properties can be specified as standard system or process invariants (using 

assertions), or as general linear temporal logic requirements (LTL), either directly in the 

syntax of next-time free LTL, or indirectly as Buchi Automata (expressed in PROMELA 

syntax as Never Claims). 

6.2.2 Features of Spin 

SPIN can be used in three basic modes: 

• As a simulator, allowing for rapid prototyping with random, guided, or interactive 

simulations 
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• As an exhaustive state space analyzer, capable of rigorously proving the validity of 

user specified correctness requirements (using partial order reduction theory to 

optimize the search) 

• As a bit-state space analyzer that can validate even very large protocol systems with 

maximal coverage of the state space (a proof approximation technique) 

6.2.3 DOCUMENTATION 

Gerard J. Holzmann, The Spin Model Checker “Primer and Reference Manual”. 

Addison-Wesley 2004 

Basic and more advanced usage of Spin, such as language features and validation modes 

for proving linear temporal logic formulas, are described in the book.  The more recent 

extensions of the tool are described in the papers. 

The book contains an explanation of the code and describes the main validation 

strategies.   

The Spin software is written in ANSI standard C, and is portable across all versions of 

the UNIX operating system.  It can also be compiled to run on any standard PC running a 

Windows 98/2000/NT/XP operating system. 

6.2.4 AVAILABILITY  

This software is available for free download at http://spinroot.com/spin/whatispin.html 

The current version is Spin 4.2, which runs on any UNIX workstation, as well as 

Windows 98/NT/2000/XP. 
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7 Chapter 7: Modeling Trace with Spin 

7.1 Introduction and Motivation 

Previously we discussed trace analysis of Java Multithreaded applications based on 

custom based trace analysis approach.  In this chapter we will discuss extension to 

custom based trace analysis approach another trace analysis approach, namely model-

checker based trace analysis.  In this approach, execution trace of Java program obtained 

in XML format, containing the relevant events is translated to PROMELA.  PROMELA 

is input language for SPIN Model-checker.  XML to PROMELA translation is done 

automatically by a java program based on a translation schema.  The generated 

PROMELA model is then verified using SPIN model-checker against the multithreaded 

antipatterns (such as double start and premature join).  These antipatterns were formally 

specified in LTL (linear temporal logic).  In other words the subsequent model checking 

is guided by the trace generated during the runtime analysis.  SPIN is one of the most 

popular, mature, and advanced open-source model-checkers.  The SPIN model checker 

can automatically determine weather a program satisfies the LTL property, and in case 

the property does not hold true, a warning is printed  

 

The motivation for developing the model checker based trace analysis, is our interest to 

try applying formal techniques for trace analysis.  We implemented our formal analysis 

using SPIN model checker. As far as we know there is no such work similar to our as 

done in industry/universities.  As far we know the closest work is done at NASA Ames 

Research centre [HAV04] that is combining runtime Analysis with Model Checking. In 
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this work, they tried to combine the runtime analysis and model checking approach in 

such as way that warnings produced from the runtime analysis are used to guide a model 

checker.  This technique was implemented the NASA developed tool Java model checker 

called Java PathFinder [JPF].   

 The work done at NASA was an extension to JPF to perform runtime analysis on multi-

threaded Java programs in simulation mode, either stand-alone, or as a pre-run to a 

subsequent model checking, which is guided by the warnings generated during the 

runtime analysis. 

Secondly as we already implemented and experimented custom based trace analysis 

approach.  We were interested to evaluate other trace analysis approaches in comparison 

to Custom based trace analysis approach with respect to parameters such as: 

• Quality of analysis 
• Time usage 
• Resource consumption etc 
 
Thirdly the model based trace analysis would possibly we used for the predictive trace 

analysis. As Model checker analyze various possible event interleaving.    

The full blown model checking has a major limitation that it suffers from the state 

explosion problem. To overcome this limitation, we model check the trace, a trace is an 

abstract representation of the target application.  In brief our is an abstract model 

checking approach.  

7.2 Approach Overview 

The architecture of our approach/tool is shown in Figure 7.1.  The input to tool consists 

of two entities:  the Java program in byte-code format to be monitored (created using a 
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standard Java compiler) and the properties/antipatterns to be verified.  The output is a 

(possibly empty) set of property violations printed on console output.   

 

The tool can be regarded as consisting of three main modules:  an instrumentation 

module, a translation module and an analysis module.  The instrumentation module 

performs instrumention on at program to be analyzed based on the user specified 

instrumentation specification. The instrumentation specification, contains information 

such as classes, methods, class /instance variable (updates), to be monitored and thus 

instrumented accordingly.  The methods (such as lockAcquire, lockRelease, 

variable_write, variable_read) are inserted in the bytecode based on the input information 

from the user.  The bytecode instrumentation is performed using JTrek, a Java byte-code 

engineering tool [JTREK] from Digital.  This tool allows to read Java class files 

(bytecode), traverse then as abstract syntax tree while examining their content, and insert 

new code in highly flexible manner [JPaX]. The instrumented program when run, on the 

Hyades framework will emit relevant events in XML format to an external file.  These 

events are then input to translation module.   

The translation module receives the events, and generates a PROMELA model based on 

an input translation schema.   

 

The analyzer module performs functions such as property/antipatterns verification and 

print out the property violation (if any) to the console output.  Explaining it more 

elaborately, the analyzer receives the generated PROMELA model from the translation 

module and then verify it against properties/antipatterns specified in the specification 
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script.  Verified can be done using two approaches namely custom-based detection 

approach or model-checker based approach.  In the previous chapter, we discussed 

custom-based approach, in this chapter we will focus mostly on model-checker based 

approach.   In model-checker based approach the property/antipatterns is specified as 

LTL formula which further translates to never claim.   During the verification, it checks 

for never claim in the generated PROMELA model.  If it finds the instance property 

violation (no never claim) it prints the warnings the console output. Along with warning, 

it prints other verification details also, such as depth reached in the model, no of 

transitions covered, no of matched states, errors if any (antipatterns) found and 

verification time.  A sample of the verification output snapshot is shown in Appendix C.   

 

Verification
Model 
generation 

Instrumentation 

Hyades  monitoring 

Compilation 

Instantiation/ 
Translation in 
Never claim

Formalization

Java MT 
program 

Instrumented 
code 

LTL formula   

Trace and Property 
In PROMELA 

Property 
violations 

Antipattern 

Bytecode 

Trace (in 
XML) 

 

Figure 7.1: Diagram of the approach workflow 
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7.3 Translation 

General Idea: The general principal regarding translation is the following.  The XML 

trace generally consist of a set of tags and declarations and these tags focuses on 

providing information about the data itself and it’s relation to other data  tags  of the 

events logged.  For example, such as for methodEntry event is logged (in XML format) 

as <methodEntry threadIdRef="7" time="1093561048.957960600" methodIdRef="103" 

objIdRef="8605" classIdRef="120" ticket="1162" stackDepth="5"/>, whose attributes 

consist of (mostly) threadIdRef, time, methodIdRef, objIdRef, classIdRef, tickets and 

stackDepth etc.  The data type of attribute’s value can be either strings or integers.          

As illustrated in the figure 7.2 the methodentry event logged in XML format is translated 

to the PROMELA code.  The translation procedure is as follows explained below in 

steps: 

1. Before the start of event in the PROMELA model a comment message is written 

stating the “type of methodentry of which thread “Id” and for which method “Id” 

2. Initially in the PROMELA model event type is written as  “name = methodEntry or 

methodExit” depending upon the type of event   

3. Attributes of the events such as threadIdRef = 6, classId Ref = 116, objIdRef = 8606 

are mapped one- to- one to the PROMELA code as shown in the figure 7.2 

4. In the XML trace timestamp of the event is the absolute value such as “time = 

“1091230513.794350600” but in the PROMELA model, time is logical not absolute 

such as “time = 7”, which signifies that this particular event is the seventh (7th) one in 

the sequence.  
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5. Attributes of the events such as methodIdRef, objIdRef, classIdRef, threadIdRed 

which are of String datatype in the XML trace are declared as int datatype in the 

PROMELA model as shown in the figure 7.3.   

6. Events of type, for example notify methodentry, wait methodexit, notifall 

methodentry are assigned mtype datatype in the PROMELA model as shown in the 

figure7.3.    

7. The attributes of the event, such as ticket, stackDepth and there respective values 

which are not relevant from the analysis viewpoint are not translated to PROMELA 

model.   

      XML Trace     PROMELA Translation 

                                     

<methodEntry        d_step 
threadIdRef=”6"         { 
time="1091230513.794350600"    /* first wait methodentry  in threadId6  

for methodId 113*/ 
methodIdRef="113"         name = wait_methodentry; 
objIdRef="8606"         threadIdRef = 6;  
classIdRef="116"         methodIdRef =  113;  
ticket="1074"          objIdRef = 8606; 
stackDepth="4”            classIdRef =  116;  
/>              time = 7; (logical time) 
                } 
 
 

  Figure 7.2: XML to PROMELA Translation 

#define N 120 /* nr of rendevous channels */ 

#define L 10 /* size of buffer */ 

mtype =  { methodDef, Notify_MethodEntry,Wait_MethodEntry, 
threadstart,Wait_MethodExit, Notify_MethodExit,lockAcquire_MethodEntry, 
lockRelease_MethodEntry,lockAcquire_MethodExit, lockRelease_MethodExit, 
Start_MethodEntry, Start_MethodExit, Join_MethodEntry, Join_MethodExit, 
Run_MethodEntry, Run_MethodExit, NotifyAll_MethodEntry, NotifyAll_MethodExit }; 

 

mtype = {message}; 
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mtype   Name; 

int  methodId, MethodIdRef,ClassIdRef,ThreadIdRef,ObjectIdRef,TimeStamp; 

chan Q[N] = [L] of {mtype}; 

 Figure 7.3: SPIN: Couple of PROMELA Constants and Constructs  

7.3.1 XML to PROMELA Translation 

Each thread is modeled by a PROMELA process. The trace events themselves are 

translated in more or less direct way, where each event attribute is modeled by PROMELA 

variable.  For few instructions, join () and start () we model their Java semantics.  For 

other thread related Java constructs, we follow distributed trace approach that assumes 

that, only events of same thread (process) or involved in a communication are ordered.  

Since threads are controlled with locks we assume that events on the same lock are 

ordered.  Currently, data values and communication via threads are not modeled, since 

they are not needed for antipattern detection.  Note that in Java, data based 

communication are guarantied to occur if appropriate synchronization constructs are 

used, otherwise a change of a variable value by one thread may never become visible to 

other threads [Java].       

Variable/DateType Declaration: Events attributes such as Reference to Object Identifier 

(ObjectIdRef), Reference to Class Identifier (ClassIdRef), and Reference to Method 

Identifier (MethodIdRef) are declared as integer data type in PROMELA. 

 

Process Declaration: Each thread in trace translates to active process in PROMELA.  For 

example, a trace that consists of three threads namely thread2, thread5, thread6, 

translates to a PROMELA system that consists of three active processes namely process2, 

process5, and process6 respectively. 
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Relevant events: Currently start (), join () wait (), notify (), notifyall(), LockAcquire(), 

LockRelease() method entry and exit, data access events are considered as relevant 

events of the trace. Other events are not needed for verification itself, though they may be 

helpful to locate the problem once detected. 

Event Body Translation: Each relevant event in XML trace translates to d_step construct 

in PROMELA and each event’s attribute translates to a variable assignment statement 

inside the d_step construct.  D_step insures that each event is atomic and instant.  

TimeStamp: The events in the PROMELA model are assigned the logical timeStamp value, 

rather than real-time value as of the trace. 

Event Synchronization: Start methodentry event and corresponding run methodentry are 

ordered. Events on the lock, related to lock entry, exit, wait, and notify are totally 

ordered.   

7.3.2 Synchronization in Java 

A race condition between two (or more) threads occurs when they modify a member 

variable of an object simultaneously.  

To avoid data races, a programmer can force fragments of code running on different 

threads to execute in a certain order by adding synchronization operations.  Java offers 

several constructs that enforce synchronization: 

• start and join which operate on Thread objects  

• locked objects (synchronized blocks and methods) 

• wait and notify(All) 
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With join() it is feasible to model semantic of these Java construct very closely, 

predicting new executions rather then only possible linearization of partial order.  In the 

case of wait and notify, which provides value driven controls over thread executions, 

attempts to mimic construct following their Java meaning are likely results in imprecise 

model, at the least with our level of trace detail.  Thus, when it concerns operations on 

locks, we just enforce order on event that relates to the same lock or thread. We detail the 

approach below. 

7.3.3 Modeling Synchronization in PROMELA Model of Trace 

We consider three main types of MT synchronization events in PROMELA 

 
1. Thread start (StartEntry) and Run method entry (RunEntry) (the former mostly 

precedes the latter) 

2. Thread termination (RunExit) and thread JoinEntry and Exit.  

3. The events on the same thread are modeled by totally ordered events of a PROMELA 

process. If the immediately preceding events happen on the same object but on different 

thread the order is enforced.  To enforce this ordering in PROMELA a message is 

exchanged between events such as wait, notify, notifyAll, entry/exit, lock entry and exit. 

To implement order/synchronization in PROMELA model, we use two approaches namely 

“variable ⁄ flag” based and “message passing” based approach.  In some models we 

combine both the approaches to model synchronization.  

7.3.3.1 Message Passing Approach  

Message passing based approach is used to enforce order for wait-notify (All), 

lockacquire-lockrelease and start-run (Entry) events.  When a thread invokes wait on an 
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object, the execution of the thread is halted until another thread executes notify/notifyAll 

on that very same object.  However, a thread is only allowed to invoke wait or notify on 

an object if that thread owns the lock of that object. 

The example of the implementation of message passing based approach is shown in the 

figure 7.4.  In this example a message is send from one event to another when they 

happen on the same objects (objectIdRef) but on the different threads (threadIdRef). As 

shown in the figure 7.4 that event Start_MethodEntry happen on the threadId 2 and 

objectId 5317 and the consequent event Run_Methodentry happen on the threadId 5 and 

objectId 5317.  

To model this synchronization a message (Q[1]!message) is send fro the 

Start_methodentry event and is received at the run_methodentry (Q[1]?message). 

 

/* Starting of the process 2*/ 
active proctype thread2() 
{ 
/* Message is send to another object on different thread (at methodEntry event, at start) */ 
Q[1]!message-> 
 
d_step 
{ 
/* Start MethodEntry for methodId 301 */  
 
Name = Start_MethodEntry; 
ThreadIdRef =2; 
TimeStamp = 1; 
MethodIdRef = 301; 
ObjectIdRef = 5317; 
ClassIdRef = 324; 
} 
 
}/* End of process 2*/ 
 
 
/* Starting of the process 5*/ 



 117

active proctype thread5() 
{ 
/* Message is received from another event on different thread (at MethodEntry event, at 
start) */ 
Q[1]?message-> 
 
d_step 
{ 
/* Run MethodEntry for methodId 311 */  
 
Name = Run_MethodEntry; 
ThreadIdRef =5; 
TimeStamp = 3; 
MethodIdRef = 311; 
ObjectIdRef = 5317; 
ClassIdRef = 324; 
} 
 
}/* End of process 5*/ 
 

Figure 7.4: Sample of the PROMELA Model, synchronization based on Message Passing 
Approach 

7.3.3.1.1 Advantage and Disadvantages of Message Based Approach 

Message based synchronization is used in our early research prototypes, since it is easy to 

visualize message exchange with message sequence diagrams in Spin. However we found 

that this limits scalability of approach, due to Spin limitations on number of messages 

and queues. Eventually we are going to replace message based event ordering with 

variable based. Spin visualization could be replaced with designed problem 

traceability/visualization module that completely hides model checking machinery from 

user. 

 

A sample of the MSC for the model developed based on message based approach is 

shown in Appendix B. 
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7.3.3.2 Variable Based Approach 

Variable⁄flag based approach is particularly used to model behaviour of the join method.   

Here we explain the variable based Approach as illustrated in figure 7.5.  The global 

Boolean variable ActiveThreadi, where i(which in this sample is 2, 5,6) is a thread 

identifier, is initially declared false. When the thread is started (i.e. RunEntry event) this 

variable is set to true (“ActiveThreadi = true”). Similarly when the thread terminates (i.e 

Run Exit event) this variable is set to false (ActiveThreadi = false).  To enforce order 

between the RunExit and JoinExit, where later should happen before former and also on 

the same object but different threads, JoinExit event is executed only when this condition 

satisfies (“::ActiveThreadi = = false -> ”).    

bool  Activethread2 = false;   
bool  Activethread5 = false;   
bool  Activethread6 = false;   
      
/* Starting of the process 5*/ 
active proctype thread5() 
{ 
d_step 
{ 
/* Run MethodExit for methodId 285 */  
Activethread5 = false;  
Name = Run_MethodExit; 
ThreadIdRef =5; 
TimeStamp = 6; 
MethodIdRef = 285; 
ObjectIdRef = 4379; 
ClassIdRef = 298; 
} 
}/* End of process 5*/ 
/* Starting of the process 6*/ 
active proctype thread6() 
{ 
:: (Activethread5 = = false) ->  
d_step 
{ 
/* Join MethodExit for methodId 283 */  
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Name = Join_MethodExit; 
ThreadIdRef =6; 
TimeStamp = 9; 
MethodIdRef = 283; 
ObjectIdRef = 4379; 
ClassIdRef = 298; 
} 
}/* End of process 6*/ 
 

Figure 7.5: Sample of the PROMELA model, synchronization based on the variable based 
Approach 

7.3.3.2.1 Advantages and Disadvantages Variable Based Approach 

Variable Based Approach in particularly advantageous to model large traces.  In the 

message based approach messages are exchanged between events using channels (a 

construct in PROMELA).  In the PROMELA model we declare and array of channels of 

size (for example L) and there to size of the (it is 255).  Message Passing Approach fails 

to model those large traces in which the size of array of channel exceeds 255.  Because of 

this inherent limitation is PROMELA variable based approach is advantageous to model 

large traces.  

However “variable\flag based” approach has disadvantages over “message passing 

based” approach, as we cannot obtain the MSC (Message sequence chart) in former.    

7.4 XML to PROMELA translation Implementation 

We implemented the PROMELA modeling in Java.  The Java code consists of about six 

(6) java classes.   

The Java code for PROMELA model generation can be broadly divided in six (6) classes. 

These classes are main, logical Timestamp, Method_def, Receive_send message, 

thread_count and list_entry_exit classes.  Here we explain in steps implementation details 
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for the PROMELA model generation based on message passing approach.  Please refer to 

the flowchart for the model generation in Appendix E for more details    

1. First the XML trace is transversed and objectId’s and threadId’s of the events e.g. 

such as waitentry/exit, notifyentry/exit, lockAcquire entry/exit, lockrelease entry/exit 

startentry, runentry,runexit and joinexit are saved in objectId[] and threadId[] array 

and then there event types such as lockoperation_event, startentry_event, 

runentry_event and other_event are saved  in event_type [] array respectively 

2. Then we iterate through the objectId[], threadId[] and event_type[] arrays and search 

for those objectIds and threadIds values in the arrays whose preceding objectId and 

event type is same (exception in start and run case, where start methodentry should be 

preceded by run methodentry) but different threadId.  If such an instances are found 

we save there indexes of the objectIds  in send_message [] array and save those index 

values from which they are different in receive_message [] array  

3. Events of the XML trace are not written (in the same order as in XML trace) to the 

PROMELA model, but in different order for example all the events of thread (e.g. Id 

4) are written first, then the events of thread (e.g. Id 5) are written second and so on.  

Because of the way model is generated, the send and receive messages are not 

numbered according to the order obtained from the send_message [] and 

receive_message[] arrays.    

4. But rather while iterating through the objectId [], threadId [] and event_type[] arrays 

iterate in different manner that is first we iterate through the objectId array 

corresponding to the threadId for example 2, then 3, then 4 and so on.  While iterating 

in such as manner we find those instances where consecutive threadsIds are different, 
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but corresponding objectIds, are same.  Whenever we find such instance save it index 

and then find it’s relative postion in the send_message array using the int g = 

Arrays.binarysearch (send_message, i) and then number the send_message such as 

Q[g]!  

5. Similarly we perform the same functions to number the receive messages and thus 

number it Q[g]?  

6. The XML trace is transverse again and threadId’s of the threadStart event are saved in 

threadIdStart [] array  

7. The event body is written to the PROMELA model. Events of the XML trace are not 

written (in the same order as in XML trace) to the PROMELA model, but in different 

order for example all the events of thread (e.g. Id 4) are written first, then the events 

of thread (e.g. Id 5) are written second and so on.  The information from the 

threadIdStart [] obtained in step 5 is used while writing events to the PROMELA 

model   

8. After the event body is written, to enforce the synchronization based on message 

passing approach, send and receive messages are inserted. The send and receive 

messages are numbered according to certain algorithm (described briefly in step 2 & 

3).  Before writing any event body to the PROMELA model, we check if it send or 

receive event. If the event is found to be of such a type, the send and receive 

messages according to the algorithm followed in step 2 & 3           

7.5 Property Specification in Promela Never Claim and LTL 

Before discussing the property specification in LTL, we give here a brief introduction to 

LTL.  
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7.5.1 Temporal Logic Overview 

Temporal Logic is a special branch of modal logic that investigates the notion of time and 

order. In Pnueli suggested using Linear-Time Propositional Temporal Logic (LTL) for 

reasoning about concurrent programs.  Since then, several researchers have used LTL to 

state and prove correctness of concurrent programs, protocols, and hardware.   

7.5.1.1 Linear-Time Temporal Logic 

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in 

addition to the propositional logic operators (and (&&), or (||), xor (^), not (!), etc.)  there 

are future-time and past-time operators.  The following syntax is used in our approach for 

these four operators: 

• Always in the future. One can use the English keywords Always, or a box ([]) to 

represent the always operator. 

• Sometime in the future. One can use the English keywords Sometime and or a 

diamond (<>) to represent a sometime operator. 

• Until (for the future).  One can use the English keywords Until, or U to represent the 

until and since operator. 

• Next iteration (for the future). One can use the English keywords Next, or a cross (X) 

to represent these operators. 

7.5.2 Property Specification 

Here we consider formalization of premature join antipattern in LTL. It consists in 

invocation of the join method to the thread, which is not yet started [Hal04]. Obviously it 

is impossible to specify such a pattern in LTL independently of number of threads. 
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Consider instantiation of antipattern for one particular thread Ti, that is join to thread Ti is 

called before start of Ti. Actually, it is more convenient to formalize absence of an 

antipattern, so a model-checker could pinpoint the problem with a counterexample to the 

correctness claim. Obviously a formalization of antipattern requires predicates which 

indicate invocation of the join method, Join (Ti) and thread start, Start (Ti).  To formalize 

absence of premature join to the thread (Ti), we could use pattern specification system 

[SpecPattern]. The most adequate pattern is precedence: S = Start (Ti) precedes P = Join 

(Ti), which is mapped into LTL as !P W S = ! Start (Ti) W Join (Ti), where W is the weak 

until operator. On a trace that consists of n threads T1,…, Tn instantiations of antipattern 

for each thread could be either checked one by one, for each thread Ti, or at once with all 

combined in one composite property 

 ! Start (T1) W Join (T1) & ! Start (T2) W Join (T2) &…& !Start (Tn) W Join (Tn) 

We follow the second approach, which is more convenient for us, while the first one 

provides better diagnosis: it is immediately clear which exactly thread is involved in 

premature join. Instantiation of predicates Start(Ti) and Join(Ti) is implementation 

dependent. 

Similarly, double start absence is formalized with “bounded existence” or “absence of P 

= Start (Ti) after Q = Start(Ti)” specification pattern, slightly modified with the next 

operator X  to represent an open “after Q” scope for: [](Q -> X[](!P)). 

The properties could be formalized with automata using automatic transformation tool or 

an automata specification system, like in [Hal03].  

Similarly we specify the double call for the start () method property. To formalize the 

“double start” property, we define a variable P such as (#define P methodIdRef  = = 309 



 124

&& objectIdRef = = 8047) where 309 is the start methodId and 8047 is the objectIdRef 

for that particular Start  Methodentry  

We formalize in LTL formula as <> (p&& X <>p), means that eventually in the model P 

will be preceded by P.  In this model we verify this LTL formula for every thread 

7.6 Model Based Approach’s Results 

To start the Spin model checker, click on RUN: (Re) Run-Verification in the Spin 

window.  Spin will compile the PROMELA program into a C program, which when 

executed will do the model checking.  While the compilation into C takes place, a small 

window pops up with the text: “Please wait until compilation of the executable produced 

by spin completes”.  When this window disappears, the model checker starts executing 

(the now generated C program).  When this terminates, a window with the verification 

result appears as shown in Appendix B.  In our case it says (top line): “property violated”, 

and further down it states: “errors: 1”.  If there are no errors “errors: 0” is printed. 

This message sequence chart (in the appendix A) can be explained as follows.  The 

Thread 6 sends a message (No 1) to the thread 7 and thread 7 send the message (No 2) to 

the thread 6.  The send message is label as message! (No 1, 2, 3, 4)   Similarly the Thread 

9 sends a message (No 4) to the thread 5 and thread 5 sends the message (No 5) to the 

thread 9.  The message is send from one thread to another threads if the consecutive 

events in the PROMELA are on the same object (referred by the ObjectIdRef in the 

PROMELA model) but on the different thread.  Similarly for the receiving, if the 

consecutive events refer to the same objectId but different threadId, the message is send 

by the previous event and received by the consecutive event.  

The experiments were performed on the following the system configuration:  
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System Configuration: 

Operating System: Window 2000 

CPU: AMD Athlon 900 MHz 

RAM: 512 Mbytes 

The following technologies were used for the model based trace analysis are: 

Technologies used: 

Model Checker:  Spin 4.1 

Compiler:  gcc (C compiler) 

7.6.1 Antipattern: Double Call of Start () method  

Description: The start () method is not supposed to be used more than once for the 

same Thread.  

Application: It is a fragment of Java multi-threaded platform Guest [Mag02] 

 Trace 
size 

Promela model size Execution time  Total Time(Execution  + 
Compile Time ) 

63.6 KB 3.25 KB  9s( approx) 34seconds  

Table 7.1: Analysis time for premature join () detection 

Promela model size Pan.c build time  Pan.exe build time Verification time  

3.25 KB  1s( approx) 2s (approx) 1s( approx) 

Table 7.2:  Verification & Compilation Time (double start ()) 

7.6.1.1 Verification Data  

 State Vector Size:  1592 bytes 
Depth Reached: 35 
No of transitions: 20 (visited + matched) 
No of matched states:  1 
No of states visited: 19 

 No of errors: 1 
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7.6.2 Antipattern: Premature Call of Join () Method 

Description: A call to the join () method of a thread is premature if this thread has not 

been started at the time of the call [TR2]. 

Application: Custom Race program [JPROBE] 

Trace size Promela model size Execution time Total Time(Execution  
+ Compile Time ) 

29.3 Kb 2.23 KB  5s (approx) 27seconds  

Table 7.3: Model Generation Time (premature join) 
 

Promela model 
size 

Pan.c build time Pan.exe build time Verification time  

2.23 KB  1s( approx) 2.5 s (approx) 1s (approx) 

 

Table 7.4: Verification & Compilation Time (premature join) 

7.6.2.1 Verification Data 

State Vector Size:  1592 bytes 
Depth Reached: 21 
No of transitions: 17 (visited + matched) 
No of matched states:  1 
No of states visited: 16 
No of errors: 1   

7.7 Open Problems and alternatives for trace modeling 

First we list the possible future work or open problems in the model-based trace analysis 

approach:     

1. As described before we verify the generated PROMELA model against the 

properties/antipatterns specified in LTL.  The LTL formula translates to never claim 

and the model checker searches the state space for never claim negation.  An 

alternative to this property verification approach is that we implement the antipattern 
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detectors in C.  Then SPIN version 4.0 or later, support embedded C inclusion in the 

PROMELA model through the use of five new primitives.  These primitives are 

c_expr, c_code, c_decl, c_state, c_track.  Using these primitives the antipatterns 

coded in C language are embedded at certain locations in the model.  During the 

model verification using the SPIN model checker, the embedded code provide 

guidance to the precise location of such errors     

2. We used object-oriented paradigm (OOP) for PROMELA model generation and 

extraction from XML based Java trace.  An alternative to OOP, we can possibly use 

aspect-oriented programming (OOA) based tool such as Aspect J for the model 

generation and extraction.  AOP based model extraction will be particularly useful 

when the XML trace is quite large with many events interleaving.  In such a large 

trace, AOP proves to be very versatile, because in AOP we can divide the 

functionality of the code as concerns and code these concerns independently.   In the 

exception cases where there are cross-cutting concerns  

3. Extend the model-trace analysis to verify other concurrency related antipatterns  

4. Extended the current error detection approach to error correction/error location finder 

in the target program.  To extend it warnings emitted (antipattern violations) by the 

model checker, after trace analysis can be given as feedback to the target program.  

For this, we can write code which read/interpret ate the content of the warning and 

based on the content of the warnings can possibly locate the error in the target 

program.  Once the error is located, we can code it further to correct the error, writing 

such a code will be quite trivial task.  But using AOP it can be made possible to write 

error correcting code.    
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Another option is correcting the code at bytecode level, rather than at source code           

level.  The correction at the bytecode level will save the software development cost. This 

type of automated error correction system, can possible be used in those autonomous 

systems used in deep space missions were there is very little human interaction.  Those 

autonomous systems are designed to be such that they have the capability to adaptive and 

evolve themselves according to the environmental conditions.  In such autonomous 

systems, we will need such an automated error correction system we can locate the errors 

and correct them, without very less or almost no human interaction   

7.7.1  Alternatives to Trace Modelling 

There are few other alternatives to trace modelling, and here we list few of them. 

1) We can possible use mathematical techniques create a model the Java trace (In XML 

format), and then verify against the antipatterns/properties the generated model using 

the Theorem Proving techniques.  

2) We can experiment with other model checkers and possible translate the trace to other 

model checking languages  

3) We can implement algorithms for antipattern detection using Maude.  Maude [] is a 

modularized specification and verification system that very efficiently implements 

rewriting logic.  Maude was developed at computer science department, university of 

illinois at Urbana Champaign. The automated software engineering group at NASA 

have already implemented such verification in Maude.  
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8 Chapter 8 Comparison  

8.1 Introduction and Motivation 

Here we will make a detail comparison between two approaches namely model-based 

trace analysis and custom based trace analysis approach.  The comparison will be based 

on the experimental results, easy of usage, scalability, program complexity, quality of 

analysis and resource consumption.  In section 2 we first explain the auxiliary details 

such as how the experiment was performed, its environment, technologies used and other 

related technical details.  In the section 3 a detailed comparison is made based on the 

criteria such as time usage, quality of analysis, resource consumption, scalability and 

easy of usage etc.   

Motivation to conduct such a comparative study is to analyze the feasibility of formal 

approaches in runtime analysis.  The model based approach is formal and custom based 

approach in a semi-formal one.  

8.2 Experiments Results: 

We used custom detectors to analyze large programs, such as SAP Vending Machine 

Server.  The size of SAP vending machine Server trace is of the about 80 megabytes or 

so.  Analyzing such a large trace will cause memory overflow problem.  To reduce the 

trace size, we used fine-tuned filters.  To counter such problem, probably more scalable 

XML tools could be used for XML parsing such as SAX parser.  

As detailed before the model checking approach is further based on two approaches 

namely variable based and message based approach.  Modeling the trace based on 

message passing approach does not scale to very large trace size, because of the inherent 
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limitation of the PROMELA language.  Because of this reason we plan to completely 

replace message passing with shared variables for scalability purposes.  

 

Nevertheless, model-checking approach could hardly outperform custom analysis in 

terms of scalability, since parsing of the XML trace file is required anyway to generate 

the model. Thus comparison is performed on middle size programs. 

 

For comparison we performed experiments on two applications and two antipatterns 

using both custom and model-checking approaches. The first application is a fragment of 

Java multi-threaded platform Guest [Mag02]. The second is a toy demo program 

(borrowed from JProbe), both with injected faults and third one is SAP vending machine 

server. The experiments are performed on AMD Athlon 900 MHz system with 500MB of 

RAM and Windows 2000 operating system.  For the model based trace analysis, 

technologies used were Model Checker- Spin 4.1, C compiler- gcc and for custom based 

trace analysis technologies used were: 

1) Compiler: Java 1.4 

2) IDE: Eclipse 

3) Java - XML Tool: JAXB (Java Architecture for XML Binding) 

  Table 8.1: Experimental Results 

 Bug Trace Size PROMELA 
Model Size 

Custom 
analyzer 

Model 
building and  
Verification 

App1 Double start 64 K 3.25 KB 4 13 
App2 Premature join 29.3 KB 2.3 KB  4 10 
App3 Double  start 667 KB 22.0 KB  6 20 
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8.3  Comparison  

The comparison between these two approaches is based on the criteria such as time 

usage, complexity of analysis, scalability, quality of analysis and easy of usage etc. 

Time Usage: 

The results from the experiments have show that custom detectors are slightly faster; 

however most of the time is consumed not by model checking itself, which takes less 

than a second, but with auxiliary steps, such as building PROMELA model, compiling 

PROMELA into executable, etc. 

Complexity of Analysis:   

The model-based trace analysis is more cumbersome and complex than the custom based 

analysis approach because in former the PROMELA model of the trace is required to be 

generated, whereas in latter we directly analyze the XML trace. 

Scalability: 

Both the approaches can equally scalable, but model approach fares better than custom 

approach in analyzing large traces.  When analyzing large traces, the custom approach 

gave the memory overflow exception whereas there is no problem in analyzing large 

trace with model based approach  

By using the filters in the model generation code, the size of the PROMELA model (in 

Megabytes) is less as compared to the size of the execution trace used for custom based 

trace analysis approach. 

Quality of Analysis: 

Regarding the quality of analysis, model based approach is rated better than the custom 

based approach.  Custom based approach cannot completely guarantee that the program 
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property/antipattern is satisfied because only one run is examined.  In order to achieve 

higher assurance the model based trace analysis approach is used.  Model based approach 

allows predictive trace analysis, in a sense that we could analyze several events 

interleaving.    

Also model based approach can verify the parallel compositions of the trace and thus the 

analysis can be made more versatile.  

We can experiment with others logics such as interval logic, real time logic can be better 

using model based approach than the custom based approach. 

Resource consumption –memory problems: 

Regarding the resource consumption (memory), model based approach is better than 

custom based approach because when the model is generated extra memory of consumed   

Whereas in the custom based analysis approach we directly analyze the execution trace.   

False positives: 

The custom based analysis may emit false warnings.  By making the model based 

approach as guided model checking we can eliminate the false positives generated by the 

custom based analysis approach.  The guided model checking the help focus the search of 

the model checker 

Moreover in the model-based trace analysis approach we can set the search options in the 

model checker to cover parts of the state-space that weren’t covered – e.g. to cover 

“deep” paths.  

Future research requirements: 

The future research is being undertaken as to influence the program behavior, when the 

property is violated.  For the future research on this aspect the model based trace analysis 
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is better suited for such research projects because it being a formal approach it is more 

possible to give feedback and correct the errors in the target program.  

Such as future research is undertaken for the autonomous applications used in deep space 

mission.  In such an autonomous application there is little or very less human interaction.  
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9 Chapter 9: Conclusion and Future Work 

We have presented two approaches for the runtime analysis, namely custom based and 

model based trace analysis approach.  Motivation of this work is to present runtime 

analysis approach, with combine testing and formal methods, while avoiding the pitfalls 

of ad hoc testing and complexity of full-blown theorem proving and model checking.  

Both these approaches provide an integrated environment to integrate two 

instrumentation approaches (profiling interface tool with bytecode instrumentation) to 

obtain an improved Java trace in XML format with the relevant events logged.  These 

two runtime analysis approaches different in the antipatterns detection approach.   

In custom based approach the Java trace is analyzed for antipatterns using Java detectors.  

Whereas in model based analysis approach the Java trace is first translated to PROMELA 

model, and then the extracted model is verified against the antipatterns specified in LTL 

using SPIN model checker.  We have implemented algorithm for the model extraction 

from the Java trace.    

  

We have designed the architecture as a modular architecture consisting of several 

components for the increasing flexibility.   The approach being modular can be extended 

further to suit the future needs of the runtime analysis.  

  

Then we made a detailed comparison between these two runtime analysis approaches 

based on the following criteria: 

1) Quality of Analysis 
2) Resource consumption 
3) Time Usage 
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We divide our future work as long term and short term agenda.   In short term future 

work will be:      

1. Experiments with other real cases studies and compare the results with other runtime 

approaches such as JMPAX, JPAX and JavaMac  

2. Experiment with other MT antipatterns.  

3. To analyze the execution trace against high level requirement specification and also 

to experiment with new kinds of logics such as interval and real time logics  

4. Secondly we are interested to experiment with this logic implemented in maude rather 

than in LTL   

5. Implement GUI for both the approach.  This will help us to better visualize the results  

6. Use aspect Oriented programming (AOP) for model extraction, bytecode 

instrumentation.         

7. Extended model based analysis approach using AOP to build autonomous software, 

which are adaptive and self evolving.  In such an autonomous software testing could 

be automated to an extend that error detection and correction is automatic, with very 

less human interaction.       

8. Guide execution via aspect based code instrumentation to explore the possible 

interleavings of a non-deterministic concurrent program during testing.  

Our long term agenda for the future work will be to combine static analysis and runtime 

analysis.     
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Appendix A: A snapshot of the console output for “premature join” verification 

based on custom based detection Approach  
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Appendix B:  A Snapshot of the MSC (Message Sequence Chart)    
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Appendix C: A snapshot of console output for “premature join” verification based  

  on model checker based approach 
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Appendix D: Ordering of the events on the same Object 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E Flowchart for the XML-Promela model 
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event_type[] array respectively.
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is same ( but in the case of start and run startentry should be preceded by runentry) but different threadId (for
sending messages) and save there index values in send_message[] array and save those index values from which
they are different in receive_message[] array.
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write receive message to
promela model, if needed

The algorithm of this subroutines is the same as followed before for to create receive_message[] (page 2, 3 & 4),
except that the indexes are not stored in arrays but rather there index position (second index values) are found in

receive_message array.  While writing events to the promela model, the receive messages are numbered according
to the second index values.
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No

No

Yes

A-5

Is ObjId [i] ==
ObjId[j] &&

event_type[j] = =
"startentry_event"?

is i = = N?

Terminate

Yes
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Is receive
message

required to be
inserted?

Yes

NoE -14

Is ThreadId [i] =
= ThreadId [j]?

int g =
Array.binarysearch
(receive_message,

i)

No  i = i+1 B- 6

Yes

receive_me
ssage[]
array

Write receive
message "Q[g] ?"
to promela model

Searches the
receive_message []
array and return the

index of i

write receive message to
promela model, if needed
page 7

Is ObjId [i] ==
ObjId[j] &&

event_type[j] = =
"lockoperation_eve

nt"?

j = j -1

Is j= = 0?
i++

j = i-1

Yes

No

No

Yes

C-5

is i = = N?

Terminate

Yes

 

 

 



 162

 

 

write send message to
promela model, if needed

The algorithm of this subroutines is the same as followed before to create send_message[] (page 2,3 & 4), except that
the indexes are not stored in arrays but rather there index position (second index values) are found in send_message
array.  While writing events to the promela model, the send messages are numbered according to the second index

values.

i = 1
j = 1

N = length of objectId[]
array

create objectId[],
threadId[] and

event_type[] array

create
send_message

[] array

write send message to
promela model, if needed
page 8

Is i = = N ?

j = i +1

Terminate

A- 9

what is event
type[i]?

B- 9,10

j = i +1

C-10

Yes

No

It is
"startentry_eve

nt"

It is
"lockoperation_e

vent"

It
is"other_event"

YesYes
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Is send
message

required to be
inserted?

Yes

NoE-14

int g =
Array.binarysearch
(send_message, i)

 i = i+1 B- 8

send_mess
age[] array

Write send
message "Q[g]!"
to promela model

Searches the
send_message []

array and return the
index of i

write send message to
promela model, if needed
          page 9

Is ObjId [i] ==
ObjId[j] &&

event_type [j] = =
"runentry_event" ?

j = j +1

Is j = = N ?

Yes

No

No

Yes

i ++
j = i+1

A- 8

is i = = N?

Yes

Terminate
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Is send
message

required to be
inserted?

Yes

NoE-14

Is ThreadId [i] =
= ThreadId [j]?

int g =
Array.binarysearch
(send_message, i)

No  i = i+1 B- 8

Yes

send_mess
age[] array

Write send
message "Q[g]!"
to promela model

Searches the
send_message []

array and return the
index of i

write send message to
promela model, if needed
          page 10

Is ObjId [i] ==
ObjId[j] &&

flag_type [j] = =
"lockoperation_even

t" ?

j = j +1

Is j = = N ?

Yes

No

No

Yes

i ++
j = i+1

C - 8

is i = = N?

Yes

Terminate
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Build list of
ThreadIds

XML
Trace

Transverse the
XML Trace and

Save threadIds of
threadStart event

threadIdStart[]
array

Terminate

This subrouine build threadIdStart [] array, containing the list of all the
threadIds

Build list of ThreadIds
 page 11
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write event body, send and receive
 messages to promela

XML
Trace

Events of the XML trace are not written (in the same order as in XML trace) to the promela model, but in differrent
order.  e.g. all the events of thread (e.g Id 4) are written first, then the events  of thread (e.g Id 5) are written second

and so on.

build list of
threadIds

C- 12

create
send_message[]

and
receive_message

[] array

int K = 1

Write to promela
active proctype

thread K

A- 13

write event body, send and
receive message to promela
model -  page 12

Transverse
the trace Kth

time
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Is threadId equal to
Kth element of

threadIdStart  array

Read threadId
of next event

threadIdstart[]
array

write receive
message to
promela, if

needed

Read threadId of
the first relevant

event

A-12

No

Yes

D - 15

receive_me
ssage[]
array

write event body, send and
receive message to promela
model - page 13

Is the event
runentry?

Yes

Write to
promela

"ActiveThread
K = = true "

B - 14
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B - 13

Write the
event body
to promela

model

E- 6,7

E - 9,10

Is the event
runexit?

Write to
promela

"ActiveThread
K = = false"

Yes

Store the
event's

objectId in
runexit_objectI

d[]

Yes

No

Is the event
joinexit?

Write to
promela "::

ActiveThread p
= = false ->"

int m =
Arraysbinarysearch
(runexit_objectId,

objectId )

Store the
event's

threadId in
runexit_threa

dId[]

Yes

int p =
runexit_threa

dId [m]

G-15

runexit_threadI
d[] array is

contain
threadId of

runexit event

F

F

write event body, send and
receive message to promela
model - page 14
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Are there
more events of
Kth threadId ?

C- 12

K++;D - 13

Is it the last event
of last threadId?

Yes

Terminate

No

write to
promela "End
of Process K"

G-14

Yes

No

write event body, send and
receive message to promela
model -  page 15

write send
message to
promela, if

needed

send_mess
age[] array
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Start

The promela model with send and receive messages inserted.
Here before writing send or receive message to promela model, we check if they are required to

be written, if required we insert receive or send message before or after the event body.

Terminate

Write necessary variables (boolean
variables, type declaration and

channel declaration)

write event body, send
and receive message to

promela

The main program - page 16

 

 

 

 


