
EXTENDING ECLIPSE QUALITY ASSURANCE
 PLATFORM FOR DETECTION OF
JAVA MULTI THREADED DEFICIENCIES

 Jagmit Singh

 Department of Electrical and Computer Engineering
 Concordia University, Montreal

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the Degree of Master of Applied Sciences

 © Jagmit Singh

 2

Acknowledgements

Abstract

 3

Table of Contents:

ABSTRACT ...2
TABLE OF CONTENTS:...3
1 INTRODUCTION AND MOTIVATION..9
2 CHAPTER 2 JAVA MULTITHREADING ..12

2.1 INTRODUCTION TO JAVA MULTITHREADING ...12
2.1.1 Definition of Java Multithreading and Related Terms ..12
2.1.2 Benefits of writing multithreaded programs..13
2.1.3 Java implementation of Multithreading...14

2.2 RELATED TERMS OF MULTITHREADING..15
2.2.1 Locks..15

2.2.1.1 Thread Synchronization in Java ... 16
2.3 MULTITHREADED PROBLEMS..17

2.3.1 Common Locking Problems...17
2.3.2 Other Multithreaded Problems..18

2.3.2.1 Race conditions .. 18
2.3.2.2 Livelocks.. 19
2.3.2.3 Efficiency and Quality Problems ... 20

2.4 ANTIPATTERNS-BASED DETECTION APPROACH ..20
2.4.1 Design antipatterns ...21
2.4.2 Errors or Bug Patterns..22

2.5 ANTIPATTERN LIBRARY ..22
2.5.1 Classification of Antipatterns ..22
2.5.2 Antipattern Template:..23
2.5.3 Antipatterns:..24
Synchronized method call in cycle of lock graph...25
2.5.4 Antipattern Detection Summary ..25

3 CHAPTER 3 MT JAVA ANALYSIS APPROACHES ..28
3.1 INTRODUCTION ...28
3.2 DYNAMIC ANALYSIS...29
3.3 STATIC ANALYSIS ...35

3.3.1 Definition...35
3.3.2 Benefits ..37
3.3.3 Challenges ...37

3.4 MODEL CHECKING..42
3.4.1 Benefits ..43
3.4.2 Challenges ...44

3.5 THEOREM PROVING ..45
3.5.1 Benefits ..45
3.5.2 Challenges ...45

4 CHAPTER 4 JAVA TRACE COLLECTION ...46
4.1 INTRODUCTION ...46
4.2 INSTRUMENTATION APPROACHES ...46

4.2.1 Custom JVM Instrumentation..47
4.2.2 Java Profiling Interface...49
4.2.3 Java Debugging Architecture..51
4.2.4 Java Platform Profiling Architecture of J2SE 5.0...52

4.3 SOURCE CODE LEVEL INSTRUMENTATION ..54
4.4 JAVA BYTECODE...54

 4

4.4.1 Java Bytecode Definition...55
4.4.2 Java Bytecode Format...55
4.4.3 Bytecode Instrumentation ..56

4.4.3.1 Overview.. 56
4.4.3.2 Supported Events ... 56

4.5 INSTRUMENTATION TOOLS ...58
4.5.1 Java Virtual Machine Instrumentation Based Tools ...58

4.5.1.1 Tool: JinSight... 58
4.5.2 Profiling Interface Based Tools...59

4.5.2.1 Tool: Hyades.. 59
4.5.3 Tools for Source-Code Level Instrumentation...60

4.5.3.1 Tool: JavaScope ... 60
4.5.4 Java Bytecode Instrumentation Tools/Toolkits..61

4.5.4.1 Tool: JProbe Threadalyzer ... 61
4.5.4.2 Tool: ByteCode Instrumentation Tool (BIT).. 63
4.5.4.3 Tool: JTrek... 64
4.5.4.4 ToolKit: Byte Code Engineering Library (BCEL) ... 65
4.5.4.5 Tool: JIAPI: Java Instrumentation API .. 66

4.6 OUR INSTRUMENTATION AND TRACE COLLECTION APPROACH ...68
4.6.1 Introduction ...68
4.6.2 Hyades Profiling and Tracing ...69

4.6.2.1 Event Structure and there Attributes .. 69
4.6.2.1.1 IDs... 70
4.6.2.1.2 Common attributes.. 70
4.6.2.1.3 Structural elements.. 71
4.6.2.1.4 Trace Behaviour Elements.. 72
4.6.2.1.5 Thread elements .. 72
4.6.2.1.6 Class Elements .. 72
4.6.2.1.7 Object Elements .. 73
4.6.2.1.8 Method elements... 73

4.6.3 Bytecode Instrumentation using JTrek ..74
4.6.3.1 Additional Events logged using the bytecode Instrumentation: ... 76

4.6.3.1.1 Variable Updates... 76
4.6.3.1.1.1 Primitive Field Variables ... 77
4.6.3.1.1.2 Local Variables: ... 77

4.6.3.1.2 Monitor Enter and Exit ... 78
4.6.4 Trace Reduction...82
4.6.5 Benefits/Limitations of our Instrumentation Approach: ..83

4.6.5.1 Hyades Tracing .. 83
4.6.5.1.1 Benefits of the Hyades tracing:... 83
4.6.5.1.2 Limitation of the Hyades tracing .. 84

4.6.5.2 Bytecode instrumentation based tracing... 84
4.6.5.2.1 Benefits of bytecode instrumentation based tracing 84
4.6.5.2.2 Limitation/side effect of bytecode instrumentation based tracing.. 85

4.7 EXECUTION OF THE INSTRUMENTED PROGRAM ..85
4.8 CONCLUSION AND FUTURE WORK...86

5 CHAPTER 5: CUSTOM BASED DETECTION APPROACH...87
5.1 INTRODUCTION AND MOTIVATION..87
5.2 APPROACH OVERVIEW..88
5.3 ANTIPATTERN FORMALIZATION ...90

5.3.1 Formalization of the “double call of start () method” antipattern.......................................90
5.3.1.1 FSM Formalization of “double call of start () method“.. 90
5.3.1.2 EFSM Formalization of “double call of start () method” ... 91

 5

5.3.2 Formalization of the “PREMATURE JOIN CALL” antipattern ...91
5.3.2.1 FSM Formalization of “premature join call” antipattern.. 91
5.3.2.2 EFSM Formalization of “premature join call” antipattern ... 92

5.3.3 Formalization of Wait Stall ...93
5.3.3.1 FSM Formalization of wait stall... 93
5.3.3.2 EFSM Formalization of wait stall .. 94

5.4 CUSTOM DETECTORS IMPLEMENTATION...95
5.4.1 Double Start () Implementation in Java ..95
5.4.2 Premature Join () Implementation in Java ..96

5.5 CUSTOM DETECTION RESULTS..97
5.5.1 Antipattern: Double Call of Start () method..98
5.5.2 Antipattern: Premature Call of Join () Method ...100
5.5.3 Antipattern: Wait Stall..100

5.6 ADVANTAGES/LIMITATIONS OF CUSTOM BASED APPROACH: ..101
5.6.1 Advantages of Custom Based Detection Approach ...101
5.6.2 Limitations of Custom Based Detection Approach..102

6 CHAPTER 6: MODEL CHECKING WITH SPIN ..103
6.1 INTRODUCTION ...103

6.1.1 Model – Checking..103
6.2 SPIN MODEL-CHECKER...104

6.2.1 Language of SPIN..105
6.2.2 Features of Spin...105
6.2.3 DOCUMENTATION..106
6.2.4 AVAILABILITY..106

7 CHAPTER 7: MODELING TRACE WITH SPIN...107
7.1 INTRODUCTION AND MOTIVATION..107
7.2 APPROACH OVERVIEW..108
7.3 TRANSLATION...111

7.3.1 XML to PROMELA Translation ..113
7.3.2 Synchronization in Java ..114
7.3.3 Modeling Synchronization in PROMELA Model of Trace..115

7.3.3.1 Message Passing Approach.. 115
7.3.3.1.1 Advantage and Disadvantages of Message Based Approach 117

7.3.3.2 Variable Based Approach... 118
7.3.3.2.1 Advantages and Disadvantages Variable Based Approach 119

7.4 XML TO PROMELA TRANSLATION IMPLEMENTATION..119
7.5 PROPERTY SPECIFICATION IN PROMELA NEVER CLAIM AND LTL ..121

7.5.1 Temporal Logic Overview ...122
7.5.1.1 Linear-Time Temporal Logic... 122

7.5.2 Property Specification ...122
7.6 MODEL BASED APPROACH’S RESULTS ...124

7.6.1 Antipattern: Double Call of Start () method..125
7.6.1.1 Verification Data.. 125

7.6.2 Antipattern: Premature Call of Join () Method ...126
7.6.2.1 Verification Data.. 126

7.7 OPEN PROBLEMS AND ALTERNATIVES FOR TRACE MODELING...126
7.7.1 Alternatives to Trace Modelling ..128

8 CHAPTER 8 COMPARISON ..129
8.1 INTRODUCTION AND MOTIVATION..129
8.2 EXPERIMENTS RESULTS: ...129
8.3 COMPARISON ..131

9 CHAPTER 9: CONCLUSION AND FUTURE WORK...134

 6

10 REFERENCES: ...136

List of Tables

Table 2.1: Antipattern Template ..Error! Bookmark not defined.
Table 2.2: Synchronized method call in cycle of lock graph........... Error! Bookmark not
defined.
Table 2.3: Summary of detection techniques and toolsError! Bookmark not defined.
Table 4.1: The summary of the analyzed instrumentation tools...... Error! Bookmark not
defined.
Table 5.1: Analysis time for double start () detectionError! Bookmark not defined.
Table 5.2: Analysis time for premature join () detection...Error! Bookmark not defined.
Table 7.1: Analysis time for premature join () detection...Error! Bookmark not defined.
Table 7.2: Verification & Compilation Time (double start ()) Error! Bookmark not
defined.
Table 7.3: Model Generation Time (premature join).........Error! Bookmark not defined.
Table 7.4: Verification & Compilation Time (premature join) Error! Bookmark not
defined.
Table 8.1: Experimental Results ..Error! Bookmark not defined.

 7

List of Figures

Figure 2.1: Code sample to Run a Runnable in a Thread ... 15
Figure 2.2: A simple deadlock example [Art01] .. 17
Figure 4.1: A trace snapshot of JProbe ... 62
Figure 4.2: Sample of the source code.. 79
Figure 4.3: Sample of instrumented Bytecode... 80
Figure 4.4: Sample of uninstrumented Bytecode... 81
Figure 4.5: Sample of the Instrumentor code.. 81
Figure 4.6: Sample of the trace obtained after instrumentation (it contains the additional
events logged) ... 82
Figure 5.1: Offline custom based trace analysis architecture .. 89
Figure 5.2: FSM formalization of double start ().. 90
Figure 5.3: EFSM formalization of double start () ... 91
Figure 5.4: FSM formalization of premature join () ... 92
Figure 5.5: EFSM formalization of premature join () .. 93
Figure 5.6: FSM formalization of wait stall.. 94
Figure 5.7: EFSM formalization of wait stall ... 94
Figure 5.8: Code sample for detection of double start () .. 95
Figure 5.9: Code sample for detection of premature join () ... 97
Figure 5.10: Sample of Guest application code .. 99
Figure 5.11: Sample of Java trace for double start () detection 100
Figure 5.12: Sample of java trace for wait stall detection .. 101
Figure 7.1: Diagram of the approach workflow ... 110
Figure 7.2: XML to PROMELA Translation ... 112
Figure 7.3: SPIN: Couple of PROMELA Constants and Constructs 113
Figure 7.4: Sample of the PROMELA Model, synchronization based on Message Passing
Approach... 117
Figure 7.5: Sample of the PROMELA model, synchronization based on the variable based
Approach... 119

 8

 9

1 Introduction and Motivation

Two important aspects of program verification are testing and the use of formal methods.

Traditional testing techniques, however are very ad hoc and do not allow for formal

specification and verification of high level logical properties that as system needs to

satisfy. On the other hand, traditional formal methods such as model checking and

theorem proving are rarely used in practise.

The general idea of the runtime analysis is extracting the relevant events from the

executing Java multithreaded application program, and then analyzing the events

(collected in trace) for properties or antipatterns. Here in this thesis, we collected trace of

Java multithreaded application and then analyzed the trace for multithreaded antipatterns,

whose presence in the target program can cause concurrency related errors such as

deadlocks, livelocks and dataraces. The Java language is quite popular programming

language in web applications on the internet as well as distributed mostly client/server

applications and it is multithreaded in nature.

The runtime analysis can be defined as combining testing and formal methods. By

merging testing and formal methods, runtime analysis achieve the benefits of both the

approaches, while avoiding some of the pitfalls of the ad-hoc testing and the complexity

of the theorem proving and state explosion problem of model checking. We developed

two runtime approaches namely custom based and model based runtime analysis

approach. The custom based approach is semiformal and model based approach is formal

approach. The main difference between these two approaches is in the antipatterns

detection approach. In the model based approach we generate the model of execution

 10

trace and then analyse the generated model using SPIN model checker against the MT

antipatterns specified in LTL. Whereas in custom-based analysis approach, first

antipatterns are coded in Java and then execution trace is analyzed for antipatterns, using

these java detectors.

In the end we compare these two approaches based on criteria such as quality of analysis,

resource consumption, time usage, complexity, easy of usage and other factors.

The aim of formal verification (such as model checking) and testing is to check whether a

program is correct. In other words formal verification and testing attempts to ensure that

all the possible executions of software yield correct results. But run-time analysis assures

of the current execution of a program. However there is the shortcoming of this

approach: the entire state space of the system cannot be covered. The suggested runtime

analysis framework can only be used to examine single execution traces, and therefore

cannot be used to prove a system correct.

However the single execution trace contains much more information than what appears.

Model based analysis approach exploits this hidden information and thus can perform

predictive trace analysis, it can explore the various possible events interleaving.

The run-time formal analysis can cause undesirable side effects to a target program; run-

time formal analysis can slow down the target program and alter the behaviour of the

program. Delay in the target program execution due to probes might alternate behaviour

of the concurrent program

 11

Motivation to conduct such a work is to study the feasibility of the application of formal

methods in the runtime analysis of MT java application.

The paper is organized as follows. We discuss related work in section 2 and 3 and section

4 outline the instrumentation approaches, while section 5 describes the custom based

detection approach. Section 6 describes model checking in general and section 7

describes in detail model based trace analysis approach, while in section 8 a detailed

comparison is made between two approaches namely custom based detection with model

based trace analysis approach. Finally section 9 contains conclusion and a description of

future work

 12

2 Chapter 2 Java Multithreading

2.1 Introduction to Java Multithreading

2.1.1 Definition of Java Multithreading and Related Terms

Multithreading is a way of building applications with multiple threads. Multithreading

enables concurrent execution of several threads within the same program. Thus, it is a

convenient way to decompose large programs into relatively independent smaller tasks

and increase the overall efficiency [MT Java]. Multithreading is a necessity for all but

the most trivial programs.

In multithreaded program, each thread is a different stream of control that can execute it

instructions independently, allowing a multithreaded process to perform numerous tasks

concurrently. For example one thread can run the GUI, while a second thread performs

some I/0 and third performs some calculation [MT Java].

Developing analyses for multithreaded programs can be a challenging task. The primary

complication is characterizing the effect of the interactions between threads. The obvious

approach of analyzing all interleaving of statements from parallel threads fails because of

the resulting exponential analysis times. A central challenge is therefore developing

efficient abstractions and analyses that capture the effect of each thread's actions on other

parallel threads.

The Java language provides extending support for multithreading.

 13

2.1.2 Benefits of writing multithreaded programs

• Performance gains from multiprocessing hardware/parallelism

Computers with more than one processor offer the potential for enormous application

speedup. MT is an efficient way for developers to exploit the parallelism of the

hardware. Different threads can run on different processors simultaneously with no

special input from user.

• Increased application throughput

In single threaded program, when a request for service is made, it must wait till the

service is complete, which makes CPU idle. In such a situation the multithreaded

program can utilize the CPU idle time by utilizing second thread to service another

request. For example the second thread can handle I/O operation

• Increased application responsiveness

In the case of single threaded application, where a single thread performs most of the

operation. If that one part of that single thread operation is stopped /freezed, then the

whole operation administered by that thread is stopped. Such a blocking situation is

decreased user responsiveness. To prevent such a blocking situation, multithreaded

program comes handy, that is even is one thread is stopped /freezed then other threads

can still continue there operation.

• Replacing process-to-process communication

In an application where multiple processes are used for communication purpose,

multiple threads can replace those processes to accomplish the same task. In the

traditional multi process environment the communication is done thro sockets, pipes

 14

etc, and the same communication can be performed by multiple threads thru shared

variables.

• Efficient use of System Resources

• One binary that runs well on both uniprocessors and multiprocessors

2.1.3 Java implementation of Multithreading

A thread is a stream of execution in a program. The Java Virtual Machine allows an

application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to

threads with lower priority. Each thread may or may not be marked as a daemon. When

code running in some thread creates a new Thread object, the new thread has its priority

initially set equal to the priority of the creating thread, and is a daemon thread if and only

if the creating thread is a daemon.

Threads functionality is implemented in Java using the class java.lang.Threads and there

are two ways to create a new thread of execution. One is to declare a class to be subclass

of Thread. This sub class should override the run method of class Thread. An instance

of the subclass can then be allocated and started. Another is that another thread can be

created, which implements the runnable interface. That class then implements the run

method. One can then create a thread object with this runnable as the argument and call

start () on the thread object.

 15

Public MyRunnable implements Runnable {

Public void run () {

doWork ();

}

}

Runnable r = new MyRunnable ()

Thread t = new Thread (r);

t.start ();

Figure 2.1: Code sample to Run a Runnable in a Thread

2.2 Related Terms of Multithreading

2.2.1 Locks

Multithreaded application use locks to synchronize and communicate there behaviour to

one another. To prevent the multiple access condition the threads acquire or release the

lock before accessing the shared resource [IBM01]. Lock around shared variable allows

the java threads to easily synchronize and communicate. The threads that holds the lock

on an object knows that and will not allow another threads to access this object. Even is

the thread holding the lock is pre-empted another threads cannot access the object, until

the original thread wakes up finish his work and release the lock.

Thread that accepts to acquire the lock in use, got to sleep until the thread holding the

lock release it, when the lock is release the threads sleeping wakes up and moves to

ready-to-run queue.

In java programming, each object has a lock; a thread can acquire the lock using the

synchronized keyword.

 16

2.2.1.1 Thread Synchronization in Java

Java offers a concept called monitors to prevent that two threads access the same resource

at the same time. A monitor is a programming language construct providing abstract data

types and mutually exclusive access to a set of procedures. In Java, a statement block,

method or class can be declared synchronized. In java programming, each object has

a lock; a thread can acquire the lock using the synchronized keyword. Let o be an

object. When entering a section that is synchronized on o, the current thread tries to

acquire the lock (“enters the monitor”) for o.

By calling o.wait the current thread temporarily releases the locks it holds on o and

is added to the wait set of o. It is suspended until another thread calls o.notify,

o.notifyAll or if an optional specified amount of time has elapsed. wait can be

useful if the current thread is waiting for a certain condition that can only be met by

another thread that needs access to the monitor. When the waiting thread resumes

execution, the locks are automatically reacquired. As it is not guaranteed that the

condition has been met, wait is often called within a while loop.

Note that if t is a Thread object, then calling t.wait does not necessarily suspend

the execution of t. Instead, the current thread is suspended until another thread calls

t.notify or t.notifyAll. Only in the case that t is the current thread, calling

t.wait is equivalent to this.wait and t is suspended by itself.

o.notifyAll wakes up all threads in the wait set of o. It is used when it cannot be

guaranteed that each thread in the wait set of o can continue execution.

 17

2.3 Multithreaded Problems

Multithreaded programming cause many problems to developers, in many cases the

developers are falling prey to incorrect application behaviour or deadlocked conditions.

Here we will discuss the common multithreaded problems and the solution to the

common pitfalls.

2.3.1 Common Locking Problems

The use of lock, brings with it many problems, here we discuss the problems and there

solutions.

Deadlock: Deadlock conditions, arises when one shared variable in already locked and

another threads tries to access this resource again.

 Thread 1

Synchronized (A) {

Synchronized (B) { }

}

Thread 2

Synchronized (B) {

Synchronized (C) {}

}

Thread 3

Synchronized (C) {

Synchronized (A) {}

}

 Figure 2.2: A simple deadlock example [Art01]
For proving the absence of deadlock, lockgraph is examined which shows the order in

which thread acquires the lock. As depicted above in lockgraph, Thread1 first acquires

the lock for the object “A” and then acquires the lock for object “B”. While

 18

simultaneously Thread 2 is require to acquire lock for object “B” and then the lock for

object “C”. Such a case will lead to deadlock condition. It is thus seen that absence of a

loop in the lockgraph guarantee the absence of a deadlock.

Broadly, deadlock could results because of one of the following reasons:

1. Unrelated locks were used to protect a single shared variable

2. Test-and-set primitives were confused with mutexes at the application level

3. Locks were not ever released

4. Threads tried to reacquire locks that they already held

2.3.2 Other Multithreaded Problems

2.3.2.1 Race conditions

Races occur when the several threads access the same resource simultaneously without

proper coordination [SBN97] [CS98]. As a result the program might end up producing

output far different from the desired one. In example, a race condition occurs when two

concurrent threads access a shared variable and when a least one access is write, and the

threads use no mechanism to prevent the access to be simultaneous.

Detection:

For proving the absence of a race condition, a checker examines the lock set L. This is

the set of locks held at a certain time, by each thread when accessing a field. A checker

has to ensure that a field is:

 1) Only read when a thread holds at least one lock in Lf and

2) Only written when a thread holds all locks in Lf.

The most common cause of data races can be compiled because of the following reasons

 19

• When a shared variable was not protected by a lock

• Data race can arose when a lock was not acquired to protect an access even though

one existed. Most frequently this happened when a lock was acquired outside a loop,

but released within

• Data race can also arose from accidental sharing: one group made what should have

been an automatic variable

2.3.2.2 Livelocks

A livelock occurs when one thread takes control (e.g., locks an object of a shared

resource) and enters an endless cycle. In other words, a livelock is a condition in which

two or more threads continuously change their state in response to change in the other

thread(s) without doing any useful work [BAU03].

A livelock is similar to a deadlock in that no progress is made but differs in that neither

process is blocked or waiting for anything.

Due to the similarity between a deadlock and a livelock the task of identifying and

detecting livelocks in a program becomes complex as well. An example of a livelock is

the famous dining philosopher problem [MAG99]. Consider, in a dining philosophers

program, the scenario where all the philosophers pick up the fork on their right at the

same time. Then, they all put the fork back simultaneously. By repeating this endlessly

the program enters in a livelock where all the philosophers are active but none is eating.

The justification is that all the philosophers were trying to avoid a deadlock (when they

all take the fork to the right and do not release it). However, they ended up with a

livelock.

 20

2.3.2.3 Efficiency and Quality Problems

The main factor affecting the efficiency of MT applications is synchronization. As much

as it is needed in MT programs, synchronization causes a significant overhead that

usually accounts to 5-10% of the total execution time in some cases [Ald99]. This results

from the fact that managing synchronization in Java MT applications requires the Java

Virtual Machine (JVM) to perform some internal tasks (writing any modified memory

locations back to main memory) that could impair the efficiency of the application.

The following is a list of the most common examples of overusing monitors for

synchronization in multithreaded Java applications [ALD99]:

• Reentrant monitors

• Enclosed monitor

• Thread-Local monitor

• Read-only methods.

Another aspect that affects the efficiency of MT applications, is the use of notify()

method instead of the notifyAll() method (whenever it is possible). The notifyAll() method

is more expensive.

2.4 Antipatterns-based Detection Approach

The concept of patterns has been widely used in software design and development. In

other word a pattern is “a consistent, characteristic form, style, or method” [Eng00]. A

general characterises of these patterns are

• When developers write a code, they usually follow some pattern. The pattern

followed is derived from there previous experience

• Some developers follow the same pattern

 21

• Some patterns could lead to success and some bad patterns could lead to failure

• Usually patterns exist within a small amount of time and space

• Patterns instance are recognizable

Design Patterns are often used in software design and development particularly in the

object-oriented design and development, it offers timeless and elegant solutions to

common problems in software design. It usage helps in saving the software productions

and maintenance cost. It describes patterns for managing object creation, composing

objects into larger structures, and coordinating control flow between objects.

Recently in the software verification and validation domain, the concept of predefined

error description (known as antipatterns or bug patterns) has been introduced to help

reduce the effort spend in verification or debugging the software.

The notion of an antipatterns can be stated as “something that looks like a good idea, but

which backfires badly when applied” [AntiPattern]

Two types of antipatterns are identified so far:

2.4.1 Design antipatterns

Common software designs that have been proven to occur repeatedly, i.e., models of

syntactic constructions (in particular) representing potential or confirmed sources of

problems in a program [SMI00]. From this viewpoint, antipatterns solutions mostly

generate mostly negative consequences. Antipatterns are useful for refactoring,

migration, update and reengineering.

 22

2.4.2 Errors or Bug Patterns

A bug pattern is a pattern which again and again leads to errors/faults in software

applications. In the multithreaded context we view that bug patterns which could lead to

MT problems e.g. deadlock, livelocks and race conditions as discussed before. An Bug

which repeats itself over and over again the in the java program can be classified as bug

patterns

2.5 Antipattern Library

Here we present the antipatterns, we have catalogued so far in our library classified in

their corresponding groups. We also report, for each class of antipatterns, our experience

in using the antipatterns. We have identified 38 different antipatterns that relates to

concurrency, synchronization and other common multithreaded java problems. This was

a collaborative work of CRIM and Sap Labs Canada which aims at finding appropriate

techniques and tools to analyze Java multithreaded programs developed in Eclipse

development environment.

2.5.1 Classification of Antipatterns

Antipatterns can be classified into the following categories [TR1]. This classification is

based on the MT problems the antipatterns address.

1. Deadlocks,

2. Livelocks,

3. Race Conditions,

4. Efficiency Problems,

5. Quality and Style Problems.

 23

A particular antipattern may belong to several categories. At the same time, some

antipatterns might not be the elements of any of the above categories, i.e., they lead to

unpredictable consequences in the application. Such antipatterns will be put into a sixth

category, problems with unpredictable consequences, which we introduce here.

6. Problems with unpredictable consequences.

It is important to note that program analysis does not reduce to antipattern detection.

Actually, we believe the process of antipattern detection should be followed by checking

whether the application possesses some user-defined features; which, generally, relate to

the functional requirements of the application. In this regard, the work could be steered in

the direction of devising sound detection techniques and building libraries of user-defined

properties to be verified in a MT application. In particular, we can build on the existing

results in this domain, mainly on our previous work […] as well the work by Dwyer et al.

[Dwy], who define a library of generic patterns that could be instantiated in a wide

variety of specific applications.

2.5.2 Antipattern Template:

To archive the antipatterns in our library, we defined the following template.

We propose the following template to represent antipatterns of problematic situations in

the MT Java code. Each template provides information about a particular antipattern

including the definition (name, description, and category), an example of occurrence

(when possible), the re-factoring solution, potential conflicts of applying the solution,

possible detection technique(s), and some comments.

 24

Table 2.1: Antipattern Template

Name A concise definition of the problem.

Description The situations in which this problem could appear.

The effects it has on the code and the application.

Category Deadlock, Livelock, Race Condition, Efficiency problem, Quality and
Style Problem, Problem with unpredictable consequences.

Example If available, sample code where the problem is illustrated.

Detection How to detect the problem in the Java code. A high level description
of the proposed algorithm to be used in the detection process.

Re-Factoring Solution: How to solve the problem once detected in the program.

Conflicts: Sometimes solving one problem of a certain class can
cause another problem of a different class. For example, Blob threads
and over synchronization.

Comments The source of this pattern.

Any comments that could be helpful in the detection or re-factoring.

The information provided in the template helps both the developers of MT applications

and professionals building tools to detect the antipatterns in MT applications.

The template is easy to be understood by programmers. It contains useful information for

using antipatterns in programming practice, as most of the fields are directly related to

programming practice. It can be used to teach programmers how to avoid writing buggy

programs. Next will be give example of few antipatterns.

2.5.3 Antipatterns:

Some would argue that an antipattern library could never be completed. Actually, as long

as antipatterns are related to programming styles (which are not well defined themselves),

one may keep coming up with new additions to a library. Here we list few antipatterns

and then make the summary of the most commonly considered antipatterns in the

literature and the analysis tool, by which it was detected.

 25

Synchronized method call in cycle of lock graph

Name Synchronized method call in cycle of lock graph
Description When a synchronized method makes part of a cycle in the lock

dependency graph, the cycle could lead to a deadlock. This antipattern
is the result of bad synchronization between threads of an application.

Category Deadlock
Example Public class Deadlock

{ Object a = new Object();
 Object b = new Object();

Public void foo ()
{ synchronized (a)

{ synchronized (b) { } }
}

public void foo ()
{ synchronized (a)

{ synchronized (b) { } }
}

}
Detection 1. Compute the lock graph

2. Detect cycles in the lock graph
3. Identify synchronized methods that make part of the cycles
Detectable by JLint.

Re-Factoring Solution: Proper reordering of lock acquisition among the threads
involved in the deadlock.
Conflicts: Reordering the lock acquisition might lead to data races.

Comments Source: http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm
The detection results highly depend on the expressiveness of the
computed lock graph. Moreover, the presence of a cycle in the lock
graph is a necessary condition for deadlock, but not a sufficient one.
Therefore, there is high risk of numerous false positives.

Table 2.2: Synchronized method call in cycle of lock graph

2.5.4 Antipattern Detection Summary

The following table 2.3 list most commonly used antipatterns, and for each one shows the

corresponding techniques/tool used to detect them.

Table 2.3: Summary of detection techniques and tools

Antipattern Techniques and Tools
Synchronized method call in a
cycle of Lock graph

Abstraction-based static analysis
Detectable by Jlint

 26

Method call leads to a cycle in
lock graph

Abstraction-based static analysis
Detectable by Jlint

Cross synchronization Linear program scanning
Abstraction-based static analysis
Detectable by Jlint

Overriding a synchronized
method

Linear program scanning
Detectable by Jlint

A non synchronized method
called by more than one thread

Linear program scanning
Abstraction-based static analysis.
Detectable by Jlint

A non volatile field used by
more than one thread

Linear program scanning
Detectable by Jlint

Non synchronized run()
method

Linear program scanning
Abstraction-based static analysis
Detectable by Jlint

Overuse of synchronized
methods

Linear program scanning
Abstraction-based static analysis

Method wait() invoked with
another object locked

Linear program scanning
Detectable by Jlint

Call sequence to method
potentially causing deadlock in
wait()

Linear program scanning
Abstraction-based static analysis
Detectable by Jlint

Identifier.wait()
method called without
synchronizing on identifier

Linear program scanning
Abstraction-based static analysis
Detectable by Jlint

Synchronized read only
methods

Abstraction-based static analysis

Internal call of a method Linear program scanning
Abstraction-based static analysis

Locked but not used object Linear program scanning
Abstraction-based static analysis
Dynamic analysis

Synchronization abuse Abstraction-based static analysis
Wait() not in loop Linear program scanning

Detectable by FindBugs
Unconditional wait() Linear program scanning

Detectable by FindBugs
Unconditional notify() or
notifyAll()

Linear program scanning
Detectable by FindBugs

Reference Value is changed
when it is used in
synchronization block

Linear program scanning
Detectable by Jlint

Overthreading Linear program scanning
Dynamic analysis

Blob Thread Linear program scanning

 27

Dynamic analysis
Complex computation within an
AWI/Swing thread

Dynamic analysis

Misuse of notifyAll() Linear program scanning
Abstraction-based static analysis
Dynamic analysis

The double-check locking for
synchronized initialization

Linear program scanning
Detectable by FindBugs

Synchronized atomic operations Linear program scanning
Synchronized immutability
object

Abstraction-based static analysis

Unnecessary notification Linear program scanning
Dynamic analysis

Double call of the start method
of a thread

Linear program scanning
Abstraction-based static analysis

Waiting forever Linear program scanning
Dynamic analysis

Unsynchronized spin wait Linear program scanning
Detectable by FindBugs

Start() method in constructor Linear program scanning
Detectable by FindBugs

Get-Set methods with different
declaration

Linear program scanning
Detectable by FindBugs

Improper method calls Linear program scanning
Detectable by FindBugs

Wait stall

Dynamic Analysis
Detectable by JProbe Threadalyzer

Premature join() call Data flow analysis
Dynamic analysis
Detectable by FLAVERS

Dead interactions Data flow analysis
Dynamic analysis
Detectable by FLAVERS

Join() with immortal thread Data flow analysis
Dynamic analysis
Detectable by FLAVERS

 28

3 Chapter 3 MT Java Analysis approaches

3.1 Introduction

In this chapter we discuss tools/techniques to detect the Antipatterns listed before. The

tools/technique can be broadly classified as two types: namely dynamic checkers and

static checkers.

Dynamic Analysis requires the execution of the program and then analysis the execution

trace for the property verification. In static analysis, one does not run the program, but is

 29

based on the analysis of the code (source code or bytecode) and are normally independent

of the input order or thread scheduling since the code is analyzed without execution.

3.2 Dynamic Analysis

We tried to find the classified antipatterns/properties with both the static checkers and

dynamic checker. But we conclude that most of the antipatterns can be detected by

dynamic analysis, but dynamic analysis gave significant edge over static analysis in

detection of certain antipattern/properties.

The advantages of dynamic analysis [Hav03]

• The possibility of detecting errors which are actually happened (on specific data,

platform, and JVM);

• The ability to detect errors which are impossible or too difficult to detect statically;

• Source code is not required.

At the same time, implementing the dynamic analysis approach faces a number of

challenges, among which are [Hav03]

• Observation of a program behavior requires special efforts (instrumentation);

• Instrumentation of points of observation may cause side effects on behavior and

timing characteristics

• The results concern only the executions taken during the observation period and not

much can be said about other executions

• Similarly, the results are valid only for a scheduling performed while the program

was executed

• Errors are often difficult to reproduce

 30

Before discussing the advantage of dynamic analysis over static analysis, we would like

list the most popular dynamic based tool (both commercial and research based) here.

In the following, we provide a list of most common dynamic tools (both commercial and

research)

MaC: (Monitoring and Checking) is a monitor running systems against a formal

specification [ART01]. It was developed by the Real-time systems group (RTG) at the

University of Pennsylvania. It combines a high-level requirement specification and a

low-level monitoring script that verifies the given requirements at source code level. The

requirements are expressed in an extended form of linear temporal logic; the monitoring

script is written in a simple event definition language. An Instrumentor generates a

runtime checker based on the given data. This checker verifies the given properties after

each method call. MaC has been applied to a couple of small test programs.

MaC is available for research purposes, including source code. It is written in Java and

platform independent. It requires the JTrek library from Digital Equipment Corporation.

The tool is downloadable from http://www.cis.upenn.edu/~rtg/mac.

However, MaC does not yet have a framework for systematically testing multi-threaded

programs.

Visual Threads is a tool created with a purpose to detect concurrency errors in multi-

threaded programs, which uses POSIX Threads. Visual Threads is a part of the

development toolset of Compaq’s Tru64 Unix. Visual Threads is a diagnostic tool used to

analyze and refine multi-threaded applications.

 31

It can be used to debug potential thread-related logic problems, such as race conditions

and deadlocks that only occur due to slight timing differences. It can also pinpoint

bottlenecks and performance problems by using its rule-based analysis and statistics

capabilities and visualization techniques. Some support for user-defined rules is provided.

The tool has been used on an experimental OS kernel, the AltaVista indexing engine, and

a couple of other projects.

Visual Threads is available for Tru64 Unix system under Developers Toolkit license. The

OpenVMS, Linux and HP-UX downloads are free (evaluation license), however, Linux

and HP-UP versions offer a limited Java support.

The tool is downloadable from

http://www5.compaq.com/products/software/visualthreads/

Java PathExplorer (JPaX) is developed by the Automated Software Engineering Group

at NASA Ames Research Center; main authors are Klaus Havelund and Grigore Rosu.

Java PathExplorer is a tool for monitoring the temporal behavior and finding concurrency

faults (such as deadlocks and dataraces). The tool facilitates automated instrumentation

of a program's bytecode, which then emits events to an observer during its execution.

The observer checks the events against user provided high-level requirement

specifications, for example, temporal logic formulae, and against lower level error

detection procedures, usually concurrency related, such as deadlock and data race

algorithms. It can be used during the development process to provide verification and

can also be used during operations to further optimize systems as they mature. It also

 32

includes automated test-case generation as well as automated generation of assertions and

properties corresponding to test cases.

JPaX consists of the three modules:

1. Instrumentation Module – performs a script-driven automated instrumentation of the

program to be verified.

The Java byte code instrumentation in JPaX is performed using JTrek a Java byte code

engineering tool from Digital.

JTrek developed at Digital Equipment Corporation consists of the Trek class library that

provides features to examine and modify Java class files. It also includes a set of console

applications based on the Trek library.

JTrek reads Java class files (bytecode files), traverse them as abstract syntax tree and

insert new code in highly flexible manner. The inserted code can access the contents of

the method call-time stack at run-time and thus giving access to information needed in

the analysis [Hav01b]. The extracted information is transmitted in the events. The

observer receives the events and dispatches them to a set of observer rules, each rule

performing a particular analysis.

2. Observer Module – performs two kinds of verification.

Logic-based monitoring module checks execution events against a user-provided

requirement specification. These specifications are defined in Maude, a modularized

specification and verification system. JPaX supports linear temporal logic (LTL), both

 33

future time and past time. Future time LTL provides execution traces as models making

it convenient for program monitoring. Past time is useful for verification of safety

properties.

Similarly to Visual Threads, the tool performs error pattern detection, namely, prediction

of deadlocks by lock graph analysis and race conditions with a modification of the Eraser

algorithms.

Error pattern analysis explores an execution trace and detects potential problems such as

error-prone programming techniques like locking practices that may lead to data races

and/or deadlocks. The important and appealing aspect of error pattern analysis

algorithms is that they find error potentials even in the case where errors do not explicitly

occur in the examined execution trace. At the same time, the tool may generate false

positives.

JPaX contains two algorithms focusing on concurrency errors: a data race analysis

algorithm “Eraser” [Sav97] and a deadlock analysis algorithm.

3. Interconnection Module - receives information about potential errors and transmits

them to the observation module

Usage: An initial prototype of this tool has been applied to two major case studies, the

K9 rover developed at NASA Ames Research Center and the Deep-Space 1 attitude

control system. The main challenge of the tool is an overhead to the normal execution of

programs created by monitoring, and of course, the problem of the false positives.

To the best of our knowledge this tool is not available for download from the web.

 34

JMPaX analyzes a multithreaded program against the safety properties expressed using

temporal logic [Sen03]. The tool is developed within Formal Systems Laboratory at the

University of Illinois at Urbana-Champaign; main authors are Koushik Sen, Grigore Rosu

and Gul Agha. In fact, the limitations of JPaX motivated this development.

JMPaX is a prototype tool for runtime safety analysis of multithreaded programs. It can

predict violations of safety properties expressed in temporal logic from executions of

multithreaded programs.

The user of JMPaX specifies the safety properties of his interest, using a past time

temporal logic, regarding the global state of the multithreaded program (which is

assumed in compiled form). Then, JMPaX calls an instrumentation script which

automatically instruments the executable multithreaded program to emit relevant state

update events to an external observer, and finally runs the program on any JVM and

analyzes the safety violation messages reported by the observer [SEN03]. An appealing

aspect of this approach is that a single execution, or interleaving, of a multithreaded

program is observed, a comprehensive analysis of all possible executions is performed; a

possible execution is any execution which does not violate the observed causal

dependency partial order on state update events. The tool JMPaX built on this approach

has the ability to predict safety violation errors in multithreaded programs by observing

successful executions.

The instrumentation module uses BCEL [DAH01] Java library to modify Java class file.

The BCEL library is used to get a better handle for a Java class file. It enables to insert

 35

vector clocks as static member fields in a class, which is otherwise not possible with the

tool JTreK (an instrumentation tool used in JPaX).

Usage: This tool is intended for use on real-world NASA-related large applications.

The tool is available for download from http://fsl.cs.uiuc.edu/jmpax/.

3.3 STATIC ANALYSIS

3.3.1 Definition

Static Analysis - detects runtime errors and unpredictable code constructs without

executing code. In other words, it is based on the analysis of code (source code or

bytecode) and are normally independent of input order or thread scheduling since the

code is analyzed without execution. Static analysis tools of various types, including

formal analysis tools, are being developed, which can detect faults in the multi-threaded

domain [NASA02] [HAL04]. Common static analysis techniques include data flow

analysis, control flow analysis, type checking as performed by modern programming

language compilers, abstract interpretation and type and effects analysis.

In additional to errors, discussed before, static analysis can also detect the following type

of errors [NASA02]:

1. Attempt to read a non-initialized variable – read access to non-initialized data may

cause non-determinism. Static Analysis tools locate code sections using data that is

not initialized.

2. Access conflicts for unprotected shared data

 36

3. Referencing through null or out-of-bound pointers

4. Out of bound arrays - out of bound array errors occur when an index goes outside the

range of an array. Static Analysis checks whether the loop incrementing the index

can exceed the array size.

5. Division by zero – Static Analysis can check that a division equation is properly

coded with if statements to prevent the denominator from equalling zero. It can also

provide a list of possible denominator variables to check the equation.

6. Invalid arithmetic operations (square root of negative number) – Arithmetical

exceptions caused by procedural entities like modulo computation, square root and

logarithm can be checked using Static Analysis.

7. Overflow, underflow of arithmetic operations for integers and floating-point numbers

– overflow and underflow occur in numerical computation when a result is not

compatible with the variable that stores it. Therefore, it cannot be represented in

memory. Static Analysis locates and reports these problems.

8. Unreachable (dead) code – Static Analysis can locate and report codes segments that

are never executed. For example: if statement never executed because its condition is

never met.

9. Illegal type conversion – occurs when a result does not match its assignment

10. Unpredictable behaviour of multi-threaded applications with shared data. Depending

upon the order in which threads read and update shared data, different results can

occur for the same input

 37

3.3.2 Benefits

Verification can begin earlier in the Software Life Cycle resulting in early detection/

resolution of problems and thus reduction in development cost [NASA02].

3.3.3 Challenges

The biggest challenge for Static Analysis is generation of false positives sometimes due

to overapproximation [NASA02]. However, while the number of false positives may

seem large in some cases, subsequent errors can be the result of an initial or upstream

error. Correcting this error can eliminate some false positives.

For example, assume that the analysis only tracks the sign of some integer variables. If a

positive and a negative value are added, the algorithm cannot tell the sign of the result

and will consider both alternatives to error on the safe side. One of them may lead to

error that corresponds to no actual feasible execution of the real program.

Here we provide a short summary of the several tools that rely on static analysis

Tool: Bandera

Purpose: Build a model suitable for model checkers from Java source code

[ART01].

Producer: Laboratory for Specification, Analysis, and Transformation of Software in

the CIS Department at Kansas State University.

Technologies: Program slicing, program abstraction, static model checking; two-

way conversion between abstraction levels.

 38

Overview: Bandera tries to bridge the gap between software source code and an

abstract representation of it. A special annotation language allows to express assertions

and temporal or quantified properties in the source code. Predicate definitions for each

method are used in property specifications which contain the program properties

(invariants or sequences of states through which the program always has to go).

Using program analysis (slicing), the first stage of Bandera generates a simplified version

of the program, containing only the statements of interest for the correctness of the

program. This can drastically cut down the complexity of the model that is generated

from the program.

The second stage reduces the model size further via data abstraction. It generates an

intermediate representation of a finite-state model in an intermediate format.

This format is then translated into the specification language of a model checker

of choice; so far, SPIN is supported. Translators for the Symbolic Model Verifier

(SMV), developed in the Carnegie Mellon University, and Stanford’s forthcoming SAL

model checker are under construction.

A newer component is the counter-example generator that checks faults found in the

abstract model for their validity in the actual program, and reports where in the source

code the fault was found.

Availability: Available for free download from http://bandera.projects.cis.ksu.edu/

Usage: Bandera has been applied, in conjunction with JPF, to a couple of small

programs, including Doug Lea’s concurrency package.

Tool: ESC/Java

 39

Purpose: Detect common programming errors at compile-time [Art01].

Producer: Compaq Systems Research Center

Technologies: Generator of background predicates and verification conditions, simplify

theorem prover

Overview: The “Extended Static Checker” for Java has been developed by Digital

Equipment Inc. (now part of Compaq). The first version has been written for checking

Modula-3 programs. ESC/Java statically checks a program for null reference errors, array

bounds errors, potentially incorrect type casts and race conditions.

ESC/Java requires annotations in the source code in its own annotation language. In an

internal study, the annotation overhead in the source code was about 13.6% [38].

However, less scrupulous annotations can be made, ignoring certain types of faults.

The checker first generates type-specific background predicates to encode data types and

type relations for each class and interface. Then, each routine is translated into a

verification condition. As an intermediate step, a sequence of commands similar to

Dijkstra’s guarded commands is produced. The Simplify theorem prover then tries to

disprove each one of these verification conditions. If it succeeds, the front end transforms

the counter-example context into a warning and (optionally) a counter-example [36].

Availability: The checker has recently been released and is freely available for research

and educational use. A binary version can be downloaded for Alpha Unix, Solaris, Linux

andWindows 9x/NT. The front end has been written in Java while the theorem prover

Simplify is written in Modula-3. – A Modula-3 front end is also available, but for Alpha

Unix and Intel Windows 9x/NT only.

 40

Usage: ESC/Modula has successfully found fault in several small projects, being

totally 20 K LOC in size. There are no numbers available yet for ESC/Java.

URL: http://research.compaq.com/SRC/esc/

Tool: Jlint

Purpose: Semantic verifier detecting certain deadlocks, race conditions and a few

other faults [Art01].

Producer: Moscow State University, Research Computer Center; main author:

Konstantin Knizhnik.

Technology: Control flow/lock dependency analysis, specialized checks for other faults.

Overview: Jlint comes as two programs, a simple syntax verifier (AntiC) and a

semantic verifier (Jlint). The former checks for a few common potential syntax errors.

The latter is much more interesting, for it extracts information from (non-annotated,

normally compiled) Java class files and performs consistency and flow analyses on them.

Jlint is capable of dealing with missing debugging information which some Java

compilers cannot (yet) generate. It also allows a hierarchical selection of the checks that

should be performed.

The core algorithm checks Java class files for loops in the lock dependency graph. This

graph includes both static and dynamic methods. It also makes sure the programs follow

certain consistency rules when using the wait method in Java. Race conditions are found

by building the transitive closure of methods which can be executed concurrently and the

methods they call. Then, all field accessed by such methods which fulfill certain

conditions are reported as possible race conditions in data access. Jlint is rather

 41

conservative at reporting errors, since it does not allow annotations which could eliminate

false positives.

Availability: Freely available for download at http://artho.com/jlint/ ; written in C and

C++, and should work on any platform.

Usage: No other numbers are available, but Jlint has been applied successfully at Trilogy

to large scale software (several projects of several ten thousand LOC each).

URL: http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm

Tool: JPF

Purpose: Integrate model checking, analysis and testing.

Producer: Automated Software Engineering Group (ASE) at NASA; main author:

Klaus Havelund.

Technologies: Slicing, abstraction; 1.0: Java to PROMELA translator; 2.0: special

JVM (MC-JVM) and model checker

Overview: The “Java PathFinder” has been developed at the Automated Software

Engineering (ASE) department at NASA. Currently, JPF can only check invariants

and deadlocks. Invariants are given as a Boolean Java method.

After an abstraction and a slicing stage, which both reduce the state space of the program

a lot, a depth-first search is performed on the program stages. A special JVM, which

allows to move forward and backward one state in the bytecode execution, is used for

this.

The first version was a translator from Java to PROMELA []. Special assertion and error

methods specify the properties to be checked. It has, however, only supported a fairly

 42

restricted subset of Java. Because it was too difficult to extend the program to support

more Java constructs, a different approach has been taken for the second version, which

works directly on bytecode. It can therefore fully support all Java features [].

Availability: It is not available for free download

Usage: JPF has been applied to the Remote Agent Spacecraft Controller (RAX),

where it found a deadlock, and the DEOS Avionics Operating System. After the slicing

stage, the largest package was 1443 LOC in size [].

URL: http://ase.arc.nasa.gov/jpf/

3.4 Model Checking

Model Checking - automated technique for verifying finite state concurrent systems. The

model checker evaluates the model by beginning with the initial states and repeatedly

applying transitions to reach all possible states [NASA02]. In order to explain Model

Checking, we define the following terms:

• Formal Model – computer model of system

• State – snapshot of the system that captures values of variables at a particular instant

in time

• Transition – the change described by the state before an action occurs and the state

after the action occurs

To use a model checker, an engineer must create a model of the system. This model

represents valid states and transitions of the system. The model checker evaluates the

model beginning with the initial states and repeatedly applying transitions to reach all

possible states. If a property violation occurs, the model checker reports the error via an

 43

execution trace called a counterexample. Counterexamples show where the violation

occurred.

Model checkers verify properties of dynamic operations using the Temporal Logic

formalism. Two kinds of Temporal Logic are described:

• Linear Temporal Logic (LTL) – time is described in a linear fashion with no

branching

• Computational Tree Logic (CTL) – time is described in a branching fashion

Three Model Checking tools are:

• SPIN – an explicit model checker that enumerates all individual states to be verified.

This approach is limited by the size of the state space of the system. Although SPIN

provides many optimizations to cover very large state spaces (millions of states and

more), it is unlikely to scale well for very complex models.

• SMV – a symbolic model checker that uses efficient data structures (binary decision

diagrams, or BDDs) to represent and process sets of states in a single operation. The

symbolic processing allows SMV to explore much larger state spaces than explicit

state tools such as SPIN. However, SMV is still limited by the complexity of the

generated BDD structures, which can vary wildly and are hard to optimize.

• UPPAAL - a toolbox for validation and verification of real-time systems described as

networks of timed automata

3.4.1 Benefits

1. Fast, automated method for exploring all relevant execution paths of non-

deterministic Systems. This is very important because it is virtually impossible for

 44

humans to conceive every test scenario required to verify a nondeterministic system

in a plausible time frame for software development [NASA02].

2. Model checker can backtrack to explore alternative paths from a common

intermediate state, avoiding the costly reset between tests required in traditional

scenario based testing.

It stores and compares states to detect those already explored, thus exploring all states

exactly once even in the case of looping executions.

3. Detects problems in the early stages of development; thereby greatly reducing overall

development costs.

3.4.2 Challenges

There are two challenges associated with model checking [NASA02]:

• Models must be translated into special model checking language like PROMELA (for

SPIN) or SMV

• State space explosion – Because of the way software components interact with each

other and because data structures can have different values, it is common for a model

checker to run out of memory before exploring the entire state space.

The following tools/techniques mitigate state space explosion [NASA02]:

1. Symbolic model checkers, like SMV, offer a technique for mitigating state space

explosion. Instead of generating and exploring every state like explicit model

checkers, symbolic model checkers manipulate whole sets of states at a time.

2. A set of states is evaluated for each transition by implicitly representing the states as

the logical conditions the states satisfy. Sets of states are encoded as Binary Decision

 45

Diagrams (BDDs). BDDs are a special representation for Boolean formulas that is

often more compact than

3.5 Theorem Proving

Theorem Proving – use of logical induction over the execution steps of the program to

prove system requirements. In other words, system requirements can be translated into

complex mathematical equations and solved by verification experts. Solving these

equations proves that the system is accurate [NASA02].

3.5.1 Benefits

It can use the full power of mathematical logic to analyze and prove properties of any

design.

3.5.2 Challenges

Requires significant effort and expertise making Theorem Proving suitable for analysis of

smallscale

 46

4 Chapter 4 Java Trace Collection

4.1 Introduction

Here we discuss advantages and drawbacks of existing trace collection approaches and

tools. Based on this comparison we outline our approach, which combines the best

features of custom bytecode instrumentation and of an industrial strength profiler.

4.2 Instrumentation Approaches

As discussed before, that for the runtime time analysis of the program, we need to extract

the relevant events and then analyze the properties in question, based on the information

provided by the extracted events.

The event collection could be performed (with an added instrumentation) on the

following levels:

 47

• Operating system
• Java Virtual Machine (we include standard instrumentations such as profiling and

debugging services in this category)
• Source code or
• Compiled code (bytecode)

Often, instrumentation is not a part of the system design, but is added to existing systems.

An instrumentor [KIM01] is a tool that receives as input the program (source code or

bytecode) and instruments it, at different locations with additional statements for

monitoring purposes.

During the execution of the program, the instructions embedded by the instrumentor are

executed. The relevant execution events generated by instrumentation are saved in a file.

The JVM instrumentation is the least portable, since JVM implementation of different

producers could vary. Since bytecode is simpler than Java, instrumentation at the

bytecode level is easier than at source code level, and is, therefore, most common

[KIM01].

Now we will briefly discuss the different instrumentation approach in detail.

4.2.1 Custom JVM Instrumentation

Java Virtual Machine (JVM) instrumentation consists in modifying the existing JVM to

provide the required data collection. An attractive feature of JVM instrumentation is

access to information, which is unavailable with internal methods, such as byte and

source code instrumentation.

At the same time, custom JVM level instrumentation suffers from the following

disadvantages [KIM01]:

 48

• The reengineering of an existing JVM requires special efforts. The process could be

error-prone without deep knowledge of the application.

• The JVM uses Just-In-Time (JIT) compilation and Hot Spot dynamic compilation

[Arm98] for performance enhancement. However, when these features are enabled,

simple modification of the bytecode interpreter unit is not sufficient [Kim01]. One

has also to modify compilation, inlining, and interpreter units. This increases the

complexity of JVM modification.

• JVM has been updated frequently (there have been four major and two minor

updates through the last four years – v1.0 to v1.3 being major and v1.4 to v1.5 being

minor updates); modification of the JVM for monitoring should be done as

frequently.

Therefore, custom modification/instrumentation of the JVM does not seem to be a

practical solution.

To alleviate the above-mentioned difficulties of custom instrumentation, modern JVMs

are already instrumented with standardized and extensible profiling (JVMPI) and

debugging (JPDA) services. With the development of the JVM profiling interface,

custom JVM instrumentations have become rare. In fact, some tools, such as JinSight,

abandoned them in favor of JVMPI.

The use of the standard debugging and standardizing profiling architectures of JVM is

discussed below.

 49

4.2.2 Java Profiling Interface

The JVMPI is a two-way function call experimental interface between the Java virtual

machine and an in-process profiler agent. On one hand, the virtual machine notifies the

profiler agent of various events, corresponding to, for example, memory allocation,

thread start, lock contention etc. On the other hand, the profiler agent issues control

requests for more information through the JVMPI. For example, the profiler agent can

turn on/off a specific event notification, request a dump (snapshot) of objects, threads, or

lock (monitor) status, based on the needs of the profiler front-end. A proof of concept

agent is provided within Sun SDK since version 1.2; some JVMPI support is provided by

other JVM producers.

The possible monitored events are:

• Method enter and exit
• Object alloc, move, and free
• Heap arena create and delete
• Garbage Collection start and finish
• JNI global reference alloc and free
• JNI weak global reference alloc and free
• Compiled method load and unload
• Thread start and end
• Class file data ready for instrumentation
• Class load and unload
• Contended Java monitor wait to enter, entered, and exit
• Contended raw monitor wait to enter, entered, and exit
• Java monitor wait and waited
• Monitor dump
• Heap dump
• Object dump
• Request to dump or reset profiling data
• Java virtual machine initialization and shutdown

Aiming mainly at performance issues, JVMPI does not provide logging of monitor

entry/exit and variable access events required for data race detection, as well as

 50

scheduling. In order to increase the level of observed details, different techniques could

be applied. For example, a Linux Monitoring Tool used in conjunction with JVMPI in the

development of Java Profiling [MEI03] tool is able to observe even the execution thread

scheduling.

The JVMPI allows the profiler agent to instrument every class file before it is loaded by

the virtual machine. The profiler agent may, for example, insert custom byte code

sequence that records method invocations, control flow among the basic blocks, or other

operations (such as object creation or monitor operations) performed inside the method

body.

Along with event logging, JVMPI provides a sampling mechanism, that gives, on request,

the program snapshots. Sampling suits better for performance evaluation purposes;

however, it could be employed in correctness problem detection; e.g., deadlocks could be

detected with thread/lock dumps.

The JVMPI is used by the profiler agent that runs in the same process as the Java virtual

machine. Programmers who write the agent must be careful in dealing with threading and

locking issues in order to prevent data corruption and deadlocks.

Events are sent in the same thread where they are generated. For example, a class loading

event is sent in the same thread in which the class is loaded. Multiple events may arrive

concurrently in different threads. The agent program must, therefore, provide the

necessary synchronization in order to avoid data corruption caused by multiple threads

updating the same data structure at the same time [JVMPI].

 51

4.2.3 Java Debugging Architecture

JPDA is a three-tiered debugging architecture that allows tool developers to easily create

remote debugger applications, which run portably. The architecture is standardized and

supported by most JVM implementations [JPDA].

JPDA is somewhat similar to JVMPI, and certain functionalities overlap. However, it

allows more control and interaction, namely, to manipulate (suspend, resume, stop, ...)

threads, add/remove breakpoints, get/set the value of a local variable, watch field access,

and change memory allocation scheme, as well as line by line execution.

The observed events are:

• method entry and exit
• field access and modification
• thread end and start
• class load, unload and preparation
• death and initialization of virtual machine
• single step execution and breakpoint events

Local variables and arrays are not observed. Often, source code modification is

recommended to transform arrays and local variables into observable entities.

Controls over the Virtual Machine allow class redefinition, this makes class

instrumentation possible.

Until the SUN SDK version 1.4 a program could only be debugged in interpreter mode.

Since SDK 1.4, the interpreter mode is only used when breakpoints are inserted. Setting a

breakpoint only inhibits compilation (full speed execution) for the method containing the

breakpoint.

 52

Since JPDA does not track lock accession events [LEE03] extended (instrumented) JPDA

of Sun SDK 1.3 for model checking Java.

Another way of overcoming JPDA limitations for lock entry/exit events is single step

execution mode and breakpoints. With proper breakpoints and source code analysis,

thread synchronization and collaboration events could be traced without intrusive Virtual

Machine instrumentation. However, such a solution could be rather sluggish and does not

apply to code whose source is not available. Breakpoint debugging works well for

programs that do not interact with any other dynamic entities (other programs or real-

world devices). However, programs in distributed and real-time domains may have their

behavior and results altered if interrupted by a debugger. Events may go undetected,

message queues may overflow, and moving parts may fail to stop in time, causing real-

world damage to machines or people.

Sun SDK includes a proof-of-concept JPDA based command line debugger, JDB, and a

method call tracing tool, Trace.

4.2.4 Java Platform Profiling Architecture of J2SE 5.0

The J2SE 5.0 (a latest version of Java) release provides comprehensive monitoring and

management support: instrumentation to observe the Java virtual machine, Java

Management Extensions (JMX) framework and remote access protocols [J2SE 5.0].

The JVM Monitoring & Management API specifies a comprehensive set of

instrumentation of JVM internals to allow a running JVM to monitored. This information

is accessed through JMX (JSR-003) MBeans and can accessed be locally within the Java

address space or remotely using the JMX remote interface.

 53

J2SE 5.0 provides the following APIs for monitoring and management [J2SE 5.0]:

• Java Virtual Machine Monitoring and Management API

The java.lang.management API enables monitoring and managing the Java virtual

machine and the underlying operating system. The API enables applications to monitor

themselves and enables JMX-compliant tools to monitor and manage a virtual machine

locally and remotely

• Sun Management Platform Extension

The com.sun.management package contains Sun Microsystems' platform extension to the

java.lang.management API and the management interface for some other components of

the platform

• Logging Monitoring and Management Interface

The java.util.logging.LoggingMXBean interface enables you to retrieve and set logging

information

• Java Management Extensions (JMX)

The JMX API defines the architecture, design patterns, interfaces, and services for

application and network management and monitoring in Java. The APIs are based on the

JMX Specification.

 54

4.3 Source Code Level Instrumentation

Source code instrumentation is to add code (particular instructions, packages etc) called

probes to report the events in the program to be analyzed [CAI03].

Automatic source-code transformation usually requires parsing and analysis of the

abstract syntax tree of an application.

Java language provides already some logging capabilities with the package

java.util.logging. The core package includes support for delivering plain text or

XML-formatted log records to memory, output streams, consoles, files, and sockets. In

addition, the logging APIs are capable of interacting with logging services that already

exist on the host operating system.

Advantages of source code instrumentation are:

• Source code is more naturally understood and thus allows a custom instrumentation.

• Source code instrumentation eliminates the need for understanding the JVM and the

actions of the compiler.

• Source code instrumentation is portable over platforms and machines.

Among the disadvantages of source code instrumentation is the need for source code that

is not always available.

4.4 Java Bytecode

Before discussing the Bytecode instrumentation, we give a brief introduction about the

Java Bytecode format and related terms.

 55

4.4.1 Java Bytecode Definition

Bytecode is the intermediate representation of Java programs just as assembler is the

intermediate representation of C or C++ programs. This knowledge is crucial when

debugging and doing performance and memory usage tuning. Knowing the assembler

instructions that are generated by the compiler for the source code you write, helps you

know how you might code differently to achieve memory or performance goals [HAG01]

4.4.2 Java Bytecode Format

Here we give the brief details about the format of classfile and the bytecode instruction.

The format of classfiles and the byte code instruction set are described in more detail in

the Java Virtual Machine specification [JVM].

The content of a Java class file starts with a header containing a "magic number"

(0xCAFEBABE) and the version number, followed by the constant pool, which can be

roughly thought of as the text segment of an executable, the access rights of the class

encoded by a bit mask, a list of interfaces implemented by the class, lists containing the

fields and methods of the class, and finally the class attributes [DAH01]. Attributes are a

way of putting additional, user-defined information into class file data structures. For

example, a custom class loader may evaluate such attribute data in order to perform its

transformations.

The Bytecode translation of a well-known statement “System.out.println (“Hello

World”)” is:

getstatic java.lang.System.out
Idc “Hello World”
invokeVirtual java.io.printstream.Println

 56

The first instruction loads the contents of the field out of class java.lang.System onto

the operand stack. This is an instance of the class java.io.PrintStream. The ldc

("Load constant") pushes a reference to the string "Hello world" on the stack. The next

instruction invokes the instance method println which takes both values as parameters

(Instance methods always implicitly take an instance reference as their first argument)

4.4.3 Bytecode Instrumentation

4.4.3.1 Overview

The Java compiler converts the Java source code into the class file format [JVM].

Instead of the source code, the resulting Java bytecode is modified. The Java bytecode is

a stack based programming language. One can modify the bytecode without changing the

semantics of the program, if he introduces statements into the bytecode that have no

effect on the stack. Actions, which perform loading of values onto the operand stack,

such as iload and getField, are followed by operations, which indicate the reference

of the variable. In this case, the inserted code must not affect the operand stack. The

generation of the modified bytecode can be performed either by a customized compiler or

by using an existing compiler and modifying its resulting bytecode

4.4.3.2 Supported Events

Bytecode instrumentation can guarantee to fully track the access and/or modification of

variables. It is possible to instrument all Java class files with probes, so libraries and third

party components can be instrumented. This, however, will result in anomalies being

reported for code beyond the user control.

 57

One could distinguish dynamic and static instrumentation of bytecode. Dynamic

instrumentation is performed during program execution, while static instrumentation is

performed prior the execution.

Bytecode instrumentation offers numerous advantages:

• A class file, the unit of Java bytecode contains the rich symbolic information about

the system such as method names, global variable names and local variables that is

useful for automatic instrumentation.

• Many of the issues of interest for run-time monitoring (actual access to variables,

power consumption of instructions) are revealed precisely at the bytecode level.

• Java bytecode prohibits pointer arithmetic, which enables the detection of the

updating of variables and also it is strongly typed.

• Bytecode instrumentation adds the least overhead to a Java programs execution.

• Java Bytecode is platform independent.

• Many high level languages like Ada and Lisp compile their source code to Java

Bytecode. Thus techniques and tools developed for Java could apply to Ada and

Lisp.

• The tool support for byte code instrumentation is better than source code or JVM

level instrumentation support.

The main disadvantage in developing of bytecode instrumentation tool seems to be a

need for deep knowledge of Java bytecode language.

 58

4.5 Instrumentation Tools

In this section, we discuss tools designated for event collection as well as event collection

parts of tools for profiling and trace analysis, and general-purpose Java instrumentation

tools.

4.5.1 Java Virtual Machine Instrumentation Based Tools

4.5.1.1 Tool: JinSight

Source: IBM AlphaWorks

Overview: JinSight is a tool to visualize and explore a Java program's run-time behavior.

It is useful for performance analysis and debugging of Java program. It displays

performance bottlenecks, object creation and garbage collection, execution sequences,

thread interactions, and object references.

JinSight consists of two parts:

• Instrumented Java Virtual Machine, which generates trace data as Java program runs.

As the program runs, it produces a Jinsight trace file with information about the

execution sequence and objects of the program. The user can choose options to turn

tracing on and off, to limit the type of information recorded, and to mark significant

events in the trace file. Filtering and control over level of details are particularly

useful since tracing every detail of a program's execution will generate trace

information rapidly (30MB/min); the resulting traces quickly running into the

hundreds of megabytes and more.

 59

• JinSight visualizer, which reads the trace data and presents graphical views of

program execution, recurring method call patterns, object interconnection, call graph

etc.

The latest version of JinSight (for Java 2) is based on JVMPI platform.

Availability: Only Windows 95/NT and AIX are supported. The tool is free for

download (90 days evaluation period) from IBM.

http://www.alphaworks.ibm.com/tech/jinsight .

4.5.2 Profiling Interface Based Tools

4.5.2.1 Tool: Hyades

Producer: The tool is an Eclipse project.

Overview: The Hyades project provides an open source platform for Automated

Software Quality (ASQ) tools, and a range of open source reference implementations of

ASQ tooling for testing, tracing and monitoring software systems. Hyades provides an

extensible framework and infrastructure that embraces automated testing, trace, profiling,

monitoring, and asset management. The goal of the Hyades project is to bring ASQ tools

into the Eclipse environment in a consistent way that maximizes integration with tools

used in the other processes of the software lifecycle.

Since Hyades launch in December 2002, its development has been actively supported by

IBM, Parasoft, Telelogic, and Scapa Technologies.

The Hyades project offers a Java Profiling Agent that collects the following events:

 60

• trace start/end
• method call/return/entry/exit
• thread start/end
• exception throw
• object allocation/free/move
• JVM initialization/shoutdown
• garbage collection start/end

Lock contention events are not supported. The collected events can be stored in XML

compliant files, in the following fashion:

The above fragment of the trace produced by an instrumented SAP vending machine

server shows that along with detailed events of class definitions, object allocations,

method enter/exit, the trace presents information on the used data collection options and

filters. Hyades also provides statistics and graphical views on the results of profiling.

The instruments to create Analysis Engines and Log Analyzers are provided.

Availability: The platform is downloadable for free from http://hyades.eclipse.org and

covered by Common Public License.

Among other JVMPI based tools, we could mention the free method call profiler EJP

(http://ejp.sourceforge.net/), which presents the method call trace in an hierarchic form

with the method execution time.

4.5.3 Tools for Source-Code Level Instrumentation

4.5.3.1 Tool: JavaScope

Producer: Sun Microsystems.

Overview: JavaScope is a set of software programs to determine how well a Java

program or one or more Java source files are tested (test coverage measurement). It

 61

provides a tool to instrument the application and a browser to view resulting data. It can

instrument everything, but offers no control over instrumentation techniques, location, or

ability to add probes.

Availability: Unavailable for download.

Some tools, like the open-source (LGPL) tool RECODER automate a general source

code transformation. However, a complete automation of software changes is far beyond

today’s possibilities: In general, it is impossible to do certain design decisions

automatically. For example, in general, it is not possible to analyze the behavior of

reflective programs (analyzing reflection requires value analysis, which is not always

computable). Therefore, no guarantees can be given that the observable behavior of

reflective programs is retained.

4.5.4 Java Bytecode Instrumentation Tools/Toolkits

Tools described here provide an ability to modify Java bytecode. While some tools are

ready to perform instrumentation (e.g., ProbeMeister), others are tools or libraries, which

could be used to implement a custom instrumentation tool.

4.5.4.1 Tool: JProbe Threadalyzer

Producer: Quest Software

Overview: JProbe Threadalyzer detects thread problems that can threaten the application

performance. It analyzes the Java code to:

• pinpoint the cause of stalls, deadlocks and race conditions;
• predict deadlocks with advanced lock analysis;
• visualize the status of all running threads;
• view precise source location, where problems occur;
• avoid data corruption due to race conditions.

 62

The event collection is performed by instrumentation. The events relevant to the property

under analysis are logged into “snapshot” files, and could be visualized (see Figure 4.1)

or converted into text or XML formats.

Figure 4.1: A trace snapshot of JProbe
Here, we discuss the thread stall and data races that JProbe Threadalyzer reports.

JProbe Threadalyzer reports the following possible thread stalls:

• A thread blocks, waiting to acquire a lock and does not acquire the lock within a

user-defined time;

• A thread waits (wait() is called with no timeout value) for a notify() event that

is not sent within a user defined time.

Threadalyzer flags thread stalls as potential problems in the analyzed programs.

Threadalyzer leaves it to the programmer to control how long a thread must be inactive

before being flagged as stalled. This is done in the Threadalyzer tab of the Run Settings

dialog.

 63

Threadalyzer identifies and flags any data races it encounters while running the program.

The data race detection process is usually resource intensive and may slow down

Threadalyzer performance.

Powerful lock analyzers help in identifying thread problems before they happen.

JProbe supports Java 2 broad platform and Eclipse.

Availability: It is available online for free download at

“http://www.quest.com/solutions/download.asp” (trial version only).

4.5.4.2 Tool: ByteCode Instrumentation Tool (BIT)

Authors: Han Lee and Ben Zorn.

Overview: Bytecode Instrumenting Tool (BIT) is a collection of Java classes for building

tools to instrument Java Virtual Machine (JVM) bytecodes [LZ97]. BIT employs an

instrumented program-based technique for extracting dynamic behavior of Java Virtual

Machine (JVM) bytecodes. BIT allows the user to insert calls to analysis methods

anywhere in the bytecode, so that information can be extracted from the user program

while it is executed. This information, in turn could be used in performance

measurement and optimization. BIT is an effective framework for understanding a

dynamic behavior of JVM bytecodes.

The architecture of BIT is based on the observation that many of the dynamic behaviors

of a program can be obtained by instrumenting a few key locations, e.g., before and after

methods, before and after basic blocks, and before and after instructions. Thus, BIT

provides classes and methods for inserting a method invocation at each of these key

locations. BIT uses an internal representation of the bytecode, to which modification can

be made and then written back to a class file.

 64

BIT consists of two Java packages. One for performing low-level operations such as

reading and writing class files, interpreting constant pool entries, reading code buffers,

and other low-level class file parsing. Another package is used for performing higher-

level operations such as finding and constructing basic blocks, decoding instructions from

the code buffer, inserting method calls, and navigating through higher intermediate

representations. The first package provides a low-level representation of a class file while

the second package provides higher-level functionality.

BIT is implemented using the Java programming language. BIT consists of 43 Java

classes. Various program analysis tools for measuring and understanding the dynamic

behavior of the program can be built using BIT classes

Availability: It is available for download at

 http://www.cs.colorado.edu/~hanlee/BIT/index.html

4.5.4.3 Tool: JTrek

Producer: Digital Corporation.

Overview: JTrek was developed at Digital Corporation (Digital has now merged with

Compaq and Hewlett-Packard). JTrek is a platform independent advanced technology

written in Java for troubleshooting Java applications. JTrek consists of the Trek class

library, which enables Java developers to write Java applications that analyze and modify

Java class files.

Usage: It is used as an instrumentation tool in Java PathExplorer (JPaX), a Run-time

Verification Tool. JTreK reads Java classfiles, traverses them as abstract syntax trees

while examining their contents and inserts new code. The inserted code can access the

 65

contents of the method call-time stack at run time. JTreK is also used as an

instrumentation tool in Java-Mac “A run-time assurance tool for Java Programs”

developed at University of Pennsylvania, U.S.A.

Availability: It is available for free download at “http://www.cis.upenn.edu/~rtg/mac/”

4.5.4.4 ToolKit: Byte Code Engineering Library (BCEL)

Overview: The Byte Code Engineering Library (formerly known as JavaClass) is a

toolkit for the static analysis and dynamic transformation of Java class files [DAH01]. It

enables developers to implement the desired features on a high level of abstraction

without handling the internal details of the Java class files. It is intended to give users a

convenient possibility to analyze, create, and manipulate Java class files.

BCEL was designed to model bytecode in an object-oriented way by mapping each part

of a class file to a corresponding object. Particular bytecode instructions may be inserted

or deleted by using instruction lists and applying changes to existing class files. Efficient

bytecode transformations can be done by using compound instructions as a substitute for

a whole set of instructions of the same category. For example, an artificial push

instruction can be used to push arbitrary integer values to the operand stack. With the aid

of run-time reflection, i.e., meta-level programming, the bytecode of a method can be

reloaded at run time.

BCEL consists of several components such as:

• org.apache.bcel.util.Class2HTML, which generates nice HTML pages for a class

 66

• org.apache.bcel.util.JavaWrapper, which replaces standard java interpreter to use

own class loader to let one modify a loaded class via modifyClass method that can be

overloaded

• org.apache.bcel.verifier.GraphicalVerifier, which allows to verify the class file with

verbose output

Usage: Java MultiPathExplorer (JMPaX), a trace verification tool, uses BCEL Java

library to modify Java class files for collecting data access events and maintaining a

vector clock, which identifies a partial order among events.

Availability: It is available for free download at http://jakarta.apache.org/bcel/ under

Apache Software License (open source).

4.5.4.5 Tool: JIAPI: Java Instrumentation API

Producer: Open source project.

Overview: A high level API to instrument Java bytecode based on BCEL.

The goal of the project is to provide:

• A framework to implement instruments which manipulate Java bytecode

• Implementations for common bytecode manipulations

• A abstraction of some details in bytecode structure

• Easy to use event-based API and run-time hooks

• Instrumentation configuration tool

• ClassLoaders utilizing bytecode instrumentation

• Class loading plugins for application servers

The event model includes

 67

• Method exit/entry

• Field access

• Exception throw

Availability: Available for free download from http://jiapi.sourceforge.net/ under lesser

Public GNU License

Table 4.1: The summary of the analyzed instrumentation tools

Tool Availability Source Byte/Source
code/JVM
level

Usage

BIT Free for
Download

By Han Lee
and Ben Zorn
at University of
Colorado

Bytecode Used for research
purposes and
making
customized tools

Jikes Download for
free (90 days
evaluation
period)

IBM Alpha
Works

Bytecode Development of
tools for
customized
instrumentation

JOIE Free for
download (beta
version)

Duke
University,
USA

Bytecode Used in projects
like Ivory, Safkasi
and Naccio

Hyades Free download Eclipse Project JVMPI
JProbe
Threadalayzer

Download for
Free (trial
version)

Quest Software Bytecode Used by SAP

Jiapi Free Public project Bytecode
BCEL Free for

download,
Apache open
source

Apache Open
Source
Community

Bytecode Used in JMPaX,
JContractor, JRaT

Omniscient
debugger

Free download Bil Lewis Bytecode Used to debug its
own code

ProbeMeister Free for non
commercial
purpose only

Object services
& Consulting,
MD

Bytecode To monitor
distributed
applications

CFParse Download for
free (90 days
Evaluation
period)

IBM Alpha
works

Bytecode Used for
debugging service
and controlling the
functionality of a
applet

AspectJ Free for Tool available Source code Custom logging

 68

Download at Mozilla
Public license

JTreK Not available
for download

Hewlett
Packard

Bytecode Used in JPaX and
Java.Mac

JSpy Not available
for download

NASA Ames
Research
Center

Bytecode To be used in
JPaX

4.6 Our Instrumentation and trace collection Approach

4.6.1 Introduction

In our runtime analysis approach, for instrumentation purposes we use integrated

approach, combining both the approaches (i.e profile interface based approach – Hyades

base and bytecode instrumentation based approach – JTREK). In this way we can use

best of both the two approaches. As discuss before, Hyades framework consist of Java

profiling interface which provides non-intrusive trace collection. With this approach,

events for example such as method entry/exit, trace start/end, exception throw are

collected. These events are emitted as XML fragments, when Java profiling agent

attaches to JVM to capture and record the Java application behaviour.

The limitation of Hyades based approach is that, we can only collect limited types of

events. The events such as monitor enter/exit, variable updates (either write and read)

could not be collected, these events we require for monitoring of concurrency errors, such

as deadlocks and data races. To improve the Hyades based trace collection approach we

supplement it with bytecode instrumentation tool –JTREK.

To record monitorenter and monitorexit events, JTreK instrument the bytecode with

empty methods Object.lockentry and Object. lockexit before the start of synchronized

statement. Similarly to record variable updates JTrek instrument the bytecode with

 69

empty methods such as variable_write and variable_read before the monitored variable

write or read operation.

When this instrumented bytecode is executed using the Profile interface tool (Hyades

framework), the additional events are logged in Java trace (in XML format).

4.6.2 Hyades Profiling and Tracing

The Hyades Profiling and Tracing Tool consist of the Profiling and Logging Perspective.

It enables to profile the application, to work with profiling resources, to interact with the

application when profiling, and to examine the application for concurrency or memory

related problems. The Profiling Tool collects data related to the Java program's run-time

behaviour. Data collected from a profiling session is saved to a file in .xml format for

later analysis. To profile an application/program, it needs to be running, an agent (Java

profiling agent) needs to be associated with it, and we need to attach to that agent. If the

application is already running, we only need to attach to its agent. Attach means that a

monitor is created to record runtime behaviour of an application. The Java Profiling

Agent is an agent instance that is deployed with the Agent Controller. The Application

Process is the Java Virtual Machine that executes the Java application. If the application

is not running, then we need to launch it. Launch means that the application is started, an

agent is associated with the process, and a monitor is created to record runtime behaviour

of an application.

4.6.2.1 Event Structure and there Attributes

Here we briefly discuss the event structure (which is in XML format) of the Java trace.

The data output of the Java Profiling Agent (Hyades Tracing) is a set of XML elements,

 70

that are either emitted as fragments within a non-XML trace stream or as part of a valid

XML document.

The event structure consists of the following elements

• IDs
• Common attributes
• Structural elements
• Trace behaviour elements
• Class elements
• Object elements
• Method elements
• Line elements
• Memory management elements
• Exception elements
• JVM elements
• Monitor elements
• All trace elements

4.6.2.1.1 IDs

Attributes of the elements has various kinds of IDs. Threads, classes, methods, and

objects each have unique IDs. Each ID has a defining element and an undefining

element. A defining element provides the information related to an ID. For example, the

defining element for a thread ID contains, among other entries, the name of the thread.

An ID is valid until its undefining element arrives. An undefining element invalidates the

ID, whose value may be reused later as a different kind of ID. The value of a thread ID,

for example, may be redefined as a method ID after the thread ends.

4.6.2.1.2 Common attributes

Many event elements share the same attributes. The following attributes appear on

more than one element:

Time

 71

The time at which the event starts, the format of the time attribute is "utc.fff" where utc is

the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time, according to the system clock. Expressed as an unsigned 32-bit value

formatted as a string

fff is the fraction of seconds to the highest precision that can be retrieved. Expressed as an

unsigned 32-bit value formatted as a string

ThreadId/ThreadIdRef

ThreadId defines and threadIdRef refers to the thread that the element occurred in.

ThreadId's are unique within the scope of a trace regardless of how many threads are

started and ended. Expressed as an unsigned 32-bit value formatted as a string

MethodId/MethodIdRef

MethodId defines and methodIdRef refers to the method that the element is associated

with. Expressed as a 32-bit unsigned value in string format

ObjId/ObjIdRef

ObjId defines and objIdRef refers to the object associated with the event. Expressed as a

32-bit unsigned value in string format

ClassId/ClassIdRef

ClassId defines and classIdRef refers to the class associated with the event. Expressed as

a 32-bit unsigned value in string format

TraceId/TraceIdRef

TraceId defines and traceIdRef refers to a UUID (Universal unique identifier) that

uniquely identifies the trace instance

4.6.2.1.3 Structural elements

 72

When emitted as part of a valid XML document, the trace information is contained under

a root TRACE element.

<TRACE>
<node/>
<processCreate/>
<agentCreate/>
 ...
 all other events
 ...
<agentDestroy/>
</TRACE>
The information conforms to the associated DTD (trace.dtd) and schema (trace.xsd),

which declare these elements such as TRACE, code, tag and methodbody.

4.6.2.1.4 Trace Behaviour Elements

 The following elements provide information about the trace as a whole:

• Node
• ProcessCreate
• AgentCreate
• AgentDestroy
• TraceStart
• TraceEnd
• ProcessSuspend
• ProcessResume
• Option
• Filter

4.6.2.1.5 Thread elements

The following elements provide information about threads. Other elements will point to

a THREAD element's thread_id to identify the thread they are running in.

ThreadEnd
ThreadStart

4.6.2.1.6 Class Elements

ClassDef

 73

MethodDef
Although technically part of the classDef event, the method element is broken out into a

separate element so that it can be optionally output only when referenced.

4.6.2.1.7 Object Elements

The element objAlloc traces storage allocation. It has its own section because it also

holds identity information for an object, which can be referred to by method events

associated with the object, such as a methodEntry event.

4.6.2.1.8 Method elements

The following elements provide information about methods:

• MethodEntry
• MethodExit
• MethodCall (Deprecated)
• MethodReturn (Deprecated)
• InvocationContext
• ObjDef
• Value
• MethodCount

MethodEntry and methodExit are output when a method is entered, and when the method

returns respectively. MethodCall and methodReturn are output when a method is about to

be called, and after a method returns.

The InvocationContext element holds identity information so that a methodEntry can

determine who invoked the method irregardless of location. InvocationContext

information will identify either a methodCall or methodEntry of a remote agent for

distributed invocations.

The objDef element holds identity information for an object, which can be referred to by

elements associated with the object, such as the value element.

 74

The value element is used to reference a data value, either for parameter values in a

methodCall, or for the return value of a methodReturn.

MethodCount tracks the number of times a particular method has been invoked. This

element is designed to aid in collecting code coverage information. A methodCount

element is produced for every method for every class loaded by the application.

4.6.3 Bytecode Instrumentation using JTrek

Here we describe in detail the bytecode instrumentation, using JTrek.

An executable Java program consists of a set of classfiles. One classfile contains

definition of one class. A Java classfile is loaded into running Java virtual machine at

run-time. Thus classfiles are linked dynamically at run-time rather than statically. In

order to link classfiles dynamically, a classfile contains symbolic information such as

string constants, class names, field names, method names, local variable names, and other

constants that are referred to within the classfile. This information in a classfile helps the

instrumentor.

A instrumentor takes two inputs namely, Java classfile (*.class) and instrumentation

script, which contain information such as monitored variables/methods. Based on these

two inputs, the instrumentor inserts methods into the target program. The Java bytecode

instrumentation is performed using the JTrek Java bytecode engineering tool [JTrek].

JTrek makes easily possible to process Java class files, examination of their contents and

insertion of new code. The inserted code access the contents of various runtime data

structures, such as the call-time stack, and when executed (either on Hyades

framework/platform) emit events carrying this extracted information to the trace or

console output.

 75

The process works as follows, JTrek iterates through the bytecode instructions of the

target program and uses callbacks to perform user-specific instrumentation. Iteration

may be at the level of Java statements or individual bytecode instructions.

JTrek allows insertion of certain types of code, but does not allow definition of new local

variables, fields, or methods. For each class, and for each method in that class, JTrek

iterates though the bytecode. At each byte code, JTrek calls a method void at (Instruction

instr), which we override and to which the current instruction is passed as parameter.

JTrek provides a large variety of classes, each targeting a particular Java construct that

can be accessed from an instruction, such as for example Statement and Method, with

each method containing various kind of information, that is either integers or strings, or

other objects that can be used for further navigation. For example, in the Instruction

class, the method Statement getStatement() returns an object of the class Statement,

representing the statement in which the instruction occurs. Further in the Statement class

in turn contains a method, Method getMethod(), returning the method in which the

statement occurs.

As an example, the method in which an instruction instr occurs can be obtained by the

expression: instr.getStatement().getMethod().

In the void at (Instruction instr) overridden method, a switch-statement branches out

depending on what is the opcode of the instruction. In case an instruction is for

instrumentation, JTrek inserts the call of a method either after or before the instruction.

For each kind of bytecode that we want to instrument we have defined a class that

contains essentially one methods: void instrument (Instruction instr), which performs the

required instrumentation by inserting a call to the second method.

 76

4.6.3.1 Additional Events logged using the bytecode Instrumentation:

Here we list the additional events logged in the Java trace, and how we precisely did the

instrumentation:

4.6.3.1.1 Variable Updates

For data race analysis, we need to extract additional information, such as when and which

variables are accessed and also there updated values. Further we also require to extract

information as these variables are accessed by which threads.

For example we are interested to monitor a class variable x of type int and log the event

<methodEntry variableWrite> and it’s (updated) value in Java trace. To achieve this,

JTrek iterates through bytecode and search for putstatic instruction (an instruction

updating a class variable) which has class variable name, type of the variable and the type

of the parent class as operand. The JTrek iterates using dotrek method.

The empty methods such as variable_write or variable_read are inserted after the putstatic

instruction. In the operand of the variable_write or variable_read methods we pass

parameters such as variable type and variable value. When the instrumented bytecode is

executed on Hyades platform (which contain Java Profiling Agent) the events such as

<method Entry variable_write> or <method Entry variable_read > are logged at the Java

trace and there parameters such as variable type, variable value are printed at the console

output.

For data race analysis and other concurrency errors analysis we combine both the traces

namely the Java trace (in XML format) and the updated value, obtained at the console

output.

 77

We monitor two types of variables namely primitive field variable and Local Variables.

Below we discuss about there variable and way to instrument it.

4.6.3.1.1.1 Primitive Field Variables

A field variable is either a class variable or instance variable. A class variable is updated

by putstatic instruction. An instance variable is updated by putfield instruction. Both

instructions (putstatic and putfields) have variable name and a parent class name as

parameters. Both instructions take top stack operand value as updated value of the

variable. The instrumentation process is similar as described before that is instrumentor

iterates the bytecode and search for putstatic or putfield instruction and inserts

instruction/probe to fetch the updated value of the monitored variable from the operand

stack during runtime.

4.6.3.1.1.2 Local Variables:

Local variable values are updated by instructions such as <T>store, <T>store_n and iinc

where <T> stands for primitive type and <n> € {0, 1, 2, 3}. These instructions contain an

index to a local variable as an operand.

When we recognize that an instruction (for example call it i) is recognized as updating

the monitored variable, monitorenter instruction is inserted right before i and monitorexit

instruction is inserted right after i for making the update of the variable.

Then the probe invoking void Variable_update (Object parentAddress, <T> value, string

varName) (parentAddress is an address of an object whose member field varName is

monitored) is inserted right before i.

 78

When the instrumented program is executed on the Hyades platform/framework, the

event <methodEntry Variable_write> is printed on Java trace it’s parameters such as

variable (updated) value and variable name is printed to console output.

4.6.3.1.2 Monitor Enter and Exit

For monitoring of concurrency errors, such as deadlocks and data races, we need to

extract information, as when locks are acquired and released.

At the JVM level, locks are obtained when a synchronized method or monitorenter

instruction is executed. As stated in the JVM specification [JVM]: “Normally, a

compiler for the Java programming language ensures that the lock operation implemented

by a monitorenter instruction executed prior to the execution of the body of the

synchronized statement is matched by an unlock operation implemented by a monitorexit

instruction whenever the synchronized statement completes, whether completion is

normal or abrupt.”

For a monitorenter instruction, which indicate that a thread takes a lock when entering a

synchronized statement, we extract information as which object is locked and which

thread does it, and similarly we get this information when monitorexit is executed. Thus

instrumenting all monitorenter and montitorexit correctly tracks the number of locks held

by a thread on an object relating to synchronized statements. This emit these events when

executed: Object. lock (t; o) (thread t locks object o) and Object. unlock (t; o) (thread t

unlocks object o). When this instrumented bytecode is executed by Hyades Framework,

these additional events e.g. <method entry LockAcquire > and < method exit

LockRelease> are logged in the Java trace.

 79

Thus instrumenting all monitorenter and montitorexit correctly tracks the number of

locks held by a thread on an object relating to synchronized statements. However if a

synchronized method abruptly terminates, then the lock obtained on entry to the method

is released by the JVM, but there is no way to instrument the bytecode to record the

release of the lock. The possible fix to this problem is to modify the body of each

synchronized method to surround the whole body with as try block that catches all

throwables, logs the release of the lock, and re-throws the exception.

Below we show two same methods of the class, the first method contain the instrumented

bytecode and the second method contains the uninstrumented bytecode. The

instrumented bytecode is shown in bold letter. First is shown the source code, which is

then compiled to the bytecode

private void forksAvailable(int i) {
synchronized (convey[i]) {
convey[i].notify();
 }

}

 Figure 4.2: Sample of the source code

private void forksAvailable(int i)
{
// 0 0:aload_0
// 1 1:getfield #36 <Field Object[] convey>
// 2 4:iload_1
// 3 5:aaload
// 4 6:dup
// 5 7:astore_2
// 6 8:monitorenter
// 7 9:aload_0
// 8 10:getfield #36 <Field Object[] convey>
// 9 13:iload_1
// 10 14:aaload
// 11 15:invokevirtual #130 <Method void Object.lock1Acquired()>
// try 18 49 handler(s) 49
// 12 18:aload_0
// 13 19:getfield #36 <Field Object[] convey>
// 14 22:iload_1

 80

// 15 23:aaload
// 16 24:invokevirtual #100 <Method void Object.notify()>
// 17 27:getstatic #47 <Field PrintStream System.out>
// 18 30:ldc1 #102 <String "notify method is entered here">
// 19 32:invokevirtual #65 <Method void PrintStream.println(String)>
// 20 35:aload_2
// 21 36:monitorexit
// 22 37:aload_0
// 23 38:getfield #36 <Field Object[] convey>
// 24 41:iload_1
// 25 42:aaload
// 26 43:invokevirtual #133 <Method void Object.lock1Release()>
// 27 46:goto 52
// finally
// 28 49:aload_2
// 29 50:monitorexit
// 30 51:athrow
// 31 52:return
}

Figure 4.3: Sample of instrumented Bytecode

private void forksAvailable(int i)
{
// 0 0:aload_0
// 1 1:getfield #36 <Field Object[] convey>
// 2 4:iload_1
// 3 5:aaload
// 4 6:dup
// 5 7:astore_2
// 6 8:monitorenter
// try 9 31 handler(s) 31
// 7 9:aload_0
// 8 10:getfield #36 <Field Object[] convey>
// 9 13:iload_1
// 10 14:aaload
// 11 15:invokevirtual #100 <Method void Object.notify()>
// 12 18:getstatic #47 <Field PrintStream System.out>
// 13 21:ldc1 #102 <String "notify method is entered here">
// 14 23:invokevirtual #65 <Method void PrintStream.println(String)>
// 15 26:aload_2
// 16 27:monitorexit
// 17 28:goto 34
// finally
// 18 31:aload_2
// 19 32:monitorexit
// 20 33:athrow

 81

// 21 34:return
}

 Figure 4.4: Sample of uninstrumented Bytecode

This is sample of source code of the instrumentor, to insert the empty method

Object.lockAcquire after the monitorenter instruction. As we see from the sample of

instrumented bytecode, instructions such as aload_0, getfield <Field Object [] convey>,

iload_1, aaload and invokevirtual <Method void Object.lock1Release ()> are inserted.

To insert aload_0 (a bytecode instruction), we write the instrumentor code code.append

(42), which inserts the bytecode instruction “aload_0” where opcode “42” refers to

aload_0. Similarly to insert the getfield <Field Object [] convey > we write instrumentor

code such as code.append (180, filterLock) where the opcode “180” refers to instruction

“getfield” and filterLock refers to <Field Object [] convey>. Similarly to insert the

invokevirtual <Method void Object.lock1Release we write instrumentor code such as

code.append (182, monitorenter2) where the opcode “182” refers to instruction

“invokevirtual” and monitorenter2 refers to the < Method void Object.lock1Release>.

protected final void monitorEnterAfter 2(Instruction instruction)

{

Code code = null;
if(instruction.next() != null)
code = Code.addAt(null, instruction.next());
else
code = Code.addAfter(null, instruction.getStatement());
code.append(42);
code.append(180,filterLock);
code.append(182,monitorenter2);
code.done();

 }

Figure 4.5: Sample of the Instrumentor code

 82

Below is shown the sample of the Java trace, obtained by executing the

instrumented bytecode on the Hyades platform/framework. As we see in the trace lock is

acquire before the notify instruction and the <lockAcquire methodentry> refers to the

same objectIdRef that is “8605” as that of <notify methodEntry>.

<! -- below are the additional events obtained by instrumentation --!>

<methodDef name="lock1Acquired" signature="()V" startLineNumber="247"
endLineNumber="248" methodId="107" classIdRef="120"/>

<methodEntry threadIdRef="7" time="1093561048.943165800" methodIdRef="107"
objIdRef="8605" classIdRef="120" ticket="994" stackDepth="5"/>

<methodDef name="notify" signature="()V" methodId="103" classIdRef="120"/>

<methodEntry threadIdRef="7" time="1093561048.957960600" methodIdRef="103"
objIdRef="8605" classIdRef="120" ticket="1162" stackDepth="5"/>

<methodDef name="lock1Release" signature="()V" startLineNumber="262"
endLineNumber="264" methodId="105" classIdRef="120"/>

<methodEntry threadIdRef="6" time="1093561048.974705000" methodIdRef="105"
objIdRef="8605" classIdRef="120" ticket="880" stackDepth="4"/>

Figure 4.6: Sample of the trace obtained after instrumentation (it contains the additional
events logged)

4.6.4 Trace Reduction

The Java trace obtained by the Hyades framework is of large size, usually of the order of

6-20 MB. It becomes difficult to unmarshall, handle and further verify the property on

such a large size of trace. The large size of the trace is because most of the irrelevant

events are filtered in. These events are irrelevant from the certain property verification.

To reduce the size of the trace, we used fine-tuned filters of Hyades framework to filter in

the relevant events and filter out the irrelevant one to reduce the trace size. For example

if we are required to only obtain the wait and notify methodentries in Java trace. We

write filter such as “Java.lang.Thread.* Wait Include” , “Java.lang.Thread.* Notify

 83

Include” and “* * Exclude”. This filter setup will only include wait and notify

methodentries in trace, excluding most other methodentries, except for few.

After using these filters, we were able to get the smaller size trace of the order of 63-200

Kb. The size of the reduced trace depends upon the type of filters used, no of the filters

used, size of the original program and other factors. The reduction in trace size, lessen

the property verification time.

4.6.5 Benefits/Limitations of our Instrumentation Approach:

By using our combined approach, we can reap the benefits of both the approaches, and

lessen there shortcomings. Because our in the combined approach we individually list

the advantages and limitation of both the approach.

4.6.5.1 Hyades Tracing

Here we will discuss the advantages/limitation of Hyades Tracing

4.6.5.1.1 Benefits of the Hyades tracing:

1) Events obtained from the program execution are in XML format, to analyze this trace

we need to parse it and there are available many Java-XML parsers such as SAX,

DOM etc.

2) Along with events such as <method entry> and <method exit> logged, these events

contain timestamp information. These timestamps helps in verifying certain

properties in which one need to compare there values.

 84

3) Filtration option is available in Hyades, to filter out the irrelevant events and filter in

the relevant event. This filtration, reduces the size of the Java trace, which further

lessen the property verification time ().

4) Hyades tracing is non-intrusive one, which save us from complicated and error-prone

process of custom instrumentation

5) Hyades 3.0 (a latest version of Hyades) also provides support for bytecode

instrumentation known as Java probe insertion kits

4.6.5.1.2 Limitation of the Hyades tracing

1) There is the limit to the type of events we can obtain in a trace, using the Hyades

tracing.

2) With current Hyades version, we cannot obtain the updated values of variables in the

XML trace, but these values are printed at the console output. To analyze the trace,

we need to combine both the traces namely the Hyades XML trace and the trace

obtained at console output.

4.6.5.2 Bytecode instrumentation based tracing

Here we discuss the benefits and limitations of bytecode instrumentation based tracing

4.6.5.2.1 Benefits of bytecode instrumentation based tracing

1) We can customize the bytecode instrumentation, to obtain the type of events and there

attributes as per our requirement.

2) The approach was employed successfully in several projects (JRat, JMPaX etc)

3) Any events of interest could be recorded and collected

 85

4.6.5.2.2 Limitation/side effect of bytecode instrumentation based tracing

1) For the instrumentation, we need to write instrumentation code, to first read the XML

file and insert the bytecode instructions where required

2) We need to understand the Java bytecode language to have the proper bytecode

instrumentation. Learning such low-level language requires additional efforts (as

opposed to other approaches)

3) A speed of the target program can be slowed due to the instrumentation. A real time

application may violate temporal requirements because the instrumentation slows

down the application.

4) Thread Scheduling: The execution order among the thread of the program may get

disturbed due to the slowed execution speed. This changed order may violate certain

requirements. It might give a synchronization error (it is highly improbable) when

the extra delay become large

4.7 Execution of the Instrumented Program

As described above, the Java class file (bytecode) is instrumented with calls to methods

such as Object.lockAcquire/Object.lockRelease and these methods are written to Java

trace when the instrumented program is executed. In addition, other classes can be

constructed “on the fly” as required, and added to user packages containing the target

code to be instrumented. The instrumented program is started as usual, e.g. an

application is started by invoking the “main” method of the specified class. When an

instrumentation method is first encountered in the code, the instrumentation class is

loaded and a static initializer for the class is executed.

 86

4.8 Conclusion and Future work

We presented the instrumentation approach/package used in our runtime analysis

approach. Our is an integrated instrumentation approach, which helps us to get the

benefit of both the approaches. Through this instrumentation approach we were able to

extract the required information from the target program for our analysis. But there are

few immediate tasks which we want to accomplish, listed here.

Explore the best possible way to integrate the two traces namely one obtained at the

console output and other Java trace obtained in XML format

Also there is some other future work.

1. Experiment instrumentation using the bytecode instrumentation toolkit plugin

integrated in the recent version of Hyades (Hyades 3.0) and compare it with out

instrumentation approach

2. Explore ways to reduce the overhead caused by instrumentation on the target program

execution.

3. Explore the aspect base instrumentation approach and is possible look for the way to

integrate in our instrumentation package.

We are planning to investigate ways by which we can further reduce the overhead. Our

possible we domain we are interested to explore the aspect based instrumentation. The

work on the aspect based instrumentation is already being carried at the NASA, we

further are interested to explore we can used the aspect based instrumentation approach in

our instrumentation package and

 87

5 Chapter 5: Custom Based Detection Approach

5.1 Introduction and Motivation

The custom based detection is a semiformal approach to analyze the execution trace of

java program (collected in XML format) against certain properties/antipatterns. The

custom based detection is a post-mortem/offline-trace analysis approach. In this approach

first the MT antipatterns to be analyzed are formally specified at EFM or EFSM. The

formally specified antipatterns are shown in section 3. Then these antipatterns are coded

as java detectors. Sample of such detectors are shown in section 4. The execution trace

of the program collected in XML format is unmarshaled using XML-Java technology

called JAxB. The java trace is then analyzed for antipatterns using the Java detectors.

The output of such analysis is a (possibly empty) set of antipatterns/property violations

printed on console output.

Motivation of custom based analysis approach is to develop a semi-formal runtime

analysis approach based on the idea of concluding antipatterns/properties of interest in a

target program from the single run of the program. Our approach is a semiformal one

because antipatterns/properties to be detected are first formally specified as FSM or

EFSM.

Reduce the overhead caused by the instrumentation in the target program. The

instrumentation approach followed in our approach helps in reducing overhead compared

to other instrumentation. Because our is an integrated instrumentation approach which

combine two instrumentation approach namely bytecode instrumentation (a lightweight

approach) and Hyades tracing, which is a non-instruction trace collection approach.

 88

Reduce the trace analysis time. The collected trace in our approach is of XML format.

Because of this, trace analysis is comparatively faster as data in XML format is quite

representative (in XML, the data is collected in tags). Also there are available many

parsers such as SAX and DOM parser, which make it easier and faster to read and

analyze. XML has being accepted as de-facto standard for the data inter-exchange over

the internet. In the particular case of runtime analysis in multiprocessor environment and

where the inter processor communication is over the internet, the XML-base trace

analysis proves to be very handy and extendable.

5.2 Approach Overview

The architecture of custom based approach is shown in Figure 5.1. The input to tool

consists of two entities: the Java program in byte-code format to be monitored (created

using a standard Java compiler) and the properties/antipatterns to be verified.

The tool can be regarded as consisting of three main modules: event collection module,

parsing module and an analysis module.

Event Collection Module:

In event collection module, Java application (instrumented/uninstrumented) is executed

on Hyades platform/framework. Hyades framework, contain a library known as Java

Profiling Agent that attaches to a Java virtual machine (JVM) to capture and record the

behaviour of a Java application. The output from the agent (events) is emitted as XML

fragments. There is an option for mode selection and event filtration in Java Profiling

agent. It can run in one of the four modes namely standalone, enabled, controlled and

application.

 89

Parsing Module:

In this the obtained XML trace is read and unmarshalled using JAXB package. JAXB

package is a XML-Java technology developed by Sun Microsystems to unmarshall the

java trace.

Analysis Module:

Here the generated java execution trace is analyzed against the properties/antipatterns.

First we formally specify the properties/antipatterns as FSM or EFSM. Then these

properties/antipatterns are implemented in Java. The advantage of formally specifying

the property (in FSM or EFSM format) is that it helps us to properly understand the

property and thus one can correctly implement it in java.

Verification

Instrumentation

Hyades monitoring

Compilation

Analysis with a
property specific
Java program

Java MT
program

Instrumented
code

Java Detector

Trace umarshalled
using JAxB
Technology

Property
violations

Antipattern

Bytecode

Trace (in
XML)

Formally specified and then
coded in Java

Figure 5.1: Offline custom based trace analysis architecture

 90

5.3 AntiPattern Formalization

5.3.1 Formalization of the “double call of start () method” antipattern

5.3.1.1 FSM Formalization of “double call of start () method“

In order to implement pattern correctly and efficiently we started from formal, automata

like description. Formal description of the pattern is necessary step in model checker

based trace verification, and, as we believe, beneficial in custom detector development.

This antipattern can be instantiated in a set of automata (finite state machines), where

each automaton corresponds to a thread present in a trace, or in single trace-independent

extended automaton. In the first case, we can build the following automaton, where

black state indicates that the antipattern is detected.

Figure 5.2: FSM formalization of double start ()

Implementation of a double start antipattern detector based on the above automaton

involves trace pre-processing to build the list of thread Ids (more exactly ids of

corresponding objects), and then scanning the trace with evaluation of a set of automata.

(Meanwhile, we skipped the identification of the start method id – once created, methods,

objects, classes, and threads are refereed by ids.) Similar preprocessing will be required

for property verification, based on model checker, unless the former provides a richer

language than automata.

Entry of the start
method of a thread T

Entry of the start
method of a thread T

 91

5.3.1.2 EFSM Formalization of “double call of start () method”

In a single extended machine the antipattern “double call of start () method” can be

formalized as

Start method
is declared
with id started
Thread list L
is set empty

Entry of a
method with id
mid of a thread T
from the list L

Entry of a
method with id
startId of a thread
T which is not
from the list L

Add T into L

Figure 5.3: EFSM formalization of double start ()

The formal descriptions were found helpful both for antipattern understanding and

detector implementation.

5.3.2 Formalization of the “PREMATURE JOIN CALL” antipattern

5.3.2.1 FSM Formalization of “premature join call” antipattern

Here we give the formal, automata like description of the “premature join () call”

antipattern. This antipattern can be represented in a set of automata (finite state

machines), where each automaton corresponds to a thread (refered by threadId) present in

a trace. Firstly we build the following automata in which black state, when reached

indicates that the antipattern is detected.

 92

Entry of the join
method of a
Thread

Entry of start
method of a
thread

T1

T2

Figure 5.4: FSM formalization of premature join ()

Implementation of a premature join () call antipattern detector based on the above

automaton involves trace pre-processing to build the list of thread Ids (more exactly ids

corresponds to objects), and then scanning the trace with evaluation of a set of automata.

Informally it can be said that the methodEntrys of join () and start () method are located

for each thread T. Then timestamps of methodEntry for join () method and start ()

method are compared. If the join () methodEntry happened before start () methodEntry

on a particular thread T, then “premature call of join () method” message is printed

5.3.2.2 EFSM Formalization of “premature join call” antipattern

In a single extended machine (EFSM) the antipattern can be formalized as:

 93

Join method
declared with
id joinId of
Thread T
Thread List L
is set empty

Entry of start
method with
Id startId of
same thread T

Entry of a method
with id joinId of a
thread with an
object identifier
which is not from
the list L
Add
objectIdentifier of
T into

T1

T3

T2

Figure 5.5: EFSM formalization of premature join ()

5.3.3 Formalization of Wait Stall

5.3.3.1 FSM Formalization of wait stall

Here we give the formal, automata like description of the “wait stall” antipattern.

Informally this antipattern can be described as “A wait stall can occur when a thread calls

a wait () method with no timeout specified”.

This antipattern can be represented in a set of automata (finite state machines), where

each automaton corresponds to a thread (refered by threadId) present in a trace. Firstly

we build the following automata in which black state, when reached indicates that the

antipattern is detected.

 94

Entry of
wait
method of
a Thread

Timeout

T1 T2

Figure 5.6: FSM formalization of wait stall

5.3.3.2 EFSM Formalization of wait stall

In a single extended machine (EFSM) the “Wait Stall” antipattern can be formalized as:

Timeout

Entry of a method with id
WaitId of a thread with an
object identifier which is
not from the list L
Add objectIdentifier of T
into

Wait method
declared with id
waitId of
Thread T
Thread List L is
set empty

T1

T2

T3

Figure 5.7: EFSM formalization of wait stall

 95

5.4 Custom Detectors Implementation

5.4.1 Double Start () Implementation in Java

Here we discuss the algorithm for the detection of double start (). Before we formally

specified this antipatterns as FSM and EFSM. As shown below in figure 5.8 a sample of

the double start () detector code, initially we define the variable start_count = 0. Then for

each thread (refered by threadIdi, where i is threadId no) we iterate and look if there is

call for start methodEntry twice. If we found such an instance then we compare there

respective objectIds. If the objectId are found same we print the double call of start()

method detected for threadIdi. Otherwise we print that double call of start(0 method not

detected for threadIdi.

for (int k = 0; k<threadId_count; k++){
System.out.println("Checking double start for threadId = " + threadId[k]);
start_count =0 ;
for (int j=0; j<mentry_objId_count;j++) {

if (thread_objId[k].equals(mentry_objId[j]))
{
start_count++;
}
}

if (start_count==2)
System.out.println ("Double call of the start method detected for threadId = "
 + threadId[k]);
else
System.out.println ("No Double call of start method detected for thread id = " +
threadId[k]);

}

Figure 5.8: Code sample for detection of double start ()

 96

5.4.2 Premature Join () Implementation in Java

As we know from the definition of the premature call of the join () method. It consists in

invocation of the join method to the thread, which is not yet started [Hal04]. In the Java

trace thread should terminate (runExit event) should happen after the corresponding

joinEntry and before it joinExit event. In the Java trace we verify this ordering for every

threadId and if we see any instance where this ordering is violated, premature call of join

() message is printed.

As shown in the figure 5.9 for every thread, represented by the threadIdi (where i is an

integer of value 2, 5, 6 etc) we compare the time stamp of the runExit event with the

corresponding joinExit event. The comparison is made using the compareTo, and if the

timestamp of runExit is greater than that of joinExit timesamp, the message "Premature

call of join () method detected for threadId = i" is printed. Otherwise the message "No

Premature call of join () method detected for threadId = i" is printed.

 // start of first for loop (runexit_count)
 for (int j = 1; j < event_list.runexit_count; j++)
 {
 compare_time = false;
 // start of second for loop (joinexit_count)
 for(int i = 1; i < event_list.joinexit_count &&
 compare_time == false; i++)
 {
 // starting (if loop) comparing objectid of runexit and joinexit array
 if (event_list.runexit_obj_array[j].equals(event_list.joinexit_obj_array[i])
)
 {
 //System.out.println("comparing the object Id");
 // starting (if loop) comparing threadid of runexit and joinexit array
 if(event_list.runexit_thread_array[j].compareTo(event_list.joinexit_thr
 ead_array[i]) < 0 ||
event_list.runexit_thread_array[j].compareTo(event_list.joinexit_thread_array[i]) > 0)
 {
 //System.out.println("comparing the time");
 compare_time = true;

 97

 if (event_list.runexit_time_array[j].compareTo
 (event_list.joinexit_time_array[i]) > 0)
 {
 System.out.println("Premature call of join() method detected for threadId = " +
 event_list.joinexit_thread_array[i]);
 }
 else if (event_list.runexit_time_array[j].compareTo
 (event_list.joinexit_time_array[i]) < 0)
 {
 System.out.println("No Premature call of join() method for threadId = " +
 event_list.joinexit_thread_array[i]);
 }
 }
 // starting (if loop) comparing threadid of runexit and joinexit array
 } // end (if loop) comparing objectid of runexit and joinexit array
 } // end of second for loop (joinexit_count)
 } // end of first for loop (runexit_count)

Figure 5.9: Code sample for detection of premature join ()

5.5 Custom Detection Results

Although with custom based detection approach we can verify most of the antipatterns

identified before, but it gave significant edge in the detection of certain antipatterns such

as double call of start () method, premature call of join () method and wait stall().

Here we will mostly discuss about these antipatterns detection. The following

technologies were used for the custom based trace analysis are:

1. Compiler: Java 1.4
2. IDE: Eclipse
3. Java - XML Tool: JAXB (Java Architecture for XML Binding)

The experiments were performed on the following the system configuration:

1. Operating System: Window 2000
2. CPU: AMD Athlon 900 MHz
3. RAM: 512 Mbytes

 98

5.5.1 Antipattern: Double Call of Start () method

Description: The start () method is not supposed to be used more than once for the

same Thread.

Application: It is a fragment of Java multi-threaded platform Guest [Mag02]

Trace size Execution time Total time (Execution +
Compile Time)

63.6 KB (using fine tuned
filters)

4s (approx) 27 second

Table 5.1: Analysis time for double start () detection
The custom detection gave a significant edge over static analysis particularly in the

double call () detection. Here we explain the in detail the detection by static analysis and

then compare it detection using the custom based detection approach.

Double call of start () method antipattern was detected by static analysis tool Extended-

JLin at the following location.

FILE NAME=ca/crim/guest/main/NativeAgentSupport.java..POSITION COLUMN=17
LINE=225
TESTNAME=MultiStartMethodCallPattern.
MESSAGE=Another start method Call
FILE NAME=ca/crim/guest/main/NativeAgentSupport.java. POSITION COLUMN=9
LINE=261
TEST NAME=InternalMethodCallPattern.

The message Another start method Call, is emitted corresponding to the Double call of

the start method of a thread antipattern, is a false positive. The tool detects the

antipattern in the following segment of the code. Actually, it is signaled for the second

start() method call in line [9]. However, the method is not called for the same thread,

since the variable t received a new thread object in line [8].

 99

public void execute() {
[1] t = new Thread(guestAgent);
[2] t.start();
[3] while (agentState != 0) { // stop
[4] if (agentState==2) { // resume
[5] agentState = -1;
[6] if (t!=null)
[7] t.interrupt();
[8] t = new Thread(guestAgent);
[9] t.start();
[10] }
[11] //guestAgent.timerMan.execute();
[12] GuestSystem.pause(1000);
[13] }

Figure 5.10: Sample of Guest application code

Based on the information (like methodIdRef,ObjectIdRef) provided by the events

methodEntry and threadStart the false positive given by static analysis for double call of

the start() method antipattern is detected. The events of the trace which were used for

detection are given below.

<methodDef name="start" signature="()V" methodId="302" classIdRef="325"/>

“First methodEntry for start method”

<methodEntry threadIdRef="2" time="1074266683.224861900" methodIdRef="302"
objIdRef="7532" classIdRef="325" ticket="11188" stackDepth="3"/>

<methodExit threadIdRef="2" methodIdRef="302" objIdRef="7532" classIdRef="325"
ticket="11188" time="1074266683.225230500" overhead="0.000021641"/>

“Second methodEntry for start method”

<methodEntry threadIdRef="2" time="1074266683.833227200" methodIdRef="302"
objIdRef="7679" classIdRef="325" ticket="12388" stackDepth="3"/>

<methodExit threadIdRef="2" methodIdRef="302" objIdRef="7679" classIdRef="325"
ticket="12388" time="1074266683.833581400" overhead="0.000018102"/>

“ThreadStart event for first methodEntry”

<threadStart threadId="5" time="1074266683.298559400" threadName="Thread-0"
groupName="main" parentName="system" objIdRef="7532"/>

“ThreadStart event for second methodEntry”

 100

<threadStart threadId="6" time="1074266683.981886600" threadName="Thread-1"
groupName="main" parentName="system" objIdRef="7679"/>

Figure 5.11: Sample of Java trace for double start () detection

From the XML element <methodDef> we get the methodId = “302” corresponding to the

start method. The methodEnty event and it attribute objIdRef corresponding to the

methodIdRef = “302”(start) is located. The objIdRefs attribute of the corresponding

methodEntry event is compared and found not the same. These objIdRefs are also

referring to different threads. Thus we conclude from the analysis that the double call of

the start() method is not on the same thread. Thus using the dynamic analysis false

positive from the static analysis is detected.

5.5.2 Antipattern: Premature Call of Join () Method

Description: A call to the join () method of a thread is premature if this thread has not

been started at the time of the call [TR2].

Application: Custom Race program from [JPROBE]

Trace size Execution time Total time (Execution +
Compile Time)

29.3 KB (fine tuned
filters)

4s (approx) 26 seconds

Table 5.2: Analysis time for premature join () detection
A Snapshot of the console output for “premature join” detection based on custom

detection Approach is shown in appendix A

5.5.3 Antipattern: Wait Stall

Description: The thread should not wait (after calling the wait method) for more the

user specified amount of time [TR2].

 101

Detection: Initially as for start method, from the XML element <methodDef> we get

the methodId = “302” (a method identifier) for the wait method. The methodEntrys and

its methodExits of wait method for a particular thread (refered by threadId) are located.

Then time difference between methodEntry and its methodExit is calculated and

compared with the user specified time period (in this detector it is 0.5 seconds). If the

calculated time difference is more than the user specified period then “wait stall”

message is printed.

This antipattern can only be detected by Dynamic Analysis, because of the timestamp

information provided by the methodEntry, methodExit and threadstart event in the XML

trace.

The relevant events for the “wait stall” detection are given below:

“methodDef” element for wait method

<methodDef name="wait" signature="()V" startLineNumber="429"
endLineNumber="430" methodId="109" classIdRef="116"/>

“First methodEntry”

<methodEntry threadIdRef="5" time="1074463868.267297000" methodIdRef="109"
objIdRef="5983" classIdRef="116" ticket="263" stackDepth="4"/>

“First methodExit”

<methodExit threadIdRef="5" methodIdRef="109" objIdRef="5983" classIdRef="116"
ticket="263" time="1074463869.072965900" overhead="0.000015904"/>

Figure 5.12: Sample of java trace for wait stall detection

5.6 Advantages/Limitations of custom based approach:

5.6.1 Advantages of Custom Based Detection Approach

1) It could detect most of the antipatterns identified by us.

2) It could detect false positive message given by static analysis particularly in the

detection of “double call of start () method” antipattern. Thus this approach gave a

 102

significant edge over static analysis. It could detect false positive because the trace

provide the information that two start methodenties are referring to different objects

(objectIdRef).

3) It is scaleable (i.e. it can used to analysis execution traces of large size applications).

But it gave memory exception, when the trace size exceeds 25MB or so.

4) This approach has also been used in other runtime analysis tools such as JPaX to

detect errors.

5) Do not require heavy bytecode instrumentation, because most of the information from

a Java application is collected and recorded using the Hyades platform.

5.6.2 Limitations of Custom Based Detection Approach

Provides less coverage than heavyweight formal methods:

 103

6 Chapter 6: Model Checking with Spin

6.1 Introduction

6.1.1 Model – Checking

Model checking is a push-button technique for verifying finite state concurrent systems

against required specification of the system. The tasks involved in model checking are as

follows [SEN03]:

A formal model of the system is build in terms of a state transition system. The state

transition system is a tuple M = (S, S0, R, L) where

• S is the finite set of states

• S0 a subset of S is the set of initial states from which system can start its execution

• R S× S is a total relation, describing the possible transitions from one state to another

state of the system, and

• L : S → P(AP) is a labelling function, stating the atomic propositions (AP) that

hold in a given state

The state transition system of a concurrent program can be constructed automatically by

exploring all possible states of the system that can be reached from the initial state

[SEN03].

• The properties that the model must satisfy are stated as a specification. The

specification is usually given in some logical formalism. The commonly used logics

are temporal logics

 104

• After expressing the model and the formal specification, the verification task involves

checking the conformance of the model to the given specification. In case of a

negative result, a counter-example is generated. This task is completely automatic

In model checking, all possible computations of the systems are analyzed. So the method

is rigorous and complete. Model checking discovers a bug if it is present in the system.

Theoretically, model-checking is very efficient. However, in practice model-checking

may require the entire state space of the system to be stored before bug can be detected.

This problem is called the state space explosion problem. In sequential programs input

variables may have many possible values leading to a large number of possible states. In

concurrent programs, nondeterministic execution can lead to a large number of states. If

the total number of possible states of the system is large, model checking becomes

intractable which makes this technique not scalable. We take the formal logics used to

specify safety properties and incorporate the logics in our approach. This makes our

approach more formal compared to the ad hoc testing used in traditional debugging.

6.2 Spin Model-Checker

Spin is a widely used model-checker that supports the formal verification of distributed

systems. This model checker was developed at Bell Laboratories in the formal methods

and verification group.

Spin has been used to trace logical design errors in distributed systems design, such as

operating systems, data communications protocols, switching systems, concurrent

algorithms, railway signalling protocols, etc. The tool checks the logical consistency of a

 105

specification. It reports on deadlocks, unspecified receptions, flags incompleteness, race

conditions, and unwarranted assumptions about the relative speeds of processes.

6.2.1 Language of SPIN

PROMELA is input language for SPIN Model-checker. PROMELA (Process Meta

Language) is a non-deterministic language, loosely based on Dijkstra’s guarded

command language notation and Hoare’s language CSP. It contains the primitives for

specifying asynchronous (buffered) message passing via channels, with arbitrary numbers

of message parameters. It also allows for the specification of synchronous message

passing systems (rendezvous). Mixed systems, using both synchronous and

asynchronous communications, are also supported.

The language can model dynamically expanding and shrinking systems: new processes

and message channels can be created and deleted on the fly. Message channel identifiers

can be passed from one process to another in messages.

Correctness properties can be specified as standard system or process invariants (using

assertions), or as general linear temporal logic requirements (LTL), either directly in the

syntax of next-time free LTL, or indirectly as Buchi Automata (expressed in PROMELA

syntax as Never Claims).

6.2.2 Features of Spin

SPIN can be used in three basic modes:

• As a simulator, allowing for rapid prototyping with random, guided, or interactive

simulations

 106

• As an exhaustive state space analyzer, capable of rigorously proving the validity of

user specified correctness requirements (using partial order reduction theory to

optimize the search)

• As a bit-state space analyzer that can validate even very large protocol systems with

maximal coverage of the state space (a proof approximation technique)

6.2.3 DOCUMENTATION

Gerard J. Holzmann, The Spin Model Checker “Primer and Reference Manual”.

Addison-Wesley 2004

Basic and more advanced usage of Spin, such as language features and validation modes

for proving linear temporal logic formulas, are described in the book. The more recent

extensions of the tool are described in the papers.

The book contains an explanation of the code and describes the main validation

strategies.

The Spin software is written in ANSI standard C, and is portable across all versions of

the UNIX operating system. It can also be compiled to run on any standard PC running a

Windows 98/2000/NT/XP operating system.

6.2.4 AVAILABILITY

This software is available for free download at http://spinroot.com/spin/whatispin.html

The current version is Spin 4.2, which runs on any UNIX workstation, as well as

Windows 98/NT/2000/XP.

 107

7 Chapter 7: Modeling Trace with Spin

7.1 Introduction and Motivation

Previously we discussed trace analysis of Java Multithreaded applications based on

custom based trace analysis approach. In this chapter we will discuss extension to

custom based trace analysis approach another trace analysis approach, namely model-

checker based trace analysis. In this approach, execution trace of Java program obtained

in XML format, containing the relevant events is translated to PROMELA. PROMELA

is input language for SPIN Model-checker. XML to PROMELA translation is done

automatically by a java program based on a translation schema. The generated

PROMELA model is then verified using SPIN model-checker against the multithreaded

antipatterns (such as double start and premature join). These antipatterns were formally

specified in LTL (linear temporal logic). In other words the subsequent model checking

is guided by the trace generated during the runtime analysis. SPIN is one of the most

popular, mature, and advanced open-source model-checkers. The SPIN model checker

can automatically determine weather a program satisfies the LTL property, and in case

the property does not hold true, a warning is printed

The motivation for developing the model checker based trace analysis, is our interest to

try applying formal techniques for trace analysis. We implemented our formal analysis

using SPIN model checker. As far as we know there is no such work similar to our as

done in industry/universities. As far we know the closest work is done at NASA Ames

Research centre [HAV04] that is combining runtime Analysis with Model Checking. In

 108

this work, they tried to combine the runtime analysis and model checking approach in

such as way that warnings produced from the runtime analysis are used to guide a model

checker. This technique was implemented the NASA developed tool Java model checker

called Java PathFinder [JPF].

 The work done at NASA was an extension to JPF to perform runtime analysis on multi-

threaded Java programs in simulation mode, either stand-alone, or as a pre-run to a

subsequent model checking, which is guided by the warnings generated during the

runtime analysis.

Secondly as we already implemented and experimented custom based trace analysis

approach. We were interested to evaluate other trace analysis approaches in comparison

to Custom based trace analysis approach with respect to parameters such as:

• Quality of analysis
• Time usage
• Resource consumption etc

Thirdly the model based trace analysis would possibly we used for the predictive trace

analysis. As Model checker analyze various possible event interleaving.

The full blown model checking has a major limitation that it suffers from the state

explosion problem. To overcome this limitation, we model check the trace, a trace is an

abstract representation of the target application. In brief our is an abstract model

checking approach.

7.2 Approach Overview

The architecture of our approach/tool is shown in Figure 7.1. The input to tool consists

of two entities: the Java program in byte-code format to be monitored (created using a

 109

standard Java compiler) and the properties/antipatterns to be verified. The output is a

(possibly empty) set of property violations printed on console output.

The tool can be regarded as consisting of three main modules: an instrumentation

module, a translation module and an analysis module. The instrumentation module

performs instrumention on at program to be analyzed based on the user specified

instrumentation specification. The instrumentation specification, contains information

such as classes, methods, class /instance variable (updates), to be monitored and thus

instrumented accordingly. The methods (such as lockAcquire, lockRelease,

variable_write, variable_read) are inserted in the bytecode based on the input information

from the user. The bytecode instrumentation is performed using JTrek, a Java byte-code

engineering tool [JTREK] from Digital. This tool allows to read Java class files

(bytecode), traverse then as abstract syntax tree while examining their content, and insert

new code in highly flexible manner [JPaX]. The instrumented program when run, on the

Hyades framework will emit relevant events in XML format to an external file. These

events are then input to translation module.

The translation module receives the events, and generates a PROMELA model based on

an input translation schema.

The analyzer module performs functions such as property/antipatterns verification and

print out the property violation (if any) to the console output. Explaining it more

elaborately, the analyzer receives the generated PROMELA model from the translation

module and then verify it against properties/antipatterns specified in the specification

 110

script. Verified can be done using two approaches namely custom-based detection

approach or model-checker based approach. In the previous chapter, we discussed

custom-based approach, in this chapter we will focus mostly on model-checker based

approach. In model-checker based approach the property/antipatterns is specified as

LTL formula which further translates to never claim. During the verification, it checks

for never claim in the generated PROMELA model. If it finds the instance property

violation (no never claim) it prints the warnings the console output. Along with warning,

it prints other verification details also, such as depth reached in the model, no of

transitions covered, no of matched states, errors if any (antipatterns) found and

verification time. A sample of the verification output snapshot is shown in Appendix C.

Verification
Model
generation

Instrumentation

Hyades monitoring

Compilation

Instantiation/
Translation in
Never claim

Formalization

Java MT
program

Instrumented
code

LTL formula

Trace and Property
In PROMELA

Property
violations

Antipattern

Bytecode

Trace (in
XML)

Figure 7.1: Diagram of the approach workflow

 111

7.3 Translation

General Idea: The general principal regarding translation is the following. The XML

trace generally consist of a set of tags and declarations and these tags focuses on

providing information about the data itself and it’s relation to other data tags of the

events logged. For example, such as for methodEntry event is logged (in XML format)

as <methodEntry threadIdRef="7" time="1093561048.957960600" methodIdRef="103"

objIdRef="8605" classIdRef="120" ticket="1162" stackDepth="5"/>, whose attributes

consist of (mostly) threadIdRef, time, methodIdRef, objIdRef, classIdRef, tickets and

stackDepth etc. The data type of attribute’s value can be either strings or integers.

As illustrated in the figure 7.2 the methodentry event logged in XML format is translated

to the PROMELA code. The translation procedure is as follows explained below in

steps:

1. Before the start of event in the PROMELA model a comment message is written

stating the “type of methodentry of which thread “Id” and for which method “Id”

2. Initially in the PROMELA model event type is written as “name = methodEntry or

methodExit” depending upon the type of event

3. Attributes of the events such as threadIdRef = 6, classId Ref = 116, objIdRef = 8606

are mapped one- to- one to the PROMELA code as shown in the figure 7.2

4. In the XML trace timestamp of the event is the absolute value such as “time =

“1091230513.794350600” but in the PROMELA model, time is logical not absolute

such as “time = 7”, which signifies that this particular event is the seventh (7th) one in

the sequence.

 112

5. Attributes of the events such as methodIdRef, objIdRef, classIdRef, threadIdRed

which are of String datatype in the XML trace are declared as int datatype in the

PROMELA model as shown in the figure 7.3.

6. Events of type, for example notify methodentry, wait methodexit, notifall

methodentry are assigned mtype datatype in the PROMELA model as shown in the

figure7.3.

7. The attributes of the event, such as ticket, stackDepth and there respective values

which are not relevant from the analysis viewpoint are not translated to PROMELA

model.

 XML Trace PROMELA Translation

<methodEntry d_step
threadIdRef=”6" {
time="1091230513.794350600" /* first wait methodentry in threadId6

for methodId 113*/
methodIdRef="113" name = wait_methodentry;
objIdRef="8606" threadIdRef = 6;
classIdRef="116" methodIdRef = 113;
ticket="1074" objIdRef = 8606;
stackDepth="4” classIdRef = 116;
/> time = 7; (logical time)
 }

 Figure 7.2: XML to PROMELA Translation

#define N 120 /* nr of rendevous channels */

#define L 10 /* size of buffer */

mtype = { methodDef, Notify_MethodEntry,Wait_MethodEntry,
threadstart,Wait_MethodExit, Notify_MethodExit,lockAcquire_MethodEntry,
lockRelease_MethodEntry,lockAcquire_MethodExit, lockRelease_MethodExit,
Start_MethodEntry, Start_MethodExit, Join_MethodEntry, Join_MethodExit,
Run_MethodEntry, Run_MethodExit, NotifyAll_MethodEntry, NotifyAll_MethodExit };

mtype = {message};

 113

mtype Name;

int methodId, MethodIdRef,ClassIdRef,ThreadIdRef,ObjectIdRef,TimeStamp;

chan Q[N] = [L] of {mtype};

 Figure 7.3: SPIN: Couple of PROMELA Constants and Constructs

7.3.1 XML to PROMELA Translation

Each thread is modeled by a PROMELA process. The trace events themselves are

translated in more or less direct way, where each event attribute is modeled by PROMELA

variable. For few instructions, join () and start () we model their Java semantics. For

other thread related Java constructs, we follow distributed trace approach that assumes

that, only events of same thread (process) or involved in a communication are ordered.

Since threads are controlled with locks we assume that events on the same lock are

ordered. Currently, data values and communication via threads are not modeled, since

they are not needed for antipattern detection. Note that in Java, data based

communication are guarantied to occur if appropriate synchronization constructs are

used, otherwise a change of a variable value by one thread may never become visible to

other threads [Java].

Variable/DateType Declaration: Events attributes such as Reference to Object Identifier

(ObjectIdRef), Reference to Class Identifier (ClassIdRef), and Reference to Method

Identifier (MethodIdRef) are declared as integer data type in PROMELA.

Process Declaration: Each thread in trace translates to active process in PROMELA. For

example, a trace that consists of three threads namely thread2, thread5, thread6,

translates to a PROMELA system that consists of three active processes namely process2,

process5, and process6 respectively.

 114

Relevant events: Currently start (), join () wait (), notify (), notifyall(), LockAcquire(),

LockRelease() method entry and exit, data access events are considered as relevant

events of the trace. Other events are not needed for verification itself, though they may be

helpful to locate the problem once detected.

Event Body Translation: Each relevant event in XML trace translates to d_step construct

in PROMELA and each event’s attribute translates to a variable assignment statement

inside the d_step construct. D_step insures that each event is atomic and instant.

TimeStamp: The events in the PROMELA model are assigned the logical timeStamp value,

rather than real-time value as of the trace.

Event Synchronization: Start methodentry event and corresponding run methodentry are

ordered. Events on the lock, related to lock entry, exit, wait, and notify are totally

ordered.

7.3.2 Synchronization in Java

A race condition between two (or more) threads occurs when they modify a member

variable of an object simultaneously.

To avoid data races, a programmer can force fragments of code running on different

threads to execute in a certain order by adding synchronization operations. Java offers

several constructs that enforce synchronization:

• start and join which operate on Thread objects

• locked objects (synchronized blocks and methods)

• wait and notify(All)

 115

With join() it is feasible to model semantic of these Java construct very closely,

predicting new executions rather then only possible linearization of partial order. In the

case of wait and notify, which provides value driven controls over thread executions,

attempts to mimic construct following their Java meaning are likely results in imprecise

model, at the least with our level of trace detail. Thus, when it concerns operations on

locks, we just enforce order on event that relates to the same lock or thread. We detail the

approach below.

7.3.3 Modeling Synchronization in PROMELA Model of Trace

We consider three main types of MT synchronization events in PROMELA

1. Thread start (StartEntry) and Run method entry (RunEntry) (the former mostly

precedes the latter)

2. Thread termination (RunExit) and thread JoinEntry and Exit.

3. The events on the same thread are modeled by totally ordered events of a PROMELA

process. If the immediately preceding events happen on the same object but on different

thread the order is enforced. To enforce this ordering in PROMELA a message is

exchanged between events such as wait, notify, notifyAll, entry/exit, lock entry and exit.

To implement order/synchronization in PROMELA model, we use two approaches namely

“variable ⁄ flag” based and “message passing” based approach. In some models we

combine both the approaches to model synchronization.

7.3.3.1 Message Passing Approach

Message passing based approach is used to enforce order for wait-notify (All),

lockacquire-lockrelease and start-run (Entry) events. When a thread invokes wait on an

 116

object, the execution of the thread is halted until another thread executes notify/notifyAll

on that very same object. However, a thread is only allowed to invoke wait or notify on

an object if that thread owns the lock of that object.

The example of the implementation of message passing based approach is shown in the

figure 7.4. In this example a message is send from one event to another when they

happen on the same objects (objectIdRef) but on the different threads (threadIdRef). As

shown in the figure 7.4 that event Start_MethodEntry happen on the threadId 2 and

objectId 5317 and the consequent event Run_Methodentry happen on the threadId 5 and

objectId 5317.

To model this synchronization a message (Q[1]!message) is send fro the

Start_methodentry event and is received at the run_methodentry (Q[1]?message).

/* Starting of the process 2*/
active proctype thread2()
{
/* Message is send to another object on different thread (at methodEntry event, at start) */
Q[1]!message->

d_step
{
/* Start MethodEntry for methodId 301 */

Name = Start_MethodEntry;
ThreadIdRef =2;
TimeStamp = 1;
MethodIdRef = 301;
ObjectIdRef = 5317;
ClassIdRef = 324;
}

}/* End of process 2*/

/* Starting of the process 5*/

 117

active proctype thread5()
{
/* Message is received from another event on different thread (at MethodEntry event, at
start) */
Q[1]?message->

d_step
{
/* Run MethodEntry for methodId 311 */

Name = Run_MethodEntry;
ThreadIdRef =5;
TimeStamp = 3;
MethodIdRef = 311;
ObjectIdRef = 5317;
ClassIdRef = 324;
}

}/* End of process 5*/

Figure 7.4: Sample of the PROMELA Model, synchronization based on Message Passing
Approach

7.3.3.1.1 Advantage and Disadvantages of Message Based Approach

Message based synchronization is used in our early research prototypes, since it is easy to

visualize message exchange with message sequence diagrams in Spin. However we found

that this limits scalability of approach, due to Spin limitations on number of messages

and queues. Eventually we are going to replace message based event ordering with

variable based. Spin visualization could be replaced with designed problem

traceability/visualization module that completely hides model checking machinery from

user.

A sample of the MSC for the model developed based on message based approach is

shown in Appendix B.

 118

7.3.3.2 Variable Based Approach

Variable⁄flag based approach is particularly used to model behaviour of the join method.

Here we explain the variable based Approach as illustrated in figure 7.5. The global

Boolean variable ActiveThreadi, where i(which in this sample is 2, 5,6) is a thread

identifier, is initially declared false. When the thread is started (i.e. RunEntry event) this

variable is set to true (“ActiveThreadi = true”). Similarly when the thread terminates (i.e

Run Exit event) this variable is set to false (ActiveThreadi = false). To enforce order

between the RunExit and JoinExit, where later should happen before former and also on

the same object but different threads, JoinExit event is executed only when this condition

satisfies (“::ActiveThreadi = = false -> ”).

bool Activethread2 = false;
bool Activethread5 = false;
bool Activethread6 = false;

/* Starting of the process 5*/
active proctype thread5()
{
d_step
{
/* Run MethodExit for methodId 285 */
Activethread5 = false;
Name = Run_MethodExit;
ThreadIdRef =5;
TimeStamp = 6;
MethodIdRef = 285;
ObjectIdRef = 4379;
ClassIdRef = 298;
}
}/* End of process 5*/
/* Starting of the process 6*/
active proctype thread6()
{
:: (Activethread5 = = false) ->
d_step
{
/* Join MethodExit for methodId 283 */

 119

Name = Join_MethodExit;
ThreadIdRef =6;
TimeStamp = 9;
MethodIdRef = 283;
ObjectIdRef = 4379;
ClassIdRef = 298;
}
}/* End of process 6*/

Figure 7.5: Sample of the PROMELA model, synchronization based on the variable based
Approach

7.3.3.2.1 Advantages and Disadvantages Variable Based Approach

Variable Based Approach in particularly advantageous to model large traces. In the

message based approach messages are exchanged between events using channels (a

construct in PROMELA). In the PROMELA model we declare and array of channels of

size (for example L) and there to size of the (it is 255). Message Passing Approach fails

to model those large traces in which the size of array of channel exceeds 255. Because of

this inherent limitation is PROMELA variable based approach is advantageous to model

large traces.

However “variable\flag based” approach has disadvantages over “message passing

based” approach, as we cannot obtain the MSC (Message sequence chart) in former.

7.4 XML to PROMELA translation Implementation

We implemented the PROMELA modeling in Java. The Java code consists of about six

(6) java classes.

The Java code for PROMELA model generation can be broadly divided in six (6) classes.

These classes are main, logical Timestamp, Method_def, Receive_send message,

thread_count and list_entry_exit classes. Here we explain in steps implementation details

 120

for the PROMELA model generation based on message passing approach. Please refer to

the flowchart for the model generation in Appendix E for more details

1. First the XML trace is transversed and objectId’s and threadId’s of the events e.g.

such as waitentry/exit, notifyentry/exit, lockAcquire entry/exit, lockrelease entry/exit

startentry, runentry,runexit and joinexit are saved in objectId[] and threadId[] array

and then there event types such as lockoperation_event, startentry_event,

runentry_event and other_event are saved in event_type [] array respectively

2. Then we iterate through the objectId[], threadId[] and event_type[] arrays and search

for those objectIds and threadIds values in the arrays whose preceding objectId and

event type is same (exception in start and run case, where start methodentry should be

preceded by run methodentry) but different threadId. If such an instances are found

we save there indexes of the objectIds in send_message [] array and save those index

values from which they are different in receive_message [] array

3. Events of the XML trace are not written (in the same order as in XML trace) to the

PROMELA model, but in different order for example all the events of thread (e.g. Id

4) are written first, then the events of thread (e.g. Id 5) are written second and so on.

Because of the way model is generated, the send and receive messages are not

numbered according to the order obtained from the send_message [] and

receive_message[] arrays.

4. But rather while iterating through the objectId [], threadId [] and event_type[] arrays

iterate in different manner that is first we iterate through the objectId array

corresponding to the threadId for example 2, then 3, then 4 and so on. While iterating

in such as manner we find those instances where consecutive threadsIds are different,

 121

but corresponding objectIds, are same. Whenever we find such instance save it index

and then find it’s relative postion in the send_message array using the int g =

Arrays.binarysearch (send_message, i) and then number the send_message such as

Q[g]!

5. Similarly we perform the same functions to number the receive messages and thus

number it Q[g]?

6. The XML trace is transverse again and threadId’s of the threadStart event are saved in

threadIdStart [] array

7. The event body is written to the PROMELA model. Events of the XML trace are not

written (in the same order as in XML trace) to the PROMELA model, but in different

order for example all the events of thread (e.g. Id 4) are written first, then the events

of thread (e.g. Id 5) are written second and so on. The information from the

threadIdStart [] obtained in step 5 is used while writing events to the PROMELA

model

8. After the event body is written, to enforce the synchronization based on message

passing approach, send and receive messages are inserted. The send and receive

messages are numbered according to certain algorithm (described briefly in step 2 &

3). Before writing any event body to the PROMELA model, we check if it send or

receive event. If the event is found to be of such a type, the send and receive

messages according to the algorithm followed in step 2 & 3

7.5 Property Specification in Promela Never Claim and LTL

Before discussing the property specification in LTL, we give here a brief introduction to

LTL.

 122

7.5.1 Temporal Logic Overview

Temporal Logic is a special branch of modal logic that investigates the notion of time and

order. In Pnueli suggested using Linear-Time Propositional Temporal Logic (LTL) for

reasoning about concurrent programs. Since then, several researchers have used LTL to

state and prove correctness of concurrent programs, protocols, and hardware.

7.5.1.1 Linear-Time Temporal Logic

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in

addition to the propositional logic operators (and (&&), or (||), xor (^), not (!), etc.) there

are future-time and past-time operators. The following syntax is used in our approach for

these four operators:

• Always in the future. One can use the English keywords Always, or a box ([]) to

represent the always operator.

• Sometime in the future. One can use the English keywords Sometime and or a

diamond (<>) to represent a sometime operator.

• Until (for the future). One can use the English keywords Until, or U to represent the

until and since operator.

• Next iteration (for the future). One can use the English keywords Next, or a cross (X)

to represent these operators.

7.5.2 Property Specification

Here we consider formalization of premature join antipattern in LTL. It consists in

invocation of the join method to the thread, which is not yet started [Hal04]. Obviously it

is impossible to specify such a pattern in LTL independently of number of threads.

 123

Consider instantiation of antipattern for one particular thread Ti, that is join to thread Ti is

called before start of Ti. Actually, it is more convenient to formalize absence of an

antipattern, so a model-checker could pinpoint the problem with a counterexample to the

correctness claim. Obviously a formalization of antipattern requires predicates which

indicate invocation of the join method, Join (Ti) and thread start, Start (Ti). To formalize

absence of premature join to the thread (Ti), we could use pattern specification system

[SpecPattern]. The most adequate pattern is precedence: S = Start (Ti) precedes P = Join

(Ti), which is mapped into LTL as !P W S = ! Start (Ti) W Join (Ti), where W is the weak

until operator. On a trace that consists of n threads T1,…, Tn instantiations of antipattern

for each thread could be either checked one by one, for each thread Ti, or at once with all

combined in one composite property

 ! Start (T1) W Join (T1) & ! Start (T2) W Join (T2) &…& !Start (Tn) W Join (Tn)

We follow the second approach, which is more convenient for us, while the first one

provides better diagnosis: it is immediately clear which exactly thread is involved in

premature join. Instantiation of predicates Start(Ti) and Join(Ti) is implementation

dependent.

Similarly, double start absence is formalized with “bounded existence” or “absence of P

= Start (Ti) after Q = Start(Ti)” specification pattern, slightly modified with the next

operator X to represent an open “after Q” scope for: [](Q -> X[](!P)).

The properties could be formalized with automata using automatic transformation tool or

an automata specification system, like in [Hal03].

Similarly we specify the double call for the start () method property. To formalize the

“double start” property, we define a variable P such as (#define P methodIdRef = = 309

 124

&& objectIdRef = = 8047) where 309 is the start methodId and 8047 is the objectIdRef

for that particular Start Methodentry

We formalize in LTL formula as <> (p&& X <>p), means that eventually in the model P

will be preceded by P. In this model we verify this LTL formula for every thread

7.6 Model Based Approach’s Results

To start the Spin model checker, click on RUN: (Re) Run-Verification in the Spin

window. Spin will compile the PROMELA program into a C program, which when

executed will do the model checking. While the compilation into C takes place, a small

window pops up with the text: “Please wait until compilation of the executable produced

by spin completes”. When this window disappears, the model checker starts executing

(the now generated C program). When this terminates, a window with the verification

result appears as shown in Appendix B. In our case it says (top line): “property violated”,

and further down it states: “errors: 1”. If there are no errors “errors: 0” is printed.

This message sequence chart (in the appendix A) can be explained as follows. The

Thread 6 sends a message (No 1) to the thread 7 and thread 7 send the message (No 2) to

the thread 6. The send message is label as message! (No 1, 2, 3, 4) Similarly the Thread

9 sends a message (No 4) to the thread 5 and thread 5 sends the message (No 5) to the

thread 9. The message is send from one thread to another threads if the consecutive

events in the PROMELA are on the same object (referred by the ObjectIdRef in the

PROMELA model) but on the different thread. Similarly for the receiving, if the

consecutive events refer to the same objectId but different threadId, the message is send

by the previous event and received by the consecutive event.

The experiments were performed on the following the system configuration:

 125

System Configuration:

Operating System: Window 2000

CPU: AMD Athlon 900 MHz

RAM: 512 Mbytes

The following technologies were used for the model based trace analysis are:

Technologies used:

Model Checker: Spin 4.1

Compiler: gcc (C compiler)

7.6.1 Antipattern: Double Call of Start () method

Description: The start () method is not supposed to be used more than once for the

same Thread.

Application: It is a fragment of Java multi-threaded platform Guest [Mag02]

 Trace
size

Promela model size Execution time Total Time(Execution +
Compile Time)

63.6 KB 3.25 KB 9s(approx) 34seconds

Table 7.1: Analysis time for premature join () detection

Promela model size Pan.c build time Pan.exe build time Verification time

3.25 KB 1s(approx) 2s (approx) 1s(approx)

Table 7.2: Verification & Compilation Time (double start ())

7.6.1.1 Verification Data

 State Vector Size: 1592 bytes
Depth Reached: 35
No of transitions: 20 (visited + matched)
No of matched states: 1
No of states visited: 19

 No of errors: 1

 126

7.6.2 Antipattern: Premature Call of Join () Method

Description: A call to the join () method of a thread is premature if this thread has not

been started at the time of the call [TR2].

Application: Custom Race program [JPROBE]

Trace size Promela model size Execution time Total Time(Execution
+ Compile Time)

29.3 Kb 2.23 KB 5s (approx) 27seconds

Table 7.3: Model Generation Time (premature join)

Promela model
size

Pan.c build time Pan.exe build time Verification time

2.23 KB 1s(approx) 2.5 s (approx) 1s (approx)

Table 7.4: Verification & Compilation Time (premature join)

7.6.2.1 Verification Data

State Vector Size: 1592 bytes
Depth Reached: 21
No of transitions: 17 (visited + matched)
No of matched states: 1
No of states visited: 16
No of errors: 1

7.7 Open Problems and alternatives for trace modeling

First we list the possible future work or open problems in the model-based trace analysis

approach:

1. As described before we verify the generated PROMELA model against the

properties/antipatterns specified in LTL. The LTL formula translates to never claim

and the model checker searches the state space for never claim negation. An

alternative to this property verification approach is that we implement the antipattern

 127

detectors in C. Then SPIN version 4.0 or later, support embedded C inclusion in the

PROMELA model through the use of five new primitives. These primitives are

c_expr, c_code, c_decl, c_state, c_track. Using these primitives the antipatterns

coded in C language are embedded at certain locations in the model. During the

model verification using the SPIN model checker, the embedded code provide

guidance to the precise location of such errors

2. We used object-oriented paradigm (OOP) for PROMELA model generation and

extraction from XML based Java trace. An alternative to OOP, we can possibly use

aspect-oriented programming (OOA) based tool such as Aspect J for the model

generation and extraction. AOP based model extraction will be particularly useful

when the XML trace is quite large with many events interleaving. In such a large

trace, AOP proves to be very versatile, because in AOP we can divide the

functionality of the code as concerns and code these concerns independently. In the

exception cases where there are cross-cutting concerns

3. Extend the model-trace analysis to verify other concurrency related antipatterns

4. Extended the current error detection approach to error correction/error location finder

in the target program. To extend it warnings emitted (antipattern violations) by the

model checker, after trace analysis can be given as feedback to the target program.

For this, we can write code which read/interpret ate the content of the warning and

based on the content of the warnings can possibly locate the error in the target

program. Once the error is located, we can code it further to correct the error, writing

such a code will be quite trivial task. But using AOP it can be made possible to write

error correcting code.

 128

Another option is correcting the code at bytecode level, rather than at source code

level. The correction at the bytecode level will save the software development cost. This

type of automated error correction system, can possible be used in those autonomous

systems used in deep space missions were there is very little human interaction. Those

autonomous systems are designed to be such that they have the capability to adaptive and

evolve themselves according to the environmental conditions. In such autonomous

systems, we will need such an automated error correction system we can locate the errors

and correct them, without very less or almost no human interaction

7.7.1 Alternatives to Trace Modelling

There are few other alternatives to trace modelling, and here we list few of them.

1) We can possible use mathematical techniques create a model the Java trace (In XML

format), and then verify against the antipatterns/properties the generated model using

the Theorem Proving techniques.

2) We can experiment with other model checkers and possible translate the trace to other

model checking languages

3) We can implement algorithms for antipattern detection using Maude. Maude [] is a

modularized specification and verification system that very efficiently implements

rewriting logic. Maude was developed at computer science department, university of

illinois at Urbana Champaign. The automated software engineering group at NASA

have already implemented such verification in Maude.

 129

8 Chapter 8 Comparison

8.1 Introduction and Motivation

Here we will make a detail comparison between two approaches namely model-based

trace analysis and custom based trace analysis approach. The comparison will be based

on the experimental results, easy of usage, scalability, program complexity, quality of

analysis and resource consumption. In section 2 we first explain the auxiliary details

such as how the experiment was performed, its environment, technologies used and other

related technical details. In the section 3 a detailed comparison is made based on the

criteria such as time usage, quality of analysis, resource consumption, scalability and

easy of usage etc.

Motivation to conduct such a comparative study is to analyze the feasibility of formal

approaches in runtime analysis. The model based approach is formal and custom based

approach in a semi-formal one.

8.2 Experiments Results:

We used custom detectors to analyze large programs, such as SAP Vending Machine

Server. The size of SAP vending machine Server trace is of the about 80 megabytes or

so. Analyzing such a large trace will cause memory overflow problem. To reduce the

trace size, we used fine-tuned filters. To counter such problem, probably more scalable

XML tools could be used for XML parsing such as SAX parser.

As detailed before the model checking approach is further based on two approaches

namely variable based and message based approach. Modeling the trace based on

message passing approach does not scale to very large trace size, because of the inherent

 130

limitation of the PROMELA language. Because of this reason we plan to completely

replace message passing with shared variables for scalability purposes.

Nevertheless, model-checking approach could hardly outperform custom analysis in

terms of scalability, since parsing of the XML trace file is required anyway to generate

the model. Thus comparison is performed on middle size programs.

For comparison we performed experiments on two applications and two antipatterns

using both custom and model-checking approaches. The first application is a fragment of

Java multi-threaded platform Guest [Mag02]. The second is a toy demo program

(borrowed from JProbe), both with injected faults and third one is SAP vending machine

server. The experiments are performed on AMD Athlon 900 MHz system with 500MB of

RAM and Windows 2000 operating system. For the model based trace analysis,

technologies used were Model Checker- Spin 4.1, C compiler- gcc and for custom based

trace analysis technologies used were:

1) Compiler: Java 1.4

2) IDE: Eclipse

3) Java - XML Tool: JAXB (Java Architecture for XML Binding)

 Table 8.1: Experimental Results

 Bug Trace Size PROMELA
Model Size

Custom
analyzer

Model
building and
Verification

App1 Double start 64 K 3.25 KB 4 13
App2 Premature join 29.3 KB 2.3 KB 4 10
App3 Double start 667 KB 22.0 KB 6 20

 131

8.3 Comparison

The comparison between these two approaches is based on the criteria such as time

usage, complexity of analysis, scalability, quality of analysis and easy of usage etc.

Time Usage:

The results from the experiments have show that custom detectors are slightly faster;

however most of the time is consumed not by model checking itself, which takes less

than a second, but with auxiliary steps, such as building PROMELA model, compiling

PROMELA into executable, etc.

Complexity of Analysis:

The model-based trace analysis is more cumbersome and complex than the custom based

analysis approach because in former the PROMELA model of the trace is required to be

generated, whereas in latter we directly analyze the XML trace.

Scalability:

Both the approaches can equally scalable, but model approach fares better than custom

approach in analyzing large traces. When analyzing large traces, the custom approach

gave the memory overflow exception whereas there is no problem in analyzing large

trace with model based approach

By using the filters in the model generation code, the size of the PROMELA model (in

Megabytes) is less as compared to the size of the execution trace used for custom based

trace analysis approach.

Quality of Analysis:

Regarding the quality of analysis, model based approach is rated better than the custom

based approach. Custom based approach cannot completely guarantee that the program

 132

property/antipattern is satisfied because only one run is examined. In order to achieve

higher assurance the model based trace analysis approach is used. Model based approach

allows predictive trace analysis, in a sense that we could analyze several events

interleaving.

Also model based approach can verify the parallel compositions of the trace and thus the

analysis can be made more versatile.

We can experiment with others logics such as interval logic, real time logic can be better

using model based approach than the custom based approach.

Resource consumption –memory problems:

Regarding the resource consumption (memory), model based approach is better than

custom based approach because when the model is generated extra memory of consumed

Whereas in the custom based analysis approach we directly analyze the execution trace.

False positives:

The custom based analysis may emit false warnings. By making the model based

approach as guided model checking we can eliminate the false positives generated by the

custom based analysis approach. The guided model checking the help focus the search of

the model checker

Moreover in the model-based trace analysis approach we can set the search options in the

model checker to cover parts of the state-space that weren’t covered – e.g. to cover

“deep” paths.

Future research requirements:

The future research is being undertaken as to influence the program behavior, when the

property is violated. For the future research on this aspect the model based trace analysis

 133

is better suited for such research projects because it being a formal approach it is more

possible to give feedback and correct the errors in the target program.

Such as future research is undertaken for the autonomous applications used in deep space

mission. In such an autonomous application there is little or very less human interaction.

 134

9 Chapter 9: Conclusion and Future Work

We have presented two approaches for the runtime analysis, namely custom based and

model based trace analysis approach. Motivation of this work is to present runtime

analysis approach, with combine testing and formal methods, while avoiding the pitfalls

of ad hoc testing and complexity of full-blown theorem proving and model checking.

Both these approaches provide an integrated environment to integrate two

instrumentation approaches (profiling interface tool with bytecode instrumentation) to

obtain an improved Java trace in XML format with the relevant events logged. These

two runtime analysis approaches different in the antipatterns detection approach.

In custom based approach the Java trace is analyzed for antipatterns using Java detectors.

Whereas in model based analysis approach the Java trace is first translated to PROMELA

model, and then the extracted model is verified against the antipatterns specified in LTL

using SPIN model checker. We have implemented algorithm for the model extraction

from the Java trace.

We have designed the architecture as a modular architecture consisting of several

components for the increasing flexibility. The approach being modular can be extended

further to suit the future needs of the runtime analysis.

Then we made a detailed comparison between these two runtime analysis approaches

based on the following criteria:

1) Quality of Analysis
2) Resource consumption
3) Time Usage

 135

We divide our future work as long term and short term agenda. In short term future

work will be:

1. Experiments with other real cases studies and compare the results with other runtime

approaches such as JMPAX, JPAX and JavaMac

2. Experiment with other MT antipatterns.

3. To analyze the execution trace against high level requirement specification and also

to experiment with new kinds of logics such as interval and real time logics

4. Secondly we are interested to experiment with this logic implemented in maude rather

than in LTL

5. Implement GUI for both the approach. This will help us to better visualize the results

6. Use aspect Oriented programming (AOP) for model extraction, bytecode

instrumentation.

7. Extended model based analysis approach using AOP to build autonomous software,

which are adaptive and self evolving. In such an autonomous software testing could

be automated to an extend that error detection and correction is automatic, with very

less human interaction.

8. Guide execution via aspect based code instrumentation to explore the possible

interleavings of a non-deterministic concurrent program during testing.

Our long term agenda for the future work will be to combine static analysis and runtime

analysis.

 136

10 References:

[AntiPattern] An antipattern book [Online] http://www.antipatterns.com/thebook.htm

[AntiPattern2] Wikipedia, Antipatterns [Online] https://c2.com/cgi/wiki/Antipattern

[ABH03] C. Artho, A. Biere and K. Havelund. “High-Level Data Races”

VVEIS'03, First International Workshop on Verification and Validation of

Enterprise Information Systems Angers, France, April 22, 2003

[ALD99] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, Susan J. Eggers:

Static Analyses for Eliminating Unnecessary Synchronization from Java

Programs. Agostino Cortesi, Gilberto Filé (Eds.): Static Analysis, 6th

International Symposium, SAS '99, Venice, Italy, September 22–24, 1999,

Proceedings. LNCS 1694 Springer 1999: 19-38.

[ART01] Cyrille Artho: “Finding faults in multi-threaded programs”. Master

Thesis. Institute of Computer Systems, Federal Institute of Technology,

Zurich/Austin. 2001.

[AS85] Bowen Alpern and Fred B. Schneider. “Defining Liveness” Information

Processing Letters, October 1985

[AH03] Allen Goldberg and Klaus Havelund. “Instrumentation of Java Bytecode

for Runtime Analysis” Fifth ECOOP Workshop on Formal Techniques for

Java-like Programs, Darmstadt, Germany, July 21, 2003

[ARM98] Eric Armstrong “Hotspot: A new breed of virtual machine” 1998

 137

http://www.javaworld.com/jw-03-1998/jw-03-hotspot.html

[BAU03] M. C. Baur. “Instrumenting Java Bytecode to Replay Execution Traces of

Multithreaded Programs” Diploma Thesis, Computer Systems Institute,

Swiss Federal Institute of Technology (Zurich), April 9, 2003

[BER97] P.Bertelsen. “Semantics of Java bytecode” A Technical Report.

Department of mathematics and physics, Royal Veterinary and

Agricultural University, Copenhagen, Denmark, April 1997, [Online]

http://www.dina.kvl.dk/~pmb.

[Caffeine] Y.-G.Gueheneuc.Caffeine.[Online]

 http://www.yann-gael.gueheneuc.net/Work/Research/Caffeine

[CAI03] Andrew Cain, Jean-Guy Schneider, Doug Grant and Tsong Yueh Chen

“Run-time Data Analysis for Java Programs” 1st Workshop on ASARTI,

Darmstadt, Germany, July 21, 2003

[CKC98] G. A. Cohen, D. L. Kaminsky and J. S. Chase “Automatic Program

Transformation with JOIE” In Proceedings USENIX Annual Technical

Symposium, 1998

[CHO02] J.-D. Choi and A. Zeller “Isolating Failure-Inducing Thread Schedules”

International Symposium on Software Testing and Analysis (ISSTA2002),

Via di Ripetta, Italy, July 22-24, 2002.

[COH98] G. A. Cohen, D. L. Kaminsky and J. S. Chase. “Automatic Program

Transformation with JOIE” In Proceedings USENIX Annual Technical

Symposium, 1998

 138

[CS98] Jong-Deok Choi and Harini Srinivasan, “Deterministic Replay of Java

Multithreaded Applications”, ACM SIGMETRICS Symposium on

Parallel and Distributed TOOLS (SPDT), ACM Press, August 1998

[CSGC03] Andrew Cain, Jean-Guy Schneider, Doug Grant and Tsong Yueh Chen.

“Runtime Data Analysis for Java Programs” 1st Workshop on ASARTI,

Darmstadt, Germany, July 21, 2003

[DAH99] M Dahm. “Byte Code Engineering” In JIT 99 Proceeding

[DAH01] M. Dahm. “Byte Code Engineering with the BCEL API” Technical

Report B-17-98, Institut f¨ur Informatik, Freie Universit¨at Berlin, April 3,

2001

[DC01] M. Deters and Ron K. Cytron “Introduction of Program Instrumentation

using Aspects.” OOPSLA 2001 Workshop on Advanced Separation of

Concerns, October 2001

[DY04] Laura K. Dillon and Qing Yu. “Specification and Testing of Temporal

Logic Properties of Concurrent System Designs” Technical Report, March

2004

[EFB01] T. Elrad, R. E. Filman and A. Bader. “Aspect-Oriented Programming”

Communications of the ACM, Volume 44 Issue 10, October 2001.

[ENG00] Editors of The American Heritage Dictionaries, The American Heritage

Dictionary of the English Language, 4th edition, published by Houghton

Mifflin Co, January 2000

 139

[FH02] R. E. Filman and K. Havelund “Source-Code Instrumentation and

Quantification of Events” Foundations of Aspect-Oriented Languages

(FOAL'02), Enschede, Netherlands, April 22, 2002

[FZ03] Fancong Zeng “An Initial Study of Common Coding Pitfalls in Java

Programs” MASPLAS '03 Mid-Atlantic Student Workshop on

Programming Languages and Systems, April 26th, 2003

[GEI01] M.C.W. Geilen. “On the construction of monitors for temporal logic

properties” RV'01 - First Workshop on Runtime Verification, July 23,

2001 Paris, France

[GH03] Allen Goldberg and Klaus Havelund “Instrumentation of Java Bytecode

for Runtime Analysis” Fifth ECOOP Workshop on Formal Techniques for

Java-like Programs, Darmstadt, Germany, July 21, 2003

[GJSB00] James Gosling, Bill Joy, Guy Steele and Gilad Bracha “The Java

Language Specification” Addison-Wesley, second edition, 2000

[HAG01] Peter Hagger “Understanding bytecode makes you a better programmer”

Developer Work July 2001, [Online]

http://www-106.ibm.com/developerworks/ibm/library/it-haggar_bytecode/

[HAL03] Hallal, H., Boroday, S., Ulrich, A. and Petrenko, A. “An Automata-based

Approach to Property Testing in Event Traces” In Proceedings of the

IFIP TC6/WG6.1 XV International Conference on Testing of

Communicating Systems (TestCom 2003), pp. 180-196. Sophia Antipolis,

France, May 26-29, 2003.

 140

[HAL04] H. H. Hallal, E. Alikacem, P. Tunney,S. Boroday and A. Petrenko

“Antipattern-Based Detection of Deficiencies in Java Multithreaded

Software” Quality Software, Fourth International Conference on

(QSIC'04) September 08 - 10, 2004, Braunshweig, Germany

[HAV01] K. Havelund, Scott Johnson and G. Rosu. “Specification and Error

Pattern Based Program Monitoring”. European Space Agency Workshop

on On-Board Autonomy, Noordwijk, Holland, October 2001.

[HAV02] Klaus Havelund “Dynamic Program Analysis” A talk at NASA Ames

Research Center, October 2002.

[HAV03] K. Havelund, C. Artho, D. Drusinsky, A. Goldberg, M. Lowry, C.

Pasareanu, G. Rosu and W. Visser. “Experiments with Test Case

Generation and Runtime Analysis” ASM 2003, 10th International

Workshop on Abstract State Machines Taormina, Italy, March, 2003

[HAV04] K. Havelund “Using Runtime Analysis to Guide Model Checking of Java

Programs” The 7th International SPIN Workshop, Stanford, California,

August-September, 2000

[HOV04] David Hovemeyer and William Pugh: “Finding Bugs is Easy” JavaOne

4Sun’s 2004 Worldwide Java Developer Conference

[HJR01] K. Havelund, Scott Johnson and G. Rosu. “Specification and Error

Pattern Based Program Monitoring”. European Space Agency Workshop

on On-Board Autonomy, Noordwijk, Holland, October 2001

 141

[HR01] K. Havelund and G. Rosu. “Monitoring Java Programs with Java

PathExplorer” First Workshop on Runtime Verification (RV'01), Paris,

France, 23 July 2001

[HR02] K. Havelund and G. Rosu “Synthesizing Monitors for Safety Properties”

International Conference on Tools and Algorithms for Construction and

Analysis of Systems (TACAS'02), Grenoble, France, April 14, 2002

[HR04] Klaus Havelund and Grigore Rosu “Efficient Monitoring of Safety

Properties” In Software Tools for Technology Transfer, 2004

[HUA79] J. C. Huang. “Detection of Data Flow Anomaly Through Program

Instrumentation” IEEE Transactions on Software Engineering, Volume 5,

January 1979

[HEU03] Dirk Heuzeroth, Thomas Holl, Gustav Högström and Welf Löwe

“Automatic Design Pattern Detection” 11th International Workshop on

Program Comprehension (IWPC 2003), May 10-11, 2003, Portland,

Oregon, USA

[Hyades] Hyades Project, Eclipse platform [Online] http://www.eclipse.org/hyades/

[IBM00] IBM AlphaWorks. CFParse, September 2000

http://www.alphaworks.ibm.com/tech/cfparse

[IBM002] IBM AlphaWorks. “Jikes ByteCode Toolkit” March 2000

http://www.alphaworks.ibm.com/tech/jikesbt

[IBM01] IBM Writing Multithreaded Java applications “Learn to avoid problems

common in concurrent programming” February 2001 [Online]

http://www-106.ibm.com/developerworks/java/library/j-thread.html

 142

[JCON] Java implementation of Design by Contract by apache open source

community, [Online] http://jcontractor.sourceforge.net/

[JFluid] A profiling tool for Java from Sun Microsystems, [Online]

http://research.sun.com/projects/jfluid/

[JPAX] Ron LeMaster and David Leberknight. JPaX

http://ic.arc.nasa.gov/researchinfusion/materials/JPaX/talk.pdf

[JPDA] Java Platform Debugger Architecture from Sun Microsystems available

online at http://java.sun.com/j2se/1.4.1/docs/guide/jpda/

[JProbe] A tool by Quest Software JProbe [Online] http://www.quest.com/jprobe

[JVM] Tim Lindholm and Frank Yellin “The Java Virtual Machine

Specification” Second edition [Online]

http://java.sun.com/docs/books/vmspec/2nd-

edition/html/VMSpecTOC.doc.html

[JVMPI] Sun Microsystems “Java Virtual Machine Profiling Architecture”

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

[JRAT] Java Runtime Analysis Tool [Online] http://jrat.sourceforge.net/

[J2SE 5.0] Sun Microsystems “Java 2 Platform Standard Edition (J2SE) 5.0

 ("Tiger")” [Online]

 http://java.sun.com/developer/technicalArticles/releases/j2se15

[KH98] Ralph Keller and Urs H¨olzle “Binary Component Adaptation”

Proceedings of ECOOP, Brussels, July 1998

 143

[KHB98] Murat Karaorman, Urs Holzle and John Bruno “jContractor: A Reflective

Java Library to Support Design By Contract”. A Technical Report 1998

[KIM01] Moonjoo Kim “Information extraction for run-time formal analysis”

Ph.D Thesis, CIS Department, University of Pennsylvania, September

2001

[LAM77] Leslie Lamport “Proving the Correctness of Multiprocess Programs”

IEEE Transactions on Software Engineering SE-3 March 1977

[LEE03] Jooyong Lee, Ki-Seok and Jin-Young Choi “Model Checking in Java

Program Debugger” 10th Annual International Static Analysis

Symposium(SAS'03), San Diego, California, USA, June 11-13, 2003

[LEW03] Bil Lewis “Debugging Backward in Time” Proceedings of the Fifth

International Workshop on Automated Debugging (AADEBUG 2003),

September 2003

[LOG4j] Log4j Project jakarta.apache.org/log4j

[LZ97] H. B. Lee and B. G. Zorn “BIT: A tool for instrumenting Java bytecodes”

In USENIX Symposium on Internet Technologies and Systems, 1998

[MYE97] G.J Myers. “The art of Software Testing” John Wiley and Sons, 1978

[MT Java] Bil Lewis and Daniel J. Berg. “Multithreaded Programming with Java

Technology” Sun Microsystems Press, 2000

[ODB] Bil Lewis “Omniscient Debugger (ODB)” [Online]

http://www.lambdacs.com/debugger/ODBDescription.html

 144

[PU03] Pietschker, A. Ulrich, A. “A Light-weight Method for Trace Analysis to

Support Fault Diagnosis in Concurrent Systems”. Journal of Systemics,

Cybernetics and Informatics, Vol 1. no 2. 2003.

[PW02] Paul Pazandak and David Wells “ProbeMeister: Distributed Runtime

Software Instrumentation.” USE 2002 Spain, June 2002

[RC03] Grigore Rosu and Feng Chen “Towards Monitoring-Oriented

Programming: A Paradigm Combining Specification and

Implementation”. Third International Workshop on Run-time Verification

(RV'03). Boulder, Colorado, U.S.A, July 13, 2003

[RW02] Grigore Rosu and Jonathan Whittle. “Towards Certifying Domain-

Specific Properties of Synthesized Code” Verification and Computational

Logic (VCL'02), Pittsburgh, PA, USA, 5 October 2002

[SBN97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A Dynamic Data Race Detector for Multithreaded Program”

ACM Transactions on Computer Systems, ACM Press, NY, 1997

[SEN03] Koushik Sen, Grigore Rosu and Gul Agha “Runtime Safety Analysis of

Multithreaded Programs” In Proceedings of the 10th European Software

Engineering Conference and the 11th ACM SIGSOFT Symposium on the

Foundations of Software Engineering, pages 337-346, Helsinki, Finland,

2003

[SNO88] R. Snodgrass. “A relational approach to monitoring complex systems” In

ACM Transaction on Computer Systems, May 1988

 145

[SMI00] Connie U. Smith and Lloyd G. Williams, “Software performance

antipatterns”, In Proc. of Workshop on Software and Performance,

Ottawa, 2000, pp. 127-136.

[SSP] Software Surveyor Project, [Online]

http://www.objs.com/DASADA/index.html

[MAG99] J. Magee and J. Kramer: Concurrency: State Models & Java Programs:

John Wiley & Sons, 1999.

[MEI03] Rob van der Mei, Marcel Harkema, Dick Quartel, and Bart Gijsen “JPMT:

a Java Performance Monitoring Tool” In Proc. of TOOLS 2003, Urbana,

Illinois, USA, 2003

[MS03] N Markey and Ph Schnoebelen “Model Checking a Path” 14th

international conference on concurrency theory (CONCUR 2003),

Marseille, September 3-5

[NASA02] Stacy Nelson and Charles Pecheur. “V&V OF ADVANCED SYSTEMS AT

NASA” Technical Report for NASA January25, 2004 [Online]

http://ase.arc.nasa.gov/vvivhm/reports/FinalNASAReport2.pdf

[TR1] Technical Report 1, First intermediate report on formal analysis of MT

java applications. Montreal, August 2003.

[TR2] Technical Report 2, Second intermediate report on formal analysis of MT

java applications. Montreal, November 2003.

[ULR03] Ulrich, A., Hallal, H., Petrenko, A. and Boroday, S. “Verifying

Trustworthiness Requirements in Distributed Systems with Formal Log-

 146

file Analysis” In Proceedings of the IEEE 36th Hawaii International

Conference on System Sciences (HICSS-36), Hawaii, USA, January 6-9,

2003.

[RIN01] Martin Rinard, “Analysis of Multithreaded Programs”, In Proc of 8th

International Static Analysis Symposium, Paris, France, July 2001

[JPF] Java Pathfinder “A Model Checker for Java Programs”, [Online]

http://ase.arc.nasa.gov/visser/jpf/

 147

Appendix A: A snapshot of the console output for “premature join” verification

based on custom based detection Approach

 148

Appendix B: A Snapshot of the MSC (Message Sequence Chart)

 149

Appendix C: A snapshot of console output for “premature join” verification based

 on model checker based approach

 150

Appendix D: Ordering of the events on the same Object

Appendix E Flowchart for the XML-Promela model

Lockentry

Notify Exit

Lockrelease

Lockentry

Wait Entry

Wait Exit

Lockrelease

Q[0]

Q[1]

Notify Entry

Thread 7

Wait Exit

Lockrelease

Lockentry

Wait Entry

Thread 5

Lockentry

Notify Exit

Lockrelease

Notify Entry

Q[3]

Q[4]

Object id 8604 Q[2]

Thread 6
Object id 8606

 151

XML
Trace

Terminate

Create objectId[],
threadId[] and

event_type [] array

The XML trace is transversed and objectIds and threadIds of the events e.g. (waitentry/exit, notifyentry/exit, lockAcquire
entry/exit, lockrelease entry/exit), startentry, runentry,runexit, joinexit are saved in objectId[] and threadId[] arrays and

there event types lockoperation_event, startentry_event,runentry_event,other_event,other_event are saved in
event_type[] array respectively.

Create ObjectId[], threadId[]
and event_type[] array page1

Transverse the
XML trace

and get event
type

Is event of type
startentry?

Save objectId and
threadId in objectId[]
and threadId[] array
and set event type as
startentry_event in
event_type[] array

Yes

No

No

Is event of type
runentry?

Save objectId and
threadId in objectId[]
and threadId[] array
and set event type as

runentry_event in
event_type[] array

Yes

Is event of type
runexit?

No

Save objectId and
threadId in objectId[]
and threadId[] array

set event type as
other_event in

event_type[] array

Yes

Is event of type
joinexit?

Save objectId and
threadId in objectId[]
and threadId[] array

set event type as
other_event in

event_type[] array

Yes

No

Is event of type
waitentry/exit, notifyentry/

exit, lockentry/exit?

No
Save objectId and

threadId in objectId[]
and threadId[] array

set event type as
lockoperation_event
in event_type[] array

Yes

 152

 153

Is i = = N?

j = i +1

create send_message[] and
receive_message[]

array

i = 1
j = 1

N = length of objectId[]

create objectId[],
threadId[] and

event_type[] array

Yes Terminate

A-3

create send_message[] and
receive_message [] array
page 2

What is the
event_type[i] ?

Yes

This subroutine find those objectIds and threadIds values in the arrays whose preceding objectId and event type
is same (but in the case of start and run startentry should be preceded by runentry) but different threadId (for
sending messages) and save there index values in send_message[] array and save those index values from which
they are different in receive_message[] array.

B- 3,4

j = i +1

C-4

Yes

"startentry_ev
ent" type

"lockoperatio
n_event" type

"other_event"
type

 154

Is ThreadId [i] =
= ThreadId [j]?

Save value of i in
send_message []

array

Yes

 i = i+1 B- 2

Create send_message[]
and receive_message[]
array- page 3

Yes

Save value of j in
receive_message []

array

Is ObjId [i] ==
ObjId[j] &&

event_type[j] ==
"runentry_event"?

j = j +1

Is j = = N ?

No

Yes

i ++
j = i+1

A-2

No

No

is i = = N?

Yes

Terminate

 i = i+1 B- 2Yes

 155

 156

Is ThreadId [i] =
= ThreadId [j]?

Yes

 i = i+1 B- 2Yes

Is ObjId [i] ==
ObjId[j] &&

event_type[j] ==
"lockoperation_ev

ent"?

j = j +1

Is j = = N ?

No

i ++
j = i+1

No

C-2

No

Save value of i in
send_message []

array

Save value of j in
receive_message []

array

Create send_message[]
and receive_message[]
array- page 4

is i = = N?

Yes

Yes

Terminate

 i = i+1 B- 2

 157

write receive message to
promela model, if needed

The algorithm of this subroutines is the same as followed before for to create receive_message[] (page 2, 3 & 4),
except that the indexes are not stored in arrays but rather there index position (second index values) are found in

receive_message array. While writing events to the promela model, the receive messages are numbered according
to the second index values.

i = 2
j = 1

N = length of objectId[]
array

create objectId[],
threadId[] and

event_type[] array

A -6

create
receive_mess
age[] array

write receive message to
promela model, if needed
 page 5

Is i = = N ?

j = i +1

Yes Terminate

what is
event_type[i]?

B- 6,7

j = i +1

C - 7

It is
"runentry_eve

nt"

It is
"other_even

t"

It
is"lockoperati

on_event"

 158

 159

Is receive
message

required to be
inserted?

Yes

No
E -14

int g =
Array.binarysearch
(receive_message,

i)

 i = i+1 B- 5Yes

receive_me
ssage[]
array

Write receive
message "Q[g] ?"
to promela model

Searches the
receive_message []
array and return the

index of i

write receive message to
promela model, if needed
page 6

j = j -1

Is j= = 0?

i++
j = i-1

No

No

Yes

A-5

Is ObjId [i] ==
ObjId[j] &&

event_type[j] = =
"startentry_event"?

is i = = N?

Terminate

Yes

 160

 161

Is receive
message

required to be
inserted?

Yes

NoE -14

Is ThreadId [i] =
= ThreadId [j]?

int g =
Array.binarysearch
(receive_message,

i)

No i = i+1 B- 6

Yes

receive_me
ssage[]
array

Write receive
message "Q[g] ?"
to promela model

Searches the
receive_message []
array and return the

index of i

write receive message to
promela model, if needed
page 7

Is ObjId [i] ==
ObjId[j] &&

event_type[j] = =
"lockoperation_eve

nt"?

j = j -1

Is j= = 0?
i++

j = i-1

Yes

No

No

Yes

C-5

is i = = N?

Terminate

Yes

 162

write send message to
promela model, if needed

The algorithm of this subroutines is the same as followed before to create send_message[] (page 2,3 & 4), except that
the indexes are not stored in arrays but rather there index position (second index values) are found in send_message
array. While writing events to the promela model, the send messages are numbered according to the second index

values.

i = 1
j = 1

N = length of objectId[]
array

create objectId[],
threadId[] and

event_type[] array

create
send_message

[] array

write send message to
promela model, if needed
page 8

Is i = = N ?

j = i +1

Terminate

A- 9

what is event
type[i]?

B- 9,10

j = i +1

C-10

Yes

No

It is
"startentry_eve

nt"

It is
"lockoperation_e

vent"

It
is"other_event"

YesYes

 163

 164

Is send
message

required to be
inserted?

Yes

NoE-14

int g =
Array.binarysearch
(send_message, i)

 i = i+1 B- 8

send_mess
age[] array

Write send
message "Q[g]!"
to promela model

Searches the
send_message []

array and return the
index of i

write send message to
promela model, if needed
 page 9

Is ObjId [i] ==
ObjId[j] &&

event_type [j] = =
"runentry_event" ?

j = j +1

Is j = = N ?

Yes

No

No

Yes

i ++
j = i+1

A- 8

is i = = N?

Yes

Terminate

 165

 166

Is send
message

required to be
inserted?

Yes

NoE-14

Is ThreadId [i] =
= ThreadId [j]?

int g =
Array.binarysearch
(send_message, i)

No i = i+1 B- 8

Yes

send_mess
age[] array

Write send
message "Q[g]!"
to promela model

Searches the
send_message []

array and return the
index of i

write send message to
promela model, if needed
 page 10

Is ObjId [i] ==
ObjId[j] &&

flag_type [j] = =
"lockoperation_even

t" ?

j = j +1

Is j = = N ?

Yes

No

No

Yes

i ++
j = i+1

C - 8

is i = = N?

Yes

Terminate

 167

Build list of
ThreadIds

XML
Trace

Transverse the
XML Trace and

Save threadIds of
threadStart event

threadIdStart[]
array

Terminate

This subrouine build threadIdStart [] array, containing the list of all the
threadIds

Build list of ThreadIds
 page 11

 168

 169

write event body, send and receive
 messages to promela

XML
Trace

Events of the XML trace are not written (in the same order as in XML trace) to the promela model, but in differrent
order. e.g. all the events of thread (e.g Id 4) are written first, then the events of thread (e.g Id 5) are written second

and so on.

build list of
threadIds

C- 12

create
send_message[]

and
receive_message

[] array

int K = 1

Write to promela
active proctype

thread K

A- 13

write event body, send and
receive message to promela
model - page 12

Transverse
the trace Kth

time

 170

Is threadId equal to
Kth element of

threadIdStart array

Read threadId
of next event

threadIdstart[]
array

write receive
message to
promela, if

needed

Read threadId of
the first relevant

event

A-12

No

Yes

D - 15

receive_me
ssage[]
array

write event body, send and
receive message to promela
model - page 13

Is the event
runentry?

Yes

Write to
promela

"ActiveThread
K = = true "

B - 14

 171

 172

B - 13

Write the
event body
to promela

model

E- 6,7

E - 9,10

Is the event
runexit?

Write to
promela

"ActiveThread
K = = false"

Yes

Store the
event's

objectId in
runexit_objectI

d[]

Yes

No

Is the event
joinexit?

Write to
promela "::

ActiveThread p
= = false ->"

int m =
Arraysbinarysearch
(runexit_objectId,

objectId)

Store the
event's

threadId in
runexit_threa

dId[]

Yes

int p =
runexit_threa

dId [m]

G-15

runexit_threadI
d[] array is

contain
threadId of

runexit event

F

F

write event body, send and
receive message to promela
model - page 14

 173

Are there
more events of
Kth threadId ?

C- 12

K++;D - 13

Is it the last event
of last threadId?

Yes

Terminate

No

write to
promela "End
of Process K"

G-14

Yes

No

write event body, send and
receive message to promela
model - page 15

write send
message to
promela, if

needed

send_mess
age[] array

 174

Start

The promela model with send and receive messages inserted.
Here before writing send or receive message to promela model, we check if they are required to

be written, if required we insert receive or send message before or after the event body.

Terminate

Write necessary variables (boolean
variables, type declaration and

channel declaration)

write event body, send
and receive message to

promela

The main program - page 16

