
Adaptive Approximate Computing for Enhanced

Quality Assurance

Mahmoud Saleh Masadeh

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

August 2020

© Mahmoud Saleh Masadeh, 2020

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Mahmoud Saleh Masadeh

Entitled: Adaptive Approximate Computing for Enhanced Quality As-

surance

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Chun Wang

Dr. Jie Han

Dr. Rajagopalan Jayakumar

Dr. Mohammed Reza Soleymani

Dr. Otmane Ait Mohamed

Dr. Sofiène Tahar

Approved by

Dr. Yousef R. Shayan, Chair of the ECE Department

August 6, 2020

Dr. Mourad Debbabi, Dean, Faculty of Engineering and Computer Science

ABSTRACT

Adaptive Approximate Computing for Enhanced Quality Assurance

Mahmoud Saleh Masadeh, Ph.D.

Concordia University, 2020

Approximate Computing (AC) has been widely advocated for energy-efficiency

in error-tolerant applications as it offers the opportunity to trade-off output quality

for reduced power consumption and execution time. Approximate accelerators, which

consist of a large number of functional units, have been proposed in error-resilient ap-

plications, to speed-up regularly executed code elements while assuring defined quality

constraints. However, with an approximate static design, while the average output

quality constraint is satisfied, the quality of individual outputs varies significantly with

dynamically changing inputs. Thus, quality assurance is an essential and non-trivial

problem. State-of-the-art approaches in approximate computing address this problem

by precisely re-evaluating those quality-violating accelerator invocations. However,

such methods can significantly diminish or even cancel the benefits of approximation,

especially when the rate of input data variations is high and approximate errors are

considerably above a user given threshold, i.e., target output quality (TOQ).

As a general solution to this problem, in this thesis, we propose a novel method-

ology to enhance the quality of approximation by two approaches: 1) design adap-

tation by predicting the most suitable settings of the approximate design to execute

the inputs; and/or 2) error compensation by predicting the error magnitude to use

in adjusting the output results. The proposed method predicts the design settings,

iii

or the error magnitude based on the applied input data and user preferences, with-

out losing the gains of approximations. We mostly consider the case of approximate

accelerators built with approximate functional units such as approximate multipliers,

where we design a library of approximate accelerators with 20 different settings of 8

and 16-bit approximate multipliers.

For the adaptive approximate computing, we use machine learning (ML) algo-

rithms to build an efficient and lightweight design selector to adapt the approximate

accelerators to meet a user-defined quality constraint. Compared with contemporary

techniques, our approach is a fine-grained input-dependent approximation approach,

with no missed approximation opportunities or rollback recovery overhead. The pro-

posed method applies to any approximate accelerator with error-tolerant components,

and it is flexible in adapting various error metrics. We fully automate the proposed

methodology of quality assurance of approximate accelerators using ML-based mod-

els, for both software and hardware implementations. The obtained analysis results

of image processing and audio applications showed that it is possible to satisfy the

TOQ with an accuracy ranging from 80% to 85.7%. The hardware implementation is

based on Field Programmable Gate Arrays (FPGA) approximate adaptive accelerator

with constraints on size, cost, and power consumption, which rely on dynamic partial

reconfiguration to assist in satisfying these requirements.

To ensure the quality of results for a single approximate design rather than a

library, we build a decision tree-based model for error compensation. The proposed

model detects the magnitude of approximation error based on design inputs. Then,

it enhances the accuracy of the approximate result by adding the error magnitude

to it. The proposed methodology is able to enhance the quality of image processing

applications with a negligible overhead.

iv

In loving memory of my father,

To my mother, brothers and sister,

To my rock and lovely wife Huda,

To my kids Yamin, Nada and Jawad.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Sofiène Tahar,

for his guidance, support, follow-up, and encouragement throughout the previous four

years of my Ph.D. studies. He was always easily approachable, available and inspiring.

I have learned so much from his deep insights about research and strong expertise.

Moreover, I have learned many things from him regarding research, academia, dedi-

cation, and life in general. In short, I will always be indebted for the time and the

effort he has spent to help me complete my Ph.D. Also, I am indebted to Dr. Osman

Hasan, who not only initiated this thesis work but also followed the progress of my

work and provided valuable feedback at various stages. I have learned a lot from his

in-depth knowledge, hard work and immense experience.

I am deeply grateful to Yarmouk University for granting me a scholarship to

conduct my doctoral studies at Concordia University. I would like to thank Prof.

Jamal Abu-Doleh for his unrepayable help and support. Also, I would like to thank

Dr. Ali Shatnawi for introducing me to Prof. Sofiène Tahar.

I would like to express my gratitude to Dr. Jie Han for taking time out of his

busy schedule and accepting to be my external Ph.D. thesis examiner. I am also

grateful to Dr. Rajagopalan Jayakumar, Dr. Reza Soleymani and Dr. Otmane Ait

Mohamed for serving on my advisory thesis committee.

Many thanks to my friends and colleagues at the Hardware Verification Group

(HVG), specially Mbarka Soualhia, Hassnaa El-derhalli, Yassmeen El-derhalli, Saif

Najmeddin and Alain Aoun, for being kind, good listeners, supportive and helpful.

Their company has made my journey at HVG fruitful and unforgettable.

Last but by no mean least, it gives me immense pleasure to thank my family,

vi

i.e., my mother and my brothers, for their endless love and support. Nothing I say

can do justice to how I feel about their support. To my father, whom I lost recently,

your advising words (even a few) are striking my thoughts and lighting the long road.

My wife, who has been with me in every moment of my Ph.D. tenure, is my source of

strength. Without her support, this thesis would never start nor finish. Her consistent

love and encouragement kept me going till this point, and even farther. Her sacrifice

by quitting her job and MSc studies are not repayable nor forgettable. I would like

to mention my kids Yamin, Nada and Jawad, for being the source of my motivation,

and bringing happiness and joy to my life. Really, there’s never a dull moment when

these three are around.

vii

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xv

LIST OF ACRONYMS . xviii

1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-Art . 4

1.2.1 Approximate Accelerators . 4

1.2.2 Quality Control of Approximate Accelerators 7

1.3 Proposed Methodology . 11

1.4 Thesis Contributions . 14

1.5 Thesis Organization . 16

2 Library of Approximate Multipliers 18

2.1 Introduction . 18

2.2 Error Metrics . 21

2.3 Approximate Building Blocks . 23

2.3.1 Approximate Full Adders . 23

2.3.2 Approximate Compressors . 25

2.4 Approximate Multipliers . 27

2.4.1 8-bit Multiplier Basic Blocks . 27

2.4.2 16-bit Higher-Order Multiplier Configuration 30

2.5 Discussion and Application . 32

2.6 Approximate Library (AxCLib) . 36

viii

2.6.1 Accuracy of AxCLib . 38

2.6.2 Area, Power, Energy and Delay Analysis of AxCLib 44

2.7 Summary . 46

3 Adaptive Approximate Accelerators: Software-based Design 48

3.1 Introduction . 48

3.2 Adaptive Design Methodology . 49

3.3 Machine Learning Based Models . 53

3.3.1 Decision Tree-based Design Selector 54

3.3.2 Neural Network-based Design Selector 56

3.4 Experimental Results . 57

3.4.1 Image Blending . 58

3.4.1.1 Blending of Set-1 of Images 60

3.4.1.2 Blending of Set-2 of Images 64

3.4.2 Gaussian Smoothing . 67

3.4.3 Audio Mixing/Blending . 69

3.4.3.1 DT-based Model . 70

3.4.3.2 Reduced Precision LUT 71

3.5 Comparison with Related Work . 72

3.6 Summary . 73

4 Adaptive Approximate Accelerators: FPGA-based

Design 74

4.1 Introduction . 74

4.2 Dynamic Partial Reconfiguration . 75

4.3 Machine Learning Based Models . 79

ix

4.3.1 Decision Tree-based Design Selector 79

4.3.2 Neural Network-based Design Selector 80

4.4 System Architecture . 82

4.5 Experimental Results . 85

4.6 Summary . 87

5 Self-Compensating Approximate Accelerators 89

5.1 Introduction . 89

5.2 Error Compensation Approach . 91

5.3 Experimental Results . 97

5.4 Summary . 101

6 Conclusions and Future Work 102

6.1 Conclusions . 102

6.2 Future Work . 104

Bibliography 106

Biography 120

x

List of Tables

1.1 Comparison between Approximate Computing Quality Control Ap-

proaches . 15

2.1 Design Characteristics of Approximate Full Adders 24

2.2 Power Consumption (µw) for Different Compressors 26

2.3 Area (number of transistors) for Different Compressors 27

2.4 Characteristics of 8-bit Approximate Array Multipliers 28

2.5 Characteristics of 8-bit Approximate Tree Multipliers 30

2.6 Characteristics of 16-bit Approximate Array Multipliers 33

2.7 Characteristics of 16-bit Approximate Tree Multipliers 34

2.8 Library of 20 Static Approximate Designs based on Degree and Type

Knobs . 37

2.9 CEVA-NeuPro AI Processors Family [1] 38

2.10 Accuracy Metrics for the Library of Approximate Multipliers 39

2.11 Power, Area, Delay, Frequency and Energy for the 20 Static Approxi-

mate Multipliers . 44

3.1 Accuracy and Execution Time of DT and NN based Design Selectors . 55

3.2 Characteristics of Set-1 Blended Images 61

3.3 Obtained Accuracy (PSNR) for Various Approximate Designs 72

xi

4.1 Power, Area, Delay, Frequency and Energy of DT and NN-based Design

Selectors . 80

4.2 Area/Size of Static and Adaptive Approximate Accelerator 87

5.1 Characteristics of Approximate Accelerator Components, i.e., Approx-

imate Multiplier and Compensation Module 93

5.2 Error Distance (ED) of Approximate Multiplier without/with the Error

Compensation Module . 99

xii

List of Figures

1.1 General Overview of the Proposed Methodology 11

2.1 Proposed Approach for Designing Approximate Multipliers 19

2.2 8-to-4 Compressor Design . 26

2.3 Area and PDP Reduction of 8-bit Approximate Array Multipliers . . . 29

2.4 Area and PDP Reduction of 8-bit Approximate Tree Multipliers 31

2.5 A High-Order Recursive Multiplier . 31

2.6 Area and PDP Reduction of 16-bit Approximate Array Multipliers . . . 33

2.7 Area and PDP Reduction of 16-bit Approximate Tree Multipliers . . . 34

2.8 %PDP Reduction and SNR of Multipliers 36

2.9 Histogram Distribution of ED for the Library of Approximate Multipliers 40

2.10 PSNR for Approximate Multiplier based on AMA1 Type and D1, D2,

D3 and D4 Approximation Degrees . 41

2.11 PSNR for Approximate Multiplier based on AMA2 Type and D1, D2,

D3 and D4 Approximation Degrees . 41

2.12 PSNR for Approximate Multiplier based on AMA3 Type and D1, D2,

D3 and D4 Approximation Degrees . 42

2.13 PSNR for Approximate Multiplier based on AMA4 Type and D1, D2,

D3 and D4 Approximation Degrees . 42

xiii

2.14 PSNR for Approximate Multiplier based on AMA5 Type and D1, D2,

D3 and D4 Approximation Degrees . 43

2.15 Power, Area, Delay and Energy Reduction for the 20 Static Approxi-

mate Multipliers . 45

3.1 Methodology of Software-based Adaptive Approximate Design 50

3.2 Models for AC Quality Manager, (a) Forward Design, (b) Inverse Design 53

3.3 Adaptive Image/Video Blending at Component Level 59

3.4 The Dependency of the Output Quality on the Applied Inputs 60

3.5 Obtained Output Quality for Image Blending of Set-1 62

3.6 Normalized Execution Time for Blending of Set-1 Images using 20

Static Designs . 63

3.7 Execution Time of the Exact, Static and Adaptive Design 64

3.8 A Sample of Set-2 Images [2] . 65

3.9 Obtained Output Quality for Image Blending of Set-2 66

3.10 Exact, Noisy and Filtered Images . 67

3.11 Output Quality (PNSR) for 2 Examples of Image Filtering Using 20

Static Designs . 68

3.12 Obtained Output Quality for 2 Examples of Adaptive Image Filtering . 69

3.13 Obtained Output Quality for Audio Blending 70

3.14 Obtained Output Quality for Audio Blending using LUTs 71

4.1 Principle of Dynamic Partial Reconfiguration on Xilinx FPGAs 77

4.2 Methodology of FPGA-based Adaptive Approximate Design 82

4.3 An Accelerator with 16 Identical Approximate Multipliers 83

4.4 Methodology of FPGA-based Adaptive Approximate Design - Online

Phase . 84

xiv

4.5 Obtained Output Quality for FPGA-based Adaptive Image Blending . 86

5.1 Simplified Architecture for Accelerator of Two Approximate Multipliers, (a)

Without Error Compensation, (b) With Error Compensation Module per

Approximate Component, (c) With Error Compensation Module per Ap-

proximate Accelerator. 92

5.2 Design flow for Approximate Accelerator Compensation Module 92

5.3 Histogram Distribution of the Error Distance (ED) of the Approximate

Multiplier . 94

5.4 The Structure of the Decision Tree-based Model 95

5.5 Power, Area, Delay and Energy of Approximate Accelerator Components 96

5.6 Distribution of Error Distance (ED) of Approximate Multiplier with-

/without the Error Compensation Module 98

5.7 Images used to Evaluate the Error Compensation Module 100

5.8 Output Quality (PSNR) of Image Blending, (a) Without Error Com-

pensation, (b) With Error Compensation Module per Approximate

Component, (c) With Error Compensation Module per Approximate

Accelerator . 101

xv

LIST OF ACRONYMS

AC Approximate Computing

AMA Approximate Mirror Adder

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

ATCM Approximate Tree Compressor Multiplier

AXA Approximate XOR/XNOR Adder

AxCLib Approximate Library

AXI Advanced eXtensible Interface

AxMAC Approximate Multiply Accumulate Unit

BIN Binary

BIT Bitstream

BPI Byte Peripheral Interface

BRAM Block Random Access Memory

CB Conditional Block

CFPU Configurable Floating-Point Multiplier

COE Coefficient

CPU Central Processing Unit

DCP Design CheckPoint

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processing

DT Decision Tree

xvi

ED Error Distance

ER Error Rate

ETM Error Tolerant Multipliers

FA Full Adder

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuits

ICAP Internal Reconfiguration Access Port

InXA Inexact Adder

IoT Internet of Things

JPEG Joint Photographic Experts Group

LSB Least Significant Bit

LUT LookUp Table

MAC Multiply Accumulate Unit

MED Mean Error Distance

ML Machine Learning

MRED Mean Relative Error Distance

MSB Most Significant Bit

MSE Mean Square Error

NED Normalized Error Distance

NMED Normalized Mean Error Distance

NN Neural Network

PC Personal Computer

PDP Power Delay Product

xvii

PR Partial Reconfiguration

PRR Partial Reconfigurable Region

PSNR Peak Signal-to-Noise Ratio

QC Quality Control

RC Reconfigurable Core

RED Relative Error Distance

RM Reconfigurable Module

RMAC Runtime Configurable Floating Point Multiplier for AC

RR Reconfigurable Region

RTL Register Transfer Level

SoC System on Chip

SRAM Static Random Access Memory

SVM Support Vector Machine

TOQ Target Output Quality

V2C Variable-to-Constant

V2V Variable-to-Variable

VOS Voltage Overscaling

VS Virtual Socket

VSM Virtual Socket Manager

xviii

Chapter 1

Introduction

In this chapter, we first introduce the motivation behind this thesis and the problem

statement. Then, we present the most relevant related work, followed by our proposed

methodology to achieve the primary goal of this thesis. Finally, we outline the main

contributions and the organization of this thesis.

1.1 Motivation

The continuing scaling in feature size (process node) has made integrated circuit be-

havior increasingly vulnerable to soft errors as well as process, voltage, and tempera-

ture variations. Thus, the challenge of ensuring strictly exact computing is increasing

[3]. On the other hand, present age computing systems are pervasive, portable, em-

bedded, and mobile, which led to an ever-increasing demand for ultra-low power

consumption, small footprint, and high-performance systems. Such battery-powered

systems are the main pillars in the area of the internet of things (IoT), which do

not necessarily need entirely accurate results. Approximate Computing (AC), known

as best-effort computing, is a nascent computing paradigm that allows us to achieve

1

these objectives by compromising the arithmetic accuracy [4]. Nowadays, many appli-

cations, such as image processing, multimedia, recognition, machine learning, commu-

nication, big data analysis, and data mining are error-tolerant, and thus can benefit

from approximate computing. These applications exhibit intrinsic error-resilience

due to the following factors [5]: (i) redundant and noisy input data; (ii) lack of golden

or single output; (iii) imperfect perception in human sense; and (iv) implementation

algorithms with self-healing and error attenuation patterns.

Various approximation techniques, which fall under the umbrella of approxi-

mate computing, e.g., voltage over scaling [6], algorithmic approximations [7] and the

approximation of basic arithmetic operations [8], have gained a significant research

interest, in both academia and industry, such as IBM [9], Intel [10] and Microsoft [11].

Nevertheless, approximate computing is still immature and does not have standards

yet, which poses severe bottlenecks and main challenges. Thus, future work should

be guided by the following general principles to achieve the best efficiency [5]:

1- Significance-driven approximation: Identifying the approximable parts of an

application or circuit design is a great challenge. Therefore, it is critical to distinguish

the approximable parts with their approximation settings.

2- Measurable notion of approximation quality: Quality specification and ver-

ification of approximate design are still open challenges, where quality metrics are

application and user-dependent. In the sequel of this chapter, we will explain a list

of quality metrics that are used to quantify the approximation errors.

3- Quality configuration: Error resiliency of applications depends on the applied

inputs and the context in which the outputs are consumed.

2

4- Asymmetric approximation benefits: It is essential to identify the approx-

imable components of the design, which reduces the quality insignificantly while im-

proving efficiency considerably.

For a static approximate design, the approximation error persists during its

operational-life time. It restricts approximation versatility and results in under- or

over-approximated systems for dynamic input data, causing excessive power usage

and insufficient accuracy, respectively. Given the dynamic nature of the applied in-

puts into static approximate designs, errors are the norm rather than the exception

in approximate computing, where the error magnitude depends on the user inputs

[12] [13]. On the other hand, the defined tolerable error threshold, i.e., Target Out-

put Quality (TOQ), can be dynamically changed. In both cases, errors with a high

magnitude value produced by approximate components in an approximate accelera-

tor, even with a low error rate, have a more significant impact on the quality than

those caused by approximate parts with small magnitude. This is in line with the

notion of fail-small, fail-rare, or fail-moderate approaches, [14] [15], where error mag-

nitudes and rates should be restricted to avoid high loss in the output-quality. The

fail-small technique allows approximations with low error magnitudes and high error

rates, while the fail-rare technique allows approximations with low error rates and

high error magnitudes [14]. On the other hand, the fail-moderate technique allows

approximations with moderate error magnitude and moderate error rate [15]. Thus,

the approaches mentioned above limit the design space to prevent approximations

with high error rates and high error magnitudes, where such combination degrades

the quality loss significantly.

Approximate computing is an immature computing paradigm where its quality

assurance is still missing a mathematical model for the impact of approximation on the

3

output quality [5]. Towards this goal, in this thesis, we design a set of energy-efficient

approximate multipliers suitable for approximate accelerators. Then, we utilize them

to develop a runtime adaptive approximate accelerators based on the fine-grained

input data to satisfy a user-defined target output quality (TOQ) constraint. Design

adaptation uses a machine learning-based design selector to choose the most suitable

approximate design for runtime data dynamically. The target approximate accelerator

is implemented with configurable levels and types of approximate multipliers.

1.2 State-of-the-Art

In this section, we briefly review the most relevant literature in the area of approximate

accelerators design, as well as quality assurance of their approximated results either

by design adaptation or by error compensation, which are closely related to this thesis.

1.2.1 Approximate Accelerators

Hardware accelerators are a special hardware, which are devoted to execute frequently-

called functions. Accelerators are more efficient than software running on general-

purpose processors. Generally, they are constructed by connecting multiple simple

arithmetic modules, e.g., discrete Fourier transform (DFT) and discrete cosine trans-

form (DCT) modules are used in signal and image processing.

The existing literature has proposed the design of approximate accelerators us-

ing neural networks [16] or approximate functional units, particularly approximate

adders [17] and multipliers [18]. Moreover, several functionally approximate designs

for basic arithmetic modules, including adders [8] [19] [20], dividers [21] [22] [23] and

multipliers [24] [25] [26], have been investigated for their pivotal role in various ap-

plications. These individually designed components are seldom used alone, especially

4

in the computationally intensive error-tolerant applications, which are amenable to

approximation. The optimization of accuracy performance at the accelerator level

has received little or no attention in the previous literature. Next, we review relevant

literature in the area of approximate multipliers, which are intensively used to build

approximate accelerators.

Approximate Multipliers

Multipliers are one of the most foundational components for most functions and algo-

rithms in classical computing. As avowed by [27], multiplier components utilize 46%

of chip area in most Multiply-accumulate (MAC) modules. Thus, an energy-efficient

multiplier design can play a significance role in low-power VLSI system design. How-

ever, they are the most energy-costly units compared to other essential central pro-

cessing unit (CPU) functions, such as register shifts or binary logical operators. Thus,

their approximation would introduce an enhancement in their performance and energy,

which automatically induces crucial benefits for the whole application. Approximate

multipliers have been mainly designed using three techniques, i) approximation in

partial product generation: e.g., Kulkarni et al. [28] proposed an approximate 2x2 bi-

nary multiplier at the gate level by changing a single entry in the Karnaugh-map with

an error rate of 1/16; ii) approximation in partial product tree: e.g., Error Tolerant

Multipliers (ETM) [29] divide the input operands into two parts, i.e., the multiplica-

tion part for the most significant bits (MSBs) and the non-multiplication part for the

least significant bits (LSBs), and thus omitting the generation of some partial prod-

ucts [24]; iii) approximation in partial product summation: Approximate full adder

(FA) cells are used to form an array multiplier, e.g., in [20], an approximate mirror

adder has been used to develop a multiplier. Similarly, Momeni et al. [25] proposed

5

an approximate compressor for building approximate multipliers, but this multiplier

is known to give a non-zero result for zero inputs. Jiang et al. [30] compared the

characteristics of different approximate multipliers implemented in VHDL based on

the three different techniques mentioned previously.

In [31], Hashemi et al. designed an approximate multiplier, called DRUM, which

finds the first leading one from the most significant position in both multiplication

operands, and then prunes the size of the required multiplier to reduce the approx-

imation error. It has been demonstrated for producing a near-to-zero mean error

for uniformly distributed input. However, applications with other input distributions

(e.g., Gaussian) cannot utilize DRUM. Moreover, this design cannot be integrated on

general-purpose processors as it needs to set the multiplier size for each application

offline. The work in [32] proposed a configurable floating-point multiplier (CFPU),

which multiplies input operands depending on the input mantissa. However, such

CFPU gives poor accuracy with coarse grain tuning capability. Therefore, the num-

ber of applications that could benefit from the approximation is limited. The work

in [33] proposed a runtime configurable floating-point multiplier (RMAC) by approx-

imating the mantissa multiplication to a simple addition between the mantissa of the

input operands. Despite being runtime configurable with low energy consumption,

both designs in [32] and [33] are still unable to completely remove the need for exact

multiplication from their designs.

In this thesis, we focus on array multipliers, which are neither the fastest, nor the

smallest. Their short wiring, however, gives them a periodic structure with a compact

hardware layout. Thus, they are one of the most used in embedded System on Chip

(SoC). We therefore designed various 8 and 16-bit approximate array multipliers based

on the approximation in partial product summation.

6

1.2.2 Quality Control of Approximate Accelerators

Managing the quality of approximate hardware designs for dynamically changing in-

puts has a significant importance to ensure that the obtained results satisfy the re-

quired target output quality (TOQ). To the best of our knowledge, there are very few

works targeting the assurance of the accuracy of approximate systems compared to

designing approximate components. While most prior works focus on error prediction,

we propose to overcome the approximation error through two different techniques: 1)

an input-dependent self adaptation of design, and 2) input-dependent self compensa-

tion of errors. Design adaptation could be implemented in software-based systems by

having different versions of the approximate code, while hardware-based systems rely

on having various implementations for the functional units. However, concurrently

having such functional units diminishes approximation benefits. Thus, dynamic par-

tial reconfiguration could be used to have only a single implementation of the design

at any instance of time. In the sequel, we review pertinent literature related to design

adaptation, runtime partial reconfiguration and error compensation of approximate

computing.

Design Adaptation

There are mainly two approaches for monitoring and controlling the accuracy of the

results of approximate accelerators at run time. The first approach suggests to pe-

riodically, through sampling techniques, measure the error of an accelerator through

comparing its outcome with the exact computation performed by the host processor.

Then, a re-calibration and adjustment process is performed to improve the quality in

subsequent invocations of the accelerator if the error is above a defined range, e.g.,

Green [34] and SAGE [35]. However, the quality of unchecked invocations cannot

7

be ensured, and the previous quality violations cannot be compensated. The second

approach relies on implementing lightweight pre-trained error predictors to expect if

the invocation of an approximate accelerator would produce an unacceptable error

for a particular input data set [36] [37] [38] [39]. However, the quality checker pro-

posed in [36] is application-specific, and [37] shows a low prediction accuracy for large

applications. [38] proposes a quality management framework for approximate com-

puting, by using multiple lightweight predictors, that achieve a better energy efficiency

than [36] and [37] through avoiding unnecessary rollback recoveries. The authors of

[39] proposed a framework supporting an iterative training process, to coordinate the

training of the classifier and the accelerator with an intelligent selection of training

data.

In general, the work [34] –[39], mainly target controlling software approximation,

i.e., loops and functions approximation, through program re-execution, and thus are

not applicable for hardware designs. Moreover, they ignore input dependencies and

do not consider choosing an adequate design from a set of design choices.

Raha et al. [40] designed a dual-mode, reconfigurable adder block. Similarly,

four designs of 4-to-2 compressors are proposed in [41]. Moreover, the deployment of

a self-adaptive image filter, which can choose among different degrees of binary adder

approximations at run time, is also demonstrated in [42]. However, the approaches,

reported in [40] - [42], either have minimal configuration options (e.g., [40]), area

overhead (e.g., [41]) or latency overhead (e.g. [42]).

Recently, Xu et al. [43] proposed a runtime reconfigurable manager to select

the most suitable approximate design based on the detected input data distribution.

However, they utilize approximate accelerators designed at the behavioral level for

various coarse-grained expected input data distributions. Furthermore, the proposed

8

approximate circuits heavily depend on the training data used during the approxima-

tion process, where not all possible workload distributions can be pre-characterized.

Thus, the real workload may differ completely from the training one. Xu et al. [44]

also presented a self-tunable runtime adaptive approximate architecture that is suit-

able for application-specific integrated circuit (ASIC) designs. However, the used ap-

proximation techniques are variable-to-variable (V2V) and variable-to-constant (V2C)

optimization only. Overall, none of these state-of-the-art techniques, i.e., [34] –[44],

exploits the potential of different settings of approximate computing and their adap-

tations based on a user-specified quality constraint to ensure the accuracy of the

individual outputs, which is the main idea proposed in this thesis. Our proposed

work is complementary to [43] and [44] in the sense that our designed approximate

multipliers are approximated independently of the applied inputs (unlike [43]) and

encompass various simplifications (unlike [44]).

Runtime Partial Reconfiguration

Runtime partial reconfiguration is a special feature offered by modern FPGAs that

allows designers to reconfigure particular parts of the FPGA during runtime without

affecting other parts of the design. This feature allows the hardware to be adaptive

to a changing environment, with reduced area, power and configuration time. Contri-

butions on runtime partially reconfigurable systems become practically feasible only

recently, as FPGA vendors announced the technical support. For example, an adap-

tive edge detection filter using dynamic partial reconfiguration has been proposed in

[45]. The effectiveness of the DPR feature for edge detection applications is evalu-

ated on the filter with different scenarios varying in size, complexity and intensity of

computation, where the resource utilization and timing are evaluated. In [46], design

9

flow for image and signal processing IP (Intellectual Property) cores based on FPGA

dynamic partial reconfiguration have been proposed. The benefits of dynamic partial

reconfiguration for embedded vision applications have been quantified in [47]. These

benefits include area, power, delay and energy reduction. Thus, integrating “runtime

partial reconfiguration” with “approximate computing” will significantly ameliorate

the efficiency of design approximation.

Error Compensation

Error compensation relies on adjusting the output results of an arithmetic circuit, to

reduce the difference between the approximate and the exact values. Such difference

would depend on the applied inputs. A fault recovery method utilizing machine learn-

ing to ameliorate the effect of permanent faults has been proposed in [48], assuming

that the number of unique values of error distance (ED) is meager, i.e., less than 5.

However, such an assumption is unrealistic, where the amount of the ED may range

from 1 to 2n, based on fault location, where n is the number of circuit inputs. A

different self-compensating accelerator has been proposed in [49] by integrating ap-

proximate components with their complementary designs, i.e., having the same error

magnitude with opposite polarity. However, obtaining such integral parts is not al-

ways guaranteed. Moreover, the approximate design and its complementary may have

different characteristics, i.e., area, power, delay and energy. Recently, [50] proposed

a scheme for error compensation of signed truncated adders, multipliers and dividers.

For that, a padding is added to reduce the average error based on statistical informa-

tion, under normal distribution, of the targeted arithmetic operations. However, such

technique only targets a truncation-based approximate arithmetic circuits.

10

1.3 Proposed Methodology

The main objective of this thesis is to assure the quality of approximation by two

approaches: 1) design adaptation by predicting the most suitable settings of the

approximate design to execute the inputs; and/or 2) error compensation by predicting

the error magnitude to use in adjusting the output results. The proposed method

predicts the design settings, or the error magnitude based on the applied input data

and user preferences, without losing the gains of approximations. We mostly consider

the case of approximate accelerators built with approximate functional units such as

approximate multipliers, where we develop a library of approximate accelerators with

20 different settings of 8 and 16-bit approximate multipliers.

We propose a comprehensive methodology that addresses the limitations of the

current state-of-the-art in terms of fine-grained input dependency, suitability for var-

ious approximate modules (e.g., adders, dividers and multipliers) and applicability to

both hardware and software implementations. Figure 1.1 provides a general overview

of our proposed methodology for design adaptation and/or error compensation. As

shown in the figure, the methodology encompasses two phases: (1) an offline phase,

Figure 1.1: General Overview of the Proposed Methodology

11

which is executed once for building a machine learning-based model. Such model pre-

dicts the design settings (for design adaptation) or predict the error magnitude (for

self compensation); and (2) an online stage, where the machine learning-based model

continuously accepts inputs and predicts accordingly based on the runtime inputs.

Overall, the proposed methodology encompasses the following main steps:

(1) Building a library of approximate designs : The first step is designing the

library of basic functional units, such as adders, multipliers and dividers with different

settings, which will be integrated into a quality assured approximate design. For each

of these designs, we need to evaluate their characteristics including accuracy, area,

power, delay and energy consumption.

(2) Designing of machine learning-based model : On the offline phase, we use

supervised learning where both input and desired output data are provided. We

employ decision trees and neural networks algorithms to build a model which is used to

predict the unseen data, e.g., the design settings for design adaptation, and the error

magnitude for self compensation. This step includes generating the training data,

pre-processing of the training data, such as, quantization, sampling and reduction.

The training inputs are applied exhaustively to an approximate design to create the

training data. For n-bit designs with two inputs, the size of the input combinations

is 22n.

(3) Predicting of the approximation settings : In the online phase, the user-

specified runtime inputs, i.e., the target output quality and the inputs of the ap-

proximate design, are given to the ML-based models to predict approximation-related

output, i.e., setting of the adaptive design or error magnitude for self-compensation.

The implemented ML-based model should lightweight, i.e., have a high prediction

accuracy with fast execution.

12

(4) Integrating the approximate accelerator into error tolerant applications : For

adaptive design, the approximate accelerator, which has been selected by the ML-

based model, is adapted within an error-resilient application. Such design could be

implemented in software (off-FPGA, as explained in Chapter 3) or in hardware (on-

FPGA, as described in Chapter 4). For error compensation, the predicted error

magnitude is added to the approximate result to partially reduce the approximation

error, as explained in Chapter 5.

We compare the proposed methodology with the state-of-the-art [34] – [44] in

terms of several requirements related to hardware and software applicability, data

dependency, quality assurance and methodology overhead. Table 1.1 summarizes

the comparison between the different approaches for approximate computing quality

control. Generally, all methods can control the average quality of the approximation

results.

(a) Hardware/Software: Existing work [34] – [39] exhibit limited applicability

for software approaches only. The approaches in [40] - [44] apply to hardware with

limited configurations. The methodology we propose in this thesis applies to both

hardware and software approximate applications with approximable components.

(b) Input Data Dependency : A distinctive characteristic of our proposed

methodology is its data dependency. To the best of our knowledge, none of the previ-

ous works targeted fine-grained input-dependency of approximate designs to control

the output quality. The proposed approach quantizes the input data, then applies

it to a library of approximate designs to generate training data. Another distinctive

feature of our approach is the development of a lightweight decision tree and neural

network-based models for design selection with a satisfying output accuracy. design

selection with a satisfying output accuracy

13

(c) Quality Assurance and Overhead : The approaches [34] - [39] control the

quality of results through rollback and program re-execution. However, they require

extra time and out-of-order-execution. The approach in [43] depends on the train-

ing data used during the approximation process, which may differ significantly from

the real workload, while the method in [44] relies on variable-to-variable (V2V) and

variable-to-constant (V2C) approximation techniques only. On the other hand, the

proposed approach needs a one-time data generation, training and model building.

Then, the design is adapted, with negligible overhead.

1.4 Thesis Contributions

The primary contribution of this thesis is the development of a methodology to guar-

antee the quality of approximate accelerators. It meets a user-given quality constraint

for dynamically changing inputs. It also presents new approaches for utilizing ma-

chine learning techniques to build a design selector, i.e., quality controller, to choose

the most suitable approximate design based on fine-grained applied inputs and a user-

defined quality threshold. In the sequel, we list the main contributions of this work

along with references to related publications provided in the Biography at the end of

the thesis document.

� A library of 8-bit and 16-bit approximate multipliers based on a large set of

approximate full adders (FA) implemented at the transistor level (TSMC65nm).

We have evaluated these multipliers based on their power, area, delay and error,

and identified the best designs using an image processing benchmark application.

Then, we validated them on an image blending application, where the best

designs are identified [Bio-Cf5].

14

T
ab

le
1.

1:
C

om
p
ar

is
on

b
et

w
ee

n
A

p
p
ro

x
im

at
e

C
om

p
u
ti

n
g

Q
u
al

it
y

C
on

tr
ol

A
p
p
ro

ac
h
es

C
h
a
ra

ct
e
ri

st
ic

s
S
o
ft

w
a
re

-b
a
se

d
D

e
si

g
n

([
3
4
]

-
[3

9
])

H
a
rd

w
a
re

-b
a
se

d
D

e
si

g
n

([
4
0
]

-
[4

4
])

M
L

-b
a
se

d
A

d
a
p
ti

v
e

D
e
si

g
n

H
a
rd

w
a
re

/
S
o
ft

w
a
re

A
p
p
li
ca

b
le

to
so

ft
w

ar
e

ap
p
ro

x
im

at
io

n
on

ly
,

i.
e.

,
lo

op
u
n
ro

ll
in

g,
at

a
ve

ry
co

ar
se

gr
an

u
la

ri
ty

A
p
p
li
ca

b
le

to
h
ar

d
w

ar
e

ap
p
ro

x
im

at
io

n
w

it
h

li
m

it
ed

co
n
fi
gu

ra
ti

on
op

ti
on

s

A
p
p
li
ca

b
le

to
b

ot
h

h
ar

d
w

ar
e

an
d

so
ft

w
ar

e
ap

p
ro

x
im

at
e

te
ch

n
iq

u
es

w
it

h
m

u
lt

ip
le

ap
p
ro

x
im

at
e

co
m

p
on

en
ts

In
p
u
t

D
a
ta

D
e
p

e
n
d
e
n
cy

C
om

p
le

te
ly

ig
n
or

e
d
iff

er
en

ce
s

b
et

w
ee

n
in

p
u
t

d
at

a

[4
3]

W
or

k
lo

ad
d
is

tr
ib

u
ti

on
u
se

d
d
u
ri

n
g

tr
ai

n
in

g
m

ay
n
ot

b
e

ch
ar

ac
te

ri
ze

d
[4

4]
U

se
on

ly
V

2V
an

d
V

2C
in

p
u
t

d
ep

en
d
en

t
op

ti
m

iz
at

io
n

S
ig

n
ifi

ca
n
tl

y
re

li
es

on
th

e
in

p
u
t

d
at

a
fo

r
d
es

ig
n

ad
ap

ta
ti

on

Q
u
a
li
ty

A
ss

u
ra

n
ce

T
h
ro

u
gh

ex
ec

u
ti

on
ro

ll
b
ac

k
an

d
p
ro

gr
am

re
-e

x
ec

u
ti

on

Q
u
al

it
y

ca
n

n
ot

b
e

as
su

re
d

if
th

e
re

al
w

or
k
lo

ad
d
iff

er
s

fr
om

th
e

on
e

u
se

d
fo

r
tr

ai
n
in

g

U
ti

li
ze

s
M

L
-b

as
ed

m
o
d
el

s
to

se
le

ct
th

e
m

os
t

su
it

ab
le

ap
p
ro

x
im

at
e

co
m

p
on

en
t

O
v
e
rh

e
a
d

R
ol

lb
ac

k
re

co
ve

ry
ti

m
e

an
d

co
st

[4
3]

R
u
n
ti

m
e

ov
er

h
ea

d
is

n
eg

li
gi

b
le

[4
4]

in
tr

o
d
u
ce

s
8.

5%
ar

ea
an

d
8.

1%
d
el

ay
ov

er
h
ea

d

O
ve

rh
ea

d
of

ge
n
er

at
in

g
tr

ai
n
in

g
d
at

a
an

d
b
u
il
d

th
e

m
o
d
el

s
E

n
er

gy
an

d
d
el

ay
ov

er
h
ea

d
s

ar
e

n
eg

li
gi

b
le

15

� A general machine learning-based methodology to assure the quality of ap-

proximate accelerators based on the applied inputs and user preferences. The

principal advantages of the proposed approach include: (1) fine-grained input-

dependent approximation; (2) no missed approximation opportunities; (3) no

rollback recovery overhead; (4) applicable to any approximate application with

error-tolerant components; and (5) flexibility in adapting various error met-

rics [Bio-Cf3].

� A fully-automated toolchain is implemented to adapt the approximate acceler-

ator to meet the target output quality (TOQ). It utilizes an input-dependent

machine learning-based, i.e., decision tree and neural network, design selector

[Bio-Jr2] [Bio-Cf1]. In particular, we extend the adaptive approximate design

approach developed in [Bio-Cf3] to have a full software-based implementation.

� An adaptive approximate hardware architecture consisting of various designs

implemented on the latest FPGA platforms while exploiting the features of

dynamic partial reconfiguration (DPR) is realized [Bio-Jr1]. It represents a

hardware-based implementation for the approach we developed in [Bio-Cf3].

� A novel approach to explore a decision tree-based quality assurance, in approx-

imate accelerators, by error compensation without losing the gains of approxi-

mations. The method is lightweight in terms of its area, delay and power where

complementary approximate modules are not required [Bio-Cf2].

1.5 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, we design and

evaluate a set of approximate arithmetic modules including, full adders, compressors,

16

8 and 16-bit multipliers. Then, we adopt a library of 8 and 16-bit approximate

multipliers, with 20 different settings of each, to be integrated into our proposed

methodology.

In Chapter 3, we describe the proposed methodology of quality assurance by

design adaptation. We explain how we use the input data and user preferences to

build a machine learning-based design selector. Then, we utilize the design selector

to come up with a runtime adaptive approximate design that assures the final output

quality. The feasibility and efficiency of the software implementation of the proposed

quality assurance methodology will be demonstrated on two applications of image

processing, i.e., image blending and image filtering. In Chapter 4, we utilize dynamic

partial reconfiguration of FPGA for the hardware implementation of the proposed

methodology.

Based on our general methodology of quality assurance utilizing a set of approx-

imate designs, in Chapter 5, we propose to assure the quality of a single approximate

design, rather than a library, by error compensation. For that, we suggest and design

an error compensation module, which is integrated within the architecture of approx-

imate hardware accelerators, to efficiently reduce the accumulated error at its output.

The proposed module utilizes lightweight decision trees to capture input dependency

of the error. Finally, Chapter 6 summarizes this thesis and outlines potential future

research directions.

17

Chapter 2

Library of Approximate Multipliers

This chapter explains the approximate library of multipliers that we need for the real-

ization of the proposed thesis methodology.We first provide an overview of an approach

for designing energy-efficient approximate multipliers. We then define a number of

error metrics, which will be used through out the thesis. Next we develop several

approximate multiplier building blocks and designs and evaluate their characteristics.

2.1 Introduction

Functional approximation [28], in hardware, mostly deals with the design of approxi-

mate arithmetic units, such as adders, dividers and multipliers, at different abstraction

levels, i.e., transistor, gate, register transfer, and application. Some notable approx-

imate adders include speculative adders, segmented adders, carry select adders and

approximate full adders [51]. The transistor-level approximation provides the highest

flexibility due to the ability to tweak most of the design parameters at this level. Vari-

ous approximate full adders (FA) at the transistor level have been proposed, including

the mirror adders [8], the XOR/XNOR based FA [19] and the inexact FA [52]. On

18

the other hand, most of the approximate multipliers have been designed at the higher

levels of abstractions, i.e., gate and application.

The design space for approximate multipliers based on different approximate

FAs and compressors is quite huge. However, it is not easy to select the most suit-

able design for a specific application. Figure 2.1 presents an overview of our design

approach to build different approximate multipliers and compare their design metrics

to select the most suitable design. It consists of the following steps:

Figure 2.1: Proposed Approach for Designing Approximate Multipliers

1. Building a library of elementary approximate FAs using the TSMC65nm tech-

nology in Cadence Spectre: We use the default transistors of this technology to

design 11 approximate FA designs comprising of 5 mirror FAs [8], 3 XOR/XNOR

gate FAs [19] and 3 inexact FAs [52].

19

2. Characterization and early space reduction: We perform area, power, latency

and quality characterizations of different approximate FAs to filter out non-

Pareto designs.

3. Building a library of approximate compressors: We develop a Cadence library of

approximate compressors using the optimal approximate FA, as recommended

by [8].

4. Building approximate multipliers basic blocks: Based on the approximate FAs

and compressors, we design various approximate 8-bit array and tree multipliers,

respectively. These proposed designs are related to ripple-carry array multiplier

architecture, which is the most power-efficient conventional architecture [53].

Moreover, the approximate FAs are applicable to sequential multipliers with a

single n-bit adder for partial product accumulation.

5. Designing target approximate multipliers: Based on different configurations of

8-bit approximate multipliers, we design and charactersize the target multiplier

modules, i.e, 16 and 32-bit multipliers.

6. Selection of design points: Considering the required quality constraints of a

specific application, we select a subset of power-efficient design points.

To evaluate the efficiency of the proposed approximate designs, power consump-

tion and area represented by the number of transistors used, are measured, and circuit

performance is evaluated using the maximum delay between changing the inputs and

observing the output(s). Besides these traditional design metrics, accuracy is also

an important design constraint in approximate computing. We choose several com-

monly used error metrics in approximate computing, as explained in the next section,

to quantify errors and measure accuracy in the proposed approach. As shown in

20

Figure 2.1, the characterization and selection process is applied at multiple steps to

different components during the design flow. Characterization aims to find the design

characteristics of the circuits, including area, power consumption, performance, error

metrics, and other derived metrics such as Power-Delay-Product (PDP). The design

selection process for the evaluated approximate designs depends on the application

domain of the given circuit.

2.2 Error Metrics

In this section, we briefly present the main error metrics which emerged with approx-

imate computing, to understand better how to quantify approximation errors.

Approximation introduces accuracy as a new design metric. Thus, several appli-

cation dependent error metrics are used to quantify approximation errors and evaluate

design accuracy [54] [52]. For example, considering an approximate design with two

inputs, i.e., X and Y , of n-bit each, where the exact result is (P), and the approximate

result is (P ′), these error metrics include:

� Error Distance (ED): The arithmetic difference between the exact output and

the approximate output for a given input. ED can be presented by:

ED = |P − P ′| (2.1)

� Error Rate (ER): Also called error probability, is the percentage of erroneous

outputs among all outputs, and it is expressed as:

ER =
Number of erroneous computations

Total number of computations
(2.2)

21

� Mean Error Distance (MED): The average of ED values for a set of outputs

obtained by applying a set of inputs. MED is a useful metric for measuring the

implementation accuracy of multiple-bit circuit design, and got as:

MED =
1

22n

22n∑
i=1

|EDi| (2.3)

� Normalized Error Distance (NED): The normalization of MED by the the max-

imum value of error that an unreliable circuit can have (PMax). NED is an

invariant metric independent of the size of the circuit. Therefore, it is used for

comparing circuits of different sizes, and expressed as:

NED =
MED

PMax

(2.4)

� Relative Error Distance (RED): The ratio of ED to the accurate output, given

by:

RED =
ED

P
=
|P − P ′|

P
(2.5)

� Mean Relative Error Distance (MRED): The average value of all possible relative

error distances (RED):

MRED =
1

22n

22n∑
i=1

|REDi| (2.6)

� Mean Square Error (MSE): It is defined as the average of the squared ED values:

MSE =
1

22n

22n∑
i=1

|Pi − P ′i |
2

=
1

22n

22n∑
i=1

|EDi|2 (2.7)

� Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-noise ratio is a fidelity

22

metric used to measure the quality of the output images, given by:

PSNR = 10 ∗ log10(
MAX2

MSE
) (2.8)

It indicates the ratio of the maximum pixel intensity to the distortion, where

MAX stands for the maximum value of a pixel in the images, i.e., 255 for 8-bit

image.

The presented metrics are not mutually exclusive, where one application may use

several quality metrics. A detailed analysis of various error metrics, i.e., ER, MED,

NED, MRED and PSNR, based on an exhaustive simulation for approximate designs,

are explained in the next sections of this chapter as well as subsequent chapters of

the thesis.

2.3 Approximate Building Blocks

Low power and energy-efficient approximate multipliers are generally constructed by

replacing the accurate building blocks, i.e., full adders and compressors, with their

approximate implementation. Next, we describe the basic building blocks we imple-

mented to design our approximate multipliers.

2.3.1 Approximate Full Adders

We consider five approximate mirror adders, i.e., AMA1, AMA2, AMA3, AMA4 and

AMA5 [8], three approximate XOR/XNOR based full adders, i.e., AXA1, AXA2 and

AXA3 [19] and three inexact adder cells, i.e., InXA1, InXA2 and InXA3 [52]. All

of them have been proposed and designed at the transistor-level with energy efficient

23

Table 2.1: Design Characteristics of Approximate Full Adders

FA Type Size Power(nw) Delay(ps) ER PDP(fJ)

Exact FA 28 763.3 244 0 186.25
AMA1 20 612 195 2 119.34
AMA2 14 561.1 366 2 205.36
AMA3 11 558.1 360 3 200.92
AMA4 15 587.1 196 3 115.07
AMA5 8 412.1 150 4 61.82

AXA1 8 676.2 1155 4 781
AXA2 6 358.7 838 4 300.59
AXA3 8 396.5 1467 2 582

InXA1 6 410 740 2 303.4
InXA2 8 355.1 832 2 295.44
InXA3 6 648 767 2 753.5

implementation. Table 2.1 shows the design characteristics of the 11 considered ap-

proximate FAs including size (A), power (P), delay (D), number of erroneous outputs

(E), which indicates the number of cases where at least one output (Cout or Sum)

is wrong, and PDP. As shown in Table 2.1, all approximate FAs are Pareto-points,

where they provide less area and power consumption compared to the exact design

at the cost of compromising accuracy. Some of the FA designs have an enhanced

performance (reduced delay), while other models have degraded performance due to

the internal structure and node capacitance. In [55], AMA5 is considered as a wire

with zero area and zero power consumption. However, this is unrealistic as the output

of AMA5 has to drive other signals. Thus, we used two buffers instead of two wires

to design it.

Assuming that the characteristics of approximate FAs are linearly applied to ap-

proximate arithmetic circuits (adders and multipliers), there is no single approximate

FA, which is superior in all aspects. Therefore, we propose to use a fitness function

to evaluate the designs based on its design metrics.

Fitness = C1× A+ C2× P + C3×D + C4× E (2.9)

24

where C1, C2, C3 and C4 are design coefficients within the range [0,1] to indicate

the importance of a specific design metric, i.e., E equals zero for the exact design, and

P is small for low power designs. The fitness of the approximate circuit depends on

the application resiliency and input data distribution. The minimal fitness value is

preferred since the goal is to minimize design metrics. We will utilize the 11 Pareto-

design approximate FAs as primary building cells to construct approximate array

multipliers.

2.3.2 Approximate Compressors

Full adders with 3 inputs and 2 outputs are called 3-to-2 compressors. Higher-order

compressors, e.g., 5-to-3 and 8-to-4 [25], allow constructing high-speed tree multipli-

ers. Therefore, we develop approximate compressors based on FAs, e.g., an 8-to-4

binary compressor is depicted in Figure 2.2, for illustration purposes. Tables 2.2 and

2.3 show the power consumption and the area of different approximate compressors

implemented based on approximate FAs, respectively. The area for approximate com-

pressors exhibits a linear relationship with the area of FAs. However, it does not look

natural to obtain a closed-form analytical expression for the power consumption.

A hybrid approximate multiplier, i.e., based on approximate compressors with

different approximation degrees and types, would have an ample design space. There-

fore, to show the effectiveness of designing approximate compressors based on ap-

proximate FAs, we chose four FAs only. These FAs have superior design metrics. The

best approximate FA in terms of delay and PDP is AMA5, and in terms of power

and area is AXA2. Also, the best FA with a low error rate is InXA1. AMA3 has

moderate characteristics regarding the area, power, delay, and the number of errors.

These selected FAs are used to design approximate high-order compressors, which in

25

Figure 2.2: 8-to-4 Compressor Design

Table 2.2: Power Consumption (µw) for Different Compressors

Compressor Type
FA Type 3-2 4-3 5-3 6-3 7-3 8-4

Exact FA 0.562 1.469 1.659 1.466 1.355 2.198
AMA1 0.5474 0.9696 1.494 0.9258 1.138 1.65
AMA2 0.4525 1.224 1.189 1.536 1.321 1.609
AMA3 0.4489 0.6813 1.378 1.073 0.6157 0.9114
AMA4 0.5228 0.9988 1.176 1.183 1.037 1.449
AMA5 0.4802 0.9333 1.199 1.023 0.8753 1.791

AXA1 0.4511 1.586 1.128 1.562 1.521 2.142
AXA2 0.4584 1.296 1.563 0.8141 0.7489 2.77
AXA3 0.3544 1.349 1.429 1.231 0.4742 2.316

InXA1 0.1823 1.569 0.9423 0.4842 1.296 2.413
InXA2 0.5018 1.324 2.114 0.3441 0.8087 3.844
InXA3 0.5504 1.345 1.234 0.7866 1.636 5.27

turn can be used for creating approximate tree multipliers. However, these selected

compressors are not guaranteed to be the optimal ones. But, they exhibit better

features compared to the exact designs.

26

Table 2.3: Area (number of transistors) for Different Compressors

Compressor Type
FA Type 3-2 4-3 5-3 6-3 7-3 8-4

Exact FA 28 56 70 98 112 154
AMA1 20 48 54 74 80 122
AMA2 14 42 42 56 56 98
AMA3 11 39 36 47 44 86
AMA4 15 43 44 59 60 102
AMA5 8 36 30 38 32 74

AXA1 8 36 30 38 32 74
AXA2 6 34 26 32 24 66
AXA3 8 36 30 38 32 74

InXA1 6 34 26 32 24 66
InXA2 8 36 30 38 32 74
InXA3 6 34 26 32 24 66

2.4 Approximate Multipliers

In this section, we use the approximate FAs and compressors, described earlier, to

design 8 and 16-bit approximate array and tree-based multipliers, respectively, which

will act as our basic blocks for developing high-order multipliers, i.e., 32-bit multipli-

ers.

2.4.1 8-bit Multiplier Basic Blocks

8-bit Approximate Array Multipliers : An n-bit array multiplier is composed of

n2 AND gates for partial product generation and n-1 n-bit adders for partial product

accumulation [56]. The design space of an n × n approximate array multiplier is

quite huge since it depends on the type of FA used in the array, and the number

of approximate FAs used in the n-bit adder. We use all 11 Pareto approximate

FAs, described in Section 2.3.1, to construct 8-bit approximate array multipliers,

based on only one FA type per design to avoid an exponential growth of the design

space. Regarding the degree of approximation, we use two options: i) all FAs are

27

Table 2.4: Characteristics of 8-bit Approximate Array Multipliers

Multiplier Name ER NMED Delay(ps) POWER(µW) SIZE

EE 0 0 527 31.41 1456
EM1 9.70x10-1 3.93x10-3 527 24.17 1288

M1M1 9.96x10-1 2.05x10-1 865 14.75 1072
EM2 9.90x10-1 3.52x10-3 557 22.97 1162

M2M2 1.00 2.58x10-1 600 14.4 784
EM3 9.99 x10-1 7.26x10-3 605 24.95 1099

M3M3 1.00 2.64x10-1 598 15.31 640
EM4 9.70x10-1 1.71x10-3 573 21.85 1183

M4M4 9.96x10-1 9.86x10-2 313 11.17 832
EM5 9.30x10-1 1.56x10-3 573 22.15 1036

M5M5 9.90x10-3 1.27x10-1 250 10.69 496

EX1 9.71x10-3 3.21x10-3 546 31.86 1036
X1X1 9.96x10-3 1.61x10-1 558 21.33 496
EX2 1.00 2.89x10-3 569 23.38 994

X2X2 1.00 2.31x10-1 250 13.91 400
EX3 6.15x10-1 5.35x10-3 536 25.54 1036

X3X3 9.96x10-1 2.50x10-1 197 15.06 496

EIn1 6.15x10-1 4.91x10-3 517 26.07 994
In1In1 8.54x10-1 1.56x10-1 403 14.82 400
EIn2 5.84x10-1 2.76x10-3 528 28.79 1036

In2In2 8.26x10-1 1.27x10-1 340 12.56 496
EIn3 9.90x10-1 3.52x10-3 556 27.96 994

In3In3 1.00 2.58x10-1 404 23.92 400

approximate; and ii) FAs that contribute to the least significant 50% of the resultant

bits are approximated to maintain acceptable accuracy as recommended by [8] [20]

[57]. Thus, we design, evaluate (based on sampled inputs) and compare 22 different

options for 8-bit approximate array multipliers, as shown in Table 2.4, using the

TSMC65nm technology.

The “Multiplier Name” in Table 2.4 consists of two parts, i.e., the name of the

adder used for the most significant and least significant part. For example, in EM1,

the most significant part is based on an exact adder (E), and the least significant part

is based on mirror adder 1 (M1). Similarly, the least significant part for EX2 and

EIn2 is based on XOR/XNOR 2 FA (X2) and Inexact 2 FA (In2), respectively. The

28

Figure 2.3: Area and PDP Reduction of 8-bit Approximate Array Multipliers

approximate multiplier size exhibits a linear relationship with the degree of approxi-

mation. As shown in Table 2.4, there is no single design that is superior in all design

metrics. Therefore, a Pareto-analysis for various design characteristics is used for the

different proposed designs. Figure 2.3 shows the area and PDP reduction of 8-bit ap-

proximate array multipliers. The best designs are located in the bottom left corner.

M5M5 is a Pareto-design with PDP reduction (84%) and area reduction (65%). The

design X3X3 is Non-Pareto because it has the same area reduction as the M5M5 but

with a smaller PDP reduction. However, we have to consider other error metrics.

Some designs, such as EX1, have increased PDP due to excessive switching activity

compared to the original design.

8-bit Approximate Tree Multipliers : The design space for 8-bit approxi-

mate tree multipliers is also quite large, depending on the compressor type and ap-

proximation degree [58]. To avoid the exponentially growing design space, we choose

to use compressors of the same type in the multiplier design. Also, we use two op-

tions for approximation degree: i) all compressors are approximate; and ii) only those

29

Table 2.5: Characteristics of 8-bit Approximate Tree Multipliers

Multiplier Name ER NMED Delay(ps) POWER(µW) SIZE

CEE 0.00 0.00 508 21.98 1218
CEM3 1.00 9.30x10-3 537 19.65 912

CM3M3 1.000 2.16x10-1 560 16.27 606
CEM5 9.79x10-1 2.40x10-3 356 18.63 858

CM5M5 9.99x10-1 8.18x10-2 282 13.99 498
CEX2 9.97x10-1 5.70x10-3 525 23.52 822

CX2X2 1.00 1.38x10-1 513 22.6 426
CEIn1 8.73x10-1 4.80x10-3 505 25.12 822

CIn1In1 9.75x10-1 7.81x10-2 500 26.89 426

compressors that contribute to the lowest significant 50% of the resultant bits are

approximated to maintain acceptable accuracy. Thus, based on the 4 shortlisted

compressors, explained in Section 2.3.2, we compared 8 options for 8-bit approximate

tree multipliers, and the results are given in Table 2.5. The name of the multiplier

consists of three parts. For example, CEM1 represents a compressor-based multiplier

(C), where the most significant part is based on an exact compressor (E), and the

least significant part is composed of the mirror adder 1 (M1) based compressor.

As shown in Table 2.5, no design is superior in all metrics, but some designs

are the best in a few parameters. As depicted in Figure 2.4, the best models are on

the left bottom corner, i.e., CM5M5 and CX2X2 are Pareto-designs while CEM5 is

a non-Pareto-design.

2.4.2 16-bit Higher-Order Multiplier Configuration

The 8-bit multiplier basic modules can be used to construct higher-order target mul-

tiplier modules. Next, we use the example of designing a 16-bit multiplier to illustrate

this process. The partial product tree of the 16-bit multiplication can be broken down

into four products of 8-bit modules, which can be executed concurrently, as shown in

Figure 2.5 of a recursive multiplier.

30

Figure 2.4: Area and PDP Reduction of 8-bit Approximate Tree Multipliers

Figure 2.5: A High-Order Recursive Multiplier

In the case of high requirements of accuracy, we use an exact 8-bit multiplier for

the three most significant products, i.e., AH × BH, AH × BL, and AL × BH, and

anyone of the approximate designs can be used for the least significant product, i.e.,

AL×BL. For low accuracy requirements, only one 8-bit exact multiplier can be used

for the most significant product, i.e., AH × BH, and any of the other approximate

designs can be used for the three least significant products, i.e., AH×BL, AL×BH,

and AL×BL. Modules that contribute to the lowest significant 50% of the resultant

bits are approximated to maintain accuracy as recommended by [8] [20] [57][59].

We choose to design 16-bit multipliers with an exact AH ×BH multiplier, and

31

with exact MSBs and approximate LSBs for AH × BL and AL × BH, and a fully

imprecise or approximate in LSBs only AL × BL. Any other approximation degree

can be found based on the required quality function, i.e., maximum error, area, power

or delay. Therefore, when we explain the 16-bit multipliers, we eliminate the types of

AH ×BH, AH ×BL and AL×BH from the name, and only the type of AL×BL

is used.

16-bit Approximate Array Multipliers : Table 2.6 shows the simulation

results for 16-bit approximate array multipliers, which show similarities with those

in Table 2.4. The multiplier name is based on the type of AL × BL module. Fully

approximate designs exhibit minimal delay due to reduced circuit complexity. Gener-

ally, models based on approximate mirror adders have the lowest power consumption,

due to the elimination of static power dissipation. Since the design size grows linearly

with the FA size, fully approximate designs based on six transistors cells have the

smallest area. As depicted in Figure 2.6, the best designs are on the lower-left corner,

i.e., 16In1In1 and 16In3In3 are Pareto-designs while 16M4M4 is a non-Pareto design.

16-bit Approximate Tree Multipliers: Table 2.7 displays the characteri-

zation for 16-bit approximate tree multipliers, and show similarities to Table 2.5. As

depicted in Figure 2.7, i.e., 16CEM5, 16CEIn1 and 16CM5M5 are all Pareto-designs

while 16CEM3 is a non-Pareto design.

2.5 Discussion and Application

We implemented the considered approximate multipliers using Cadence’s Spectre

based on the TSMC65nm process, with Vdd = 1.0V at T=27Co. Independent voltage

sources provide the circuit inputs, and a load of 10fF is utilized. We then evaluated

their design characteristics, i.e., area, power and delay. As shown in Tables 2.4 and

32

Table 2.6: Characteristics of 16-bit Approximate Array Multipliers

Multiplier Name ER NMED Delay(ps) POWER(µW) SIZE

16EE 0 0.00 514 156.8 5824
16EM1 9.4x10-1 7.69x10-10 534 130.1 5320

16M1M1 1.76x10-2 1.10x10-11 526 118.4 5104
16EM2 1 1.82x10-5 533 128.4 4942

16M2M2 1 2.28x10-5 477 116.5 4562
16EM3 1 6.16x10-5 519 131.6 4753

16M3M3 1 6.45x10-5 490 120.4 4294
16EM4 9.285x10-1 5.04x10-10 522 118.8 5005

16M4M4 9.793x10-1 5.11x10-10 506 105.1 4654
16EM5 9.335x10-1 5.30x10-10 533 119 4564

16M5M5 9.335x10-1 5.30x10-10 535 105.1 4022

16EX1 9.509x10-1 7.43x10-10 513 154.9 4564
16X1X1 9.793x10-1 8.34x10-10 520 138.5 4024
16EX2 1 6.07x10-6 521 138 4438

16X2X2 1 9.11x10-6 514 127.4 3844
16EX3 9.646x10-1 1.09x10-9 515 134 4564

16X3X3 9.793x10-1 1.27x10-9 518 121.8 4024

16EIn1 5.239x10-1 5.04x10-10 519 134.2 4438
16In1In1 6.09x10-1 5.43x10-10 408 121.7 3844
16EIn2 2.137x10-1 1.03x10-10 537 146.9 4564

16In2In2 4.29x10-1 1.42x10-10 500 126.4 4024
16EIn3 1 1.82x10-5 527 157.6 4438

16In3In13 1 2.28x10-5 412 153.2 3844

Figure 2.6: Area and PDP Reduction of 16-bit Approximate Array Multipliers

33

Table 2.7: Characteristics of 16-bit Approximate Tree Multipliers

Multiplier Name ER NMED Delay(ps) POWER(µW) SIZE

16CEE 00 0.0 680 100.8 4872
16CEM3 1.00 3.00x10-3 663 93.57 3954

16CM3M3 1.00 3.10x10-3 693 90.6 3648
16CEM5 9.41x10-1 2.52x10-8 585 92.48 3792

16CM5M5 9.79x10-1 2.56x10-8 670 86.98 3432
16CEX2 1.00 2.30x10-3 685 115 3684

16CX2X2 1.00 2.40x10-3 671 114.3 3288
16CEIn1 8.22x10-1 4.83x10-8 516 112.5 3684

16CIn1In1 9.04x10-1 4.98x10-8 527 114.3 3288

Figure 2.7: Area and PDP Reduction of 16-bit Approximate Tree Multipliers

2.5, the 8-bit exact tree multiplier exhibits lower delay, power and size compared to

the 8-bit correct array multiplier.

Different multiplier designs, based on AMA5, have the lowest delay and power

consumption, due to the basic structure of the FA cell, which is composed of two

buffers only. Also, they have the lowest NMED and small size. Regarding accuracy,

the designs based on InXA1 have low ER and NMED. Similarly, the designs based on

the six transistors FA, have minimal size. Thus, we can observe that the character-

istics of approximate FA are generally translated in the corresponding approximate

34

multipliers as well. In terms of architecture, we found that the tree multiplier designs

tend to have a lower power consumption than array multipliers, especially the designs

based on low power consuming FAs, such as AMA3 and AMA5. In terms of the 8-bit

sub-module placement to form higher-order multipliers, with a fixed configuration for

AH×BH, AH×BL and AL×BH sub-module, we have noticed that ER and NMED

increase, while the size, power consumption and delay decrease for designs with a high

degree of approximation in AL×BL.

Compared to the 24 different designs reported in [30], 92% of the models have

ERs close to 100%, while only 80% of our proposed designs have high ERs. Regarding

NMED, almost all our designs have a value less than 10-5, which is the minimum value

reported by the 24 approximate designs in [30]. Comparing the PDP reduction, most

of the designs in [30] have a high PDP reduction because they are based on the

truncation and a high degree of approximation. However, our models are superior in

PDP reduction for designs with a high degree of approximation.

Image Blending Application

In order to validate and demonstrate the usefulness of the proposed approximate

multipliers, we use them in a real-life image processing application (i.e., image mul-

tiplication). In previous sections, we used Cadence Spectre to build the circuits and

evaluate their area, performance and power consumption. Now, for experimentation

purposes, and in order to run an exhaustive simulation, we use MATLAB to evaluate

error metrics for image processing. To this end, we have modeled the same approxi-

mate multiplier circuit architectures in MATLAB and run an exhaustive simulation.

The quality of image blending is measured by signal to noise ratio (SNR), which is

a measure for image fidelity and compares the level of a desired image to the level

35

Figure 2.8: %PDP Reduction and SNR of Multipliers

of approximation error, as given in Equation 2.8. Figure 2.8 shows the values of the

SNR obtained based on various approximate multipliers and the percentage of PDP

reduction for each approximate multiplier. Designs on the bottom left corner, have

the highest PDP reduction and the best quality (high SNR). Generally, all the de-

signed multipliers have an acceptable average output quality with noticeable power

savings.

2.6 Approximate Library (AxCLib)

In Section 2.4, we evaluated various approximate multipliers which have been designed

based on three identified decisions. These 8 and 16-bit designs are implemented using

Cadence’s Spectre based on TSMC65nm process. Based on the obtained results, we

have selected the most energy-efficient ones to be used in the “library of approximate

designs” of our proposed methodology. These designs have following features: (1)

they utilize five types of full adders which are called “approximate mirror adders”,

36

Table 2.8: Library of 20 Static Approximate Designs based on Degree and Type Knobs

Approximate
Design

Degree
D1 D2 D3 D4

Type

AMA1 Design1 Design2 Design3 Design4
AMA2 Design5 Design6 Design7 Design8
AMA3 Design9 Design10 Design11 Design12
AMA4 Design13 Design14 Design15 Design16
AMA5 Design17 Design18 Design19 Design20

i.e., Type = {AMA1, AMA2, AMA3, AMA4, AMA5}, chosen from the low power

approximate FAs [8]; (2) their architecture is an array; and (3) their approximation

degrees have four options, i.e., Degree = {D1, D2, D3, D4}, where D1 has 7 bits

approximated out of the 16-bit result, while D2, D3, and D4 have 8, 9, and 16 ap-

proximate bits, respectively. Table 2.8 shows our library of approximate multipliers

based on Degree and Type knobs, i.e., ApprxMul = {Design1,, Design20}. Also,

the library includes the exact design to be used whenever the required TOQ cannot

be satisfied.

To be consistent with the majority of the related work, we have implemented

the library of approximate designs, shown in Table 2.8, at the register transfer level

(RTL), in synthesizable VHDL. The general proposed methodology which is shown

in Figure 1.1, is adaptable, i.e., applicable to approximate functional units other than

multipliers, e.g., approximate multiply-accumulate units [60] and approximate meta-

functions [61].

Next, we analyze various characteristics, i.e., accuracy, area, delay, energy and

power consumption, of our approximate library. The considered 8-bit multipliers are

commonly used in low power embedded systems and image/video processing applica-

tions [62] [63]. For example, as shown in Table 2.9, the CEVA-NP4000 DSP processor

includes 4096 8-bit multiply-accumulate (MAC) units [1], which are used in various

37

Table 2.9: CEVA-NeuPro AI Processors Family [1]

Product
Number of MAC Units

Target Market
8x8 16x8 16x16

NP4000 4096 2048 1024 Automotive, Surveillance
NP2000 2048 1024 512 Surveillance, Drones
NP1000 1024 512 256 Smart-phones
NP500 512 256 128 IoT, Smart-phones

high-performance energy-constrained edge processing applications, i.e., IoT, smart-

phones and enterprise surveillance. As shown in Section 2.4.2, the simulation results

for 16-bit approximate multipliers exhibit significant similarities with the 8-bit ver-

sion. Thus, we selected 8-bit approximate multipliers, as their analyses results can be

extrapolated to 16 or 32-bit multipliers.

2.6.1 Accuracy of AxCLib

Table 2.10 summarizes various error metrics, i.e., error rate (ER), mean error distance

(MED), normalized error distance (NED), mean relative error distance (MRED) and

PSNR, that we obtained based on an exhaustive simulation for the approximate li-

brary. The shown results are averaged over the full range of the inputs and provide

useful insights about design accuracy. There is a strong correlation between the ED

and both the design Type and Degree. However, considering the ED metric as our

TOQ, mandates changing the design for every applied input, which is impractical due

to the associated overhead.

Analysis of Error Distance (ED)

Figure 2.9 shows the histogram distribution of the ED for the approximate multipliers

given in Table 2.8. The ED for the designs based on AMA1 with D1, D2, D3 and D4

have an average of 102, 246, 538 and 13162, respectively. While the ED for the designs

38

Table 2.10: Accuracy Metrics for the Library of Approximate Multipliers

Approximation
Degree

FA Type ER MED NED MRED MSE PSNR

D1

AMA1 0.931 102 0.0165 0.0380 1.69x104 39.35
AMA2 0.978 101 0.0213 1.0447 1.44x104 39.97
AMA3 0.996 200 0.0416 2.8055 4.76x104 34.78
AMA4 0.932 51 0.0083 0.0189 4.11x103 45.58
AMA5 0.870 44 0.0069 0.0148 3.14x103 46.80

D2

AMA1 0.962 246 0.0366 0.0823 9.61x104 32.10
AMA2 0.990 227 0.0515 2.1470 7.23x104 33.26
AMA3 0.999 474 0.1077 7.0425 2.68x105 27.65
AMA4 0.963 107 0.0164 0.0350 1.79x104 39.15
AMA5 0.922 93 0.0138 0.0280 1.38x104 40.32

D3

AMA1 0.977 538 0.0758 0.1679 4.53x105 25.80
AMA2 0.996 464 0.0976 4.2929 2.97x105 27.41
AMA3 1.000 1010 0.2280 13.4428 1.17x106 21.75
AMA4 0.977 185 0.0286 0.0582 5.27x104 34.30
AMA5 0.952 185 0.0261 0.0488 5.34x104 34.56

D4

AMA1 0.9882 13162 1.1862 2.1 3.27x108 5.54
AMA2 0.9998 16902 5.0033 272.6 4.00x108 8.18
AMA3 0.9999 17211 3.9303 180.7 4.13x108 7.36
AMA4 0.9882 6334 0.4705 0.6039 7.91x107 10.38
AMA5 0.9825 8096 0.5309 0.6642 1.17x108 8.85

based on AMA2 with D1, D2, D3 and D4 have an average of 101, 227, 464 and 16902,

respectively. Models based on AMA3 with D1, D2, D3 and D4 have average EDs of

200, 474, 1010 and 17211, respectively. However, the designs based on AMA4 with

D1, D2, D3 and D4 have average EDs of 51, 107, 185 and 6334, respectively, which is

quite low. AMA5 based designs with D1, D2, D3 and D4 have the lowest average of

ED, which is 44, 93, 185 and 8096, respectively.

We notice that the error distance varies for different inputs, for example, Design1

(top-left corner of Figure 2.9) shows that the ED varies from 0 to 518 with an average of

102. If the value of ED were input-independent, then it would be constant for all input

values. Such input-dependency is also present in the remaining designs. Moreover,

we notice that the variation in ED based on approximation degree for a specific type

39

Figure 2.9: Histogram Distribution of ED for the Library of Approximate Multipliers

(represented horizontally in Figure 2.9) is more evident than the variation between

different types for a particular degree (represented vertically in Figure 2.9), i.e., ED

is correlated with the degree more than with the type. The ED increases almost

doubles while increasing the approximation degree for any design type. Ideally, for

every input, there exists a specific design, among the 20 models, with a minimal error

distance (ED), which is the most suitable to be used in error-tolerant applications.

However, changing the most appropriate design for every input is impractical due to

the associated overhead.

Analysis of PSNR

The Peak Signal-to-Noise Ratio (PSNR), as given in Equation 2.8, depends on the

Mean Square Error (MSE). For image processing applications, PSNR is an indication

of image quality. Thus, it could be used as a TOQ metric while controlling the

quality of approximate computing. A low value of PSNR indicates a low image quality

40

Figure 2.10: PSNR for Approximate Multiplier based on AMA1 Type and D1, D2,
D3 and D4 Approximation Degrees

Figure 2.11: PSNR for Approximate Multiplier based on AMA2 Type and D1, D2,
D3 and D4 Approximation Degrees

associated with a large MSE. Similar to [64], we consider PSNR ≥ 25 as our threshold

for “acceptable” quality.

Figures 2.10 - 2.14 show the PSNR for different approximate multipliers utilizing

AMA1 - AMA5 types, respectively. Each column/bar shows the PSNR averaged over

256 different inputs, i.e., 16 consecutive inputs of Input1 and 16 consecutive inputs

of Input2, which we call a cluster. For instance, Figure 2.10 shows the PSNR for

designs based on the AMA1 type. The model based on D1 has an average value of

39.4dB with a minimum amount of 10.7dB. It has 19 out of 256 input combinations

with unacceptable quality, i.e., PSNR < 25dB. Similarly, the design based on D2 has

an average of 32.1dB with a minimum value of 7.7dB, and 54 input combinations

with PSNR < 25dB. The D3 based design has an average of 25.8dB for the PSNR,

with 115 clusters out of the 256 groups having unacceptable quality. Regarding the

41

Figure 2.12: PSNR for Approximate Multiplier based on AMA3 Type and D1, D2,
D3 and D4 Approximation Degrees

Figure 2.13: PSNR for Approximate Multiplier based on AMA4 Type and D1, D2,
D3 and D4 Approximation Degrees

D4 based design, all clusters have a low output quality, with PSNR < 25dB and a

maximum value of 11dB.

The PSNR for designs based on AMA2 is depicted in Figure 2.11. The D1

based design has an average of 40dB with a minimum value of 7dB. It has 22 input

combinations with PSNR < 25dB. Similarly, the design based on D2 has an average

of 33.2dB, with 55 input combinations having unacceptable quality. The D3 based

design has an average of 27.4dB with 99 input combinations having a PSNR < 25dB.

Regarding the D4 based design, only 7 clusters have an acceptable quality.

Figure 2.12 depicts a graphical representation for the PSNR of designs based on

AMA3. The D1 based design has an average of 34.8dB with 46 input combinations

having PSNR < 25dB, while the D2 based design has an average of 27.7dB with

92 input combinations having PSNR < 25dB. The D3 based design has 151 input

42

Figure 2.14: PSNR for Approximate Multiplier based on AMA5 Type and D1, D2,
D3 and D4 Approximation Degrees

combinations, which violate the PSNR, i.e., PSNR < 25, while the D4 based design

has only 6 clusters with a PSNR > 25dB.

The PSNR for designs based on AMA4 is shown in Figure 2.13. The model

based on D1 has an average of 45.6dB with a minimum value of 15.5dB. It has only

six input combinations with PSNR < 25dB. Similarly, the D2 based design has an

average of 39.1dB with a minimum amount of 9.7dB, and 18 input combinations with

PSNR < 25dB. The D3 based design has an average of 34.3dB for the PSNR, and 43

input combinations with PSNR < 25dB. Regarding the D4 based design, 230 clusters

have a low output quality, with PSNR < 25dB and an average value of 10.4dB.

Figure 2.14 shows the PSNR for AMA5 based designs. The D1 based design

has an average of 46.8dB with a minimum value of 16.3dB, where it has five input

combinations with unacceptable quality. Similarly, the design based on D2 has an

average of 40.3dB with a minimum amount of 10.4dB, and 14 input combinations have

PSNR < 25dB. The design with D3 has an average of 34.6dB for the PSNR, and 33

input combinations have unacceptable quality. Regarding the D4 based design, 239

clusters have a low output quality with an average of 8.8dB.

Based on the above analysis for the PSNR of 20 different approximate designs,

we notice that every model has some input combinations that violate the specified

quality constraint, e.g., the PSNR should be at least 25dB. Thus, we should avoid

43

Table 2.11: Power, Area, Delay, Frequency and Energy for the 20 Static Approximate
Multipliers

Design Dynamic Slice Occupied Period Frequency Energy
Type Degree Power (mW) LUTs Slices (ns) (MHz) (pj)

AMA1

D1 306 79 23 7.763 128.82 2375.5
D2 253 76 29 7.814 127.98 1976.9
D3 196 77 29 9.487 105.41 1859.5
D4 38 75 27 7.339 136.26 278.9

AMA2

D1 271 69 23 9.306 107.46 2521.9
D2 207 63 29 9.373 106.69 1940.2
D3 165 57 23 9.775 102.30 1612.9
D4 29 46 18 9.672 103.39 280.5

AMA3

D1 322 67 23 9.223 108.42 2969.8
D2 262 58 20 7.488 133.55 1961.9
D3 189 55 21 9.139 109.42 1727.3
D4 36 32 14 3.093 323.31 111.3

AMA4

D1 263 56 29 6.121 163.37 1609.8
D2 210 47 19 6.743 148.30 1416.0
D3 124 40 16 5.889 169.81 730.2
D4 31 13 7 1.383 723.07 42.9

AMA5

D1 242 53 26 7.017 142.51 1698.1
D2 183 41 19 5.694 175.62 1042.0
D3 113 31 11 4.625 216.22 522.6
D4 30 6 6 0.706 1416.43 21.2

Exact 442 85 33 8.747 114.32 3866.2

such input-dependent cases with low output quality when requiring a high quality

result.

2.6.2 Area, Power, Energy and Delay Analysis of AxCLib

For the analysis of design metrics of the approximate library, we utilized the

XC6VLX75T FPGA, which belongs to the Virtex-6 family, and the FF484 pack-

age Xilinx. For functionality verification, we use VHDL simulation based on Mentor

Graphics Modelsim [65]. We use Xilinx XPower Analyser for the power calculation

based on exhaustive design simulation [66]. For logic synthesis, we use the Xilinx

Integrated Synthesis Environment (ISE 14.7) tool suite [67].

Table 2.11 shows the characteristics of the approximate designs. As depicted in

44

Figure 2.15: Power, Area, Delay and Energy Reduction for the 20 Static Approximate
Multipliers

Figure 2.15, all designs have reduced power, area and energy compared to the exact

design. However, a few designs have a delay higher than the delay of the exact design.

Power reduction varies from 27.2% to 93.4%, with an average of 60.8%. Similarly,

energy reduction ranges between 23.2% and 99.4%, with an average of 65.5%. The

designs based on D1, D2, D3 and D4 have an average of 42.2%, 56.9%, 66.6% and

96.2% of energy reduction, respectively. These designs exhibit a 21.3% execution time

reduction on average.

Each design of the 8-bit approximate array multipliers implemented on FPGA

consists of 64 full adders (FAs). The designs D1, D2, D3 and D4, have 25, 33, 40

and 64 approximate FAs, respectively. Based on the experimental results, the power

consumption is 1.3× lower for every bit of the results being approximated, e.g., going

from D1 to D2. The dynamic power difference between D1 and D4 is about 10×,

which equals ≈ 1.38. This reduction shows the benefits of design approximation

regarding power consumption, which is obtained mainly due to the simplified design

of approximate FA with reduced switching activity. The approximate FAs have a

simplified structure compared with the exact FA. Thus, approximated designs have a

45

noticeable reduction in the occupied LUTs.

The final energy reduction enabled by approximation is weighted by the portion

of circuit design that is genuinely beneficial for approximation. Such modification is

similar to the improvement of computer performance, which is obtained based on the

enhanced performance of specific components, as quantified by Amdahl’s law [68].

The final energy improvement can be expressed in the form of Amdahl’s law as given

in Equation 2.10, where E is the energy for the exact component, and ETOQ is the

energy of the approximate element, which satisfies the TOQ.

Improved Energy of Approximate Application =
1

X × (E
ETOQ

) + (1−X)
(2.10)

The ratio (E
ETOQ

) is the energy saving in the approximate element in the design, and

X is the fraction of the design, which is amenable to approximation. Thus, for the

best energy efficiency, we aim to achieve (E
ETOQ

) � 1 and X ≈ 1. Therefore, image

processing applications, i.e., image blending and filtering, which use simple multi-

plication operations, will have a reduced energy consumption for such approximate

application where X ≈ 1.

2.7 Summary

In this chapter, we designed, evaluated and compared various 8 and 16-bit approxi-

mate array multipliers based on approximation in partial product summation. The

design space of approximate multipliers is found to be primarily dependent on the

type of the approximate FA used, the architecture, and the placement of smaller sub-

modules in the higher-order n-bit multiplier. The proposed designs are compared

based on their area, power, delay, accuracy and PDP. An image blending application

46

is used to compare the proposed multiplier designs, which have competitive results

compared to the state-of-the-art. Therefore, we selected a set of 20 designs as our “li-

brary of approximate designs”. Then, we have implemented the library at the register

transfer level (RTL), in synthesizable VHDL. The library is a basic building block in

the proposed methodology for quality assured approximate design, as shown in Figure

1.1, where it will be integrated into an adaptive approximate accelerator designs, as

it will be explained in the next chapters.

47

Chapter 3

Adaptive Approximate

Accelerators: Software-based

Design

In this chapter, we present a detailed description of the proposed methodology for

designing adaptive approximate accelerators, while the proposed design can be imple-

mentable in both software and hardware, this chapter demonstrates the aspects of the

software-based implementation. Chapter 4 is devoted for the FPGA-based hardware

implementation.

3.1 Introduction

Approximation techniques require a quality assurance to adjust approximation set-

tings/knobs and monitor the quality of fine-grained individual outputs. There are

two strategies to adjust the settings of an approximate program to assure the quality

of results i) forward design [69], which sets the design knobs and then observes the

48

quality of results. However, the output quality of some inputs may reach unacceptable

levels; and ii) backward design [70], which tries to find the optimal knobs setting for

a given bound of output quality, this requires exploring a considerable space of knob

settings for a given input, which is intractable.

To overcome the limitations mentioned above of design approaches, we propose

an adaptive approximate design that allows altering the settings of approximation, at

runtime to meet the desired output quality. The main idea is to develop a machine

learning-based input-aware design selector, which can modify the approximate design

based on the applied inputs, to meet the required quality constraints. Our approach

is general in terms of quality metrics and supported approximate designs. It is pri-

marily based on a library of 8 and 16-bit approximate multipliers with 20 different

configurations and well-known power dissipation, performance and accuracy profiles

as described in Section 2.6. Moreover, we utilize a backward design approach to dy-

namically adapt the design to meet the desired target output quality (TOQ) based

on machine learning (ML) models. The TOQ is a user-defined quality constraint,

which represents the maximum allowable error for a given application. The proposed

design flow is adaptable, i.e., applicable to approximate functional units other than

multipliers, e.g., approximate multiply-accumulate units [60] and approximate meta-

functions [61]. The next section elaborates more on the main steps of the proposed

methodology.

3.2 Adaptive Design Methodology

As shown in Figure 3.1, our proposed methodology encompasses two phases: (1)

an offline phase, where we build a machine learning-based model; and (2) an online

stage, where we continuously use the machine learning-based model based on the

49

Figure 3.1: Methodology of Software-based Adaptive Approximate Design

inputs to predict the settings of the adaptive design. The main step of the proposed

methodology are the followings:

(1) Generating of Training Data: Inputs are applied exhaustively to the approx-

imate library to create the training data for building the ML-based model (design

selector). For 16 and 32-bit designs, the size of the input combinations is 232 and

264, respectively. Thus, a sampling of the training data could be used because it is

impossible to generate an exhaustive training dataset for such circuits.

(2) Clustering/Quantizing of Training Data: Evaluating the design accuracy for

a single input can provide the error distance (ED) metric only. However, mean error

metrics (e.g., mean square error (MSE), peak-signal-to-noise-ratio (PSNR) and nor-

malized error distance (NED)) should be assessed over a set of consecutively applied

data rather than a scalar input. Thus, inputs with a specific distance from each other

are considered as a single cluster with the same estimated error metric. We propose

to cluster every 16 consecutive input values. Based on that, each input for 8-bit

50

multiplier, encompasses 16 clusters rather than 256 inputs. Similarly, for the 16-bit

multiplier design, the number of clustered inputs is reduced to 224 rather than 232.

(3) Pre-processing/Reducing of Training Data: Inputs could be applied exhaus-

tively for small circuits, e.g., 8-bit multipliers. However, the size of the input com-

binations for 16 and 32-bit designs is significant. Therefore, we have to reduce the

size of the training data through sampling techniques in order to design a smaller and

efficient ML-based model. Moreover, for 16-bit designs, we prioritize the training data

based on their area, power and delay as well as accuracy, then reduce the training

data accordingly.

(4) Building of Machine Learning-based Model : We built decision trees and

neural networks-based models, which function as a design selector, to predict the

most suitable settings of the design based on the applied inputs.

(5) Selection of Approximate Design: In the online phase, the user inputs, i.e.,

TOQ and inputs of the multiplier, are given to the ML-based models to predict the

setting of the approximate design, i.e., Type and Degree, which is then utilized within

an error-resilient application, e.g., image processing, in a software-based adaptive

approximate execution.

The flow of the proposed methodology depicted in Figure 3.1 is given in Algo-

rithm 3.1. The main steps are done once offline. During the online phase, the user

specifies the TOQ, where we build our models based on normalized error distance

(NED) and peak signal to noise ratio (PSNR) error metrics. An important design

decision is to determine the configuration granularity, i.e., how much data to process

before re-adapting the design, which is termed as the window size (N). For example,

in image processing applications, we select N to be equal to the size of colored compo-

nents of an image, i.e., 250x400=100,000 pixels for our example images. Then based

51

Algorithm 3.1. Proposed Adaptive Approximate Design

Input:
1: (1) Input1 : first input data; (2) Input2 : second input data;
2: (3) TOQ : specified quality;

Output: (1) Result:
3: Offline Phase::
4: - Build a Library of Approximate Arithmetic Modules
5: - Generate Training Data
6: - Quantize/Preprocess Training Data
7: - Build ML-based Design Selector, i.e., approximate computing quality manager
8: Online Phase::
9: N ← ConfigureW indowSize(TOQ) ;

10: L ← LengthofInput(Input1);
11: T ← L/N ; . number of reconfiguration times
12: i← 1;
13: while i ≤ T do

. determine the ith cluster
14: C1i= DetectC luster(Input1[N ∗ (i− 1) + 1 : i ∗N])
15: C2i= DetectC luster(Input2[N ∗ (i− 1) + 1 : i ∗N])

. check if any of the ith inputs changed
16: if (C1i 6= C1i−1) Or (C2i 6= C2i−1) then
17: (Degreei, Typei) = Selector (C1i, C2i, TOQi)
18: else . check if TOQi changed
19: if TOQi 6= TOQi−1 then
20: (Degreei, Typei) = Selector (C1i, C2i, TOQi)

. Use previous settings
21: else
22: Degreei ← Degreei−1

23: Typei ← Typei−1

24: end if
25: end if
26: UpdateBuffer(C1i, C2i, Degreei, Typei, TOQi)
27: end while
28: function Selector(C1i, C2i, TOQi)
29: Find Degreei, Typei
30: Return Degreei, Typei
31: end function
32: function AxD(C1i, C2i)
33: Perform approximate Computation for C1i and C2i
34: Return Result
35: end function
36: function UpdateBuffer(C1i, C2i, Degreei, Typei, TOQi)
37: Save the inputs, used design and quality result
38: end function

on the length of inputs, i.e., L and N, we determine the number of times to reconfigure

the design such that the final approximation benefits, i.e., reduced energy and execu-

tion time, are still significant. After N inputs, a design adaptation is done, if any of

52

the inputs or TOQ changes. The first step in such adaptation is input quantization,

i.e., specifying the corresponding cluster for each input based on its magnitude, since

design adaptation for every scalar input is impractical. To evaluate the inputs of

an approximate design, various metrics such as median, skewness and kurtosis, have

been used [43]. However, our approximate library is designed irrespective of the ap-

plied inputs. Thus, the input magnitude is the most suitable characteristic of design

selection.

3.3 Machine Learning Based Models

ML-based algorithms find solutions by learning through training data [71]. Supervised

learning allows for a fast, flexible, and scalable way to generate accurate models that

are specific to the set of application inputs and TOQ. The error for an approximate

design with particular settings can be predicted based on the applied inputs. For

this purpose, we developed a forward design-based model, as shown in Figure 3.2(a).

The obtained accuracy for this model is 97.6% and 94.5% for PSNR and NED error

metrics, respectively. Such high efficiency is attributed to the straightforward nature

of the problem. However, we target the inverse design of finding the most suitable

design settings for given inputs and error threshold, as shown in Figure 3.2(b).

Utilizing the Rattle package [72], in a preliminary evaluation conducted in [73],

Figure 3.2: Models for AC Quality Manager, (a) Forward Design, (b) Inverse Design

53

we designed and evaluated various ML-based models, based on the analyzed data

and several algorithms, developed in the statistical computing language R [74]. These

models represent the design selector for the adaptive design. Linear regression models

(LM) were found to be the simplest to develop; however, their accuracy is the lowest,

i.e., around 7%. Thus, they are not suitable for our proposed methodology. On

the other hand, decision tree (DT) models based on both C5.0 [75] and rpart [76]

algorithms achieve an accuracy of up to 64%, while random forest (RF) models, with

an overhead of 25 decision trees, achieve an accuracy of up to 68%. The most accurate

models are based on neural networks but they suffer from long development time,

design complexity and high energy overhead [38]. In the sequel, we implement and

evaluate two versions of the design selector, based on decision tree and neural network

models. Accordingly, we identify and select the most suitable one to implement in

our methodology.

3.3.1 Decision Tree-based Design Selector

The DT algorithm uses a flowchart-like tree structure to partition a set of data into

various predefined classes, thereby providing the description, categorization, and gen-

eralization of the given data sets [77]. Unlike the linear model, it models non-linear

relationships quite well. Thus, it is used in a wide range of applications, such as

credit risk of loans and medical diagnosis [78]. Decision trees are usually employed

for classification over data sets, through recursively partitioning the data, such that

observations with the same label are grouped [78].

Initially, we implemented and evaluated three different DT-based models: (1)

using the C5.0 function [75], (2) using the rpart function [76], and (3) based on

the cubist function [79]. The accuracy of the rpart based models is found to be

54

Table 3.1: Accuracy and Execution Time of DT and NN based Design Selectors

Model Accuracy Execution Time (ms)
Inputs Output DT NN DT NN

C1, C2, PSNR Degree 77.8% 82.17% 8.87 18.9
C1, C2, PSNR, s2=D1 Type 75.5% 66.52% 25.03 18.0
C1, C2, PSNR, s2=D2 Type 76.1% 70.21% 19.3 9.0
C1, C2, PSNR, s2=D3 Type 71.3% 73.22% 11.94 18.7
C1, C2, PSNR, s2=D4 Type 74.1% 59.08% 6.61 7.4

lower than that of C5.0 based models. Cubist is a rule-based model, which is an

extension of Quinlan’s M5 model tree [80], where a tree is developed such that the

terminal leaves represent linear regression models. Therefore, we have to discretize the

results, which degrade its accuracy. Moreover, the leaves with linear models need more

processing than the scalar leaves in the C5.0 model. Thus, due to tool limitations,

we implemented a two-steps design selector utilizing the C5.0 function by predicting

the design Degree and then its Type. This kind of design selector is supposed to be

lightweight for continually monitoring the workloads, and continuously adapting the

design every (N) input.

Based on the error analysis of the approximate designs, we noticed that the error

magnitude is correlated to the approximation Degree in a more significant manner

than the design Type. Such correlation is evident in the accuracy of the models,

where these models have an average accuracy of 77.8% and 74.3% for predicting the

design Degree and Type, respectively, as shown in Table 3.1. The time for executing

the software implementation of these models is very short, i.e., 24.6ms in total with

8.87ms to predict the design Degree and 15.72ms to predict the design Type. This time

is negligible compared to the time of running an application, such as image blending

or filtering.

Generally speaking, a decision tree model could be replaced by a lookup table

55

(LUT) which contains all the training data that are used to build the DT-model

[73]. When searching the LUTs, we could use the first matched value, i.e., design

settings that satisfy the TOQ, which could be a better solution obtained with a little

search effort. For DT-based models, we do not need to specify which value to retrieve.

However, it is possible to obtain a result which is closer to the TOQ by changing the

settings of the tree such as the maximum depth of any node of the tree, the minimum

number of observations that must exist in a node in order for a split to be attempted

and the minimum number of observations in any terminal node.

In general, for embedded and limited resources systems, a lookup table is not a

viable solution if the number of entries becomes very large [81]. In fact, for a circuit

with two 16-bit inputs, we need to generate 232 input patterns to cover all possible

scenarios of a circuit. However, a reduced precision LUT could be used as shown

in Section 3.4.3. In order to build a DT-based model for 16-bit multiplier designs,

we need to evenly distribute the sampled training data. Therefore, we tried different

sample sizes, and similar to the work in [82], we found that the trial with 1M samples

has the best accuracy. Thus, we randomly generate 50K input data for each 16-bit

approximate design within the library. The obtained model accuracy was found to be

83.5%.

3.3.2 Neural Network-based Design Selector

We implemented a two-step NN-based design selector by predicting the design Degree

first and then the Type. The model for Degree prediction has an accuracy of 82.17%

while the four models for Type prediction have an average accuracy of 67.3%, as shown

in Table 3.1. All of these models have a single hidden layer with a sigmoid activation

function, given in Equation 3.1. The time for executing the software implementation

56

of these models is very short, i.e., 32.18ms in total with 18.9ms to predict the design

Degree and 13.28ms to predict the design Type. This time is negligible compared to

the time of running an application, such as image processing.

f (x) =
1

1 + e−x
(3.1)

Compared to the DT-based model, the NN-based model has an execution time,

which is 1.31X higher than the DT, while its average accuracy is almost 0.98X of the

accuracy achieved by the DT-based model. The next section evaluates the software

implementation of the proposed methodology, which utilizes the DT-based design

selector that we described earlier in Section 3.3.1. We discard the NN-based design

selector due to the absence of advantages over DT.

3.4 Experimental Results

In this section, we evaluate the effectiveness of the software implementation of the

fully-automated proposed system, including the approximate library and the DT-

based design selector. We run MATLAB on a machine with 8GB DRAM and i5

CPU with a speed of 1.8GHz. We evaluate the proposed methodology based on

two applications of images processing: 1) Image blending, where we use two sets of

images, i.e., Set-1 with five examples and Set-2 with 50 examples; and 2) Image

filtering, where we use two images, i.e., Lina and Cameraman. Moreover, we evaluate

an audio mixing application based on 16-bit models. The execution time is considered

as a quality metric, where its overhead is found to be relatively small compared to

the original applications, as shown in the sequel.

57

3.4.1 Image Blending

Image blending in multiplication mode allows us to blend multiple images to look

like a single image. This process is widely used in developing animation and effect

movies where video blending requires the multiplication of several consecutive photos.

For example, blending two-colored videos, each with Nf frames of size Nr rows by

Nc columns per image, involves a total of 3 × Nf × Nr × Nc pixels. Each image

has 3 colored components/channels, i.e., red, green and blue, where the values of

their pixels are expected to differ. A static configuration uses a single design, from

the library provided in Table 2.8, to perform all multiplications, even when their

pixels are different. Therefore, for enhanced output quality, we propose to adapt the

approximate design per channel as shown in Figure 3.3. However, for a video with a

set of consecutive frames, e.g., 30 frames per second, the proposed methodology can

be run for the first frame only since the other frames have very close pixel values.

This way, the design selector continuously monitors the inputs and efficiently locates

the most suitable design for each colored-component to meet the required TOQ.

Various metrics, e.g., median, skewness and kurtosis, have been used in the liter-

ature to characterize the inputs of approximate designs [43]. However, their proposed

approximate circuits heavily depend on the training data used during the approxima-

tion process. Our approximate library is designed regardless of the applied inputs.

Thus, the relationship between the consecutively applied inputs, such as skewness

and kurtosis, is insignificant for our designs. Since the error magnitude depends on

the user inputs, we rely on pixel values to select a suitable design. However, setting

the configuration granularity at the pixel level is impractical. On the other hand, the

design selection per coloued-component is more suitable.

We evaluate the average of the pixels of each colored-component to select the

58

Figure 3.3: Adaptive Image/Video Blending at Component Level

most suitable design. Two completely different images may have the same average

of their pixels. Unfortunately, this could result in the same selected approximate

design because the training is performed at the multiplier level and not at the image

level. To avoid this scenario, we reduce the configuration granularity by dividing the

colored-component into multiple segments, e.g., four segments. After that, we propose

to use various designs, rather than a single design, for each colored-component. This

issue triggers training and building the model at the image level to control the quality

of approximation in image processing applications. Next, we analyze the results of

applying the proposed methodology on two sets of images; i) Set-1 with 10 images;

and ii) Set-2 with 100 images based on a public database of images [2]. The photos of

each set are then blended at the component level, as shown in Figure 3.3, to evaluate

the efficiency of the proposed methodology.

59

Figure 3.4: The Dependency of the Output Quality on the Applied Inputs

Accuracy Dependency on the Applied Inputs

Figure 3.4 shows the fluctuation in the value of the PSNR, that we obtained by ap-

plying different input images for a specific static design, where the fluctuation is the

difference between the maximum and the minimum obtained PSNR. Based on the

photos of Set-1, Design3, Design7, Design11, Design15 and Design19 have a fluc-

tuation of 14.2%, 2.4%, 7.9%, 4.1% and 3.1%, of the obtained PSNR, respectively.

Similarly, for the images of Set-2, the obtained PSNR fluctuates by 15.4%, 13.7%,

15.2%, 9.6% and 9.8% for Design3, Design7, Design11, Design15 and Design19, re-

spectively. The obtained PSNR for different images processed on a single design varies

due to the dependency of the output quality on inputs, as observed in [12].

3.4.1.1 Blending of Set-1 of Images

We use a set of 10 different images, each of size Nr × Nc = 250 × 400 = 105 pixels, and

each image is segmented into three colored-components. Table 3.2 shows the average

values of the pixels of each colored-component and the associated input cluster, which

are denoted as Average and Cluster, respectively.

60

Table 3.2: Characteristics of Set-1 Blended Images

Example (Image1, Image2) Frame Characteristic
Input 1 (Image1) Input2 (Image2)
Red Green Blue Red Green Blue

1 (Frame, City)
Average 131 163 175 172 153 130
Cluster 9 11 11 11 10 9

2 (Sky, Landscape)
Average 121 149 117 160 156 147
Cluster 8 10 8 11 10 10

3 (Text, Whale)
Average 241 241 241 48 156 212
Cluster 16 16 16 4 10 14

4 (Girl, Beach)
Average 177 158 140 168 176 172
Cluster 12 10 9 11 12 11

5 (Girl, Tree)
Average 102 73 40 239 193 118
Cluster 7 5 3 16 13 8

We target 49 different values of TOQ, i.e., PSNR ranges from 17dB to 65dB, for

each blending example. Thus, we run the methodology 245 times, i.e., 5x49. For every

invocation, based on the corresponding cluster for each input, i.e., C1 and C2, and

the associated target PSNR, one of the 20 designs is selected and used for blending.

For illustration purposes, in the sequel we explain Example5 in detail. As shown in

Table 3.2, the Girl image has a red-component with an average of 102, which belongs

to Cluster 7, i.e., C1R = 7. Similarly, the Tree image has a red-component with an

average of 239, which belongs to Cluster 16, i.e., C2R = 16. The green components

belong to Clusters 5 and 13 (C1G = 5, C2G = 13) while the blue components belong

to Clusters 3 and 8 (C1B = 3, C2B = 8). Then, we adapt the design by calling the

design selector thrice, i.e., once for every colored-component, assuming TOQ=17dB.

The selected designs (based on Line 29 of Algorithm 3.1) are given by:

Selector(C1R, C2R, TOQ)→ DesignR → Design8 (3.2)

Selector(C1G, C2G, TOQ)→ DesignG → Design16 (3.3)

Selector(C1B, C2B, TOQ)→ DesignB → Design11 (3.4)

61

Figure 3.5: Obtained Output Quality for Image Blending of Set-1

The selected DesignR, DesignG and DesignB are Design8, Design16 and Design11,

respectively. Based on that, the obtained quality is 16.9dB, which is insignificantly

less than the TOQ.

Accuracy Analysis of Adaptive Design

Figure 3.5 shows the minimum, maximum and average curves of the obtained out-

put quality, each evaluated over five examples of image blending. Out of the 245

selected designs, 49 predicted designs are violating the TOQ, even insignificantly, i.e.,

the obtained output quality is below the red line. The unsatisfied output quality is

attributed mainly to model imperfection. The best achievable prediction accuracy is

based on the accuracy of the two models executed consecutively, i.e., Degree model

with 77.8%, and Type model with 76.1%. The accuracy of our model prediction is

62

80%, which is in agreement with the average accuracy of the DT-based models, as

shown in Tabl 3.1.

Execution Time Analysis of Adaptive Design

Figure 3.6 shows the average execution time of the five examples of image blending

evaluated over 20 static designs. The shown time is normalized for the execution time

of the exact design. All designs have a time reduction ranging from 1.8% to 13.6%

with an average of 3.96%.

Figure 3.6: Normalized Execution Time for Blending of Set-1 Images using 20 Static
Designs

For the five examples of image blending, we evaluated the execution time of

the adaptive design, where the target PSNR ranges between 17dB and 65dB for each

case. Figure 3.7 shows the execution time for the five examples using the exact design,

63

Figure 3.7: Execution Time of the Exact, Static and Adaptive Design

the adaptive design averaged over 49 different TOQ, and the static design averaged

over 20 approximate designs. Design adaptation overhead, which represents the time

for running the ML-based design selector is 30.5ms, 93.9ms, 164.6ms, 148.6ms and

42.1ms, for the five examples, respectively. Moreover, the five examples have a data

processing time based on three selected designs per example of 50.90s, 50.91s, 51.10s,

51.69s and 51.04s, respectively. Thus, for these five examples, the design adaptation

time represents 0.06%, 0.18%, 0.32%, 0.28% and 0.08% of the total execution time,

respectively, which is a negligible overhead.

3.4.1.2 Blending of Set-2 of Images

We used a set of 100 images from the database of “8 Scene Categories Dataset” [2],

which is downloadable from [83]. It contains eight outdoor scene categories; coast,

mountain, forest, open country, street, inside the city, tall buildings and highways. A

sample of the used images is shown in Figure 3.8.

Similar to Set-1, we target 49 different value of TOQ, for 50 examples of blending

and execute the proposed methodology 2450 times. Figure 3.9 shows the minimum,

64

Figure 3.8: A Sample of Set-2 Images [2]

maximum and average curves of the obtained output quality, each evaluated over 50

examples of image blending. Out of the 2450 selected designs, 430 predicted designs

are violating the TOQ, where the obtained output quality is below the red line.

Thus, the accuracy of our model prediction is 82.45%, which is slightly higher than

the accuracy obtained for Set-1 images. We consider PSNR ≥ 25dB as a threshold

for an acceptable quality of pictures, as proposed by [64]. As shown in Figures 3.5

and 3.8, the proposed methodology has a high prediction accuracy for an acceptable

PSNR, while its prediction accuracy is low when the TOQ < 25dB.

Energy Analysis of Adaptive Design

One of the foremost goals of designing a library of approximate arithmetic modules,

i.e., multipliers and adders, is to enhance energy efficiency. To calculate the energy

consumed by the approximate multiplier to process an image, we use the following

equation:

65

Figure 3.9: Obtained Output Quality for Image Blending of Set-2

Energy = Power ×Delay ×N (3.5)

where Power and Delay are obtained from the synthesis tool, as shown in Table

2.11, and N is the number of multiplications required to process an image, which

equals 250 × 400=105 pixels. As shown in Table 2.11, Design9 has the highest energy

consumption with 2970 pj and a saving of 896 pj compared to the exact design. Thus,

the design adaption overhead of 733.7 pj (based on Table 4.1) is almost negligible

compared to the total minimal energy savings of 89.6 µj (896 pj × 105) obtained by

processing a single image. These results validate our lightweight design selector.

66

3.4.2 Gaussian Smoothing

We evaluate the accuracy of the adaptive design on a Gaussian smoothing low-pass fil-

ter, which reduces image details through attenuating high-frequency signals. Applying

a Gaussian smoothing is the same as convoluting the image with a circularly sym-

metric 2-D Gaussian function, as given in Equation 3.6 [84]. The Gaussian smoothed

output is a weighted average of each pixel’s neighborhood. As in Equation 3.7, we

use a (3 × 3) kernel, based on σ = 1.5, where the average kernel weight depends

significantly on the value of the central pixels.

Figure 3.10: Exact, Noisy and Filtered Images

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.6)

Kernel =
1

254


24 30 24

30 38 30

24 30 24

 (3.7)

67

We use the benchmarks, Lena and Cameraman, as input images, with the addi-

tion of zero-mean Gaussian white noise, with a variance of 0.01 to the original gray-

scale image. Figure 3.10 shows the benchmark images with Gaussian-noise added

and the noisy images filtered with the exact design. The Gaussian kernel, given in

Equation 3.6, is applied to the 8-bit gray-scale input images of size (512 × 512) pixels.

Figure 3.11 shows the PSNR obtained by using the 20 static designs. The resulting

values are computed for the image obtained by applying the Gaussian filter with the

exact multiplier design on the noisy image. The approximate designs were able to get

a maximum PSNR of 53.2dB.

Figure 3.11: Output Quality (PNSR) for 2 Examples of Image Filtering Using 20
Static Designs

68

Figure 3.12: Obtained Output Quality for 2 Examples of Adaptive Image Filtering

Figure 3.12 shows the obtained PSNR for two examples of image filtering based

on the adaptive design, where the TOQ ranges between 17dB and 53dB. The proposed

methodology was able to satisfy the user given quality constraints. When the TOQ

ranges between 17dB and 34dB, the obtained output quality for the two examples are

different. However, when the TOQ is 35dB or more, both cases have almost the same

obtained output quality.

3.4.3 Audio Mixing/Blending

Sounds are propagating waves represented in a binary format of 16-bit depth, which is

able to cover a wide range of amplitudes with an enhanced quality. We perform a set

of audio blending applications, to evaluate the DT-based model and reduced precision

69

Figure 3.13: Obtained Output Quality for Audio Blending

LUT for 16-bit designs. We evaluate the proposed methodology over 45 examples,

where the target PSNR ranges between 15dB and 70dB. The used WAV sound files

were obtained from [85].

3.4.3.1 DT-based Model

Figure 3.13 presents the achieved PSNR, i.e., minimum, maximum and average, based

on the decision tree model, which is designed to learn from the limited input data, to

predict a result for the unseen data. The accuracy of the “average obtained TOQ”

(blue curve) is 85.7%. Figures 3.5 and 3.9 for the image blending application were

showing a smoother curve of predicted results since the DT-model was built using a full

70

set of training data. However, the stairs/steps in the predicted PSNR, shown in Figure

3.13, are due to the expectations of the model, which was built based on sampled

training data. The comparable accuracy of both models shows the effectiveness of

machine learning even with sampled training data.

Figure 3.14: Obtained Output Quality for Audio Blending using LUTs

3.4.3.2 Reduced Precision LUT

A LUT with 16M instances provides a full accuracy with significant area overhead

[86]. Therefore, as explained in Section 3.3.1, we used a sample of 1M instances to

build a reduced-precision LUT. Figure 3.14 shows the obtained output quality for

audio blending utilizing LUT. Since the LUT does not include all input values, we use

71

“interpolation” to cover all possible inputs and obtain estimated output values for the

inputs which are not found in the LUT. The accuracy of the “average obtained TOQ”

(blue curve) is 100%, which could be due to interpolation by using the first solution

that satisfy the TOQ. We notice that the obtained PSNR using LUTs is higher than

the obtained PSNR by DTs, where the LUT uses the first match while the DT uses

the closest match. We realize that both DTs and LUTs are applicable with different

design characteristics. For example, DTs with acceptable accuracy are more suitable

for embedded systems with limited resources, while LUTs are a better choice for PCs

with large memory as this would lead to a higher accuracy.

Table 3.3: Obtained Accuracy (PSNR) for Various Approximate Designs

Application
KUL
[28]

ETM
[29]

ATCM
[88]

Adaptive Design
(Proposed)

Blending

Set-1, Ex. 1 24.8 27.9 41.5 61
Set-1, Ex. 2 29.2 29.1 43.7 61.1
Set-1, Ex. 3 20.3 24.8 33.1 63
Set-1, Ex. 4 23 28 38.2 60.7
Set-1, Ex. 5 27.6 29.4 40.3 61.5

Filtering
Lena 36.5 36.3 38.4 52.7

Cameraman 35.9 36.9 29.2 53.2

3.5 Comparison with Related Work

We now compare the output accuracy achieved by our adaptive design with the preci-

sion of two static approximate models based on approximate multipliers proposed by

Kulkarni et al. [28] and Kyaw et al. [29] that have similar structures as our approxi-

mate array multipliers. Moreover, we compare the accuracy of our work with a third

approximate design based on the approximate tree compressor multiplier (ATCM),

proposed by Yang et al. [88], which is a Wallace tree multiplier. Table 3.3 shows

a summary of the obtained PSNR for image blending and filtering based on KUL

72

[28], ETM [29], ATCM [88] and the proposed adaptive design. The proposed model

achieves better output quality than static designs due to the ability to select the most

suitable design from the approximate library.

3.6 Summary

For dynamic inputs, a static approximate design may lead to substantial output errors

for changing data. Previous work has ignored the consideration of the changing inputs

to assure the quality of individual outputs. In this chapter, we proposed a novel fine-

grained input-dependent adaptive approximate design, based on machine learning

models. Then, we implemented a fully-automated toolchain utilizing a DT-based

design selector. The proposed solution considers the inputs in generating the training

data, building ML-based models, then adapting the design to satisfy the TOQ. The

“software” implementation of the proposed methodology, developed in this chapter,

provide a negligible delay overhead and was able to satisfy an output accuracy of 80%

to 85.7% for various error-resilient applications. Such quality assured results come at

the one-time cost of generating the training data, deploying and evaluating the design

selector, i.e., machine learning-based model. With runtime design adaptation, the

model always identifies and selects the most suitable design for controlling the quality

loss. In the next chapter, we describe a fully FPGA-based hardware implementation

of our proposed methodology utilizing dynamic partial reconfiguration.

73

Chapter 4

Adaptive Approximate

Accelerators: FPGA-based

Design

As demonstrated in Chapter 3, a software implementation of the proposed adaptive

approximate accelerate was able to satisfy the required TOQ with a minimum ac-

curacy of 80%. In this chapter, we present an FPGA-based implementation of the

adaptive approximate accelerator utilizing the feature of dynamic partial reconfigu-

ration, with a database of 21 reconfigurable modules.

4.1 Introduction

An essential advantage of FPGAs is their flexibility, where these devices can be config-

ured and re-configured on-site and at runtime by the user. In 1995, Xilinx introduced

the concept of partial reconfiguration (PR) in its XC6200 series to increase the flex-

ibility of FPGAs by enabling re-programming parts of design at runtime while the

74

remaining parts continue operating without interruption [89]. The basic premise of

PR is that the device hardware resources can be time-multiplexed, similar to the

ability of a microprocessor to switch tasks. PR eliminates the need to re-configure

and re-establish links fully and dramatically enhances the flexibility that FPGAs of-

fer. PR enables adaptive and self-repairing systems with reduced area and dynamic

power consumption.

In Chapter 3, we demonstrated an adaptive design based on the applied inputs

to improve the individual output quality. Similarly, in this chapter, we propose to

dynamically adapt the functionality of the FPGA-based approximate accelerators us-

ing machine learning and dynamic partial reconfiguration. We utilize the previously

proposed DT and NN-based design selectors that continually monitors the input data

and quickly determines the most suitable approximate design. Then, accordingly,

partially reconfigures the FPGA with the selected approximate design while keep-

ing the whole error-tolerant application intact. The proposed methodology applies

to any error-tolerant application where we demonstrate its effectiveness using an im-

age processing application. As FPGA vendors announced the technical support for

the runtime partial reconfiguration, such systems are becoming feasible. The works,

reported in [45] - [47], show the benefits of DPR. However, to our best knowledge,

the design framework for adaptively changeable approximate functional modules with

input-awareness does not exist.

4.2 Dynamic Partial Reconfiguration

In this section, we describe the FPGAs architecture and main characteristics that can

utilize partial reconfiguration. After that, we explain their components and features

that enable them to build an adaptive design in more detail.

75

Field Programmable Gate Arrays (FPGA) devices conceptually consist of [90]:

i) hardware logic (functional) layer which includes flip-flops, lookup tables (LUTs),

block random-access memory (BRAM), digital signal processing (DSP) blocks, routing

resources and switch boxes to connect the hardware components; and ii) configura-

tion memory which stores the FPGA configuration information through a binary file

called configuration file or bitstream (BIT). Changing the content of the bitstream

file allows us to improve the functionality of the hardware logic layer. Xilinx and

Intel (formerly Altera) are the leading manufacturing companies for FPGA devices.

Due to the hardware available for implementation, in this thesis, we use the VC707

evaluation board from Xilinx, which provides a hardware environment for developing

and evaluating designs targeting the Virtex-7 XC7VX485T-2FFG1761C FPGA [91].

Partial Reconfiguration (PR) is the ability to modify portions of the modern

FPGA logic by downloading partial bitstream files while the remaining parts are not

altered [92]. PR is a hierarchical and bottom-up approach and is an essential en-

abler for implementing adaptive systems. It can be static or dynamic, where the

reconfiguration can occur while the FPGA logic is in the reset state or running state,

respectively [90]. The dynamic partial reconfiguration (DPR) process consists of two

phases: i) fetching and storing the required bitstream files in the flash memory, which

is not time-critical; and ii) loading bitstreams into the reconfigurable region through

a controller, i.e., internal configuration access port (ICAP). Implementing a partially

reconfigurable FPGA design is similar to implementing multiple non-partial recon-

figuration designs that share a common logic. Since the device is switching tasks in

hardware, it has the benefit of both flexibility of software implementation and the per-

formance of hardware implementation. However, it is not very commonly employed

in commercial applications [92].

76

Figure 4.1: Principle of Dynamic Partial Reconfiguration on Xilinx FPGAs

Logically, the part that will host the reconfigurable modules (dynamic designs)

is the dynamic partial reconfigurable region (PRR), which is shared among various

modules at runtime through multiplexing. Figure 4.1 illustrates a reconfigurable de-

sign example on Xilinx FPGAs, with a partially reconfigurable region (PRR) A, which

is reserved in the overall design layout mapped on the FPGA, with three possible par-

tially reconfigurable modules (PRM). For FPGA full reconfiguration, all functional

blocks should coexist while partial reconfiguration loads a single functional block at a

time into the reconfigurable module. During PR, a portion of the FPGA needs to keep

executing the required tasks, including the reconfiguration process. This part of the

FPGA is known as the static region, which is configured only once at the boot-time

with a full bitstream. This region will also host static parts of the system, such as I/O

ports as they can never be physically moved.

Xilinx Partial Reconfiguration Controller (PRC) provides management functions

for self-controlling partially re-configurable designs [93]. It is designed for enclosed

systems where all reconfigurable modules are known to the controller. The Xilinx

PRC consists of multiple (up to 32) virtual socket (VS) managers, which connect

to a single fetch path. The virtual socket refers to a re-configurable partition (RP)

with any supporting logic that exists in the static design. Each VS can contain up

77

to 128 re-configurable modules (RMs) and up to 512 software and hardware triggers.

Our proposed design includes a single VS with 21 RMs, each with a specific trigger.

The mapping from a particular trigger, i.e., hardware or software, to a given RM is

configurable during core configuration and at runtime. The PRC fetches the bitstream

data from an Advanced eXtensible Interface (AXI) bus [93], which allows the controller

to access bitstreams no matter where they are stored. Initially, the partial bitstreams

are stored in a configuration library, i.e., a bitstream database, as shown in Figure 4.1.

When a hardware (signal) or a software (register write) trigger event occurs, the PRC

fetches/pulls partial bitstreams from the memory/database through the AXI bus and

delivers them to a configuration port, e.g., ICAP.

The Xilinx Internal Reconfiguration Access Port (ICAP) is the core component

of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based FP-

GAs [94]. The ICAP controller, which is flexible with high reconfiguration through-

put, is responsible for executing all commands to access and modify the configuration

memory [90]. The speed of configuration is directly related to the size of the partial

bitstream file and the bandwidth of the configuration port. For ICAP, the data width

is 32 bit, and the bandwidth is 3.2Gb/s [95]. The ICAP enables DPR from within an

FPGA chip, leading to the possibility of fully autonomous FPGA-based systems.

The Linear Byte Peripheral Interface (BPI) Flash memory provides 128 MB of

nonvolatile storage. The .BIT binary configuration data (bitstream) file contains the

header information that does not need to be downloaded to the FPGA. Therefore,

we convert it into .BIN binary configuration data file, which is without the header

information. With each trigger, a partial bit file is pulled from the BPI flash by the

PRC and delivered to the ICAP, changing the functionality in that Reconfigurable

Partition.

78

4.3 Machine Learning Based Models

In this section, we describe the FPGA-based implementation of the design selector

based on DT and NN models.

4.3.1 Decision Tree-based Design Selector

As described in Section 3.3.1, the DT-based models have an average accuracy of 77.8%

and 74.3% for predicting the design Degree and Type, respectively, as shown in Table

3.1. The overhead time for executing the software implementation of these models

is around 24.6ms in total, with 8.87ms to predict the design Degree and 15.72ms to

predict the design Type.

This section evaluates the power, area, delay and energy of the FPGA-based im-

plementation of the DT-based design selector. Similar to evaluating the approximate

library, we utilize the XC6VLX75T FPGA, which belongs to the Virtex-6 family. The

Configurable Logic Block (CLB) comprises two slices, each containing four 6-input

LUTs and eight flip-flops, for a total of eight 6-input LUTs and 16 flip-flops per

CLB. Moreover, we use Mentor Graphics Modelsim [65] for functionality verification.

We use Xilinx XPower Analyser for the power calculation based on exhaustive de-

sign simulation [66], while for logic synthesis, we use the Xilinx Integrated Synthesis

Environment (ISE 14.7) tool suite [67].

Table 4.1 shows the obtained characteristics of the DT-based model. The power

consumption of the model ranges between 35mW and 44mW. This value is insignifi-

cant when compared to the power consumption of approximate multipliers, as shown

in Table 2.11, where these multipliers being selected are used for N inputs. Similarly,

the introduced area, delay and energy overhead are amortized by running the approx-

imate design for N inputs. The area of the model, represented in terms of the number

79

Table 4.1: Power, Area, Delay, Frequency and Energy of DT and NN-based Design
Selectors

Model
Dynamic

Power (mW)
Slice
LUTs

Occupied
Slices

Period
(ns)

Frequency
(MHz)

Energy
(pj)

Inputs Output DT NN DT NN DT NN DT NN DT NN DT NN

C1, C2, PSNR Degree 16 155 602 7835 231 2683 22.910 31.504 43.65 31.74 366.6 4883.1
C1, C2, PSNR, s2=D1 Type 19 164 497 8427 189 2791 18.596 31.746 53.78 31.50 353.3 5206.3
C1, C2, PSNR, s2=D2 Type 23 153 449 6625 221 2309 15.962 31.718 62.65 31.53 367.1 4852.8
C1, C2, PSNR, s2=D3 Type 23 159 390 5360 149 1731 15.494 29.164 64.54 34.29 356.4 4637.0
C1, C2, PSNR, s2=D4 Type 28 170 298 4549 134 1420 11.838 28.678 84.47 34.87 331.5 4875.3

of slice LUTs, is 1099, at maximum. Also, the number of occupied slices could reach

452 slices. The worst-case (slowest) frequency that the model could run is 43.65MHz,

with a period of 22.91ns. The designed model could consume the maximum energy

of 733.7pj. The set of approximate multipliers exhibits acceptable savings in their

characteristics, i.e., area, power, delay and energy, compared to the exact design, as

shown in Table 2.11.

It is important to note that the design selector, which is synthesized only once, is

specific for the considered set of approximate designs. However, the proposed method-

ology is readily applicable to other approximate designs as well. The implementation

overhead, i.e., power, area, delay and energy, for the DT-based model is negligible

compared to the approximate accelerator since it is a simple nesting of if-else state-

ments with a maximum depth of 12 to reach a node of a final result.

4.3.2 Neural Network-based Design Selector

Neural networks (NNs) have generally been implemented in software. However, re-

cently with the exploding number of embedded devices, the hardware implementation

of NNs is gaining significant attention. FPGA-based implementation of NN is com-

plicated due to the large number of neurons and the calculation of complex equations

such as activation function [96]. We use the sigmoid function f (x), which was given

by Equation 3.1, as an activation function. A piecewise second-order approximation

80

scheme for the implementation of the sigmoid function is proposed in [97] as provided

by Equation 4.1. It has inexpensive hardware, i.e., one multiplication, no look-up

table and no addition.

f (x) =



1 x > 4.0

1− 1
2
(1− |x|

4
)2, 0 < x ≤ 4.0

1
2
(1− |x|

4
)2, −4.0 < x ≤ 0

0, x ≤ −4.0

(4.1)

As described in Section 3.3.2, we implemented a two-step design selector by

predicting the design Degree first and then the Type, with an accuracy of 82.17% and

67.3%, respectively, as shown in Table 3.1. The execution time of the NN-based model

ranges between 37.6ms and 26.3ms, with an average of 32.7ms.

We implemented the NN-based model on FPGA, and its characteristics, includ-

ing dynamic power consumption, slice LUTs, occupied slices, operating frequency and

consumed energy, are shown in Table 4.1. These values are found to be insignificant

when compared to the characteristics of approximate multipliers, as shown in Table

2.11, where these multipliers are used for N inputs. However, compared to the DT-

based model, the NN-based model, as shown in Section 3.3.2, has an execution time,

which is 1.31× higher than the DT, while its average accuracy is almost 0.98× of the

accuracy achieved by the DT-based model. Moreover, regarding other design metrics,

including power, slice LUTs, occupied slices, period and energy, the NN-based model

has a value of 8.06×, 13.93×, 11.74×, 1.61× and 6.8×, consecutively, compared with

the DT-based model. Unexpectedly, the DT-based model is better than the NN-

based model in all design characteristics, including accuracy and execution time. The

next section evaluates the FPGA-based implementation of the proposed methodology,

81

which utilizes the DT-based design selector that we described earlier. We discarded

the NN-based design selector due to the absence of advantages over DT.

4.4 System Architecture

Figure 4.2 shows the FPGA-based methodology for quality assurance of approximate

computing through design adaptation, inspired by the general methodology shown

in Figure 1.1. In order to utilize the available resources of the FPGA and show the

benefits of design approximation, we integrate 16 multipliers into an accelerator to

be used all together. Figure 4.3 shows the internal structure for the approximate

accelerator with 16 multipliers. Each input, i.e., Ai and Bi where 16 ≥ i ≥ 1, is 8-bit

wide.

The implemented machine learning-based models (design selectors) are decision

trees-based only, where model training is done once offline, i.e., off-FPGA. Then,

the VHDL implementation of the obtained DT-based model, which is the output of

the offline phase, is integrated as a functional module within the online phase of the

Figure 4.2: Methodology of FPGA-based Adaptive Approximate Design

82

FPGA-based adaptive system, as shown in Figure 4.4. The proposed FPGA archi-

tecture contains a set of IP cores, connected through a standard bus interface. The

developed approximate accelerator core is with the capability of adjusting processing

features as commanded by the user to meet the given TOQ. For the parallel execu-

tion, we utilize the existing block RAM in the Xilinx 7 series FPGAs, which have

1030 blocks of 36Kbits. Thus, we store the input data (images) in a distributed mem-

ory, e.g., save each image of size 16 KByte into 16 memory slots each of 1 KByte.

Other configurations of the memory are also possible and can be selected to match

the performance of the processing elements within the accelerator.

The online phase of the proposed adaptive approximate design, based on the

decision tree is presented in Figure 4.4, where the annotated numbers, i.e., 1O to 8O,

show the flow of its execution for image blending application. The target device is

xc7vx485tffg1761-2, and the evaluation kit is Xilinx Virtex-7 VC707 Platform [91].

The main components are the reconfiguration engine, i.e., DT-based design selector,

and the reconfigurable core (RC), i.e., approximate accelerator. The RC is placed in

a well-known partially reconfigurable region (PRR) within the programmable logic.

The AXI-HWICAP controller establishes communication with the ICAP.

We evaluate the effectiveness of the proposed methodology for an FPGA-based

adaptive approximate design utilizing DPR. For that, we select an image blending

Figure 4.3: An Accelerator with 16 Identical Approximate Multipliers

83

Figure 4.4: Methodology of FPGA-based Adaptive Approximate Design - Online
Phase

application due to its computationally intensive nature and its amenability to ap-

proximation. As a first step, to prove the validity of the proposed design adaptation

methodology, we evaluate a design without the DPR feature, utilizing the exact accel-

erator as well as 20 approximate accelerators that exist simultaneously, based on the

proposed methodology. Thus, 21 different accelerators evaluate the outputs. Next,

based on the inputs and the given TOQ, the design selector chooses the output of a

specific design, which has been selected based on the DT-model. Finally, the selected

result will be forwarded as the final result of the accelerator. The evaluated area and

power consumption of such design is 15X and 24X more significant than the exact

implementation, respectively.

We use MATLAB to read the images, re-size them to 128 × 128 pixels, convert

them to grayscale and then write into coefficient (.COE) files. Such files contain the

image pixels in a format that the Xilinx Core Generator can read and load. We store

the images in an FPGA block RAM (BRAM). The design evaluates the average of the

pixels of each image retrieved from the memory; then, the hardware selector decides

which reconfigurable module, i.e., bitstream file, to load into the reconfigurable region.

84

The full bitstream is stored in flash memory to be booted up into the FPGA at power-

up. Moreover, the partial bitstreams are stored in well-known addresses of the flash

memory.

4.5 Experimental Results

In the following, we discuss the results of our proposed methodology when evaluated

on image processing applications. In particular, we present the obtained accuracy

results along with reports of the area resources utilized by the implemented system.

Accuracy Analysis of the Adaptive Design

We evaluate the accuracy of the proposed design over 55 examples of image blending.

For each example, our TOQ (PSNR) ranges from 15dB to 63dB. The images we use

are from the database of “8 Scene Categories Dataset” [2], which is downloadable from

[83]. It contains eight outdoor scene categories; coast, mountain, forest, open country,

street, inside the city, tall buildings and highways. Figure 4.5 shows the minimum,

maximum and average curves of the obtained output quality, each evaluated over

55 examples. Generally, for image processing applications, the quality is typically

considered acceptable if PSNR ≥ 30dB, and otherwise unacceptable [98]. Based

on that, the design adaptation methodology has been executed 1870 times while the

TOQ has been satisfied for 1530 times. Thus, the accuracy of our obtained results in

Figure 4.5 is 81.82%.

Area Analysis of the Adaptive Design

Table 4.2 shows the primary resources of the XC7VX485T-2FFG1761 FPGA [99].

Moreover, it shows the resources required for the image blending application utilizing

85

Figure 4.5: Obtained Output Quality for FPGA-based Adaptive Image Blending

an approximate accelerator, both static and adaptive implementation. Design check-

point files (.DCP) are a snapshot of a design at a specific point in the flow, which

includes the current netlist, any optimizations made during implementation, design

constraints and implementation results. For the static implementation the .DCP file

is 430 KByte only, while for the dynamic implementation, it is 17411 KByte. This

increase in the file size is due to the logic which has been added to enable dynamic

partial reconfiguration, as well as the 20 different implementations for the reconfig-

urable module (RM). Moreover, the overhead of such logic is shown in the increased

number of the occupied Slice LUTs and Slice Registers. However, both static and

dynamic implementations have the same size of the bitstream file (692 KByte), which

is to be downloaded into the FPGA. DPR enables downloading the partial bitstream

86

Table 4.2: Area/Size of Static and Adaptive Approximate Accelerator

Design .DCP Slice Slice RAMB36 RAMB18 Bonded DSPs Bitsream
File KByte LUTs Registers IOB size (KByte)

XC7VX485T-2FFG1761 FPGA — 303600 607200 1030 2060 700 2800 —
Static Design 430 1472 357 235 51 65 0 19799
Adaptive - Top 17411 12876 15549 235 51 65 0 19799
Adaptive - Exact RM 770 1287 0 0 0 0 0 692
Adaptive - Max Approx RM 647 800 0 0 0 0 0 692
Adaptive - Min Approx RM 458 176 0 0 0 0 0 692

into the FPGA rather than the full bitstream. Thus, downloading 692 KByte rather

than 19799 KByte would be 28.6 × faster. Since different variable-size reconfigurable

modules will be assigned to the same reconfigurable region, it must be large enough

to fit the biggest one, i.e., the exact accelerator in our methodology.

Table 4.2 shows the main features for the Xilinx XC7VX485T-2FFG1761 device,

including the number of slice LUTs, slice registers, and the number of block RAM.

The total capacity of block RAM is 37080 Kbit, which could be arranged as 1030

blocks of size 36Kbit each or 2060 blocks of size 18Kbit each. The reconfigurable

module (RM) with exact implementation occupies 1287 Slice LUTs. However, the

number of Slice LUTs occupied by the RM with approximate implementation varies

from 800 to 176 LUTs. Thus, the area of the approximate RM varies from 62.16% to

13.68% of the area of the exact RM. Despite all of that, all 21 RMs have the same

bitstream size of 692 KB.

4.6 Summary

In order to assure the quality of approximation by design adaptation, in this chapter,

we described the proposed methodology to adapt the architecture of the FPGA-based

approximate design using dynamic partial reconfiguration. The proposed design with

87

low power, reduced area, small delay and high throughput is based on runtime adap-

tation for changing inputs. For this purpose, we utilized a lightweight and energy-

efficient design selector built based on decision tree models. Such input-aware design

selector determines the most suitable approximate architecture which satisfies user

given quality constraints for specific inputs. Then, the partial bitstream file of the

selected design is downloaded into the FPGA. Dynamic partial reconfiguration allows

quickly reconfiguring the FPGA devices without having to reset the complete device.

The obtained analysis results of image blending application showed that it is possible

to satisfy the TOQ with an accuracy of 81.82%, utilizing a partial bitstream file that is

28.6× smaller than the full bitstream. The next chapter explains the quality assurance

of approximate design by error compensation rather than design adaptation.

88

Chapter 5

Self-Compensating Approximate

Accelerators

In the previous chapters, we proposed and evaluated a methodology to assure the

quality of the results of approximate accelerators through building a runtime adaptive

approximate design. For that, we utilized machine learning techniques, i.e., DT and

NN, to select the most suitable module from a set of 20 designs. Similarly, in this

chapter, we propose a runtime self-healing approximate accelerator utilizing decision

trees to compensate for the error based on the inputs. For that, a corrective term,

which is predicted based on the input data using a decision tree model, is added to

the erroneous result.

5.1 Introduction

Approximation errors persist permanently during the operational lifetime of the ap-

proximate accelerators. Thus, it is necessary to develop techniques that can alleviate

approximation error and enhance the accuracy with minimal overhead, when a high

89

inexactness cannot be afforded. Therefore, it is crucial to tackle this issue at the early

design stage and change the architecture of approximate accelerators by building

a lightweight internal error compensation/recovery module with minimal overhead.

However, approximate computing is still an immature computing paradigm, where

to the best of our knowledge, a formal model of the impact of approximation on ac-

curacy metric is still missing [100]. Accuracy performance of approximate designs is

highly input-dependent, where we know relatively little about enhancing the accuracy

of approximation in a disciplined manner. In this chapter, we propose a novel ma-

chine learning-based self-compensating approximate accelerator, aiming to improve

the accuracy of the approximated results. There is no clear relationship between the

inputs of approximate accelerators and their errors. Therefore, such accelerators are

designed based on the inputs by employing an ML-based compensation module to

capture input dependency of error. This technique leads to a noteworthy reduction

in error magnitude, with negligible overhead.

A severe limitation of the state-of-the-art self-compensating methodology is that

it mainly employed in parallel architectures by integrating approximate components

with their complementary designs, i.e., having the same error magnitude with opposite

polarity. However, obtaining such integral parts is not always guaranteed. Therefore,

an approximation methodology is required that can provide a complementary effect

within a single computing element. In Chapters 3 and 4, we have designed and

implemented a machine learning-based technique that seek to control the quality of

approximate computing by selecting the most suitable approximate design based on

the inputs. Nevertheless, this technique is efficient when having a set of approximate

designs to choose the most adequate among them, which is not always applicable.

90

As a proof of concept, we consider approximate accelerators with 8-bit approx-

imate array multipliers. Such accelerators have 9 bits of the results being approxi-

mated. Also, they utilize full adder (FA) cells, known as approximate mirror adder 5

(AMA5) [8], which provides a simplified design with the reduced area, power and de-

lay (Design19 in Table 2.8). The challenge is to build an efficient error compensation

module, which considers the value of the inputs. Thus, machine learning techniques

are used to capture such dependency. Finally, we employ an image blending ap-

plication, where two images are multiplied pixel-by-pixel to demonstrate a practical

application of self-compensating approximate accelerators.

5.2 Error Compensation Approach

In a self-compensating approximate accelerator, we propose to integrate an input-

dependent compensation module in such a way that the accumulative error is reduced.

Figure 5.1(a) shows the design of a simplified accelerator with two approximate mul-

tipliers. The magnitude of error e1 depends on inputs A and B, while the magnitude

of error e2 depends on inputs C and D. Whereas, e1 does not equal e2, i.e., e1 6= e2,

unless {A,B} = {C,D}. The final accelerator error is e, where e = e1 + e2. The

maximum error is |e1| + |e2|.

Here, without loss of generality, we consider accelerators constructed utilizing 8-

bit approximate array multipliers based on AMA5 FAs with 9-bits of the results being

approximated. However, the proposed methodology applies to any approximate ac-

celerator design, e.g., approximate adders [19], dividers [21] and multiply-accumulate

units [60].

The main challenge in the design of self-compensating accelerators is the devel-

opment of the input-dependent compensation module that has a minimal area, delay

91

Figure 5.1: Simplified Architecture for Accelerator of Two Approximate Multipliers, (a)
Without Error Compensation, (b) With Error Compensation Module per Approximate
Component, (c) With Error Compensation Module per Approximate Accelerator.

and power overhead. An overview of the proposed design methodology is depicted in

Figure 5.2. It is a customized version from the general proposed methodology shown

in Figure 1.1, where we use 1) a single approximate design rather than 20 designs;

2) DT-based model only, which is simpler and faster than the NN-based model; and

3) the error distance (ED) metric in building the DT-based model rather than the

PSNR, which is used in the adaptive design.

Figure 5.2: Design flow for Approximate Accelerator Compensation Module

92

Table 5.1: Characteristics of Approximate Accelerator Components, i.e., Approximate
Multiplier and Compensation Module

Design
Dynamic

Power (mW)
Slice
LUTs

Occupied
Slices

Period
(ns)

Frequency
(MHz)

Energy
(pj)

Exact
Multiplier

442 85 33 8.747 114.32 3866.2

Approximate
Multiplier

113 31 11 4.625 216.22 522.6

Compensation
Module

2.79 23 8 2.213 451.88 6.6

The fundamental step in the proposed flow is designing an approximate multi-

plier, which is the essential building component of the accelerator. Table 5.1 shows

the design characteristics of the 8-bit approximate array multiplier, including its area,

delay, power and energy consumption. The attributes of the exact array multiplier

are also shown in the table. We evaluate the power, area, delay and energy utilizing

the XC6VLX75T FPGA, which belongs to the Virtex-6 family, and the FF484 pack-

age. We use Mentor Graphics Modelsim [65], Xilinx XPower Analyser [66] and Xilinx

Integrated Synthesis Environment (ISE 14.7) tool suite [67].

Since the magnitude of approximation error is input dependent, we apply an

exhaustive simulation by having 28 = 256 different values for each input. Thus, we

have 256 × 256 = 65,536 different input combinations with their associated error

distance (ED), which constitute our training data. Figure 5.3 shows the histogram

distribution for the ED of the approximate multiplier. Approximate computing relies

on the principle of failing small or rarely fail [14]. However, out of the 65536 possible

input combinations, 62420 have inexact results. Thus the error rate (ER) is 95.25%.

Therefore, a high error rate (ER), requires having a small value of ED to get an

acceptable final result. As shown in Figure 5.3, minor errors occur more frequently

than large errors. For example, we have only 1575 input combinations with ED>500,

93

which is almost 2.48% of the erroneous inputs. Considering such extreme values in ED

may simplify building the compensation module. Error distance has 176 distinctive

values, where the minimum ED is 4, the maximum ED is 756, and the average is 185.

Figure 5.3: Histogram Distribution of the Error Distance (ED) of the Approximate
Multiplier

Generally, whenever the error occurs for a small fraction of input combinations,

i.e., error rate (ER) is low, an approximate design with simple error correction, such

as adding a constant corrective magnitude, exhibits better performance compared to

the exact model. However, our approximate accelerator has a high ER of 95.25%,

which makes simple error correction inapplicable.

To predict the ED based on the value of the inputs, we use a lightweight machine

learning-based algorithm, i.e., classification decision tree (DT), based on the C5.0

algorithm [75], given in R [74]. Decision trees that are fast, memory-efficient and

have a simple structure of nesting if-else statements are quite well able to model the

non-linear relationship between the inputs and error distance. We notice that the

94

Figure 5.4: The Structure of the Decision Tree-based Model

inputs of the approximate design with close magnitudes are associated with a very

close ED. Consequently, we quantize the inputs based on their magnitudes into 16

different clusters. Thus, the model has 16 × 16 = 256 different combinations of input

clusters, rather than 65,536 inputs, which significantly simplifies its internal structure.

Figure 5.4 shows the structure of the decision tree that we obtained. The leaves

of the tree represent the expected values of the error metric, i.e., ED, that should

be added to the approximate result in order to correct the final output, while the

internal nodes represent the conditional decision points which are the inputs of the

model, i.e., the first input (Input1) and the second input (Input2) of the approximate

design. The values associated with the connections between the conditional decision

points represent the cluster of the inputs, i.e., from 1 to 16. For example, the first

branch in Figure 5.4 examines the class of Input1, and then it traces to the left-side

if it is ≤9 or traces to the right side if the class is >9.

95

Figure 5.5: Power, Area, Delay and Energy of Approximate Accelerator Components

Compensation Module Overhead

To show the effectiveness of the proposed compensation module, we perform an accu-

racy evaluation utilizing its implementation in MATLAB. Moreover, we evaluate its

power, area, delay and energy. Table 5.1 shows the obtained results, where the power

consumption of the module is about 2.8mW, which forms about 2.4% added power

to the approximate multiplier. Similarly, the introduced area, delay and energy over-

head of the error compensation module with respect to the approximate multiplier is

about 42.5%, 32.4% and 1.2%, respectively. Such cost is negligible when compared

to the approximate multiplier where we integrate multiple instances of it within the

approximate accelerator.

Figure 5.5 shows a relative representation of the power, area, delay and energy of

the approximate multiplier, compensation module as well as the exact multiplier. De-

spite the module added overhead, the approximate multiplier with the accompanying

module (as shown in Figure 5.1(b)) still has a reduction of 73.8%, 38.1%, 21.8% and

86.3% in power, area, delay and energy, respectively, compared to the exact multiplier.

96

The error of the approximate multiplier, i.e., e1, will be reduced to e1C , which repre-

sents e1 after being alleviated by the compensation module at the component level,

where e1C � e1. Moreover, to amortize the overhead of the proposed module, we

suggest another architectural configuration with a single compensation module for the

approximate accelerator, as shown in Figure 5.1.(c), rather than having a dedicated

module for each approximate component, as shown in Figure 5.1.(b). Such a proposed

design is applicable when different data processed at various parts have similar values,

e.g., adjacent image pixels. Thus, the introduced error is roughly identical.

In image processing applications, the accelerator processes adjacent image pix-

els, which usually have close values. Therefore, for image blending in a multiplicative

mode where the pixels of the two images are multiplied pixel-by-pixel, we propose

to divide the image into three segments (coloured-components), i.e., red, green and

blue, as in Chapter 3. Each coloured component is processed on a separate acceler-

ator. For that, the compensation module of the approximate accelerator evaluates

the average value of the pixels for each frame coloured-component. Based on that,

a compensation value is calculated, i.e., predicted by decision tree-based model, and

then added to all the pixels of the frame coloured-component. Thus, the error of the

approximate accelerator, i.e., e1 + e2, will be reduced to e1A + e2A, based on the

error compensation module at the accelerator level. The next section evaluates the

accuracy of the implemented compensating module that we developed.

5.3 Experimental Results

This section presents the experimental results obtained by introducing the compen-

sation module both at the component and the accelerator levels.

97

Figure 5.6: Distribution of Error Distance (ED) of Approximate Multiplier with/with-
out the Error Compensation Module

Compensation Module at Component Level

To evaluate the performance of the compensation module, which is shown in Figure

5.1.(b), we perform an exhaustive simulation of the approximate multiplier. Figure

5.6 shows the histogram of the error distance of the approximate multiplier without

compensation as well as and the compensated value by integrating the compensation

module into the approximate component. Such a module will enhance the accuracy of

the result by adding a compensation value based on the decision tree-model to reduce

the final error distance (ED). There is a significant reduction in error characteristics,

i.e., in both error magnitude and error frequency.

As shown in Table 5.2, the error proposed compensation module, reduces the

maximum ED from 756 to 520, while the mean ED is decreased from 185 to 110. The

number of input combinations with the erroneous result, where ED>500, is reduced

from 1575 input combinations to 16, which is a significant quality improvement. The

98

Table 5.2: Error Distance (ED) of Approximate Multiplier without/with the Error
Compensation Module

ED=0 ED!=0 Maximum ED Mean ED ED>300 ED>400 ED>500

Original
Error Distance

3116 62420 756 185 12922 5454 1575

Compensated
Error Distance

2177 63359 520 110 1458 218 16

number of input combinations with an ED>400 and ED>300 is reduced from 5454

to 218, and from 12922 to 1458, respectively. This noteworthy improvement in the

quality of results validates the importance of the added compensation module. More-

over, the number of distinct values of the ED is lowered from 176 to 129. Without the

proposed compensation module, the approximate multiplier has 3116 error-free input

combinations, i.e., the error rate is 95.25%. However, adding an ML-based compen-

sation module reduces the error-free input combinations into 2177, i.e., the error rate

is 96.68%, by erroneously adding a compensation value into error-free results. The

increase in the ER is due to model imperfection, even though the final accuracy has

significant improvement. Similarly, in some cases, the compensation module increases

the ED rather than reduce it. Overall, there is a substantial reduction in error mag-

nitude and error frequency, where this will enhance the final accuracy of the utilized

error-resilient application.

Image Blending Application with Compensation Module

To evaluate the proposed self-compensating approximate accelerators in an error-

tolerant application, we deployed them in an image blending application, where two

images are multiplied pixel-by-pixel. The photos used in blending and their corre-

sponding accurate results are shown in Figure 5.7, where the size of each image is 250

× 400 pixels. Two configurations of compensation modules are used: 1) a compensa-

tion module for each approximate component; and 2) a single compensation module

99

Figure 5.7: Images used to Evaluate the Error Compensation Module

for all approximate components.

The PSNR of the obtained results is displayed in Figure 5.8, where all blend-

ing examples have improved quality, i.e., PSNR, whenever we use the compensation

module. The improvement in the output quality when the compensation module

is incorporated at the component level is more significant than the case when the

module is used at the accelerator level. The shown results of image blending with

error compensation have an enhanced quality, where the increase in the PSNR ranges

from 2.6dB to 4.7dB with an average of 4.2dB for the considered examples. Thus,

we can obtain an average of 9% improvement in the final quality of image blending

application with negligible overhead. However, using the compensation module at

the accelerator level achieves a lower accuracy enhancement, where the compensation

value is evaluated for 105 multiplication. The accuracy of approximate accelerators

can be enhanced by integrating the compensation module at a finer granularity level.

100

Figure 5.8: Output Quality (PSNR) of Image Blending, (a) Without Error Compen-
sation, (b) With Error Compensation Module per Approximate Component, (c) With
Error Compensation Module per Approximate Accelerator

5.4 Summary

In this thesis, we proposed a general methodology for quality assurance of approxi-

mate computing. We explained how to assure the quality of approximation results

through design adaptation. Then, we implemented the proposed design in both soft-

ware and hardware, as explained in Chapters 3 and 4, respectively. In this chapter,

based on our general methodology for quality assurance of approximation, we devel-

oped a third novel machine learning-based self-compensating approximate computing

for quality enhancement. It has shown an opportunity for error reduction without

requiring similar approximate computing elements, i.e., a mirror pair. The proposed

decision tree-based error compensation module can achieve a noteworthy enhance-

ment in accuracy performance without compromising the power consumption, area

and speed. Thus, we were able to enhance the quality of approximation through three

different approaches successfully.

101

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Approximate computing has re-emerged as an energy-efficient computing paradigm

for error-tolerant applications. Thus, it is promising to be integrated within the

architecture and algorithms of brain-inspired computing, which has massive device

parallelism and the ability to tolerate unreliable operations. However, there are es-

sential questions to be answered before approximate computing can be made a viable

solution for energy-efficient computing, such as [101]: (1) how much to approximate

at the component level to be able to observe the gains at the system level; (2) how

to measure the final quality of approximation; and (3) how to maintain the desired

output quality of an approximate application.

Towards addressing these challenges, in this thesis, we proposed a methodology

that assures the quality of approximate computing through design adaptation based on

fine-grained inputs and user preferences. For that, we designed a lightweight machine

learning-based model, that functions as a design selector, to select the most suitable

approximate designs to ensure the final quality of the approximation. Moreover, we

102

proposed another technique for quality assurance through error compensation. For

that, we designed a decision tree-based model to predict the error magnitude based on

the applied inputs. Thus, the final result is compensated accordingly. In the sequel,

we summarize each of the main contributions of this thesis.

The first contribution of this thesis is the design and evaluation of a library of

8 and 16-bit approximate multipliers with various settings based on approximation

in partial product summation. The proposed designs were evaluated at circuit and

application level based on their accuracy, area, delay and power consumption, where

various optimal designs have been identified in terms of the considered design metrics.

Second, we proposed a novel methodology to generate an adaptive approximate

design that satisfies a user given quality constraints, based on the applied inputs.

For that, we have built a machine learning-based model (that functions as a design

selector) to determine the most suitable approximate design for the applied inputs

based on the associated error metrics. To solve the design selector model, we used

decision tree and neural network techniques to select the approximate design that

matches the closest accuracy for the applied inputs.

The next contributions of this thesis are the software and hardware implemen-

tations of the proposed methodology, with negligible overhead. The obtained analysis

results of the image processing application showed that it is possible to satisfy the

TOQ with accuracy ranging from 80% to 85.7% for various error-resilient applications.

The FPGA-based adaptive approximate accelerator with constraints on size, cost and

power consumption relies on dynamic partial reconfiguration to assist in satisfying

these requirements.

103

Moreover, we proposed a novel machine learning-based self-compensating ap-

proximate accelerators for enhancing the quality of approximate computing appli-

cations. The proposed methodology has shown an opportunity for error reduction

without requiring similar approximate computing elements, i.e., a mirror pair. The

proposed decision tree-based compensation module achieves a noteworthy enhance-

ment in accuracy performance without compromising the power consumption, area

and speed of the original design.

In summary, the general proposed design adaptation methodology, with three

different implementation techniques, can be seen as a basis for automatic quality

assurance. It offers a promising solution to reduce the approximation error while

maintaining approximation benefits. Some of the potential future enhancements and

directions for further research are detailed in the next section.

6.2 Future Work

This thesis lays the ground for a promising framework for monitoring and control-

ling approximation quality, through input-dependent design adaptation. Building on

the proposed methodology and experimental results presented in this thesis, several

enhancements and directions for further research can be explored and pursued. Be-

sides approximation quality, approximate computing is getting closer to be one of

the mainstream computing approaches in future systems. Towards this goal, there

are tremendous research directions that connect approximate computing with design

verification, testing, reliability and safety, including:

� In its present form, the methodology considers only approximate integer multi-

pliers, i.e., 8 and 16-bit array multipliers, with 20 different settings. However,

real numbers could be represented by fixed-point or floating-point. An exciting

104

extension of this work can be the integration of floating-point and fixed-point

multipliers in the approximate library, as well as other arithmetic modules such

as adders and dividers.

� Testing of approximate circuits is quite challenging, where both approximate

and manufacturing faults should be distinguishable. In [102], we proposed an

approximation-conscious multi-level IC test flow, which classifies the output of

the test process to be good, bad, or good-enough IC. As future work, we plan to

target fault models other than the Stuck-At-Fault model with various accuracy

metrics.

� We implemented an entirely software and hardware adaptive designs. However,

a hardware/software co-design of AC systems would combine the benefits of

both techniques, which we may consider in the future. Moreover, an optimal

approximate solution will not be achievable in a single layer of the computing

stack. Therefore, a cross-layer design methodology, including hardware, soft-

ware, architecture, application and algorithms, needs more investigation.

� Finally, in hardware-based fault-tolerant systems, components redundancy tech-

niques, such as double modular redundancy (DMR) and triple modular redun-

dancy (TMR), are used for fault detection and correction, respectively. Thus,

the effectiveness of approximate computing in fault-tolerant systems is under

consideration.

105

Bibliography

[1] CEVA NeuPro: a family of AI processors for deep learning at the edge, 2019.

https://www.ceva-dsp.com/product/ceva-neupro/, Last accessed on 2020-

05-10.

[2] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-

sentation of the spatial envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[3] B. Moons and M. Verhelst. Energy-efficiency and accuracy of stochastic comput-

ing circuits in emerging technologies. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 4(4):475–486, 2014.

[4] J. Han and M. Orshansky. Approximate computing: An emerging paradigm for

energy-efficient design. In European Test Symposium, pages 1–6, 2013.

[5] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan. Approxi-

mate computing and the quest for computing efficiency. In Design Automation

Conference, pages 1–6, 2015.

[6] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. Pushing the limits of

voltage over-scaling for error-resilient applications. In Design, Automation Test

in Europe, pages 476–481, 2017.

106

https://www.ceva-dsp.com/product/ceva-neupro/

[7] P. Roy, R. Ray, C. Wang, and W. F. Wong. ASAC: Automatic Sensitivity

Analysis for Approximate Computing. SIGPLAN Not., 49(5):95–104, 2014.

[8] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital

signal processing using approximate adders. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 32(1):124–137, 2013.

[9] R. Nair. Big data needs approximate computing: Technical perspective. Com-

munications of the ACM, 58(1):104–104, 2014.

[10] A. Mishra, R. Barik, and S. Paul. iACT: A software-hardware framework for un-

derstanding the scope of approximate computing. In Workshop on Approximate

Computing Across the System Stack, pages 1–6, 2014.

[11] J. Bornholt, T. Mytkowicz, and K. McKinley. UnCertain: A first-order type for

uncertain data. SIGPLAN Notices, 49(4):51–66, 2014.

[12] M. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang. In-

put responsiveness: Using canary inputs to dynamically steer approximation.

In Programming Language Design and Implementation, pages 161–176. ACM,

2016.

[13] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh.

Towards statistical guarantees in controlling quality tradeoffs for approximate

acceleration. In International Symposium on Computer Architecture, pages 66–

77, 2016.

[14] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and

characterization of inherent application resilience for approximate computing.

In Design Automation Conference, pages 1–9, 2013.

107

[15] E. Nogues, D. Menard, and M. Pelcat. Algorithmic-level approximate computing

applied to energy efficient hevc decoding. IEEE Transactions on Emerging

Topics in Computing, 7(1):5–17, 2019.

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration

for general-purpose approximate programs. In International Symposium on Mi-

croarchitecture, pages 449–460, 2012.

[17] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel. Invited:

Cross-layer approximate computing: From logic to architectures. In Design

Automation Conference, pages 1–6, 2016.

[18] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M. Shafique,

and A. Kumar. Area-Optimized Low-Latency Approximate Multipliers for

FPGA-Based Hardware Accelerators. In Design Automation Conference, pages

1–6, 2018.

[19] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. Approximate xor/xnor-

based adders for inexact computing. In Nanotechnology, pages 690–693, 2013.

[20] K. M. Reddy, Y. B. N. Kumar, D. Sharma, and M. H. Vasantha. Low power,

high speed error tolerant multiplier using approximate adders. In VLSI Design

and Test, pages 1–6, 2015.

[21] M. Imani, R. Garcia, A. Huang, and T. Rosing. Cade: Configurable approximate

divider for energy efficiency. In Design, Automation Test in Europe Conference,

pages 586–589, 2019.

[22] J. Melchert, S. Behroozi, J. Li, and Y. Kim. Saadi-ec: A quality-configurable

108

approximate divider for energy efficiency. IEEE Transactions on Very Large

Scale Integration Systems, 27(11):2680–2692, 2019.

[23] S. Hashemi, R. I. Bahar, and S. Reda. A low-power dynamic divider for ap-

proximate applications. In Design Automation Conference, pages 1–6, 2016.

[24] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi. Design-

efficient approximate multiplication circuits through partial product perforation.

IEEE Transactions on Very Large Scale Integration Systems, 24(10):3105–3117,

2016.

[25] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. Design and analysis of

approximate compressors for multiplication. IEEE Transactions on Computers,

64(4):984–994, 2015.

[26] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, and K. Pekmestzi. Approxi-

mate multiplier architectures through partial product perforation: Power-area

tradeoffs analysis. In Symposium on VLSI, pages 229–232, 2015.

[27] W. Yeh and Ch. Jen. High-speed and low-power split-radix FFT. IEEE Trans-

actions on Signal Processing, 51(3):864–874, 2003.

[28] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power with

an underdesigned multiplier architecture. In International Conference on VLSI

Design, pages 346–351, 2011.

[29] Kh. Y. Kyaw, W. L. Goh, and K. S. Yeo. Low-power high-speed multiplier for

error-tolerant application. In International Conference of Electron Devices and

Solid-State Circuits, pages 1–4, 2010.

109

[30] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han. A comparative

evaluation of approximate multipliers. In Nanoscale Architectures, pages 191–

196, 2016.

[31] S. Hashemi, R. I. Bahar, and S. Reda. Drum: A dynamic range unbiased mul-

tiplier for approximate applications. In International Conference on Computer-

Aided Design, pages 418–425, 2015.

[32] M. Imani, D. Peroni, and T. Rosing. CFPU: Configurable floating point mul-

tiplier for energy-efficient computing. In Design Automation Conference, pages

1–6, 2017.

[33] M. Imani, R. Garcia, S. Gupta, and T. Rosing. RMAC: Runtime Configurable

Floating Point Multiplier for Approximate Computing. In International Sym-

posium on Low Power Electronics and Design, pages 12:1–12:6, 2018.

[34] W. Baek and T. Chilimbi. Green: A framework for supporting energy-conscious

programming using controlled approximation. SIGPLAN Notices, 45(6):198–

209, June 2010.

[35] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and S. Mahlke. SAGE: Self-tuning

approximation for graphics engines. In International Symposium on Microar-

chitecture, pages 13–24, 2013.

[36] B. Grigorian, N. Farahpour, and G. Reinman. BRAINIAC: Bringing reliable

accuracy into neurally-implemented approximate computing. In International

Symposium on High Performance Computer Architecture, pages 615–626, 2015.

[37] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An online quality

110

management system for approximate computing. In International Symposium

on Computer Architecture, pages 554–566, 2015.

[38] T. Wang, Q. Zhang, N. Kim, and Q. Xu. On effective and efficient quality

management for approximate computing. In International Symposium on Low

Power Electronics and Design, pages 156–161, 2016.

[39] X. Chengwen, W. Xiangyu, Y. Wenqi, X. Qiang, J. Naifeng, L. Xiaoyao, and

J. Li. On quality trade-off control for approximate computing using iterative

training. In Design Automation Conference, pages 1–6, 2017.

[40] A. Raha, H. Jayakumar, and V. Raghunathan. Input-based dynamic reconfigu-

ration of approximate arithmetic units for video encoding. IEEE Transactions

on Very Large Scale Integration Systems, 24(3):846–857, 2016.

[41] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram. Dual-quality 4:2 com-

pressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans-

actions on Very Large Scale Integration Systems, 25(4):1352–1361, 2017.

[42] J. Pirkl, A. Becher, J. Echavarria, J. Teich, and S. Wildermann. Self-adaptive

FPGA-based image processing filters using approximate arithmetics. In Interna-

tional Workshop on Software and Compilers for Embedded Systems, SCOPES,

pages 89–92. ACM, 2017.

[43] S. Xu and B. C. Schafer. Approximate reconfigurable hardware accelerator:

Adapting the micro-architecture to dynamic workloads. In International Con-

ference on Computer Design, pages 113–120. IEEE, 2017.

[44] S. Xu and B. C. Schafer. Toward self-tunable approximate computing. IEEE

Transactions on Very Large Scale Integration Systems, pages 1–12, 2018.

111

[45] M. Orlandić and K. Svarstad. An adaptive high-throughput edge detection

filtering system using dynamic partial reconfiguration. Journal of Real-Time

Image Processing, 16(1):2409–2424, 2018.

[46] B. Krill, A. Ahmad, A. Amira, and H. Rabah. An efficient FPGA-based dy-

namic partial reconfiguration design flow and environment for image and signal

processing IP cores. Signal Processing: Image Communication, 25(5):377 – 387,

2010.

[47] M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe. Quantifying the ben-

efits of dynamic partial reconfiguration for embedded vision applications. In

International Conference on Field Programmable Logic and Applications, pages

129–135, 2019.

[48] F. N. Taher, J. Callenes-Sloan, and B. C. Schafer. A machine learning based

hard fault recuperation model for approximate hardware accelerators. In Design

Automation Conference, pages 80:1–80:6. ACM, 2018.

[49] S. Mazahir, O. Hasan, and M. Shafique. Self-compensating accelerators for

efficient approximate computing. Microelectronics Journal, 88:9 – 17, 2019.

[50] K. Chen, W. Liu, J. Han, and F. Lombardi. Profile-based output error compen-

sation for approximate arithmetic circuits. IEEE Transactions on Circuits and

Systems I: Regular Papers (Early Access), pages 1–12, 2020.

[51] H. Jiang, J. Han, and F. Lombardi. A comparative review and evaluation of

approximate adders. In Symp. VLSI, pages 343–348, 2015.

112

[52] H. A. F. Almurib, T. N. Kumar, and F. Lombardi. Inexact designs for approx-

imate low power addition by cell replacement. In Design, Automation Test in

Europe, pages 660–665, 2016.

[53] R. Hrbacek, V. Mrazek, and Z. Vasicek. Automatic design of approximate

circuits by means of multi-objective evolutionary algorithms. In International

Conference on Design and Technology of Integrated Systems in Nanoscale Era,

pages 1–6, 2016.

[54] J. Liang, J. Han, and F. Lombardi. New metrics for the reliability of approximate

and probabilistic adders. IEEE Transactions on Computers, 62(9):1760–1771,

2013.

[55] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel.

Architectural-space exploration of approximate multipliers. In International

Conference on Computer-Aided Design, pages 1–8. ACM, 2016.

[56] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic. Digital integrated circuits.

Prentice Hall, 2002.

[57] B. Shao and P. Li. Array-based approximate arithmetic computing: A general

model and applications to multiplier and squarer design. IEEE Transactions on

Circuits and Systems, 62(4):1081–1090, 2015.

[58] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, 2010.

[59] D. Sengupta and S. S. Sapatnekar. Femto: Fast error analysis in multipliers

through topological traversal. In International Conference on Computer-Aided

Design, pages 294–299, 2015.

113

[60] M. Masadeh, O. Hasan, and S. Tahar. Input-conscious approximate multiply-

accumulate (MAC) unit for energy-efficiency. IEEE Access, 7:147129–147142,

2019.

[61] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy. Design of voltage-

scalable meta-functions for approximate computing. In Design, Automation

Test in Europe, pages 1–6, 2011.

[62] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. Evoapprox8b: Library

of approximate adders and multipliers for circuit design and benchmarking of

approximation methods. In Design, Automation & Test in Europe, pages 258–

261, 2017.

[63] R. Fatemeh. High performance 8-bit approximate multiplier using novel 4:2

approximate compressors for fast image processing. International Journal of

Integrated Engineering, 10, 2018.

[64] Y. Xu, J. D. Deng, and M. Nowostawski. Quality of service for video streaming

over multi-hop wireless networks: Admission control approach based on ana-

lytical capacity estimation. In International Conference on Intelligent Sensors,

Sensor Networks and Information Processing, pages 345–350, 2013.

[65] Mentor Graphics Modelsim, 2019. https://www.mentor.com/company/

higher_ed/modelsim-student-edition, Last accessed on 2020-05-06.

[66] Xilinx XPower Analyser, 2019. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/ug733.pdf, Last accessed on 2020-05-

10.

114

https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf

[67] Xilinx Integrated Synthesis Environment, 2019. https://www.xilinx.com/

products/design-tools/ise-design-suite/ise-webpack.html, Last ac-

cessed on 2020-05-10.

[68] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. Elsevier, 2018.

[69] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low latency generic accuracy

configurable adder. In Design Automation Conference, pages 86:1–86:6. ACM,

2015.

[70] X. Sui, A. Lenharth, D. Fussell, and K. Pingali. Proactive control of approximate

programs. In International Conference on ASPLOS, pages 607–621. ACM, 2016.

[71] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press, 2014.

[72] G. J. Williams. Data Mining with Rattle and R: The art of excavating data for

knowledge discovery. Springer, 2011.

[73] M. Masadeh, O. Hasan, and S. Tahar. Controlling approximate computing

quality with machine learning techniques. In Design, Automation and Test in

Europe, pages 1575–1578, 2019.

[74] The R project for statistical computing, 2019. https://www.r-project.org/,

Last accessed on 2020-05-19.

[75] Package C50, 2019. https://cran.r-project.org/web/packages/C50/C50.

pdf, Last accessed on 2020-05-19.

115

https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.r-project.org/
https://cran.r-project.org/web/packages/C50/C50.pdf
https://cran.r-project.org/web/packages/C50/C50.pdf

[76] Package rpart, 2019. https://cran.r-project.org/web/packages/rpart/

rpart.pdf, Last accessed on 2020-05-19.

[77] L. Breiman, J. Friedman, R. Olshen, and Ch. Stone. Classification and Regres-

sion Trees. Chapman and Hall, Wadsworth, 1984.

[78] R. C. Barros, A. C.P.L.F de Carvalho, and A. A. Freitas. Automatic Design of

Decision-Tree Induction Algorithms. Springer, 2015.

[79] Package Cubist, 2019. https://cran.r-project.org/web/packages/Cubist/

Cubist.pdf, Last accessed on 2020-05-19.

[80] J. R. Quinlan. Learning with continuous classes. In Australian Joint Conference

on Artificial Intelligence, pages 343–348, 1992.

[81] A. Raha and V. Raghunathan. qLUT: Input-Aware Quantized Table Lookup

for Energy-Efficient Approximate Accelerators. ACM Transactions on Embedded

Computing Systems, 16(5s):130:1–130:23, 2017.

[82] X. Jiao, D. Ma, W. Chang, and Y. Jiang. LEVAX: An Input-Aware Learning-

Based Error Model of Voltage-Scaled Functional Units. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2020.

[83] Modeling the shape of the scene: a holistic representation of the spatial envelope,

2020. http://people.csail.mit.edu/torralba/code/spatialenvelope/,

Last accessed on 2020-05-08.

[84] Ch. Solomon. Fundamentals of digital image processing a practical approach

with examples in Matlab. Wiley-Blackwell, 2011.

[85] BBC Sound Effects, 2020. http://bbcsfx.acropolis.org.uk/,.

116

https://cran.r-project.org/web/packages/rpart/rpart.pdf
https://cran.r-project.org/web/packages/rpart/rpart.pdf
https://cran.r-project.org/web/packages/Cubist/Cubist.pdf
https://cran.r-project.org/web/packages/Cubist/Cubist.pdf
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://bbcsfx.acropolis.org.uk/

[86] P. Ashok, M. Jackermeier, P. Jagtap, J. Křet́ınský, M. Weininger, and M. Za-

mani. Dtcontrol: Decision tree learning algorithms for controller representa-

tion. In International Conference on Hybrid Systems: Computation and Control,

2020.

[87] P. Ashok, J. Křet́ınský, K. G. Larsen, A. Le Coënt, J. H. Taankvist, and

M. Weininger. Sos: Safe, optimal and small strategies for hybrid markov deci-

sion processes. In Quantitative Evaluation of Systems, pages 147–164. Springer

International Publishing, 2019.

[88] T. Yang, T. Ukezono, and T. Sato. Low-power and high-speed approximate mul-

tiplier design with a tree compressor. In International Conference on Computer

Design, pages 89–96, 2017.

[89] Partial Reconfiguration User Guide, 2013. https://www.xilinx.com/

support/documentation/sw_manuals/xilinx14_7/ug702.pdf, Last accessed

on 2020-05-13.

[90] K. Vipin and S. A. Fahmy. FPGA Dynamic and Partial Reconfiguration: A

Survey of Architectures, Methods, and Applications. ACM Computing Surveys,

51(4):72:1–72:39, 2018.

[91] VC707 Evaluation Board for the Virtex-7 FPGA: User Guide, 2019.

https://www.xilinx.com/support/documentation/boards_and_kits/

vc707/ug885_VC707_Eval_Bd.pdf, Last accessed on 2020-05-13.

[92] D. Koch. Partial Reconfiguration on FPGAs: Architectures, Tools and Applica-

tions. Springer, 2012.

117

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf

[93] Xilinx Partial Reconfiguration Controller v1.3, LogiCORE IP Product

Guide, 2019. https://www.xilinx.com/support/documentation/ip_

documentation/prc/v1_3/pg193-partial-reconfiguration-controller.

pdf, Last accessed on 2020-05-13.

[94] AXI HWICAP v3.0: LogiCORE IP Product Guide, 2020. https:

//www.xilinx.com/support/documentation/ip_documentation/axi_

hwicap/v3_0/pg134-axi-hwicap.pdf, Last accessed on 2020-05-13.

[95] Vivado Design Suite User Guide: Dynamic Function eXchange,

2020. https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf, Last accessed

on 2020-05-13.

[96] S. Ngah, R. Abu Bakar, A. Embong, and S. Razali. Two-steps implementation of

sigmoid function for artificial neural network in field programmable gate array.

ARPN Journal of Engineering and Applied Sciences, 11(7):4882–4888, 2016.

[97] M. Zhang, S. Vassiliadis, and J. G. Delgado-Frias. Sigmoid generators for neural

computing using piecewise approximations. IEEE Transactions on Computers,

45(9):1045–1049, 1996.

[98] M. Barni. Document and Image compression. CRC Press, 2006.

[99] 7 Series FPGAs Data Sheet: Overview, 2020. https://www.xilinx.com/

support/documentation/data_sheets/ds180_7Series_Overview.pdf, Last

accessed on 2020-05-13.

[100] F. Regazzoni, C. Alippi, and I. Polian. Security: The dark side of approximate

118

https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_3/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_3/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_3/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

computing. In International Conference on Computer-Aided Design, pages 44:1–

44:6. ACM, 2018.

[101] J. Han. Introduction to approximate computing. In VLSI Test Symposium,

pages 1–1, 2016.

[102] M. Masadeh, O. Hasan, and S. Tahar. Approximation-Conscious IC Testing. In

International Conference on Microelectronics, pages 56 – 59, 2018.

119

Biography

Education

� Concordia University: Montreal, Quebec, Canada.

Ph.D., Electrical & Computer Engineering (September 2016 - August 2020)

� Delft University of Technology: Delft, The Netherlands.

M.Sc, Computer Engineering (September 2011 - August 2013)

� The Arabic Academy for Banking & Financial Sciences: Amman, Jor-

dan.

M.Sc, Management Information Systems (September 2006 - March 2009)

� Yarmouk University: Irbid, Jordan.

B.Sc, Computer Engineering (September 1998 - June 2003)

Awards

� Concordia University International Tuition Award of Excellence, Canada (2017,

2018).

� Concordia University Conference and Exposition Award, Canada (2019, 2020).

120

� Yarmouk University Doctoral Scholarship, Jordan (2016 - 2020).

� Yarmouk University Master’s Scholarship, Jordan (2011 - 2013).

Work History

� Research Assistant, Hardware Verification Group, Department of Electrical

and Computer Engineering, Concordia University, Montreal, Quebec, Canada

(2016 - 2020)

� Teaching Assistant, Department of Electrical and Computer Engineering,

Concordia University, Montreal, Quebec, Canada (2018 - 2020)

� Full Time Teaching Assistant, Computer Engineering Department,

Yarmouk University, Irbid, Jordan (2004 - 2011)

� Full Time Faculty Member (Instructor), Computer Engineering Depart-

ment, Yarmouk University, Irbid, Jordan (2013 - 2016)

Publications

� Journal Papers

– Bio-Jr1 M. Masadeh, O. Hasan, S. Tahar: “A Quality-Assured Approx-

imate Hardware Accelerators Based on Dynamic Partial Reconfiguration

for Efficient Machine Learning”. ACM Journal on Emerging Technologies

in Computing. Submitted.

121

– Bio-Jr2 M. Masadeh, O. Hasan, S. Tahar: “Machine Learning-Based

Self-Adaptive Design of Approximate Computing”. IEEE Transaction on

CAD of Integrated Circuits and Systems. Submitted.

– Bio-Jr3 M. Masadeh, O. Hasan, S. Tahar: “Input-Conscious Approxi-

mate Multiply-Accumulate (MAC) Unit for Energy-Efficiency”. IEEE Ac-

cess 7: 147129-147142 (2019)

– Bio-Jr4 M. Taouil, M.Masadeh, S. Hamdioui, E. J. Marinissen: “Post-

Bond Interconnect Test and Diagnosis for 3-D Memory Stacked on Logic”.

IEEE Transaction on CAD of Integrated Circuits and Systems 34(11):

1860-1872 (2015)

� Refereed Conference Papers

– Bio-Cf1 M. Masadeh, A. Aoun, O. Hasan, S. Tahar: “Decision Tree-

based Adaptive Approximate Accelerators for Enhanced Quality”. Inter-

national Systems Conference (SysCon) 2020: 1-5 (To Appear).

– Bio-Cf2 M. Masadeh, O. Hasan, S. Tahar: “Machine Learning-Based

Self-Compensating Approximate Computing”. International Systems Con-

ference (SysCon) 2020: 1-6 (To Appear).

– Bio-Cf3 M. Masadeh, O. Hasan, S. Tahar: “Using Machine Learning for

Quality Configurable Approximate Computing”. Design, Automation Test

in Europe (DATE) 2019: 1575-1578.

– Bio-Cf4 M. Masadeh, O. Hasan, S. Tahar: “Approximation-Conscious

IC Testing”. International Conference on Microelectronics (ICM) 2018:

56-59.

122

– Bio-Cf5 M. Masadeh, O. Hasan, S. Tahar: “Comparative Study of Ap-

proximate Multipliers”. Great Lakes Symposium on VLSI (GLSVLSI)

2018: 415-418.

– Bio-Cf6 M. Taouil, M. Masadeh, S. Hamdioui, E. J. Marinissen: “Inter-

connect test for 3D stacked memory-on-logic”. Design, Automation Test

in Europe (DATE) 2014: 1-6.

� Technical Reports

– Bio-Tr1 M. Masadeh, O. Hasan, S. Tahar: Error Analysis of Approxi-

mate Array Multipliers. http://arxiv.org/abs/1803.06587 (2019)

– Bio-Tr2 M. Masadeh, O. Hasan, S. Tahar: Comparative Study of Ap-

proximate Multipliers. http://arxiv.org/abs/1908.01343 (2018)

123

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	Introduction
	Motivation
	State-of-the-Art
	Proposed Methodology
	Thesis Contributions
	Thesis Organization

	Library of Approximate Multipliers
	Introduction
	Error Metrics
	Approximate Building Blocks
	Approximate Multipliers
	Discussion and Application
	Approximate Library (AxCLib)
	Summary

	Adaptive Approximate Accelerators: Software-based Design
	Introduction
	Adaptive Design Methodology
	Machine Learning Based Models
	Experimental Results
	Comparison with Related Work
	Summary

	Adaptive Approximate Accelerators: FPGA-based Design
	Introduction
	Dynamic Partial Reconfiguration
	Machine Learning Based Models
	System Architecture
	Experimental Results
	Summary

	Self-Compensating Approximate Accelerators
	Introduction
	Error Compensation Approach
	Experimental Results
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Biography

