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ABSTRACT

Formal Analysis and Verification of an OFDM Modem

Design

Abu Nasser Mohammed Abdullah, M.A.Sc

Concordia University, 2006

In this thesis we formally specify and verify an implementation of the Orthogonal

Frequency Division Multiplexing (OFDM) Physical Layer using theorem proving

techniques based on the HOL (Higher Order Logic) system. The thesis is meant

to follow a framework, developed at Concordia University, incorporating formal

methods in the design flow of digital signal processing systems in a rigorous way. The

design under verification is a prototype of IEEE 802.11 Physical Layer implemented

using standard Very Large Scale Integration (VLSI) design flow, starting from a

floating-point model to the fixed-point and then synthesized and implemented in

Field Programmable Gate Array (FPGA) technology. The models were verified in

HOL against the IEEE 802.11 specification ratified by the IEEE standardization

body and implemented by almost all major wireless industry in the world. The

versatile expressive power of HOL helped model the original design at all abstraction

levels without affecting its integrity. The thesis also investigates the rounding error

accumulated during ideal real to floating-point and fixed-point transitions and also

from floating-point to fixed-point numbers at the algorithmic level. On top of the

existing theories of HOL, we have built some helping theories, not so trivial, to aid

the modeling of the design. The thesis successfully demonstrates the application

of formal methods in verification and error analysis of complex telecommunications

hardware such as the OFDM modem.
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Chapter 1

Introduction

1.1 Motivation

Technology has always been the factor of human advancement. And, no other

technology has ever created so much impact on every walk of life than the digital

technology. From the current fad of iPoD video player for hours of entertainment,

or gigahertz machine running on the desktop, to the mobile phone equipped with

Video Graphics Adapter (VGA) quality video recorder, all are very sophisticated

combination of hardware and software giving base to those digital systems. The

compact implementation of such systems owe much to the advancement of very

large scale integration technology of hardware. The industry is still holding on to

the Moore’s law and billion transistor processors are now a reality since the semi-

conductor fabrication moves from the current generation of 90 nanometer processes

to the next 65nm and 45nm generations. But, this comes with a price, which is

complexity of the system and thus very difficult verification and validation process

to ensure bug-free product. Even hardware verified using state of the art simula-

tion technique failed miserably and caused havoc in terms of economics and also

in many cases valuable human lives. Examples are [48]: (1) The maiden flight of

the Ariane 5 launcher (June 4 1996) ended in an explosion and later it was found

1
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that it was caused by an an exception occurred when a large 64-bit floating point

number was converted to a 16 bit signed integer that eventually led the failure of

the computer. The total loss was over 850 million. (2) Between June 1985 and Jan-

uary 1987, a computer-controlled radiation therapy machine, called the Therac-25,

massively overdosed six people, killing two. Later it was found that the software

was excluded from the safety analysis and an 1-bit error in the microswitch codes

produced an ambiguous position message for the computer thus overdosing the pa-

tients. (3) The replacement of defective Pentium processors costs Intel corporation

several hundreds of millions of dollars in 1995. (4) The April 30, 1999 loss of a Titan

I , which cost 1.23-billion, was due to incorrect software (incorrectly entered roll rate

filter constant). (5) The December 1999 loss of the Mars Polar Lander was due to an

incomplete software requirement. A landing leg jolt caused engine shutdown of the

Lander. (6) The Denver Airports computerized baggage handling system delayed

opening by 16 months. And, the list can go longer. These incidents coupled with

our increasing reliance on technology at every step dictates a sound and flawless

verification methodology in order to produce bug free software and hardware. To

add more complexity to the state of the art, the embedded systems and the rapid

interfacing between wired and wireless world changing the dimension of the verifi-

cation domain and pushing it to encompass a very rigorous approach to handle all

the systems.

Usually, design verification is done using simulation by generating test cases and

then the results are checked to see if they have complied with the desired behav-

ior. But, simulation is inadequate to check all possible inputs of a design even of

moderate size and thus leaves the design partially verified. Several approaches have

been developed over the last decade or two to accelerate simulation, maximize the

test case coverage or investigating alternative or complementary techniques. Formal
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verification is one such technique which has proved itself as a complement to simu-

lation to achieve a rigorous verification. Although yet to be practiced widely in the

industry, it is already applied in many large scale verification projects. Among the

three main formal verification techniques theorem proving is particularly powerful

for verifying complex systems at higher levels of abstraction.

In this thesis, we use theorem proving techniques to verify an implementation of

the IEEE 802.11a [35] physical layer, an OFDM (Orthogonal Frequency Division

Multiplexing) modem, implemented by Manavi [42]. In order to verify the imple-

mentation, both the design specification and the implementation are modeled in

formal logic and then mathematical theorems are proved for correctness. Besides,

we carry out a formal error analysis of the OFDM modem in order to analyze the

round-off error accumulation while converting from one number domain to the other.

Both the formal verification and error analysis used a very well established theorem

proving tool called HOL1 (Higher Order Logic) [23]. They are a direct application

of a general methodology proposed by Akbarpour [1] for the formal modeling and

verification of DSP (Digital Signal Processing) designs. The results of this thesis

demonstrate the functional correctness of the OFDM system and proves the feasi-

bility of applying formal methods for similar systems.

In next sections, we introduce the flow used in industry for DSP design and VLSI

(Very Large Scale Integration) implementation. We then focus on the verification

issue including a discussion on the difference between simulation and formal veri-

fication and an overview of some formal techniques used in hardware verification.

Finally, we give an overview of the OFDM concept and modem design to be verified.

1Although the word HOL is the abbreviated version of Higher Order Logic, we mean the tool
itself when we write HOL in this thesis.
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1.2 Digital Signal Processing Design Flow

Digital signal processing (DSP) is the study of signals in a digital representation and

the processing methods of these signals. The algorithms required for DSP are some-

times performed using specialized microprocessors, which are generally Application

Specific Integrated Circuits (ASIC). Any DSP hardware is not bound to a unique

hardware configuration therefore its capabilities are extended. The rapid miniatur-

ization of transistor technology has given rise to DSPs that can process increasingly

complex tasks. The design flow for DSP is the same as the one shown for generic dig-

ital design with a little addition to take care of the limited resources that a DSP can

offer. For most DSP systems, the design has to result in a fixed-point implementa-

tion. Because, these systems are sensitive to power consumption, chip size and price

per device. A typical DSP design flow is depicted in Figure 1.1 [37]. It starts from
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Figure 1.1: DSP Design Flow [37]

an algorithm in ideal real domain translated to a floating-point description and then
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to fixed-point realization. At every abstraction level, the design is checked whether

it complies with the specification. As Figure 1.1 portrays, the conversion between

the two domains is not perfect and it is depicted as quantization error which needs

to be bounded according to the system requirement. The errors occurring in such

transition need to be analyzed to demonstrate the robustness of a design and its

implementation to ensure its fault free functionality. At the implementation level,

the final fixed-point design is realized following standard steps of VLSI. Usually,

the VLSI design process follows a very articulated flow (Figure 1.2). It starts from

comprehensive system specification, where the system to be realized is explained

abstractly with the functionality, interface, and overall architecture. Then a be-

havioral design is represented using any hardware description language (HDL) like

VHDL or Verilog to analyze the functionality, performance, compliance to standard

Behavioral Level Design

RTL Design

Gate Level Netlist

Layout (Masks)

Specification

Manufacturing

Figure 1.2: Digital Design Flow

and other high-level issues. This behavioral design is manually converted to describe

the data flow that will implement the circuit, which is called Register Transfer Level

or RTL. In the next level, the RTL design is converted to gate level netlist, which is
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a description of the circuit in terms of gates and connections between them. Finally,

the netlist is provided as input to a “place and route” tool to generate the layout

before manufacturing. Sometimes, the design is implemented on a programmable

logic device called FPGA (Field Programmable Gate Array) which is a very efficient

prototype platform and can be an alternative to costly production in an integrated

circuit (IC) foundry for limited quantities.

1.3 Simulation and Formal Verification

Simulation is the standard verification technique used in industry. Hardware design-

ers are at ease with simulation and it is a practical technique used for this purpose.

Simulation is carried out by a design team by generating relatively few test cases,

one at a time, and checking whether the results are correct. Towards the end of

the design period the circuit is often simulated for an extended period of time. For

example, if the design is a microprocessor, a design team runs some reasonably large

programs on the simulated design. It is not uncommon to spend months of CPU

(Central Processing Unit) time on mainframe computers simulating a final design.

Considerable effort has been made to simply increase, in a brute-force manner, the

simulation coverage and to cut down the time it takes to achieve this coverage.

One approach is to run a number of independent simulations distributing test cases

over a set of machines. Another brute-force approach is to design special purpose

simulation hardware to increase the speed of a simulation by several orders of mag-

nitude. But, such approach shows a tendency to force and verify a system which is

inadequately covered by the simulation data. Theoretically, for example, it will take

an impractical amount of time to fully verify even a trivial piece of 256 bit RAM

(Random Access Memory) hardware [10], even though the clock speed of the fastest

processor now reached 4 GHz and the kind of computation power a huge cluster of

those machines can provide. Inherently and continually, at least as of this writing
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and the trend that is prevailing, simulation will have the following shortcomings:

• Simulation cannot generate perfect input sequences because, it exercises a

small fraction of system operations and mostly the patterns are developed

manually.

• Long simulation runs are required since effective input sequences are hard to

generate

• Input patterns are generally biased towards anticipated sources of errors. Of-

ten, the errors occur where not anticipated

• It is sometimes difficult to compare results from different models and simula-

tors

• The number of possible states grows exponentially with increased number of

possible event combinations

• As the design grows larger the design team also grows larger and this often

gives rise to sources of misunderstandings and inconsistencies

In contrast to simulation, formal verification [38] tries to answer some of the non-

exhaustion problems of simulation by proving the correspondence between some

abstract specification and the design at hand. But, this statement is no assertion

that it can be a complete alternative to simulation. Formal techniques use mathe-

matical reasoning to prove that an implementation satisfies a specification and like

a mathematical proof the correctness of a formally verified hardware design holds

regardless of input values. All possible cases that can arise in the system are taken

care of in formal verification. Moreover, the formal solutions are scalable unlike

simulation. There are three main techniques for formal verification: (i) Equivalence

Checking, (ii) Model Checking and (iii) Theorem Proving.
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Equivalence Checking

Equivalence Checking is used to prove functional equivalence of two design represen-

tations modeled at the same or different levels of abstraction [55]. It is divided into

two categories: Combinational Equivalence Checking and Sequential Equivalence

Checking. In the Combinational, the functions of the two circuits to be compared are

converted into canonical representations of Boolean functions, typically Binary De-

cision Diagrams (BDDs) or their derivatives, which are then structurally compared.

The drawback of this type of verification is that it cannot handle the Equivalence

Checking between RTL and behavioral models. In Sequential Equivalence Checking,

given two sequential circuits using the same state encoding, their equivalence can

be established by building the product finite state machine and checking whether

the values of two corresponding outputs are the same for any initial states of the

product machine. It only considers the behavior of the two designs while ignoring

their implementation details such as latch mapping and thus verifies the equivalence

between RTL and behavioral models. The drawback of this technique is that it

cannot handle large designs due to state space explosion.

Model Checking

Model Checking is an algorithm that can be used to determine the validity of formu-

las written in some temporal logic with respect to a behavioral model of a system.

Two general approaches to model checking are used in practice today. The first,

temporal model checking is a technique developed independently in the 1980s by

Clarke and Emerson [5] and by Queille and Sifakis [51]. In this approach specifi-

cations are expressed in a temporal logic and systems are modeled as finite state

transition systems. An efficient search procedure is used to check if a given finite

state transition system is a model for the specification. In the second approach

the specification is given as an automaton, then the system also modeled as an au-

tomaton is compared to the specification to determine whether or not its behavior
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conforms to that of the specification. Model Checking tools are effective debugging

aids for industrial designs, and since they are fully automated, minimal user effort

and knowledge about the underlying technology is required to be able to use them.

However, one of the major drawbacks with this approach is the state space explosion

as the number of state variables of a system increases. Model checking has been

used to verify many IEEE protocols [5].

Theorem Proving

Theorem proving is an interactive technique where both the specification and the

implementation are modeled using formal logic. Then a relationship is established

between the two as a theorem in mathematics and logical techniques are used to

prove that the implementation is equivalent or implying the specification. This

mathematical approach answers the limitations of the other two formal verification

techniques in terms of state explosion problem by handling designs of any complex-

ity. Theorem provers are highly expressive in nature and are employed for solving

problems of various domains. Both first-order and higher-order logic are used to

develop theorem provers. The drawback with this approach is that, except some

first-order logic provers, it needs human guidance to carry out the proof, and ex-

pertise in such act comes through experience. The theorem proving technology is

explained in more details in Chapter 3.

1.4 Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing or OFDM is a modulation technique

where data is spread over many channels and transmitted in parallel. Such paral-

lel data transmission method is analyzed for the first time in a paper published in
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1967 [54]. In this method, an available bandwidth is divided into several subchan-

nels. These subchannels are independently modulated with different carrier frequen-

cies. It was proved that the use of a large number of narrow channels combats delay

and related amplitude distortion in a transmission medium effectively. Based on

this concept, OFDM was introduced through a US patent issued in 1970 [17]. The

name orthogonal comes from the fact that the subcarriers are orthogonal to each

other. Such orthogonality eliminates the need of guard band and the carriers can

be placed very close to each other without causing interference and thus conserving

bandwidth. The key advantages of this technique are [49]:

• OFDM is an efficient way to deal with multipath; for a given delay spread, the

implementation complexity is significantly lower than that of a single carrier

system with an equalizer.

• In relatively slow time-varying channels, it is possible to significantly enhance

the capacity by adapting the data rate per subcarrier according to the signal-

to-noise-ratio of that particular subcarrier.

• OFDM is robust against narrowband interference, because such interference

affects only a small percentage of the subcarriers

For such characteristics of OFDM, it is used in many applications—(i) Digital Au-

dio Broadcasting standard in the European market. (ii) ADSL (Asymmetric Digital

Subscriber Lline) standard. (iii) In IEEE 802.11a/g standard (iv) Latest WiMAX

(Worldwide Interoperability for Microwave Access) technology, etc.

Next, we introduce an implementation of the OFDM technique described above, an

OFDM modem [42], which will be the core of all our verification and error analysis

work. A more detailed description is given in Chapter 2. The design is implemented

in Xilinx Virtex II [61] FPGA. The modem is first modeled in Signal Processing

Worksystems (SPW) [15]—a prototype builder, in floating-point and fixed-point
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format to analyze the performance of different bit sizes and to achieve optimum

bit error rate. Then, a library native to the SPW is used to generate VHDL code

automatically. The main RTL blocks identified for verification are the quadrature

amplitude modulation (QAM) block used for the modulation of the data input;

the demapper block to demodulate the received data in the receiver; the serial to

parallel and parallel to serial blocks for manipulating data before and after the

inputs from other blocks. The core computational blocks—Fast Fourier Transform

(FFT) and Inverse Fast Fourier Transform (IFFT) are chosen for error analysis since

they are the only two computational blocks in the system. The FFT, IFFT and

some of the memory modules of the OFDM implementation at hand are designed

using Intellectual Property (IP) blocks, which are ready made parameterized blocks

usually optimized for performance; in this case the Xilinx Coregen Library [61] has

been used. For this reason, they are not considered for verification in this thesis

as no access to the implementation details is provided. The design also implements

a synchronizer using SPW, necessary for timing and synchronization of the OFDM

system. For the rest of the design the implementation codes are generated manually.

1.5 Related Work

1.5.1 IEEE 802.11 Physical Layer (OFDM) Implementation

There are numerous research work done on the design and implementation of the

IEEE 802.11a physical layer. Although no significant work is done about using theo-

rem proving for the verification of the OFDM or part of the system, we still mention

some important implementations of OFDM systems. In [19], a coded OFDM sys-

tem was developed using the TMS320C6201 processor for telemetry applications

in the racing and automotive environment. In [56] the authors developed a wire-

less LAN (Local Area Network) system using the TI C6x platform. A real time

software implementation of OFDM modem optimized for software defined radio is
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implemented in [13]. Software modules representing discrete system blocks are cre-

ated and sequentially called upon as needed in this implementation. This software

reconfigurable system is developed on a TMS320C6201 evaluation module, which

is based on a fixed-point processor. The work also explored different combinations

of arithmetic precision and speed for the fixed-point operations. In this thesis, we

consider the design of [42] described in the section above. Unlike [19], the design

under verification is not optimized for telemetry applications and it does not use

the coded OFDM technology. The OFDM design in [56] is targeted for a specific

platform and used the high level procedural language subroutine provided by the

platform extensively; whereas [42] used Xilinx library to implement some high per-

formance computational blocks. The work described in [13] also designed OFDM

system but it is optimized specially for software defined radio. Both [19] and [13]

used the same processor platform, but [42] has a more generic design that can be

accommodated in various applications.

1.5.2 IEEE 802.11 and Formal Methods

There exists a couple of work related to the application of formal methods for the

IEEE 802.11. Both use probabilistic model checking but none of them analyzes

the design or implementation of the system from the hardware viewpoint. The first

one [40] models the two-way handshake mechanism of the IEEE 802.11 standard with

a fixed network topology using probabilistic timed automata, a formal description

mechanism, in which both nondeterministic and probabilistic choices can be repre-

sented. Then from the probabilistic timed automaton model a finite-state Markov

decision process is obtained which in turn is verified using PRISM [39], a probabilis-

tic model checking tool. In the second work [53], which identifies ways to increase

the scope of application of probabilistic model checking to the 802.11 MAC (Media

Access Control). It presents a generalized probabilistic timed automata model op-

timized through an abstraction technique. Here also the results were verified using
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PRISM. In contrast to these related work, we focus completely in different direction.

While the first work performs model checking on a IEEE 802.11 network setting and

concentrates on the protocol issues, it is concerned more about the upper layers of

the OSI (Open System Interconnect) model than the physical layer. The second

work also uses model checking to verify the MAC protocol which resides just above

the physical layer. In this thesis, we concentrate only on the physical layer and

its hardware implementation. Moreover, instead of model checking we use theorem

proving techniques based on HOL. The above two work are totally related with the

protocol verification and address the verification issues related with the upper layers

of OSI model and hence more related with software verification.

1.5.3 Error Analysis and Formal Methods

Previous work on the error analysis in formal verification was done by Harrison [25]

who verified floating-point algorithms such as the exponential function against their

abstract mathematical counterparts using the HOL Light theorem prover. As the

main theorem, he proved that the floating-point exponential function has a correct

overflow behavior, and in the absence of overflow the error in the result is bounded

to a certain amount. He also reported on an error in the hand proof mostly related

to forgetting some special cases in the analysis. This error analysis is very similar to

the type of analysis performed for DSP algorithms. The major difference, however,

is the use of statistical methods and mean square error analysis for DSP algorithms

which is not covered in the error analysis of the mathematical functions used by

Harrison. In this method, the error quantities are treated as independent random

variables uniformly distributed over a specific interval depending on the type of

arithmetic and the rounding mode. Then the error analysis is performed to derive

expressions for the variance and mean square error. In another work, Huhn et al.

[34] proposed a hybrid formal verification method combining different state-of-the-

art techniques to guide the complete design flow of imprecisely working arithmetic
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circuits starting at the algorithmic down to the register transfer level. The useful-

ness of the method is illustrated with the example of the discrete cosine transform

algorithms. In particular, the authors in [34] have shown the use of computer al-

gebra systems like Mathematica or Maple at the algorithmic level to reason about

real numbers and to determine certain error bounds for the results of numerical

operations. In contrast to [34] and based on the findings from [25], Akbarpour [1]

proposed an error analysis technique by realizing the system at different number

domains and then subtracting the real number valuations of one domain from the

other to get the error in transition from ideal real to fixed-point and floating-point,

and then from floating-point to fixed-point. The feasibility of such analysis is also

demonstrated by applying the technique for the error analysis of digital filters [3]

and 16 point radix 2 FFT [4]. In this thesis, we intend to investigate error anal-

ysis in the same way as proposed by [1] but on a larger case study by choosing a

combination of FFT-IFFT which is radix-4 and 64 point in computation. Our work

proves that the approach in [1] is scalable.

1.6 Thesis Contributions and Organization

This thesis has two main contributions. Although none of the contributions adds to

the elementary branch of knowledge but both are significant applications of formal

verification techniques in digital design. The first contribution is the successful

formal verification of RTL blocks of an OFDM modem implementation using the

HOL theorem prover. This work can be seen as an example on how to apply formal

methods in the verification of digital communication systems to check its compliance

with standard specifications. The second contribution is the formalization of the

error analysis of the OFDM modem by analyzing its two computational blocks—

FFT and IFFT. A mathematical model of a radix-4 64 point FFT-IFFT combination

is developed and extended with floating-point and fixed-point error parameters due



1.6. Thesis Contributions and Organization 15

to arithmetic operations. Then errors occurring in the transformation from different

abstraction levels are also derived mathematically. At the end, the whole analysis

is formalized in HOL. These three sub-steps are unique in themselves though. All

the works done can be reused as off the shelf verification blocks or theorems for

performing similar work.

The rest of the thesis is organized as follows. Chapter 2 provides an introduction

to the IEEE 802.11 standards and describes details of the OFDM technique and

modem implementation to be verified. In Chapter 3, the HOL theorem prover, its

underlying logic, and usage for hardware verification are described. A sample is

also explained. Chapter 4 presents the verification of RTL blocks of the OFDM

system, one of the cores of the thesis. In Chapter 5, the error analysis of the OFDM

modem is mathematically analyzed and then formalized using HOL. The last chapter

concludes the thesis and provides hints for future work directions.



Chapter 2

IEEE 802.11 OFDM Modem and

Verification Methodology

This chapter describes the issues which will help to understand the rest of the thesis.

The focus is mainly on the IEEE 802.11a standard and one of its implementation

which we formally verify in this thesis. To illustrate on the topics, a brief description

of the IEEE standards is provided followed by the wireless networking architecture

supported by it. Since the design at hand is the implementation of the physical

layer of IEEE 802.11a, a section is dedicated to this matter also. In the last part of

the chapter, we explain the methodology used to model and verify the design.

2.1 IEEE 802.11a Standard

2.1.1 IEEE 802.xx Standard

IEEE 802 refers to a family of IEEE standards about local area networks and

metropolitan area networks. More specifically, the IEEE 802 standards are restricted

to networks carrying variable-size packets. It follows the OSI or “The Open Systems

Interconnection Reference Model” closely although not exactly, which is a layered

16
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abstract description for communications and computer network protocol design, de-

veloped as part of the Open Systems Interconnect initiative [16]. The services and

protocols specified in IEEE 802 map to the lower two layers (Data Link and Physi-

cal) of the seven-layer OSI networking reference model. In fact, IEEE 802 splits the

OSI Data Link Layer (DLL) into two sub-layers named Logical Link Control (LLC)

and Media Access Control (MAC). Figure 2.1 shows the relationship of the layers.

The IEEE 802 family of standards is maintained by the IEEE 802 LAN1/MAN2

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.1: OSI Layer Reference Model

Standards Committee (LMSC). The most widely used standards are for the Eth-

ernet family, Token Ring, Wireless LAN, Bridging and Virtual Bridged LANs. An

individual Working Group provides the focus for each area. Some of the widely

known standards are:

• IEEE 802.2, Logical link control

1LAN= Local Area Network
2MAN= Metropolitan Area Network
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• IEEE 802.3, Ethernet

• IEEE 802.5, Token Ring

• IEEE 802.11, Wireless LAN (WLAN)

• IEEE 802.15, Wireless Personal Area Network (WPAN)

• IEEE 802.22, Wireless Regional Area Network

We now describe only IEEE 802.11 standard.

IEEE 802.11, the Wi-Fi standard, denotes a set of WLAN standards developed by

working group 11 of the IEEE LAN/MAN Standards Committee (IEEE 802). The

term is also used to refer to the original 802.11, which is now sometimes called the

the 802.11 legacy. The original version of the standard IEEE 802.11 released in 1997

specifies two raw data rates of 1 and 2 Mbps to be transmitted via infrared (IR) sig-

nals or in the Industrial Scientific Medical frequency band at 2.4 GHz. The original

standard also defines Carrier Sense Multiple Access with Collision Avoidance (CS-

MA/CA) as the media access method. A significant percentage of the available raw

channel capacity is sacrificed (via the CSMA/CA mechanisms) in order to improve

the reliability of data transmissions under diverse and adverse environmental condi-

tions. Then, in 1999 an amendment to the original standard was ratified as 802.11b

that has a maximum raw data rate of 11 Mbps and uses the same CSMA/CA media

access method. Due to the CSMA/CA protocol overhead, in practice the maximum

802.11b throughput that an application can achieve is about 5.9 Mbps over TCP

(Transmission Control Protocol) and 7.1 Mbps over UDP (User Datagram Proto-

col). A variation of DSSS (Direct-sequence spread spectrum) modulation technique

is used in this amendment. The indoor range of 802.11b is 30 m at 11 Mbps and 90

m at 1 Mbps. Another amendment to the original standard was also passed in 1999

which is 802.11a. The 802.11a standard uses the same core protocol as the original
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standard, operates in 5 GHz band, and uses a 52-subcarrier orthogonal frequency-

division multiplexing (OFDM) with a maximum raw data rate of 54 Mbps. The

data rate is reduced to 48, 36, 24, 18, 12, 9 then 6 Mbps if required. 802.11a has

12 non-overlapping channels, 8 dedicated to indoor and 4 to point to point. It is

not interoperable with 802.11b, except if using equipment that implements both

standards. For brevity, we do not discuss more about IEEE 802.11 x standards and

x ranges from a upto w. Work is under way to reach the data rate of 540 Mbps and

two competing proposals from Intel and Philips are currently under consideration

by IEEE.

2.1.2 IEEE 802.11a Networking Architecture

As described above, in the 802.11 standard, DLL consists of Logical Link Control

(LLC) and Medium Access Control (MAC) sublayers. LLC hides the differences

among 802 family members and Ethernet. It makes them indistinguishable as far

as the network layer is concerned. MAC determines how to access the medium

and send data by doing the required setup for the physical layer (PHY). PHY is

dedicated to handle the details of data transmission and reception between two or

more stations.

The MAC sublayer for all 802.11 families is common and the differences start to

be evident only in PHY. In 802.11, MAC has two modes of operation: Distributed

Coordination Function (DCF) and Point Coordination Function (PCF). The DCF

is the basic access method of IEEE 802.11 standard. The DCF makes use of a

simple CSMA algorithm. The DCF does not include a collision detection function

(CSMA/CD) because collision detection is not practical on a wireless network. On

the other hand in PCF, Point Coordinator (PC) gives right to stations to send their

frames by asking them if they have any frame to send. Since the order of transmission

data is completely controlled by a base station in PCF mode, no collision ever

occurs. Such nature of access control requires WLAN standard to split the PHY
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into two generic components: the Physical Layer Convergence Procedure (PLCP)

and Physical Medium Dependent (PMD). PLCP maps MAC frames by adding a

number of fields to MAC frames, shown in Figure 2.2. It defines a method to make

MAC

PMD

PLCP

Data
Link

Layer

Physical
layer

Figure 2.2: Relationship between MAC and PHY Layer

PHY Service Data Unit (PSDU) into a framing format. The format is suitable for

transmitting data and management information between two or more stations using

the associated PMD system. On the other hand, this is the PMD responsibility to

transmit PLCP frames with radio waves through the air. In the other word, PLCP

sublayer makes it possible that 802.11 MAC operates with minimum dependency

on the PMD sublayer. By dividing the main layers into sublayers the standard

makes the architecture of 802.11 MAC independent of PHY. One of the advantages

of 802.11 can be highlighted as flexibility and adaptability of this standard while all

of its complexity is hidden in its implementation.

2.1.3 IEEE 802.11a Physical Layer

The PHY of IEEE 802.11 is based on orthogonal frequency division multiplexing

(OFDM), a modulation technique that uses multiple carriers to mitigate the effects

of multipath. Orthogonality means that the peak of each subcarrier is exactly hap-

pening when the other signals have zero amplitude. The advantage of such concept

is that if data is multiplexed over a set of orthogonal subcarriers, more subcarriers
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will be transmitted through the bandwidth. This property increases the bandwidth

efficiency of OFDM technique. OFDM distributes the data over a large number of

carriers that are spaced apart at precise frequencies. The 802.11a standard sup-

ports multiple 20 MHz channels, with each channel being an OFDM modulated

signal consisting of 52 carriers. Among the 52 carriers, 48 carry data and 4 carry

pilot signals. Each carrier is 312.5 kHz wide and modulated using binary phase shift

keying (BPSK) or quaternary phase shift keying (QPSK) or quadrature amplitude

modulation (QAM). Instead of separating each of the 52 carriers with a guard band,

OFDM overlaps them. But, this could lead to an effect known as intercarrier in-

terference where the data from one carrier cannot be distinguished unambiguously

from its adjacent carriers. OFDM avoids this problem because of its orthogonality

property and by precisely controlling the relative frequencies and timing of the car-

riers.

Now, we describe the mathematical model of an OFDM symbol. An OFDM signal

consists of a sum of digitally modulated subcarriers transmitted in parallel. In

general form we have:

s(t) =
∞∑
−∞

sn(t) (2.1)

where sn(t) is the transmitted signal for the OFDM symbol number n. If this symbol

starts at t = ts, then one OFDM symbol is [49]:

sn(t) = Re





Ns
2
−1∑

i=−Ns
2

di+Ns
2

exp(j2π(fc − i + 0.5

T
)(t− ts))



 , ts ≤ t ≤ ts + T

sn(t) = 0, t < ts and t > ts + T

(2.2)

where, di is the complex QAM symbol; Ns is the number of subcarriers; fc is the

carrier frequency; T is the OFDM symbol duration; and Re{.} denotes the real part

of a complex variable. Often the equivalent complex baseband notation is used,
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which is written as [49],

sn(t) = Re





Ns
2
−1∑

i=−Ns
2

di+Ns
2

exp(j2π
i

T
(t− ts))



 , ts ≤ t ≤ ts + T

sn(t) = 0, t < ts and t > ts + T

(2.3)

The real and imaginary parts of Eq. (2.3) have to be multiplied by a cosine and

sine of the desired carrier frequency to produce the final OFDM signal. Because of

the orthogonality property, each subcarrier has an integer number of cycles in one

OFDM symbol with period T . On the other hand, Eq. (2.3) is the mathematical

definitions of inverse discrete Fourier transform for a QAM or BPSK input symbol

di . At the receiver side, the transmitted jth subcarrier can be extracted by down

converting it with a frequency of j/T and then integrating the signal over T seconds.

So the QAM value for a particular subcarrier comes from [49]:

∫ ts+T

ts

exp(−j2π
j

T
(t− ts))

Ns
2
−1∑

i=−Ns
2

di+Ns
2

exp(j2π
i

T
(t− ts))dt

=

Ns
2
−1∑

i=−Ns
2

di+Ns
2

∫ ts+T

ts

exp(−j2π
i− j

T
(t− ts))dt

= dj+Ns
2

T

(2.4)

that gives the desired output dj+Ns
2

T multiplied by a constant factor T . Since the

frequency difference i−j
T

is an integer number of cycles within the integration interval

T , the integration result is always zero except for i = k. Eq. (2.4) is the mathe-

matical definition of the Fourier transform of sn(t). We do not show the equations

related with windowing, guard insertion, synchronization.

2.2 An Implementation of OFDM

A standard block diagram implementation of OFDM is shown in Figure 2.3. For

the verification purpose of the thesis we follow the implementation done by [42].
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The block diagram shows the approach taken to implement the concept described

above. The discussion below focuses only on the specific implementation at hand

since it is more relevant to the verification to follow in the next chapter. The VHDL

implementation details are postponed till the next chapter to help readers of this

thesis understand the step by step approach taken to verify the blocks shown in the

above design.

The first block is the random data generator, which is shown here merely for com-
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Data
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Figure 2.3: OFDM Block Diagram [42]

pletion purpose. For the simualtion, a test bench is used in its place. The next block

is quadrature amplitude modulation block (QAM). In fact, it can be any digital mod-

ulation block as stated in the 802.11a standard. For the specific implementation,

64-QAM is used. The block gives two outputs in real and imaginary format in 16

bit 2’s complement, which are stored in a Dual Port RAM to use as input in the

inverse fast fourier transform (IFFT) block. The real and imaginary components

of mapped symbols are grouped in a vector of 48 words. The next block is serial

to parallel block and it can also be found in the receiver side of the block diagram.

All the serialized data from the QAM block is converted into parallel stream in this
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block to act as an input to the IFFT block and in the receiver side this also does the

same after the received signal is stripped from the guards inserted in the transmitter

side. This block is designed as a shift register in the implementation. But, it ap-

pears from the implementation that this block is stitched with the main design right

before the QAM mapper, and this does not affect the overall design at all since the

main idea is to give parallel input to FFT and IFFT and this is done systematically

since RAMs are used to store the data. The next block is the IFFT block, one of

the most important blocks of OFDM. The design uses a 64-point complex IFFT

core from Xilinx Coregen Library. The input and output samples are vectors of 64

complex values represented as 16-bit 2’s complement numbers for the chosen core.

The fourier transform engine employs Cooley-Tukey radix-4 decimation in frequency

IFFT. The core does not come with memory space but can be configured for Single

Memory Space(SMS), Dual Memory Space(DMS) and Triple Memory Space(TMS)

for different performance requirement. For this implementation, DMS configuration

is used which allows input, computation and output operations to be overlapped.

Although the FFT block comes later in the diagram but it can be explained with

IFFT since it is the same IP core that is used for the implementation by adjusting

a signal named FWD INV that controls what kind of computation will take place–

IFFT or FFT. The core has a latency of 17 clock cycles for the first 64 data, but

later the result vectors appear at every 192 clock cycles. The clock speed for the

core is 72 MHz and thus can compute the IFFT result within 3.2µs. The parallel

to serial circuitry makes the next block. It does exactly the opposite of serial to

parallel. But, this is also implemented in the design right after the serial to parallel

block. The reason is, when the data is coming as input in random fashion in the

system, this is latched in order to have a sizeable data to send to the system, so

it is parallelized using the first block, but then the same data is needed by QAM

mapper serially, so the parallel to serial block is used for this purpose. It can be
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said that the implementation in hand does not follow the block diagram for these

two blocks since it relies on the RAMs for the parallel output of data when it is

required, and it is no violation of standard but a designer’s choice. The next block

in the line is the cyclic extension or guard interval insertion circuitry. It is sued to

eliminate the intercarrier interference. The OFDM symbol is cyclically extended in

the guard interval. This ensures that delayed replicas of the OFDM symbol always

have an integer number of cycles within the FFT interval, as long as the delay is

smaller than the guard interval. This is implemented using three counters and two

Dual Port RAM. The output of IFFT is fed into one of the RAM blocks and the

counters controlled where the data to be stored. According to the implementation,

16 symbols are inserted into one OFDM symbol that creates a guard time equal to

800 ns. In the receiver side, the first block is guard interval removal block. It is

implemented in the same way as the preceding block except that the role is now

reversed and the functionality of the counter is changed. We move now to the QAM

demapper (DQAM) block since we discussed the other blocks before. In the DQAM

section, the intelligence of the signal is mapped back to its original form according

to the 64-QAM demapping table. Although it is not as straightforward as QAM,

but it is implemented exactly as the QAM using combinational logic except that

the mapping focuses more towards range rather than exact bit to bit mapping as

done before. This parallel to serial converter comes right after the mapping block

and then the data is serialized again and the output is received sequentially.

The design flow choosen for the OFDM modem implementation under study started

from the floating-point modeling. The FP model is prepared based on the math-

ematical model. This helped to explore and compare the performance of different

algorithm and schemes. System modification and optimization is also done at this

step of design. For this OFDM modem design, the environment used for floating-

point modeling is the Signal Processing Worksystem (SPW) [15] from Cadence [11].
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All libraries necessary for modeling and simulating an OFDM system exist in SPW.

The second step in the design flow was fixed-point modeling and simulation. The

environment used for this purpose is the Hardware Design System (HDS), which

is a set of libraries from SPW. The blocks inside the FP model are replaced with

the libraries from HDS with the execution of a command. A number of bits are

assigned to each block in order to minimize calculation errors. The errors happened

due to floating-point to fixed-point conversion and this is formally analyzed in a

later chapter and forms one of the contributions of the thesis. The bit error rate

(BER) curve of the two models are compared to find the optimum number of bits

for the system. Then the design blocks of the floating-point model are replaced with

HDS libraies and VHDL codes are generated automatically for the whole system

using HDS also. But, for some blocks like FFT/IFFT there was no HDS counter-

part and those were imported from Xilinx Coregen Library [61]. Some of the VHDL

codes were prepared manually. After VHDL code generation, these are synthesized

in Synopsys Design Compiler targeting FPGA as the hardware for implementation.

Finally, the synthesized circuitry is mapped into FPGA using “Place and Route”

technique and a bit file is generated.

The VHDL code which were manually prepared for the design and thus available

for formal verification are for these blocks– QAM, DQAM, parallel to serial, serial

to parallel, guard insertion and removal block. But, for FFT/IFFT, RAMs and

multiplexers, the blocks are generated using Coregen Library and does not have

RTL codes available due to proprietary issues imposed by Xilinx. The latter part

inhibited the scope of verification to a certain degree.
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2.3 Verification Methodology

The formal specification, verification and error analysis used in this thesis is adopted

from DSP verification framework proposed by Akbarpour [1]. The proposal advo-

cated for rigorous application of formal methods to the design flow of the DSP

systems. The commutating diagram shown in Figure 2.4 demonstrates the basic

idea of the framework. The methodology proposes that the ideal real specification

of the DSP algorithms and the corresponding floating-point (FP) and fixed-point

(FXP) representations be modeled as the RTL and gate level implementations in

higher order logic. The overall methodology for the formal specification and verifi-
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Figure 2.4: A DSP Specification and Verification Approach [1]

cation of the DSP algorithms will be based on the idea of shallow embedding [6] of

languages using the HOL theorem proving environment. In shallow embedding only

the logical formulas are embedded directly in the language of the tool in contrast to

deep embedding where the logical formulas are embedded as datatype. The latter
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is more powerful but time consuming and theorems about the embedded design can

be proved. While in shallow embedding, only theorems in the embedding is prov-

able. But, the former suffices the purpose of the verification work we purport to do

because, we make use of the existing mathematical theorems of the tool and all the

necessary reasoning about them are already built-in in the system. For the thesis,

we follow the methodology partially by making use of the first three levels of the

diagram which are related with the error analysis.

For formal verification of RTL blocks, we model the QAM, QAM demapper, serial

to parallel and parallel to serial blocks using HOL logic. There are ample theories

to model standard VHDL design in formal logic [23]. In all blocks, the functionality

of the designs are preserved while embedding formally. Then a specification of the

design is selected either from the IEEE 802.11a standard or from any existing model

for the generic design like serial to parallel. The specifications for all the blocks

under verification are also embedded in HOL. Having both the specification and

implementation embedded in the tool, we set a relationship between the specifica-

tion and corresponding implementation as a mathematical theorem. This theorem

is then proved by the logical techniques, which are functions written in higher order

logic, in the tool. After proving such theorems for rest of the RTL blocks in the

design, the whole formalization is saved as a theory which can be reused for any

other verification that involves this system.

For the error analysis, we use existing theories in HOL pertaining to the construction

of real and complex numbers [28, 24] and model the design in ideal natural number

and real number, respectively. For the floating-point implementation of the same

design, formalization of IEEE 754 standard based floating-point arithmetic [26] is

used. For the fixed-point design, a fixed-point arithmetic formalization developed

by Akbarpour et. al. [2] is used, which we extended to model some other functions
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required for the formalization of the design. Next, the valuation functions are used

to find the real values of the floating-point and fixed-point outputs. At this point

the error is defined as the difference between the values obtained using valuation

function and the ideal real specification. We establish initial fundamental theorems,

often called lemmas, on the error analysis of floating-point and fixed-point roundings

and arithmetic operations against their abstract mathematical counterparts—the

ideal domain. Finally, based on these lemmas, expressions for the accumulation of

round-off error is derived. We carry the error analysis at the algorithmic level by

directly formalizing the mathematical model. It would have been a better choice to

apply the whole framework for the design at hand. But, part of the OFDM design

which has used IP block from Xilinx does not have any RTL code provided by the

vendor. The behavioral code of the IP block is too deep and thus too impractical

to be embedded in HOL for analysis. More on these are described in the related

chapters.

It is important to point out that there are errors in digital communication systems

in transmission and receiving signals, which are quantified using various parame-

ters like bit error rate (BER), signal to noise ratio and other parameters. There

are techniques like forward error correction (FEC) [30] or automatic repeat request

(ARQ) [30] to tackle such problem. But, none of these issues are related to the kind

of error analysis we present here. Our focus is solely related to hardware and we

only concentrate on the accumulation of round-off error that does not have any rela-

tionship with the communication error that occurs when the device is implemented

and operated thereafter.



Chapter 3

HOL Theorem Proving

Probably it is the extreme philosophical reductionism that says anything in the

world can be reduced to physics and mathematical modeling, which in itself can

be reduced to a small number of axioms and which can be finally reduced to one

formula [8]. Such assertion can be a very difficult theorem to be proved but there are

many real life problems which can be stated in terms of mathematical formulas and

the branch of knowledge that deals with this more solvable natured problems, unlike

the one stated in the maiden sentence, is called formal methods. Theorem proving is

one such technique used for formally specifying and verifying many systems. It is in

fact a man-machine collaboration for proving mathematical theorems by computer

program. Both hardware and software systems have seen large amount of theorem

proving use besides other popular formal method techniques.

In hardware verification theorem proving is the only technique where any system

that can be modeled using it can be of any size and still the logic can lead to a

proof unlike other formal techniques as model checking that always have the prob-

lem of state space explosion if the problem space is too large. Theorem provers are

highly expressive and work best for verifying hierarchical systems. The basic idea

is to model an implementation of a system using formal logic, be it propositional,

30
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first order or higher order whichever is applicable, then the desired specification of

the system is also formalized in the same logic. The relationship between specifi-

cation and implementation is then stated as a mathematical theorem to be proven

interactively using the tool. Regarding proof interactivity, it is to be noted that

propositional logic is fully automated; first order logic is automated but not neces-

sarily terminating; but higher order logic is mainly interactive. That is why there

is no single theorem proving system to do all possible kind of verification with-

out human intervention. There are hybrid theorem proving systems [58] which use

model checking as an inference rule.The proof system generally consists of a set of

axioms and inference rules and new theorems are built on top of these to ensure the

soundness of the new theorems. Sometimes provers were written to prove a partic-

ular theorem, with a proof that if the program finishes with a certain result, then

the theorem is true; e.g. four color theorem [21], a controversial solution though

since the validity of the proof cannot be verified by hand due to the sheer size of

the calculation. There are many theorem provers available but only few of them

are in constant development and have large user base. Automated provers for first-

order logic include 3TAP, ft, Gandalf, LeanTAP, METEOR, Otter, SATURATE

and SETHEO [27]. Among the interactive higher-order logic based ones, we cite

Coq, HOL, HOL Light, Isabelle, LEGO, Nuprl and ProofPower are known [27].

Some other known first-order and higher order provers are—ACL2, ALF, EVES,

FOL/GETFOL, IMPS, KIV, Lambda Prolog, LARCH, Metamath, MIZAR, Mu-

Ral, NQTHM, OBJ3, OSHL, PVS and TPS [27]. Among all these provers HOL,

HOL Light, Isabelle, PVS, ACL2 and MIZAR are most widely used. A compre-

hensive list of theorem provers besides other computer math systems is provided

in [57]. In this thesis, we use HOL for all our verification work of OFDM. The rea-

son for choosing HOL is due to the existence of a large amount of theorems about

real number theory, floating-point, fixed-point and a comprehensive choice of logical

reasoning to carry out the proof procedures. Moreover, some earlier error analysis
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works, as stated in related work section, used HOL and proved its effectiveness to

carry out such analysis with the tool. In the next sections, we describe HOL, the

logic on which it is based and its usage as a formal hardware verification tool.

3.1 Higher-Order Logic and HOL

The typed λ calculus [31] provides the theoretical foundation of higher order logic.

The λ calculus is a logic that has propositions, models and a way of assigning truth

values to each proposition to each model. It also has type expressions and terms

and ways of assigning a meaning to each type expression and each term in each

model. Higher order logic is derived from the typed λ calculus by selecting dis-

tinguished symbols and restricting the set of symbols so that each distinguished

symbol is guaranteed to have a certain standard meaning. This logic is more pow-

erful than first or second order because first order logic can only quantify over

individuals, e.g., ∀x, y. R(x, y) → R(y, x); and second order can quantify over pred-

icates and functions, e.g., P ∧ Q ≡ ∀R. (P → Q → R) → R; whereas higher order

logic can quantify over arbitrary functions and predicates. Since arguments and

results of predicates and functions in higher order logic themselves be predicates

or functions, this imparts a first-class status to functions, and allows them to be

manipulated just like ordinary values. For example, a mathematical induction like

this – ∀P. [P (0) ∧ (∀n. P (n) → P (n + 1))] → ∀n. P (n), is impossible to express in

first order logic. Any proposition of first order logic can be translated into a propo-

sition of higher order logic, but the reverse does not hold. Higher order logic has,

however, some disadvantages: (1) incompleteness of a sound proof system for most

higher-order logics; (2) there is no complete deduction system for the second-order

logic; (3) reasoning is more difficult in higher order than in first order logic; (4) need

ingenious inference rules and heuristics; (5) inconsistencies can arise in higher-order

systems if semantics not carefully defined, e.g. Russell Paradox [47].
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The primary interface to HOL is the functional programming language ML—Meta

Language [50]. HOL system can be used for directly proving theorems and also

as embedded theorem proving support for application specific verification systems.

The tool follows the LCF (logic for computable functions) approach of mechanizing

formal proof that is due to Robin Milner [22]. LCF was intended for interactive

automated reasoning about higher order recursively defined functions. The interface

of the logic to the meta-language was made explicit, using the type structure of

ML, with the intention that other logics eventually be tried in place of the original

logic one. The HOL system is a direct descendant of LCF and this is reflected

in everything from its structure and outlook to its incorporation of ML, and even

parts of its implementation. Thus HOL satisfies the early plan to apply the LCF

methodology to other logics [23]. The original version of HOL is called HOL88 and it

has evolved to its current version HOL4 through HOL90 and HOL98. HOL88 used

its own implementation of ML on top of Common Lisp while HOL4 used Moscow

ML– an implementation of Standard ML (SML) [50]. HOL’s logic, like λ calculus,

has only four kinds of terms:

• Variables. These are sequences of letters or digits beginning with a letter,

e.g., x, a, hol is good.

• Constants. These have the same syntax as variables, but stand for fixed

values. Whether an identifier is a variable or a constant is determined by a

theory; e.g., T, F.

• Applications. This represents the evaluation of a function f at an argument

x; any term may be used in place of x and f .

The following concepts are fundamental to the construction of HOL theorem prover

using higher-order logic. Although there are many other complex theoretical basis
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on which the the tool is built, we only mention the ones which will frequently be

encountered in the next chapters:

• Abstractions

HOL provides λ terms, also called λ abstractions for denoting functions. Such

a term has the form λx. y and denotes the function f defined by: f(x) = y.

The variable x and term t are called respectively the bound variable and body

of the λ expression λx. y. An occurrence of the bound variable in the body is

called a bound occurrence. If an occurrence is not bound it is called free.

• Types

According to the augmentation of λ-calculus by Church [12] with a theory

of types, every HOL term has a unique type which is either one of the basic

types or the result of applying a type constructor to other types. Types are

expressions that denote the sets of values, they are either atomic or compound.

Examples of atomic types are: bool, ind, num, real ; where these denote the

sets of booleans, individuals, natural numbers and real numbers respectively.

Compound types are built from atomic types using type operators. For ex-

ample, if σ, σ1 and σ2 are types then so are: σ list and σ1 → σ2, where list

is an unary operator and → is an infixed binary type operator. Each vari-

able and constant in a HOL term must be assigned a type. Variables with

the same name but different types are regarded as different. If x has a type

σ then it is written as x : σ. Explicit expression of types of variables can be

omitted if they can be inferred from the context using type inference algorithm.

• Inference Rules

These are procedures for deriving new theorems and represented as functions

in ML. There are eight primitive inference rules, all other rules are derived

from these and the axioms. The rules are—(1) Assumption introduction; (2)
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Reflexivity; (3) Beta-conversion; (4) Substitution; (5) Abstraction; (6) Type

instantiation; (7) Dischanrging an assumption (8) Modus Ponens

• Theorems

A theorem is a sequent that is either an axiom or follows from theorems by a

rule of inference. A sequent (Γ, t) consists of a set finite of boolean terms Γ

called the assumptions together with a boolean term t called the conclusion.

If (Γ, t) is a theorem then it is written as Γ ` t.

• Theories

A theory consists of a set of types, type operators, constants, definitions,

axioms and theorems. It contains an explicit list of theorems that have already

been proved from the axioms and definitions. Theories can have other theories

as parents; if th1 is a parent of th2 then all of the types, constants, definitions,

axioms and theorems of th1 are available for use in th2. Any theory can

be extended by means of constant specification and type specification. For

example, the most basic theory is bool and this has a descendant theory ind

that introduces the type ind. There are many other theories established in

HOL to reason about numbers, pairs, lists, words, bits, probabilities etc.

• Proofs

A theorem is the last element of a proof. The only way to create theorems

is by generating a proof. In HOL, this consists of applying ML functions

representing rules of inference to axioms or previously generated theorems. A

proof of a sequent (Γ, t) from a set of sequents ∆ is defined to be a chain of

sequents culminating in ∆ such that every element of the chain either belongs

to ∆ or else follows from ∆ and earlier elements of the chain by deduction.

There are two types of proof approach, goal directed and forward proof. We use

goal directed proof for all the theorems proved in this thesis work. Forward
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proof starts from the primitive inference rules and tries to prove the goal

building theorems on top of these rules. But, forward proof is too low level

and the notion of tactic is used. A tactic is a function that splits a ‘goal’ into

‘subgoals’ and keeps track of the reason why solving the subgoals will solve

the goal.

• HOL Notations

The HOL notations as used in the thesis are summarized in Table 3.1. The

first column shows the terminologies used in standard logic paradigm; the

second and third column gives the corresponding notations in HOL and stan-

dard format followed in literature, respectively. The last column describes the

notations.

Kind of Term HOL Notation Standard Notation Description

Truth T > true

False F ⊥ false

Negation ~t ¬t not t

Disjunction t1 \ / t2 t1 ∨ t2t t1 or t2

Conjunction t1 / \ t2 t1 ∧ t2t t1 and t2

Implication t1==>t2 t1 ⇒ t2 t1 implies t2

Equality t1=t2 t1 = t2 t1 equals t2

∀-quantification !x.t ∀x. t for all x : t

∃-quantification ?x.t ∃x. t for some x : t

ε-term @x.t εx. t an x such that : t

Table 3.1: Terms of the HOL Logic

In the rest of the thesis we have used some notations to pretty print the defi-

nitions and theorems. Any definition written in HOL is showed with a vertical

dash and the word def written below it. For example, a simple definition to

define the associativity that a + b is equal to b + a with a name MY DEF is
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written as

MY_DEF = `def ∀a b. a + b = b + a

As we proceed with building the model of any system, eventually we prove

theorems on them to establish the relationship between specification and im-

plementation. We write all these theorems using only vertical dash. If we prove

that, for all a, b and c, a ∗ b ∗ c is equal to b ∗ c ∗ a and save it as MY THM,

then this is shown as

MY_THM = ` ∀a b c. a * b * c = b * c * a

3.2 Hardware Verification in HOL

To verify a hardware design in HOL, at first the specification and implementation of

the hardware is modeled then a goal is set to prove that the implementation meets

the specification. An example can be an aid to understand how HOL is used to do

such verification. For example, we take a simple circuit in Figure 3.1 and specify

a

b

c

d

p

q

out

Figure 3.1: A Simple Boolean Circuit

its intended behavior and structure as a predicate that relates the inputs to the

outputs. The basic idea is that the predicate forms a constraint on the inputs and

outputs. It is only true when desired relationship between the inputs and outputs

is met. The following HOL term can be used to specify such relationship for the

above circuit:
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`def ∀ a b c d out.

BEH(a,b,c,d,out) =

out = (a ∧ b) ∨ (c ∧ d)

The above code shows that specification BEH takes four arguments. In HOL the

nesting can be avoided According to the diagram, this circuit has four inputs, one

output, and two internal signals p and q. The implementation uses two AND gates

and one OR gate. Presuming that predicates describing the behavior of a two input

AND gate and two input OR gate exist, it can be used to create a description of the

implementation, IMP. The following are the specifications for AND and OR gate.

|- ∀ a b c.

AND(a,b,c) =

c = (a ∧ b)

|- ∀ a b c.

OR(a,b,c) =

c = (a ∨ b)

Now, we need a predicate that constraints the inputs and outputs according to

how the circuit is structured. It can be confirmed that AND(a,b,p) represents the

constraints that we would like the AND gate to place on those lines. Extending that

concept, we can have a predicate like this: AND(a,b,p) ∧ AND(c,d,q) ∧ OR(p,q,out).

A definition then can be written in HOL as,

|- ∀ a b c d out.

IMP(a,b,c,d,out) =

AND(a,b,p) ∧
AND(c,d,q) ∧
OR(p,q,out)

The above definition looks perfect but there is a flaw. The signals p and q are free

in the right hand side. They can be made as parameters of IMP but this would

mean that the internal signals will be exposed and every circuit that will use it has
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to be concerned about these as well. That will defy the very hierarchical nature of

constructing a hardware. The problem is solved using the existential quantification,

|- ∀ a b c d out.

∃ p q.

IMP(a,b,c,d,out) =

AND(a,b,p) ∧
AND(c,d,q) ∧
OR(p,q,out)

For the task of verification, a goal is set to prove using HOL tactics that the IMP

is actually what is defined as implemented at the very beginning. The constraints

represented by the behavioral description BEH and the constraints represented by

the structural description IMP are equivalent. That is, the same constraint is applied

on the inputs and outputs whether it is specified directly or derived from the circuit

design. The goal is written in HOL like this,

∀ a b c d out.

IMP(a,b,c,d,out) = BEH(a,b,c,d,out)

For many circuits, a proof of equivalence is not possible due to other abstractions

that is used in the circuit. In those cases it can be shown that the constraints

represented by the implementation implies the constraints represented by the spec-

ification.

∀ a b c d out.

IMP(a,b,c,d,out) =⇒ BEH(a,b,c,d,out)

The above is a weaker requirement but in many cases such implication proof does

not affect the integrity of the verification framework.

For proving the above theorem in HOL, some special kind of “theorem proving func-

tions” called tactic(s) can be used. A tactic reduces a goal to a list of subgoals, along

with a function mapping a list of theorems to a theorem. The relation of theorems to
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goals is achievement and a theorem achieves a goal if the conclusion of the theorem

is equal to the term part of the goal.



Chapter 4

Verification of RTL Blocks

In this chapter we describe the verification of the RTL blocks of OFDM using HOL

according to the methodology described in Chapter 2.3 The whole design is seg-

mented into different blocks and then modeled using HOL. The resulting model is

in turn set against an ideal specification and the HOL tool is used interactively

to prove its correctness. For all the blocks described below, the corresponding ab-

stract models, parts of VHDL code, HOL models and parts of the proof strategy

are provided to explain the verification in its entirety.

4.1 Verification of Quadrature Amplitude Modu-

lation (QAM) Block

4.1.1 QAM Basics

QAM is a modulation scheme which conveys data by changing the amplitude of two

carrier waves. These two waves, usually sinusoids, are out of phase with each other

by 90◦ and are thus called quadrature carriers—hence the name of the scheme. It is

a kind of M-ary signaling technique where one of M possible signals, s1(t), s2(t), . . . ,

sM(t) may be sent during each signaling interval of duration T. Unlike M-ary PSK

41
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(Phase Shift Keying), where in-phase and quadrature components of the modulated

signals are interrelated in such a way that the envelope is constrained to remain

constant, QAM has this constraint removed. The general form of M-ary QAM is

defined by the transmitted signal in Equation (4.1)

si(t) =

√
2E0

T
ai cos (2πfct) +

√
2E0

T
bi sin (2πfct) 0 ≤ t ≤ T (4.1)

where E0 is the energy of the signal with the lowest amplitude, and ai and bi are a

pair of independent integers chosen in accordance with the location of the pertinent

message point [30].

According to the IEEE 802.11a standard, the OFDM subcarriers shall be modu-

lated by using BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift

Keying), 16-QAM, or 64-QAM modulation depending on the rate requested. The

encoded and interleaved binary serial input data shall be divided into bit groups and

converted into complex numbers representing BPSK, QPSK, 16-QAM or 64-QAM

constellation points. The conversion shall be performed according to Gray-coded

constellation mappings, illustrated in Figure 4.1, with the input bit, b0, being the

earliest in the stream. The output values, d, are formed by multiplying the resulting

I + jQ, where I and Q are the x-axis and y-axis of the constellation respectively,

value by a normalization factor KMOD

d = (I + jQ) KMOD (4.2)

The normalization factor, KMOD, depends on the base modulation mode, as pre-

scribed in Table 4.1. The purpose of the normalization factor is to achieve the

same average power for all mappings. In practical implementations, an approxi-

mate value of the normalization factor can be used, as long as the device conforms

with the modulation accuracy as specified in the draft standard of IEEE 802.11a

in [35]. A question might arise in terms of what QAM constellation should be used
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for OFDM ? The answer lies in the fact that, although higher constellation gives

more bits per symbol, if the mean energy is to remain the same, the points must

be closer together and are thus more susceptible to noise and other corruption; this

results in a higher bit error rate and so higher-order QAM can deliver more data

less reliably than lower-order QAM.

Modulation KMOD

BPSK 1

QPSK 1√
2

16-QAM 1√
10

16-QAM 1√
42

Table 4.1: KMOD Normalization

4.1.2 QAM Mapping Circuitry

For the OFDM design verified, 64-QAM constellation was chosen after simulating

the floating-Point and fixed-point point model in Cadence SPW [15]. The circuitry

used for QAM mapping is implemented using combinational logic. It maps the input

integer data into a constellation point as shown in Figure 4.1. The VHDL modeling is

done using a look-up table approach [42], as given in the VHDL code Listing 4.1. The

QAM block takes only 3 bits as inputs and maps to an output of 16 bits as shown in

Figure 4.2. It is evident that the mapping scale is different in the real implementation

and it differs fundamentally if compared with the constellation diagram of 64-QAM,

since this modulation scheme requires −7 to 7 to map the input data—I and Q.

But, in Listing 4.1 it is mapped from −28672 to 28672 (4096 × 7). This is done

in order to make the output numbers large enough to provide with more precise

result of the computations done in the following IFFT block [42]. The QAM block

is instantiated two times and designed to give the real and imaginary components
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Figure 4.1: 64-QAM Constellation Bit Encoding

as two separated outputs. Each of them are formatted in 16-bit 2’s complement

against a 3-bit input chosen from an input of six for each block. These outputs

QAM

3 bits 16 bits

Figure 4.2: QAM Block

are shown by out qam r and out qam i in Figure 4.3. The circuitry is fed by the

input continuously, therefore out qam r and out qam i are generated as continuous

streams. The outputs are processed in groups of 48 symbols which are stored in two

separated dual port RAMs called “Dual Port RAM imag” and “Dual Port RAM

real” respectively. Since, this type of RAM is generated automatically using the

Xilinx Coregen Library [61] it is not discussed further. The mapping process should
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Listing 4.1: QAM Implementation in VHDL

1 . . . . . .
2

3 . . . . . .
4

5 WITH input SELECT
6

7 qam out <= ”1001000000000000” WHEN ”000” ,
8 ”1011000000000000” WHEN ”001” ,
9 ”1111000000000000” WHEN ”010” ,

10 ”1101000000000000” WHEN ”011” ,
11 ”0111000000000000” WHEN ”100” ,
12 ”0101000000000000” WHEN ”101” ,
13 ”0001000000000000” WHEN ”110” ,
14 ”0011000000000000” WHEN others ;
15 . . . . .
16

17 . . . . .

be done within a 4µs time interval. The real and imaginary components of mapped

symbols are grouped in a vector of 48 words, where each word is formatted in 16-bit

2’s complement.

4.1.3 QAM Modeling in HOL

The modeling of QAM is done in HOL using different existing theories. IF-THEN-

ELSE construct is used to embed the VHDL code as below:

QAM

6 bits

16 bits
QAM

16 bits
out_qam_i

out_qam_r

Figure 4.3: Instantiation of QAM Blocks
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`def ∀input qam_out.

qam_imp (input qam_out) =

(WORDLEN input = 3) ∧
(if input = WORD [ F; F; F ] then

qam_out = WORD [ T; F; F; T; F; F; F; F; F; F; F; F; F; F; F; F ]

else

(if input = WORD [ F; F; T ] then

qam_out =

WORD [ T; F; T; T; F; F; F; F; F; F; F; F; F; F; F; F ]

else

(if input = WORD [ F; T; F ] then

qam_out =

WORD [ T; T; T; T; F; F; F; F; F; F; F; F; F; F; F; F ]

else

(if input = WORD [ F; T; T ] then

qam_out =

WORD [ T; T; F; T; F; F; F; F; F; F; F; F; F; F; F;

F ]

else

(if input = WORD [ T; F; F ] then

qam_out =

WORD

[ F; T; T; T; F; F; F; F; F; F; F; F; F; F; F; F]

else

(if input = WORD [ T; F; T ] then

qam_out =

WORD

[ F; T; F; T; F; F; F; F; F; F; F; F; F; F; F; F ]

else

(if input = WORD [ T; T; F ] then

qam_out =

WORD

[ F; F; F; T; F; F; F; F; F; F; F; F; F; F; F; F ]



4.1. Verification of Quadrature Amplitude Modulation (QAM) Block 47

else

qam_out =

WORD

[ F; F; T; T; F; F; F; F; F; F; F; F; F; F;

F; F ])))))))

The above model is based on the wordTheory [60, 33]. The data types of VHDL can

be modeled using this theory. The VHDL type BIT can be modeled using T and

F where these represent 1 and 0 respectively. BIT VECTOR can be modeled using

WORD[...] where the dots can be replaced with any sequence of T or F separated

by “;” as above. As an example, bit vector “110” can be modeled as WORD[T;T;F].

The above model is constrained using the condition WORDLEN input = 3 since the

input is always 3 bits and thus the model does not need to be generalized for n bits.

Here, WORDLEN is a function that takes any WORD as input and returns the length of

it. The model above now can be used (or in HDL terminology can be instantiated)

as many times as required to model any complex design. For our case, it is used

two times to embed the port-mapped component in HOL, and named as qam mod2.

We stick to the same nomenclature used by the designer. The VHDL code of the

component is given in Listing 4.2. Below is the corresponding HOL modeling.

`def ∀ input out_qam_r out_qam_i.

qam_mod2_imp (input out_qam_r out_qam_i) =

(WORDLEN input = 6) ∧ (WORDLEN out_qam_r = 16) ∧
(WORDLEN out_qam_i = 16) ∧ qam_imp (WSEG 3 0 input) out_qam_i ∧
qam_imp (WSEG 3 3 input) out_qam_r

This model has the same characteristics as the one before except the input is now

constrained to six bits since the input of qam mod2 will always be six. Now that

the modeling of the RTL block is completed it is time to model the specification of

QAM in HOL. After that we will use the logical techniques of the tool to prove that

the implementation is conformed to the specification.
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Listing 4.2: Instantiation of QAM in VHDL

1 . . . . . . PORT(
2 input : in s t d l o g i c v e c t o r (5 downto 0) ;
3 out qam r : out s t d l o g i c v e c t o r (15 downto 0) ;
4 out qam i : out s t d l o g i c v e c t o r (15 downto 0)
5 ) ;
6

7 . . . . . . . . . . . .
8

9 BEGIN qam i : qam port map
10 ( input => input (2 downto 0) ,
11 qam out=> out qam i
12 ) ;
13 qam r : qam port map
14 ( input => input (5 downto 3) ,
15 qam out=> out qam r
16 ) ;
17 END ;
18 . . . . .
19

20 . . . . .

Since the design is based on IEEE 802.11a we have used the standard [35] itself

as a specification in order to verify the implementation. Accordingly, for every six

bits entering the qam mod2 block, the bits are divided into three bits each, which

acts as an input to the qam block. Then the qam mod2 block outputs, as describe

in Section 4.1.2, two vectors containing real and imaginary parts of the modulated

input. Table 4.2 shows the encoding of bits for I and Q. One point can be noticed

from the two tables is the similarity of bit encoding both for I and Q and this

helps us to model only one specification for both, while it is trivial to model them

separately. Modeling a table in HOL can be done by using predicates as follows:
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Input bits
(b0,b1,b2)

I − out

000 -7
001 -5
011 -3
010 -1
110 1
111 3
101 5
100 7

Input bits
(b3,b4,b5)

Q− out

000 -7
001 -5
011 -3
010 -1
110 1
111 3
101 5
100 7

Table 4.2: 64−QAM Encoding Table [35]

val TABLES_QAM =

`def ∀ I_OUT.

TABLES_QAM (I_OUT) =

(I_OUT (F,F,F) = ¬7) ∧ (I_OUT (T,F,F) = ¬5) ∧
(I_OUT (T,T,F) = ¬3) ∧ (I_OUT (F,T,F) = ¬1) ∧
(I_OUT (F,T,T) = 1) ∧ (I_OUT (T,T,T) = 3) ∧
(I_OUT (T,F,T) = 5) ∧ (I_OUT (F,F,T) = 7)

In the above model I OUT is a triplet which will accept three bits similar to the

left columns of Table 4.2. For each and every argument of I OUT, a unique number

will be mapped as given in the tables and ‘∧’ is used as a composition operator to

construct all rows.

Having covered all the pertinent details about the implementation and a very re-

liable means to extract the specification, qam spec can be written in terms of TA-

BLES QAM–

`def ∀ b0 b1 b2 I_OUT.

qam_spec (b0 b1 b2 I_OUT) =

∃OUT. TABLES_QAM OUT ∧ (I_OUT b0 b1 b2 = OUT (b0,b1,b2))

The specification qam spec is mirrored, in the same way its implementation qam imp

is instantiated in qam mod2 imp,
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`def ∀ input I_OUT_R I_OUT_I.

qam_mod2_spec (input I_OUT_R I_OUT_I) =

qam_spec (BIT 0 input) (BIT 1 input) (BIT 2 input) I_OUT_I ∧
qam_spec (BIT 3 input) (BIT 4 input) (BIT 5 input) I_OUT_R

With the specification above we have finished all the groundwork to set the goal for

verification of the QAM RTL block. The next subsection will discuss the verifica-

tion in details and the proof strategies adopted to bolster the correctness of RTL

implementation.

4.1.4 Verification of QAM

The general goal is to prove that for all inputs and outputs the correctness theorem

holds, under certain constraints, which can be stated as

∀ n inputs outputs.

constraints ⊃ (implementation ≡ specification) [9]

The equivalence can be replaced by implication which will set space for some al-

lowance in the correctness theorem by proving only specific behaviors of the system,

which will certainly weaken the sole purpose of verification [46]. But, there are cases

where the engineer (or anybody who is carrying out the proof work) can categor-

ically exclude some cases given the certainty that those will never occur. For our

case, it is an implication due to the constraints we have imposed in the definitions

since we are certain that there can be no other combination occurring other than

those. This justification leaves us only to state our goal, except we need one more

definition to do so, which is as follows:

`def ∀ x.

TCOMP_VAL x =

¬& (BV ()) * 2 pow 3 + & (BV (BIT 2 x)) * 2 pow 2 +

& (BV (BIT 1 x)) * 2 pow 1 + & (BV (BIT 0 x))
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It is a simple definition based on boolLibrary of HOL to convert a bool word into its

real number equivalent. The function TCOMP VAL accepts a bool word and returns

a real number. The “&” symbol is an overloaded HOL operator that converts

any natural number to real number. And, BV is also a function, defined in theory

numTheory, that uses another function to convert the boolean value into a natural

number.

`def ∀ b. BV b = (if b then SUC 0 else 0)

The function SUC takes a natural number and returns the consecutive natural num-

ber. So, SUC 0 will return 1. And, BIT x input chooses a particular bit positions

from input defined in x. Now, we can state that our goal as - for all input and output

and constraints, the QAM implementation implies the QAM specification

∀ n inputs outputs.

constraints ⊃ (QAM implementation =⇒ QAM specification)

formalized in HOL as

∀ input qam_out.

qam_imp (input qam_out) =⇒
qam_spec (BIT 0 input) (BIT 1 input) (BIT 2 input)

(λ b0 b1 b2. TCOMP_VAL (WSEG 4 12 qam_out))

The definition WSEG m k WORD selects a portion of WORD from k to k+m-1. The

function qam spec takes three arguments and gives a corresponding output. One λ

abstraction is used to convert the selected qam out word into real number. Now,

the stage is set to apply the tactics of HOL to prove the goal. We have used the

existing theories of wordTheory and realTheory to build many helpful definitions

and lemmas to prove the above goal and thus established the correctness of the

RTL block formally. We prove the theorem and name it as qam imp spec correct.

Due to textual brevity, we do not include the whole proof procedure here line by
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line. But, proving this theorem just ensures us about the QAM block and we are

yet to prove the implementation of qam mod2 imp. In order to do so we set a goal

as -

∀ input out_qam_r out_qam_i.

qam_mod2_imp (input out_qam_r out_qam_i) =⇒
qam_mod2_spec input (

¯
0 b1 b2. TCOMP_VAL (WSEG 4 12 out_qam_r))

(λ b0 b1 b2. TCOMP_VAL (WSEG 4 12 out_qam_i))

We use the same libraries as before to prove this goal too. Below is the HOL proof

steps.

REPEAT GEN_TAC THEN

ARW_TAC [qam_mod2_spec,qam_mod2_imp]THEN

ARW_TAC[BIT_WSEG_input]THEN

ARW_TAC [qam_imp_spec_correct]THEN

ARW_TAC[BIT_WSEG_input]THEN

ARW_TAC [qam_imp_spec_correct]

We use only built in tactics. The REPEAT GEN TAC tactic removes all the universal

and existential quantifications. Next, ARW TAC is a tactic defined using a rewriting

tactic RW TAC using simpset [33] arith ss. This defined tactic is used to rewrite the

the goal with the specifications and proved theorems as shown in the code segments

above. We name this last proved theorem as qam imp spec correct.

Having proved the correctness of qam mod2 imp and qam imp using the theorems

qam imp spec correct and qam mod2 imp spec correct it can be concluded that the

QAM is formally verified. The implementation conforms the specification given in

the standard.
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4.2 Verification of the Serial to Parallel Block

4.2.1 Serial to Parallel Basics

In this section we will verify the serial to parallel block, later written as S/P , which

is an indispensable part of the whole OFDM system. Most of the basics related

to S/P are similar to those of the Parallel to Serial block, to be discussed later,

and thus will cover almost all the important aspects of both blocks in this section.

The concept of serial to parallel conversion is trivial. A long stream of data is

divided into several equal or approximately equal length of chunks which can all be

operated upon at the same time. From the mathematical point of view, it is the

manipulation of a vector into several columns of a matrix. However, S/P conversion

is very important in OFDM. The length of the blocks produced in S/P determine

the number of spectral coefficients to be used by the IFFT, which is essential in

choosing how many frequencies are to be used. Usually, the block length is a power

of 2, which makes the IFFT and FFT algorithms most computationally efficient.

Moreover, in OFDM, the data is divided among a large number of closely spaced

carriers. Since, the entire bandwidth is filled from a single source of data, it is

necessary to transmit in parallel way so that only a small amount of the data is

carried on each carrier, and by this lowering of the bitrate per carrier, the influence

of intersymbol interference is significantly reduced.

4.2.2 S/P Circuitry

The S/P circuitry is very simple to implement. It has its presence both in the

transmitter and receiver of the system. In transmitter side, it is placed between

QAM and IFFT block, and in the receiver side between Guard Removal and FFT

block. The design at hand has the same functionality of of “Bits to fixp” block of

SPW [15] in fixed-point model. It consists of a shift register and a latch, which are

both clocked with the same rate as the input data. Six bits from input stream are
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serially shifted into a register. Then they are latched for six clock cycles. There are

two control signals enable and clear to synchronize the whole process. Figure 4.4

shows a simple block diagram of a serial to parallel circuit functionality with a clock

signal only. The VHDL code for this block is in Listing 4.3. Now, if we analyze the

Serial
To

Parallel

.......b5b4b3b2b1b0

b0

b1

b2

b3

b4

b5

Clock

Figure 4.4: Block Diagram of a Typical Serial-Parallel Design

VHDL code we will find three signals shift reg, count and hold are defined to use

in the PROCESS, which is controlled by four inputs of the block as a sensitivity

list. Signal shift reg acts as a buffer for the manipulation of the data; count keeps

track of the number of iterations and hold latches all the data to be assigned to the

output port out parallel after certain clock cycles.

4.2.3 S/P Modeling in HOL

Modeling of the S/P block in HOL is done in a different way than what we have seen

in Section 4.1.3. The modeling is not exactly one to one mapping because a VHDL

PROCESS is involved here. In fact, a PROCESS never terminates itself, and it can

only be controlled using WAIT statements and sensitivity lists. After executing the

last statement, a PROCESS will be suspended only to be resumed later on an event

in the sensitivity list. This last behavior poses a difficulty in modeling it in HOL

due to non-termination problem. Higher order logic is a logic of total function and it

does not allow the definition of any partial function. But, there are exceptions which

motivates us to define our specification for S/P in a simpler way without resorting to
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Listing 4.3: VHDL code for Serial to Parallel Block

1 . . . . . . . . .
2 ARCHITECTURE r t l OF s e r i a l t o p a r a l l e l IS
3 SIGNAL s h i f t r e g : s t d l o g i c v e c t o r (5 downto 0) :=”000000” ;
4 SIGNAL count : s t d l o g i c v e c t o r (2 downto 0) :=”000” ;
5 SIGNAL hold : s t d l o g i c v e c t o r (5 downto 0) :=”000000” ;
6 . . . . . . . . . .
7 PROCESS( c l k , c l e a r , enable , input )
8 BEGIN
9 IF c l e a r = ’1 ’ THEN hold <= ”000000” ;

10 ELSIF c lk ’ event AND c l k = ’1 ’ THEN
11 IF enable = ’1 ’ THEN
12 IF count /= 5 THEN
13 count <= count + 1 ;
14 s h i f t r e g (4 downto 0) <= s h i f t r e g (5 downto 1) ;
15 s h i f t r e g (5 )<= input ;
16 ELSE
17 s h i f t r e g (4 downto 0) <= s h i f t r e g (5 downto 1) ;
18 s h i f t r e g (5 )<= input ;
19 hold (5 ) <= s h i f t r e g (0 ) ;
20 hold (4 ) <= s h i f t r e g (1 ) ;
21 hold (3 ) <= s h i f t r e g (2 ) ;
22 hold (2 ) <= s h i f t r e g (3 ) ;
23 hold (1 ) <= s h i f t r e g (4 ) ;
24 hold (0 ) <= s h i f t r e g (5 ) ;
25 count <= ”000” ;
26 END IF ;
27 END IF ;
28 END IF ;
29 END PROCESS;
30 o u t p a r a l l e l <= hold ;
31 END ;
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complex definition. For example, the following is a total and non-recursive function

that uses the expressive power of HOL [33]:

λ x. if (? n. P (FUNPOW g n x)) then

FUNPOW g (@n. P (FUNPOW g n x) ∧
!m. m < n ==> P (FUNPOW g m x)) x

else ARB

The function FUNPOW is a tail recursive function defined in the theory arithmetic-

Theory to define function iteration. The above function does a case analysis on the

iterations of function g. The finite ones return the first value at which P holds and

the infinite ones are mapped to a constant named ARB that holds all the arbitrary

values. ARB is a way to convert partial-functions into total functions in HOL. But,

using ARB will only complicate our model without any added benefit. A VHDL

PROCESS is more than a simple loop and we have no cases to deal with infinity

rather we only have finite sets of statements to be dealt infinitely. This discussion

is to justify why we did not use certain features of HOL to model our system which

seems apparently helpful in doing so. The other aspect of the model is that three

signals clk, enable, and clear are not used since we are verifying this module inde-

pendently of other blocks, and there are no pipelining issues involved here. Having

said that we introduce the implementation of S/P in HOL -

`def ∀ cnt out_parallel input.

Serial_Parallel_IMP (cnt out_parallel input) =

∃ shift_reg.

(WORDLEN out_parallel = 6) ∧
(shift_reg input = SHRN_bit cnt input out_parallel)

Apparently a simplification of the corresponding VHDL code but a little analysis

will support its correct functionality. From the code, the variable cnt is a natural

number whose type is defined as num; out parallel is a bool word and input is

of bool type. The implementation takes three arguments where cnt is defined to
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keep track of the time or bit index which is a model of the signal count. The

second variable has the same name of its VHDL counterpart and so is the last

one - input. A function shift reg is defined as shift reg:bool→bool word to

mimic the VHDL signal of the same name. Variable out parallel is constrained

to six using WORDLEN function as before because the design specifies so. Since

the system will receive only one input at a time and then latches all till it fills the

whole shift register, so we write another definition in HOL to manipulate every new

bit entering the system and filling the empty places with zeros

`def ∀ N M w.

SHRN_bit (N M w) =

WCAT (WORD (REPLICATE (WORDLEN w − (N + 1)) F),WORD [ M ])

This definition uses WCAT which concatenates two lists is defined in word baseTheory [33]

as

`def ∀ l1 l2. WCAT (WORD l1,WORD l2) = WORD (l1 ++ l2)

The symbol ‘++’ is an infix operator that appends two lists in the above defini-

tion. The recursive definition of REPLICATE is in the theory rich listTheory which

replicates any variable repeatedly as specified. It is defined as

`def (∀ x. REPLICATE 0 x = []) ∧
∀ n x . REPLICATE (SUC n) x = x::REPLICATE n x

Here the REPLICATE function fills the rest of the places of the shift register with ‘F’

depending on the current value passed to it by the function and then adds the input

to it. In this way at the end of the iteration the whole register will be populated

with serial data and will be ready to be latched out.

Having completed the modeling of implementation we describe the specification of

the block so that we can explain the verification in the next section. We state the

specification of the block as
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`def ∀ t out input.

Serial_Parallel_SPEC (t out input) = (BIT t out = input)

It simply puts the relation between the input and output of the block it terms of

bit position. At every time t, we have one input entering the block which goes in

the bit position related to the current index of t of the output. A more general

approach would be to use the modulo arithmetic to model the specification, but it

is not required here due to the proof strategy we followed in Section 4.2.4.

4.2.4 S/P Verification

Unlike the verification strategy of QAM explained in Section 4.1.4 we adopt case

analysis approach to prove the goal. We can define the goal as following:

∀ out input t.

(0 ≤ t ∧ t ≤ 5 ) =⇒
Serial_Parallel_IMP (t out input) =⇒

Serial_Parallel_SPEC (t out input)

It has a very generic pattern like any other goal except the constraint which bounds

t as, 0 ≤ t ≤ 5. Bounding t helps to get over with the problem of looping which we

stated earlier in subsection 4.2.3. We flatten one whole iteration which is enough

to demonstrate the functional correctness of the given block. That is why we bound

the variable only to check the cases starting from t = 0 to t = 5. Once we finish

with case analysis we prove following trivial lemma

∀ t.

(0 ≤ t ∧ t ≤ 5) =⇒
(t = 0) ∨ (t = 1) ∨ (t = 2) ∨
(t = 3) ∨ (t = 4) ∨ (t = 5)

which simply states that when t is bound between 0 and 5, then the only values for

which the correctness theorem needs to hold are t = 0, 1, 2, 3, 4 5. We proved the
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goal and thus verified the functionality of the said RTL block. The part of the proof

procedures will be explained in the Section 4.3.4 due to its similarity in the way of

doing the proof.

4.3 Verification of Parallel to Serial Block

4.3.1 P/S Basics

This section presents the verification of Parallel to Serial RTL block, later referred

as P/S . As mentioned before, this block is similar to S/P and thus the functionality

and design bears resemblance with that. For the OFDM system P/S is flanked by

IFFT and Guard Interval Insertion at the transmitter side; and by FFT and 64-

QAM Demodulator at the receiver side. Principally, it takes parallel data as input

and outputs serial data stream. In OFDM, this block is used to to convert data

from frequency domain to time domain and let to insert guard intervals between

IFFT frames as required. Figure 4.5 shows a block diagram of a typical P/S block.

Parallel
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Figure 4.5: Block Diagram of a Typical Parallel-Serial Design

4.3.2 P/S Circuitry

Generally, the construction of a P/S circuitry is simple. Most of the generic circuits

load the data in different registers clocked using a global timer at the same time but



4.3. Verification of Parallel to Serial Block 60

outputs the data from a register containing LSB or MSB bit while shifting the bits

simultaneously from the other direction. Figure 4.5 shows the concept graphically.

We verify a similar design as a part of our OFDM system verification. The input

and output variables are similar to S/P except that the size of the vectors have

swapped roles. The VHDL code for the design is given in Listing 4.4. One signal

namely out at each clock is defined to latch data to the output port at regular

intervals. Unlike S/P , the PROCESS in this design contains two variables: shift reg

and count. As before, shift reg is a shift register and count keeps track of the

iterations. Any active event on clk, clear, enable or input will trigger the process.

While count is at ‘000’, the input is assigned to shift reg. Every fifth bit of the

shift reg is then shifted to out at each clk and the counter is increased. When

the count reaches ‘5’, it is initialized to ‘000’ again. After every iteration of a

PROCESS the circuit will give one bit as output.

4.3.3 P/S Modeling in HOL

In this subsection we discuss the modeling of the circuitry in HOL. The discussion on

looping in Section 4.2.3 equally applies here. Rather we concentrate on the issues of

modeling signals and variables in HOL. A signal is a VHDL model of wire. Anything

defined as signal is assigned the value after a delta (δ) delay. Whereas a variable

can only be defined inside a PROCESS, and value can be assigned instantaneously

unlike signal. From the higher order logical point of view, signal and variable can

be treated as same. The notion of time delay is useful in simulation to understand

the timing parameters of the system. But, it plays very little role in verifying the

functional correctness of the design we are verifying. Thus we verify a delay-free

model. The same can be said above all the verifications done above. We define the

implementation of P/S circuit in HOL as following:
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Listing 4.4: VHDL Code for P/S Circuit

1 ARCHITECTURE r t l OF p a r a l l e l t o s e r i a l IS
2

3 SIGNAL ou t a t e a ch c l k : s t d l o g i c ;
4

5 BEGIN
6 PROCESS( c lk , c l e a r , enable , input )
7 VARIABLE s h i f t r e g : s t d l o g i c v e c t o r (5 downto 0) :=”000000

” ;
8 VARIABLE count : s t d l o g i c v e c t o r (2 downto 0) :=”000” ;
9 BEGIN

10 IF c l e a r = ’1 ’ THEN
11 ou t a t e a ch c l k <= ’0 ’ ;
12 ELSIF c lk ’ event AND c l k = ’1 ’ THEN
13 IF enable = ’1 ’ THEN
14 IF count = 0 THEN
15

16 s h i f t r e g (5 downto 0) := input ;
17 ou t a t e a ch c l k <= input (5 ) ;
18 s h i f t r e g (5 downto 1) := s h i f t r e g (4

downto 0) ;
19 ELSE
20

21 ou t a t e a ch c l k <= s h i f t r e g (5 ) ;
22 s h i f t r e g (5 downto 1) := s h i f t r e g (4

downto 0) ;
23 END IF ;
24

25 IF count = 5 THEN
26 count := ”000” ;
27 ELSE
28 count := count + 1 ;
29 END IF ;
30 END IF ;
31 END IF ;
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`def ∀ cnt out input.

Parallel_Serial_IMP (cnt out input) =

∃ shift_reg.

(WORDLEN input = 6) ∧ (shift_reg cnt = SHLN cnt input) ∧
(out cnt = BIT 5 (shift_reg cnt))

This time, we constrain the input of the circuit to six bits and we use another

definition, SHLN, in order to accomplish this:

`def ∀ N w. SHLN (N w) = WCAT (WSEG (WORDLEN w − N) 0 w,WORD (REPLICATE N F))

This definition also uses WCAT, WSEG and REPLICATE. The arguments cnt and input

are passed to the function in order to get the number of bits to be extracted from

the input in order to copy it back to the register. The replication of zero(s)in the

vacant place is determined by the second list.

To define the specification for verification we use modulo arithmetic. The use of t

MOD 6 helps to index the correct output in the specification below:

`def ∀ t out input.

Parallel_Serial_SPEC (t out input) =

(out t = BIT (5 − t MOD 6) input)

MOD is built into HOL and some basic theorems are defined on it:

MOD_EQ_0 = ` ∀ n. 0 < n =⇒ ∀k. (k * n) MOD n = 0

ZERO_MOD = ` ∀ n. 0 < n =⇒ (0 MOD n = 0)

MOD_PLUS = ` ∀ n. 0 < n =⇒ ∀j k. (j MOD n + k MOD n) MOD n

= (j + k) MOD n

MOD_MOD = ` ∀ n. 0 < n =⇒ ∀k. k MOD n MOD n = k MOD n

The specification takes counter, input and output as argument and makes sure that

the bit assigned to the output is the correct one by decreasing the index of the bit

selection number. This specification can be used to verify any such circuit.
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4.3.4 P/S Verification

In this section we will verify the circuit and as usual we will start with defining the

goal to be proved:

∀ out input t.

0 ≤ t ∧ t ≤ 5 =⇒
Parallel_Serial_IMP t out input =⇒
Parallel_Serial_SPEC t out input

The value of t is constrained since we are only interested to verify it for that number

of iterations only, which means one whole functional cycle is enough to prove its

correctness. Below we will show the main steps of the proof done and the associated

lemmas used. We start with removing all the quantifications and then rewrite using

the definitions of Parallel Serial IMP, Parallel Serial SPEC, SHLN and t 0 5,

where t 0 5 is the same lemma we have stated in Section 4.2.4. Then we start case

analysis on t. The code below shows the way to input these into the HOL tool:

REPEAT GEN_TAC

RW_TAC list_ss [Parallel_Serial_IMP,Parallel_Serial_SPEC, t_0_5]

ASM_REWRITE_TAC [SHLN]

Cases_on ‘t=0‘

This tactic generates two subgoals:

Parallel_Serial_SPEC t out input

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0. t ≤ 5

1. Parallel_Serial_IMP t out input

2. ¬(t = 0)

Parallel_Serial_SPEC t out input

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0. t ≤ 5

1. Parallel_Serial_IMP t out input

2. t = 0
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We now use the theorem WCAT0 and a trivial lemma wordlen 6 inp to help prove

the first subgoal:

RW_TAC arith_ss [wordlen_6_inp]

RW_TAC arith_ss [REPLICATE]

RW_TAC arith_ss [WCAT0]

Where the two are defined as:

wordlen_6_inp =

`def ∀ input. (WORDLEN input = 6)=⇒
(WSEG 6 0 input = input)

WCAT0 = `def ∀ w. (WCAT (WORD ],w) = w) ∧
(WCAT (w,WORD ]) = w)

In the next step, we do case analysis on t=1. It returns another two subgoals. We use

a couple of lemmas to prove them. All of theses lemmas are proved using theorems

and functions which are already explained in the previous sections: REPLICATE 1 is

to prove that replicating ‘F’ one time is equal to a WORD with only one bit.

REPLICATE_1 = ` WORD (REPLICATE 1 F) = WORD [ F ]

BIT LEMMA 01 proves that for WORD w1 with length n1 and w2 with length n2; and

any number k greater or equal to n2 and less than the sum of n1 and n2 implies

that the kth bit of the concatenated WORD from w1 and w2 is equal to the (k-n2)th

bit of w1.

BIT_LEMMA_01 = ` ∀n1 n2 w1 w2 k.

(WORDLEN w1 = n1) ∧ (WORDLEN w2 = n2) ∧ n2 ≤ k ∧
k < n1 + n2 =⇒ (BIT k (WCAT (w1,w2)) = BIT (k − n2) w1)

BIT LEMMA 02 states that if wordlength of w is n and any number m and k is less

than or equal to n, then it implies that the wordlength of the word segment of w

taken from k to k+m-1 is equal to m.

BIT_LEMMA_02 =

` ∀ n w m k.

(WORDLEN w = n) ∧ m + k ≤ n =⇒ (WORDLEN (WSEG m k w) = m)
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BIT LEMMA 03 is a trivial lemma proved to state that any WORD with length 6 implies

that if a segment taken from the word from 0 to 4, then its length is 5.

BIT_LEMMA_03 = ` ∀ w. (WORDLEN w = 6) =⇒
(WORDLEN (WSEG 5 0 w )= 5)

BIT LEMMA 04 states that the wordlength of a single boolean element is 1.

BIT_LEMMA_04 = ` WORDLEN (WORD F]) = 1

BIT LEMMA 05 is an important lemma which states that given a WORD w with length

n and the addition of two numbers m and k that is less than or equal to n implies

that when another number j is less than m, then jth bit of the word segment of w

from k to k+m-1 is equal to the (j+k)th bit of w.

BIT_LEMMA_05 =

` ∀ n w m k j.

(WORDLEN w = n) ∧ m + k ≤ n =⇒
j < m =⇒
(BIT j (WSEG m k w) = BIT (j + k) w)

Initially, we do modus ponens (MP) and specialize the lemmas along with some

rewriting steps. MP helps us to introduce new lemmas in the proof procedure and

then we specialize them according to our need. The rest of the proof steps involves

repeated use of case analysis until t=5. For this, we prove another 14 lemmas and

use some conversion tactic. The proof steps shown in this section delineates a typical

approach which is specific to this proof. As mentioned in Chapter 3, there are many

ways to do a proof and it mainly depends on the nature of the goal, and also the

skill and experience of the user.
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4.4 Verification of QAM Demodulator

4.4.1 Demodulator Basics

The demodulator is the last block of the OFDM system. It recreates the origi-

nal message from the degraded version of the transmitted signal. The operating

principles of the demodulator block is not straightforward as the modulator. The

incoming signal is first downconverted and then demodulated. In between transmit-

ter and receiver the medium hampers the quality of the signal by factors including

atmospheric noise, competing signals, and multipath or fading. A modulator deals

with data which has no distortion and thus engage no time to sort the intelligent

signals from its input. But the demodulator has to handle the stochastic nature of

data which cannot be mapped as easily as the constellation diagram shown in Sec-

tion 4.1.1. Because the existence of noise causes the constellation points to spread,

the demodulator has to establish decision regions in order to map the received sig-

nals to the correct QAM value. Generally, the demodulation involves a number of

steps: (1) carrier frequency recovery, (2) symbol clock recovery, (3) signal decom-

position to I and Q components, (4) determining I and Q values for each symbol,

(5) decoding and de-interleaving, (6) expansion to original bit stream, (7) digital-to-

analog conversion, if required. Both the symbol-clock frequency and phase must be

correct in the receiver in order to demodulate the bits successfully and recover the

transmitted information. A symbol clock could be at the right frequency but at the

wrong phase. If the symbol clock was aligned with the transitions between symbols

rather than the symbols themselves, the demodulation would be unsuccessful.

4.4.2 Demodulator Circuitry

The demodulator circuitry, as designed in [42] consists of combinational logic. This

block is modeled in SPW as General Slicer to map QAM symbols from I and Q

format to integer numbers. The functionality of OFDM demodulator is intertwined
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with the P/S block. Figure 4.6 shows the input and output of the demodulator to be

DEMODULAOR

16 bits 3 bits

Figure 4.6: Demodulator Block

verified. It is implemented using if-then-else construct in VHDL. Listing 4.5 shows

part of the code. It takes one input of 16 bits and outputs 3 bits. The MSB of the

input is used as a sensitivity list to activate the process. When the sensitivity input

is bit ‘0’ then it maps the QAM symbols to a certain conditional block. For example,

when the input (in hexadecimal format) is “0180” then it is mapped to “100”, in

binary, which is the top-right corner constellation point as given in Figure 4.1. On

the other hand, if the MSB of input is ‘0’, then it is mapped to another conditional

clause. The values associated to a certain QAM symbol are mapped according to

the decision regions given in the code. We describe it more in the later subsections.

This demodulator block is then instantiated two times in order to map both real and

imaginary symbols coming from the FFT block. Figure 4.7 shows the instantiated

block diagram. Listing 4.6 shows the VHDL code for this.

DEMODULATOR

6 bits

16 bits

3 bitsinput_dqam_i

input_dqam_r
DEMODULATOR

3 bits

6 bits

Figure 4.7: Instantiation of the Demodulator Block
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Listing 4.5: VHDL code of OFDM Demodulator

1 BEGIN
2

3 process ( input )
4

5 begin
6

7 IF input (15) = ’0 ’ THEN
8

9 IF input >= x”0180” THEN
10 dqam out <= ”100” ;
11 ELSIF input >= x”0100” AND input < x”0180” THEN
12 dqam out <= ”101” ;
13 ELSIF input >= x”0080” AND input < x”0100” THEN
14 dqam out <= ”111” ;
15 ELSIF input < x”0080” THEN
16 dqam out <= ”110” ;
17 END IF ;
18 ELSE
19 IF input >= x”FF80” THEN
20 dqam out <= ”010” ;
21 ELSIF input >= x”FF00” AND input < x”FF80” THEN
22 dqam out <= ”011” ;
23 ELSIF input >= x”FE80” AND input < x”FF00” THEN
24 dqam out <= ”001” ;
25 ELSIF input < x”FE80” THEN
26 dqam out <= ”000” ;
27

28 END IF ;
29 END IF ;
30 end process ;
31

32 END ;
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Listing 4.6: VHDL Code for Demodulator Instantiation

1 . . . . .
2 . . . . .
3

4 dqam r : dqam port map (
5 input => input dqam r (15 downto 0) ,
6 dqam out => output ( 5 downto 3 )
7 ) ;
8 dqam i : dqam port map (
9 input => input dqam i (15 downto 0) ,

10 dqam out => output ( 2 downto 0)
11 ) ;
12 END ;

4.4.3 Demodulator Modeling in HOL

Modeling the implementation in HOL follows the same precept like any other block.

The noticeable difference between demodulator and modulator is that the latter is

designed with a process. But, unlike the design of P/S and S/P it does not have

any looping in terms of the sequential statements. We model the demodulator using

IF-THEN-ELSE constructs.

`def ∀input dqam_out.

dqam_imp (input dqam_out) =

(if BIT 15 input = F then

(if BNVAL input ≥ 384 then

dqam_out = WORD [ T; F; F ]

else

(if BNVAL input ≥ 256 ∧ BNVAL input < 384 then

dqam_out = WORD [ T; F; T ]

else

(if BNVAL input ≥ 128 ∧ BNVAL input < 256 then

dqam_out = WORD [ T; T; T ]

else

dqam_out = WORD [ T; T; F ])))
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else

(if BNVAL input >= 65408 then

dqam_out = WORD [ F; T; F ]

else

(if BNVAL input >= 65280 / BNVAL input < 65408 then

dqam_out = WORD [ F; T; T ]

else

(if BNVAL input >= 65152 / BNVAL input < 65280 then

dqam_out = WORD [ F; F; T ]

else

dqam_out = WORD [ F; F; F ]))))

The HOL model of demodulator takes two bool word input and dqam out as input

and output, respectively. We manually convert the hexadecimal numbers defined

in the VHDL code into natural numbers. The model is similar with the QAM

except the usage of one new definition. The function BNVAL, defined in the theory

bword numTheory, takes one bool word and converts it into natural number.BNVAL

helps to compare the QAM symbols easily:

`def ∀ l. BNVAL (WORD l) = LVAL BV 2 l

Next, we define the demodulator instantiation using the demodulator model:

`def ∀ input_dqam_r input_dqam_i output.

dqam_mod (input_dqam_r input_dqam_i output) =

(WORDLEN input_dqam_r = 16) ∧
(WORDLEN input_dqam_i = 16) ∧
(WORDLEN output = 3) ∧
dqam_imp input_dqam_r (WSEG 3 3 output) ∧
dqam_imp input_dqam_i (WSEG 3 0 output)

where input dqam r, input dqam i and output are arguments to dqam mod imp.

WSEG is used to map the desired portion of the word. We constrain both the inputs

to a size of 16 bits and both the outputs to a size of 3 bits based on the design at



4.4. Verification of QAM Demodulator 71

hand. Such constraints make the proof relatively less complicated without modify-

ing any parameter of the design.

We now concentrate on the model of the specification of the system before resorting

to verification. But, finding a specification for a demapper is not an easy task. Unlike

its predecessor blocks, where the specification can be derived from the standards

or from existing theory, the demodulator is dependent on the design decision of

the hardware designer. The demapping takes place according to the partition of

the constellation plane into decision regions. Figure 4.8 shows the mapping of the
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Figure 4.8: Decision Region for Demapping

regions used to model the specification. We rely on the design itself to extract
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the specification since there is no way to know how the FFT block is implemented

as the designer has port-mapped the design to a Xilinx FFT IP, which contains

proprietary RTL code that cannot be accessed. We model the whole decision region

in a table format. It can be assumed that the specification is residing in a ROM

Input
(I & Q in Real

Number )
Output

-385 000
-384 001
.... ”
.... ”

-257 001
-256 011
.... ”
.... ”

-129 011
-128 010
.... ”
.... ”
0 010
1 110
.... ”
.... ”
127 110
128 111
.... ”
.... ”
255 111
256 101
.... ”
.... ”
383 101
384 100

Table 4.3: Demapping Table for OFDM Demodulator

where the whole table is saved. We construct only one table, Table 4.3, for both

I and Q because there is no difference between them. The QAM symbol −385 or
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below maps to 000, where the minimum value depends on the size of the ROM. Any

symbol between −384 and −257 maps to 001 and the rest follows suit. We show in

Section 4.4.4 how we handle values smaller than −385 and greater than 384. Next,

we formalize the table in HOL as follows:

`def ∀ REV_I_OUT.

TABLES_DQAM REV_I_OUT =

(REV_I_OUT ¬385 = WORD F; F; F]) ∧
(REV_I_OUT ¬384 = WORD F; F; T]) ∧
.

.

(REV_I_OUT ¬257 = WORD F; F; T]) ∧
(REV_I_OUT ¬256 = WORD F; T; T]) ∧
.

.

(REV_I_OUT ¬129 = WORD F; T; T]) ∧
(REV_I_OUT ¬128 = WORD F; T; F]) ∧
.

.

(REV_I_OUT 0 = WORD F; T; F]) ∧
(REV_I_OUT 1 = WORD T; T; F]) ∧
.

.

(REV_I_OUT 127 = WORD T; T; F]) ∧
(REV_I_OUT 128 = WORD T; T; T]) ∧
.

.

(REV_I_OUT 255 = WORD T; T; T]) ∧
(REV_I_OUT 256 = WORD T; F; T]) ∧
.

.

(REV_I_OUT 383 = WORD T; F; T]) ∧
(REV_I_OUT 384 = WORD T; F; F])
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We define a function REV I OUT which takes real value as input that acts as a key

to choose the corresponding bool word value in the table. In order to keep the code

short, we show only representative value of the table. Next, we define the model of

the demodulator based on this table.

`def ∀ input demapper.

dqam_spec input demapper =

∃ mapVal.

TABLES_DQAM mapVal ∧
(demapper (& (BNVAL input)) = mapVal (& (BNVAL input)))

The definition of dqam spec describes the mapping using a bool word variable and

two functions where the latter can be existentially quantified. For every input

through function mapVal one unique value will be mapped using the defined ta-

ble. For the modeling of the instantiated demodulator block dqam mod2 imp we use

the model dqam spec and use it as an argument:

`def ∀ input_I input_R demapper_mod2.

dqam_mod2_spec input_I input_R demapper_mod2 =

dqam_spec input_I demapper_mod2 ∧ dqam_spec input_R demapper_mod2

Here, input I and input R are defined as bool word and demapper mod2 is a func-

tion defined as real → boolword. The model uses conjunction of two demodulator

specification to pass the input arguments to be checked against the table imple-

mented. The hierarchical nature of hardware design benefits the verification in the

same way it does the former.

4.4.4 Demodulator Verification

In this section we verify the demodulator block by proving that the specification

implies the implementation. Our reference is Table 4.3 and we check the implemen-

tation against it. Like before, we constrain input to 16 bits because it will always
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be of constant length; whereas we constrain out to 3 bits since each demodulator

instantiation contributes exactly half of the bits of the whole RTL block. We use

the theories—realTheory and wordTheory, to formulate our goal. Initially we set a

goal to verify the demodulator:

∀ input out.

((WORDLEN input = 16) ∧
(WORDLEN out = 3)) =⇒

(dqam_imp input out =⇒ dqam_spec input (λ mapreal. out));

The goal states that for all input and output, the demodulator implementation

implies that it will return the same output as stated in the VHDL code, and the same

output should be received by the demodulator specification from the demapping

table for the same input. We prove this goal using the existing tactics of HOL and

some lemmas built on top of existing theories. To complete the verification we state

our final goal to verify the instantiations of the demodulator blocks:

∀ input_i input_r out.

((WORDLEN input_i = 16) ∧
(WORDLEN input_r = 16) ∧
(WORDLEN out = 6)) =⇒

(dqam_mod2_imp input_i input _r out =⇒
dqam_mod2_spec input_i input_r (λ mapreal.out))‘;

The goal above constrains both input i and input r to 16 bits and out to 6 bits.

Both of the constraints are logically sound as the design does not have those pa-

rameters with any other word size. The function dqam mod2 imp takes input i and

input r as arguments and returns the corresponding mapping to boolean words.

This boolean word must match the one returned by dqam mod2 spec and thus es-

tablishes the implication. We prove this goal by rewriting using dqam spec and

other existing tacticals and theorems. By proving this goal we formally establish

the functional correctness of demodualtor block.
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4.5 Discussion

The modeling, specification and verification done above for the OFDM RTL blocks

demonstrate a way to incorporate formal methods in the verification of digital sys-

tems. We have described the implementation of the RTL blocks in HOL using formal

logic. For the QAM block, it was straightforward to embed the if-then-else HDL code

in HOL and the specification is obtained from IEEE 802.11 specification. Although

the demodulator block has a similar implementation and its formal description was

similar to the QAM block, but finding a specification to check the design could not

be done using IEEE standard since this block resides in the receiver side and the de-

signer has the freedom to choose any way to implement it. Both the specifications

for QAM and demodulator are based on look-up tables and the implementations

were proved against those. For the S/P and P/S blocks, the specifications and

implementations were also formalized after much consideration about the VHDL

PROCESS. The verification of all blocks were done using existing theories in HOL

on real numbers, natural numbers, boolean logic, lists, words and others. Many

lemmas were proved in order to aid the proof steps. Some lemmas were very trivial

but HOL requires each and every proof step to be sound and complete and that is

why there is no ambiguity in the HOL proof. The built-in rewriting tactics RW TAC

was heavily used with the powerful simplification sets augmented with the required

lemmas and theorems. In most cases, the proof strategy starts with a rough proof

sketch by hand and then formalized in HOL. But, some lemmas and intermediate

theorems were simple enough to not resort to this approach.

The main purpose for using formal verification was to find bugs in the design. We

did not find any bug in the blocks. But, some comments are in order. Namely, for

the QAM block, it is given in the standard that the input for a 64-QAM modulation

must follow the constellation diagram shown in Figure 4.1. The constellation gives
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output between −7 to 7 but the implementation used 16 bit 2’s complement num-

ber to represent these numbers while 3 bits would have done the same job. If the

standard is followed exactly, then this issue might have resulted in a bug in the de-

sign. But, the standard gives some flexibility to the designers in order to have more

precise results from the IFFT block, as explained before in Section 4.1.2. As, we

were aware about it at the time of verification, we constrained the implementation

using the proper number of bits. The same comments are applied to the DQAM

block. For the rest of the blocks we did not find any issue like this.

A pertinent question can be raised about the higher-order logic used for the mod-

eling and verification of OFDM that - whether first-order logic can also be used

for this purpose. The reason is of course automation of proofs and completeness in

some cases. It is mentioned in Chapter 3 that higher-order logic is expressive and

the variables in this logic can be functions and predicates those in turn can take

functions and predicates as arguments and return them too. Whereas first-order

logic can only quantify over objects and variables. For the design verified none of

the RTL blocks can be specified or verified using first-order logic fully. For instance,

the QAM block cannot be modeled completely using first-order logic, although the

implementation of the block—a pure combinational logic circuit—can be modeled

in first-order since simple predicate logic is used. But, the instantiated specification

of QAM block needs universal quantification on functions which were used to access

the tables of the I and Q values for modulation. For, the S/P block, first-order logic

cannot be used due to the use of existential quantification on the shift register in the

formal modeling of the implementation. The same can be told for the P/S block.

The implementation of the DQAM block can be modeled using first-order logic but

the instantiation of the demapping function for modeling the decision region for

specification needs to be universally quantified.
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There are other blocks in the OFDM that we did not verify; namely, guard interval

insertion and guard interval removal. The reason is that the RTL codes for those

blocks were not available for the design at hand. The guard insertion block in the

transmitter side has a portion of its behavioral code but the whole code mostly

contains port-mapping [7] to the IP blocks. In general, the whole design contains

many IP blocks and thus the verification of the design in its entirety is not practical

using any theorem-proving tool like HOL. Still, this chapter demonstrates the scope

and feasibility of formal methods in a comprehensive way in parts of the OFDM

RTL blocks.



Chapter 5

Error Analysis of OFDM Modem

Digital systems are approximate models of its analog counterpart. They give more

control over the output, programmable and have short product cycle. The imple-

mentation of any system in digital domain is the closest possible imitation using

the resources and expertise available. The design process starts with simulation

to analyze the effect of different parameters without considering finite precision

arithmetic—the ultimate form of realization. A designer is very careful in choosing

number of bits to represent the hardware he/she is going to design, but still various

errors do show up due to finite word-length. This contributes to errors while con-

verting designs from real to floating-point and lastly to fixed-point domain. This

section describes such error analysis of OFDM modem in a formal way. Mainly we

focus on the two computational blocks of the design—FFT and IFFT. Both blocks

are probably the most widely used DSP cores in the digital world and considered

as raison d’être of OFDM system. We use HOL to model the computational blocks

and the accumulated errors due to the conversion from one domain to the next using

different established theories and lemmas built on top of it. Such formalization of

error analysis demonstrates the feasibility of the DSP framework developed by [1]

in larger application domain.

79
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5.1 Preliminaries

5.1.1 Finite Word-Length Effect and Error Analysis

Any implemented DSP system suffers from the finite word-length constraint which

manifests in many ways. When the signal is converted to digital form, the restriction

posed by the precision bits degrade the original signal and add errors. Even when

the signal is being processed, the arithmetic errors due to the precision of processor

add to error. Lastly, when the signal is converted back from digital sequence to

analog form, yet another round of error is added. These errors can be categorized

as quantization error. For example, given two m bit numbers—b0 and b1, multiply-

ing them results in a number 2m bit long. Since most of the DSP operations are

iterative, say for filters, if the resulting 2m bit number is multiplied with another

m bit number then will generate some number of 3m bits and so on. In this case,

truncation and rounding is done in order to use the limited resource of registers to

store the increasing length of bits. Both fixed-point and floating-point arithmetic

have different ways to handle overflow and round-off error. Designers put certain re-

strictions in terms of the input that can be used in order to get optimum output and

thus categorizes a single product in multiple versions for different user need based

on precision and performance. Finite word-length effect is a phenomena which can

only be handled, but cannot be eliminated, by increasing the register length. But,

such measure cannot be of infinite length since we consider here realizable system

not the hypothetical ones. Error analysis shows how a system behaves in certain

domain because errors due to limited precision are non-linear and nonlinearity can

lead to instability, which is beyond the scope this thesis.
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5.1.2 Fast Fourier Transform (FFT)

A prelude to discrete Fourier transform (DFT) is needed before we introduce fast

Fourier transform or commonly known with its acronym FFT. The DFT is a math-

ematical procedure used to determine the harmonic content of a discrete signal se-

quence. Its origin is continuous Fourier transform but digital computer has helped

to define the notation in discrete frequency domain sequence as

A(p) =
N−1∑
n=0

x(n) e−j2πnp/N (5.1)

where x(n) is a discrete sequence of time domain sampled values of the continuous

variable x(t) and j =
√−1. Normally, e−j2πnp/N is written as (WN)np for brevity,

where (WN) = e−j2π/N , which is complex roots on unity and called as twiddle

factors. For N input time domain sample values, the DFT determines the spectral

content of the input at N equally spaced frequency points. This complicated, al-

though straightforward, looking DFT equation is equally inefficient for larger DFT

points. Evaluation of those sums would take O(n2) arithmetic operations which

means it has quadratic complexity. In 1965, Cooley and Tuckey [14] described an

efficient algorithm to implement DFT, now known as FFT. FFT can compute the

same result in O(n log n) operations and thus its computation complexity is lin-

earithmic. We take radix-2 FFT algorithm as an example to illustrate the concept.

In radix-2 the DFT size has to be an integral power of two, say, N = 2m and m

is a positive integer. If we want to calculate an 8-point DFT, then according to

Equation (5.1) we have to perform N2 or 64 complex multiplications. For the same

result using FFT the number of complex multiplications to be performed can be

approximated as:
N

2
. log2 N

This is a significant reduction comparing with the DFT computation for large num-

ber of N . When N=8192, the DFT must calculate 1000 complex multiplications for

each complex multiplication in the FFT [41]. FFT can be represented best using a
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signal flow graph [44] that follow four rules—(1) signals travel along branches only

in the direction of the arrows; (2) a signal travelling along any branch is multiplied

by the transmission of that branch; (3) the value of any node variable is the sum of

all signals entering the node; (4) the value of any node variable is transmitted on

all branches leaving that node. Such a graph for an 8-point DFT is shown in Fig-

ure 5.1. Every node in the figure corresponds to a 2-point DFT. FFT structures can
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Figure 5.1: An 8-point Radix-2 FFT Signal Flow Graph

be decimation-in-time (DIT) and decimaion-in-frequency (DIF). DIT coresponds to

having the twiddles before the 2-point DFT node points, while DIF corresponds to

having the twiddles after the two-point DFT. We explain only the DIF structure,

which can be easily extended to develop the DIT structure [52].

To illustrate DIF, we define Equation (5.1) using the twiddle factors in following

manner

A(p) =
N−1∑
n=0

x(n) (WN)np (5.2)
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Let each integer p, p = 0, 1, 2, . . . , N − 1, be expanded into a binary form as

p = 2m−1p0 + 2m−2p1 + · · ·+ 2pm−2 + pm−1, pk = 0 or 1 (5.3)

p∗ denote the number corresponding to the reverse bit sequences of p, i.e.,

p∗ = 2m−1pm−1 + 2m−2pm−2 + · · ·+ 2p1 + p0 (5.4)

and {Ak(p)}N−1
p=0 denote the N complex numbers calculated at the kth step. Then

the DIF FFT algorithm can be expressed as [36]

Ak+1(p) =





Ak(p) + Ak(p + 2m−1−k) if pk = 0

[Ak(p− 2m−1−k)− Ak(p)] wk(p) if pk = 1
(5.5)

where wk(p) is a power of WN given by wk(p) = (WN)zk(p), and

zk(p) = 2k (2m−1−kpk + 2m−2−kpk+1 + · · ·+ 2pm−2 + pm−1)− 2m−1pk (5.6)

Equation (5.5) is carried out for k = 0, 1, 2, . . . , m − 1, with A0(p) = x(p). It can

be shown that at the last step {Am(p)}N−1
p=0 is the discrete Fourier coefficients in

rearranged order [20]. Specifically, Am(p) = A(p∗) with p and p∗ expanded and

defined as in Equations 5.3 and 5.4, respectively. We will see how we extend this

DIF structure of radix-2 to radix-4 64-point FFT in a later section in order to model

the FFT used in the OFDM design under verification.

5.1.3 Inverse FFT

Inverse fast Fourier transform, later written as IFFT, is used to convert signals from

frequency domain to time domain. For this, the existing FFT algorithm can be used

with little modification. We explain two methods to carry out such computation [41].

Inverse FFT Method I

Equation (5.1) can be rewritten for IFFT as

x(n) =
1

N

N−1∑
p=0

A(n)(WN)−np (5.7)
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The only changes made are, multiplying the FFT equation with
1

N
and changing

the sign of the twiddle factor. In the first approach, we take complex conjugate of

both sides of Equation (5.7) to give us

x∗(n) =
1

N

[
N−1∑
p=0

A(n)(WN)−np

]∗
(5.8)

Now, we apply the properties of complex numbers—“the conjugate of a product is

equal to the product of the conjugates”. That is, if c = ab, then c∗ = (ab)∗ = a∗b∗.

Applying this property to the right hand side of Equation (5.8) we can show that

Fast Fourier 
Transform

÷N

÷N

Xreal(m)

Ximag(m)

-1-1

Xreal(n)

Ximag(n)

Figure 5.2: Method I for IFFT Calculation

x∗(n) =
1

N

N−1∑
p=0

A(n)∗((WN)−np)∗

=
1

N

N−1∑
p=0

A(n)∗(WN)np

(5.9)

There is a similarity between the original forward DFT expression in Equations (5.1)

and 5.9. By performing a forward DFT on the conjugate of the A(p) in Equa-

tion (5.9), and divide the result by N , we get the conjugate of desired time samples

x(n). Taking the conjugate of both sides of last equation gives a more straightfor-

ward expression for x(n)

x(n) =
1

N

[
N−1∑
p=0

A(n)∗(WN)np

]∗
(5.10)

Figure 5.2 illustrates this method.
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Inverse FFT Method II

The second method does not apply the conjugation rather it uses very clever FFT

scheme. The real and imaginary parts of the complex data sequence are swapped to

accomplish the act. Figure 5.3 shows the idea. To see why this process works, we

look at the DFT Equation (5.1) again while separating the input A(p) term into real

and imaginary parts and remembering the Euler’s formula from complex analysis

that, ejθ = cos θ + j sin θ. This time we dont use the twiddle factor verson of inverse

DFT. We expand Equation (5.1) into real and imaginary parts

x(n) =
1

N

N−1∑
p=0

A(p)ej2πnp/N

=
1

N

N−1∑
p=0

[Areal(p) + jAimag(p)][cos(2πnp/N) + j sin(2πnp/N)]

(5.11)

Multiplying the complex terms in Equation (5.11) gives us

x(n) =
1

N

N−1∑
p=0

[Areal(p) cos(2πnp/N)− Aimag(p) sin(2πnp/N)]

+ j[Areal(p) sin(2πnp/N) + Aimag(p) cos(2πnp/N)]

(5.12)

With A(p) = Areal(p) + jAimag(p), then swapping these terms gives us

Aswap(p) = Aimag(p) + jAreal(p) (5.13)

The forward DFT of Aswap(p) is

1

N

N−1∑
n=0

[Aimag(p) + jAreal(p)][cos(2πnp/N)− j sin(2πnp/N) (5.14)

Fast Fourier 
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Figure 5.3: Method II for IFFT Calculation
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Multiplying the complex terms in Equation (5.14) gives us

x(n) =
1

N

N−1∑
n=0

[Aimag(p) cos(2πnp/N) + Areal(p) sin(2πnp/N)]

+ j[Areal(p) cos(2πnp/N)− Aimag(p) sin(2πnp/N)]

(5.15)

Swapping the real and imaginary parts of the result and dividing the output by N

gives us the desired IFFT result, which is exactly equal to Equation (5.12).

x(n) =
1

N

N−1∑
n=0

[Areal(p) cos(2πnp/N)− Aimag(p) sin(2πnp/N)]

+ j[Aimag(p) cos(2πnp/N) + Areal(p) sin(2πnp/N)]

(5.16)

Above computation method for IFFT saves both space and resources in any hard-

ware implementation by reusing the FFT block itself. Figure 5.3 illustrates the

method graphically.

5.2 FFT-IFFT Combination as a Model for Error

Analysis

In this section we describe the combination of FFT and IFFT which forms the

basis for error analysis of the OFDM modem. Before that, we explain on what

basis we take FFT-IFFT combination as the model for the error analysis of OFDM

modem. The design at hand has eight main blocks—quadrature amplitude modula-

tor, demodulator, parallel to serial converter, serial to parallel converter, FFT and

IFFT. Among all the blocks only FFT and IFFT are computational blocks which

does arithmetic operation. Other blocks carry out merely mapping operations of

bits from one domain to another. For example, the quadrature amplitude modula-

tor performs arithmetic operation in theory, but the digital implementation of this

modulator is just a look-up table by mapping incoming data to some other. No

arithmetic operation is involved during the mapping process and so no error oc-

curs in this block. For the demodulator, there are comparison operations preceding
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a look-up table and this also does not generate any error. The parallel to serial

and serial to parallel block latches data for certain clock cycles and outputs data

either bit by bit or in parallel fashion without altering the data by means of any

computation. But, this does not imply that there is no error involved in the commu-

nication system. Of course, parameters like bit error ratio (BER) in QAM or error

in transmission and receiving all are still involved but has no effect in the hardware

design and not a point of interest in the current discussuion. We only concentrate

here in the error issues related with the computation inside any block pertaining

to finite word-length, as described in Section 5.1.1. Every block has floating-point

or fixed-point data as input and output, but the resolution of the number used is

sufficient to handle all possible input as well as output, so there cannot be any un-

derflow or overflow. Moreover, the operation inside the blocks does not alter the

data except mapping it to different domain. But, the same cannot be told about

the FFT and IFFT blocks. Both have same types of data as input or output, but

the multiplication and addition operation causes overflow or underflow. Converting

from floating-point to fixed-point gives rise to such phenomena and the lost preci-

sion contributes to the error. Bolstered by above justification, we continue the error

analysis with FFT-IFFT combination. The combination is very simple to form and

we use Equation (5.1) and 5.7 in a nested format to do that. We apply IFFT on x(n)

since inverse transform precedes FFT in the OFDM modem, and then we compute

FFT on the result,

x(n) =
N−1∑
n=0

[
1

N

N−1∑
p=0

x(n)(WN)−np

]
(WN)−np

=
1

N

N−1∑
n=0

[
N−1∑
p=0

[
x(n)(WN)−np

]
]

(WN)−np

(5.17)

Above, we apply only the basic equation to substitute corresponding values. Later,

we use Equation (5.17) to derive more complicated nesting for error analysis.
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5.3 Abstract Modeling of FFT-IFFT

In this section we develop the equations behind FFT-IFFT combination in order

to model them in HOL. We make extensive use of the equations developed above.

In OFDM, 64-point radix-4 FFT/IFFT is used. In the later text, FFT and IFFT

can be understood interchangeably. The reason why we did not formally verify the

RTL design of FFT is due to impracticability of its verification using HOL. The

design uses a Xilinx high performance 64-point complex FFT/IFFT IP core which

has codes comprised of more than 300 pages spanning multiple files. In comparison

with previous IP cores of FFT this version is more optimized but distributed in

nature since it uses many base components shared by many other IP blocks of

Xilinx. This adds to the complexity of embedding such huge amount of design in

HOL with networks of entities, architectures, port-mapped components, procedures

and so on. So, we stick to the theoretical derivation of FFT and IFFT. Figure 5.4

shows the FFT-IFFT combination based on the discussion in former sections. We

are to derive the equations for this system. We rewrite Equation (5.3) in terms of

CONJUGA
TION

FFT 1/N FFT
CONJUGA

TION

x(n2,n1,n0) B(q2,q1,q0)
A(p2,p1,p0)x* A3 A*

3

Figure 5.4: Construction of FFT-IFFT

radix-4,

p = 4m−1p0 + 4m−2p1 + · · ·+ 4pm−2 + pm−1, pk = 0, 1, 2, 3 (5.18)

Since 64-point FFT is used, writing Equation (??) in terms of N = 64 = 43 gives us

p = p0 + 4p1 + 16p2 where p2, p1, p0 = 0, 1, 2, 3 (5.19)
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The n can also be written in exactly same way

n = n0 + 4n1 + 16n2 where n2, n1, n0 = 0, 1, 2, 3 (5.20)

The derivation is composed of three nested summation. When input signal is

x(n2, n1, n0), then the conjugate of it is written as x∗(n2, n1, n0). This conjugated

signal is the innermost loop in the derivation and we apply FFT based on Equa-

tion (5.1) which results in A1(p0, n1, n0). A1 acts as input of the middle summation

and the result, A2(p0, p1, n0), in turn is the input of exterior summation. W64 is the

twiddle factor due to N = 64. Now, we take a look at the formulation

A1(p0, n1, n0) =
3∑

n2=0

x∗(n2, n1, n0)(W64)
16p0n2

A2(p0, p1, n0) =
3∑

n1=0

A1(p0, n1, n0)(W64)
(4p1+p0)4n1

A3(p0, p1, p2) =
3∑

n0=0

A2(p0, p1, n0)(W64)
(16p2+4p1+p0)n0

A(p2, p1, p0) =
1

64
A∗

3(p0, p1, p2)

(5.21)

Expanding the term “A” gives us the full expression of IFFT,

A(p2, p1, p0) =
3∑

n0=0

3∑
n1=0

3∑
n2=0

x(n2, n1, n0)(W64)
−[16p0n2+(4p1+p0)4n1+(16p2+4p1+p0)n0]

(5.22)

The same derivations are used in a different way to develop radix-4 64-point FFT

equations. In lieu of n, q is used for this derivation-

q = q0 + 4q1 + 16q2 where q2, q1, q0 = 0, 1, 2, 3 (5.23)

We formulate FFT as Equation (5.24) and the input is A(p2, p1, p0) which according

to Figure 5.4 accepts the output of IFFT as its input and apply the fast fourier
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transform. This justifies why we share the variable p in both derivation

B1(q0, p1, p0) =
3∑

p2=0

A(p2, p1, p0)(W64)
16q0p2

B2(q0, q1, p0) =
3∑

p1=0

B1(q0, p1, p0)(W64)
(4q1+q0)4p1

B3(q0, q1, q2) =
3∑

p0=0

B2(q0, q1, p0)(W64)
(16q2+4q1+q0)p0

B(q2, q1, q0) = B3(q0, q1, q2)

(5.24)

Expanding the term “B” gives the expanded version of IFFT with all the summa-

tions

B(q2, q1, q0) =
3∑

p0=0

3∑
p1=0

3∑
p2=0

A(p2, p1, p0)(W64)
−[16q0n2+(4q1+q0)4p1+(16q2+4q1+q0)p0]

(5.25)

Rewriting Equation (5.25) with Equation (5.24) we get the full expression of FFT-

IFFT combination

B(q2, q1, q0) =
1

64

3∑
p0=0

3∑
p1=0

3∑
p2=0

3∑
n0=0

3∑
n1=0

3∑
n2=0

x(n2, n1, n0)

(W64)
−[16p0n2+(4p1+p0)4n1+(16p2+4p1+p0)n0]

(W64)
[16q0n2+(4q1+q0)4p1+(16q2+4q1+q0)p0]

(5.26)

The above equation looks clumsy and verbose, we rewrite it as following

B(q2, q1, q0) =
1

64

∑
p

∑
n

x(n2, n1, n0)(W64)
(L−M)

where,

∑
p

=
3∑

p0=0

3∑
p1=0

3∑
p2=0

∑
n

=
3∑

n0=0

3∑
n1=0

3∑
n2=0

L = 16q0n2 + (4q1 + q0)4p1 + (16q2 + 4q1 + q0)p0

M = 16p0n2 + (4p1 + p0)4n1 + (16p2 + 4p1 + p0)n0

(5.27)
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With this final equation we finish all the required mathematics needed to develop

the formal modeling of the error analysis. The idea is to apply inverse fast fourier

transform on one signal and then the output is applied with fast fourier transform. In

the ideal case, the final output should be equal to input. But, in real implementation

it is never the case and that is the topic of discussion in the text to follow.

5.4 Modeling of FFT-IFFT Combination in Dif-

ferent Number Domains

In this section we explain the model developed in former section in real, floating-

point and fixed-point domain. Illustrating the model in one number system can

easily be extended for others.

We start with the Real number domain. The signal x(n) and twiddle factor W64 are

complex numbers and can be written in terms of real and imaginary component of

theirs. In Equation (5.27) these two functions are multiplied with each other. From

the basic properties of complex numbers, we know that if two complex numbers

a+ jb and c+ jd are multiplied with each other, then the resulting complex number

can be written as m + jn where, m = ac− bd and n = ad + bc due to the properties

of j =
√−1. Based on this discussion, we denote the real and imaginary part of

x(n) and W64 like this

C0 = Re[x] (5.28)

D0 = Im[x] (5.29)

U64 = Re[W64] (5.30)

V64 = Im[W64] (5.31)

The notations C0 and U64 denote the real parts; D0 and V64 denote the imaginary

parts of x(n) and W64, respectively. Next, we denote C(q2, q1, q0) as the real part
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and D(q2, q1, q0) as the imaginary part of B(q2, q1, q0) and rewrite the equation as

following,

C(q2, q1, q0) =
1

64

∑
p

∑
n

C0(n2, n1, n0)(U64)
(L−M) −D0(n2, n1, n0)(V64)

(L−M)

(5.32)

D(q2, q1, q0) =
1

64

∑
p

∑
n

C0(n2, n1, n0)(V64)
(L−M) + D0(n2, n1, n0)(U64)

(L−M)

(5.33)

Mimicking the analysis of real numbers we ought to define the equations for floating-

point and fixed-point number and state fl(.) and fxp(.) as floating-point and fixed-

point respectively. The characters prime and double primes are used to point to

floating-point and fixed-point numbers and we will stick to this convention in any

analysis set forth. Using these notations we state the following short-hands,

C
′
0 = fl(Re[x]) (5.34)

C
′′
0 = fxp(Re[x]) (5.35)

D
′
0 = fl(Im[x]) (5.36)

D
′′
0 = fxp(Im[x]) (5.37)

Unlike Re[.] and Im[.], the notations fl(.) and fxp(.) do not extract any real and

imaginary parts, rather they convert the number to the nearest floating and fixed

point, respectively. A question of precision might be arisen and that is the core of

this chapter which we purport to explain. We can now write Equation (5.27) in

terms of floating-point and fixed-point number using the equations (5.34) to (5.37)

C
′
(q2, q1, q0) = fl

(
1

64

∑
p

∑
n

C0(n2, n1, n0)(U64)
(L−M) −D0(n2, n1, n0)(V64)

(L−M)

)

(5.38)

D
′
(q2, q1, q0) = fl

(
1

64

∑
p

∑
n

C0(n2, n1, n0)(V64)
(L−M) + D0(n2, n1, n0)(U64)

(L−M)

)

(5.39)
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C
′′
(q2, q1, q0) = fxp

(
1

64

∑
p

∑
n

C0(n2, n1, n0)(U64)
(L−M) −D0(n2, n1, n0)(V64)

(L−M)

)

(5.40)

D
′′
(q2, q1, q0) = fxp

(
1

64

∑
p

∑
n

C0(n2, n1, n0)(V64)
(L−M) + D0(n2, n1, n0)(U64)

(L−M)

)

(5.41)

where, C
′
and D

′
are the floating-point equivalents of C and D; and C

′′
and D

′′
are

the fixed-point equivalents of C and D.

5.5 Error Analysis of FFT-IFFT Combination

In this section we discuss the error analysis of FFT-IFFT combination. We start

with an introduction of floating-point and fixed-point error model and then introduce

error in the models developed in previous section. In order to derive the error while

converting from real number to floating-point, the two corresponding equations are

subtracted and for the real to fixed-point conversion the error analysis is the same.

It is also required to analyze the error incurred in conversion between floating-point

number to fixed-point and that can be calculated using the direct equations as done

above or subtracting the result of the real to floating-point and real to fixed-point.

5.5.1 Error Analysis Models

Floating-Point Error Model

In analyzing the effect of floating-point roundoff, the effect of rounding is presented

multiplicatively. The following theorem is the most fundamental in floating-point

rounding theory which gives a convenient expression for the relative error committed

if a given real number x is rounded to the closest floating-point number xR [59, 18, 1].
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Theorem 1 If x is a real number within the floating-point range, then

xR = x(1 + δ), where |δ| ≤ 2−p

Here, p is the precision of the floating-point format. Now, we apply this theorem to

the arithmetic operations. Let ∗ denote any of the operations +, −, ×, ÷ and we

use fl(.) to state that,

fl(x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p

The theorem relates the floating-point arithmetic operations such as addition, sub-

traction, multiplication and division to their abstract mathematical counterparts

according to the corresponding errors. A point to note is that the error accumulates

for any floating-point operation multiplicatively and this is what makes the final

accumulated error a large magnitude.

Fixed-Point Error Model

While the rounding error for floating-point arithmetic enters into the system multi-

plicatively, it is an additive component for fixed-point arithmetic. In this case, the

fundamental error analysis theorem can be stated as [59, 18, 1],

Theorem 2 If x is a real number within the fixed-point range, then

xR = (x + ε), where |ε| ≤ 2−fracbits (X)

and fracbits is the number of bits that are to the right of the binary point in the

given fixed-point format. The fractional X-bit two’s complement number represen-

tation evenly distributes 2X quantization levels between −1 and 1 − 2−(X−1). The

spacing between quantization levels is then,

2

2X
= 2−(X−1) = ∆X

Any signal value falling between two levels is assigned to one of the two levels. Now,

as before we state ∗ to denote any of the fixed-point arithmetic operations, +, −, ×
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or ÷ with a given format X. Then

fxp(x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X)

5.5.2 Introducing Error in Design

In this section we analyze the error introduced in the floating-point and fixed-point

design only. The real part of floating-point, C ′ , can be written with all the errors

due to floating-point round-off as follows,

C
′
(q2, q1, q0) =

1

64

[∑
p

∑
n

((
C
′
0(n2, n1, n0)(U64)

(L−M)

(1 + δ1024p2+256p1+64p0+16n2+4n1+n0)
)
−

(
D
′
0(n2, n1, n0)(V64)

(L−M)

(1 + ε1024p2+256p1+64p0+16n2+4n1+n0)
))

(1 + ξ1024p2+256p1+64p0+16n2+4n1+n0)

4095∏
i=1024p2+256p1

+64p0+16n2
+4n1+n0

(1 + λi)

]
(1 + τ)(1 + ρ)

(5.42)

where δ it accounts for the round-off error due to multiplication of C
′
0 and (U64)

(L−M)

according to Theorem 1. The function ε represents the error due to the round-off

error after the multiplication of D
′
0 and (V64)

(L−M). The error due to the subtrac-

tion of [C
′
0(U64)

(L−M) − D
′
0(V64)

(L−M)] is represented using ξ. Based on the errors

due to one single iteration, error due to the two summations
∑

p

∑
n (which is an

abbreviation for six summations—
∑3

p0=0

∑3
p1=0

∑3
p2=0

∑3
n0=0

∑3
n1=0

∑3
n2=0) can be

stated as products of λ where the upper index is set as 4095 due to six iterations

each ranging from 0 to 3 giving 4 × 4 × 4 × 4 × 4 × 4 − 1 = 4095. It should have

eclipsed all the rounding errors in the whole system of equation, but still the fraction

1
64

incurs two round-off errors. One of them due to the division of 1 by 64, denoted

as τ and the other is for the multiplication thereafter with the rest of the equations,
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denoted as ρ. These errors can be generalized on the same line of reasoning for the

other equations. The error related with the imaginary part D
′
of the floating-point

can be written as

D
′
(q2, q1, q0) =

1

64

[∑
p

∑
n

((
C
′
0(n2, n1, n0)(V64)

(L−M)

(1 + δ
′′
1024p2+256p1+64p0+16n2+4n1+n0

)
)
−

(
D
′
0(n2, n1, n0)(U64)

(L−M)

(1 + ε
′′
1024p2+256p1+64p0+16n2+4n1+n0

)
))

(1 + ξ
′′
1024p2+256p1+64p0+16n2+4n1+n0

)

4095∏
i=1024p2+256p1

+64p0+16n2
+4n1+n0

(1 + λ
′′
i )

]
(1 + τ

′
)(1 + ρ

′
)

(5.43)

where, the previous function symbols used in Equation (5.42) are modified with

double/single prime, namely δ
′′
, ε

′′
, ξ

′′
, λ

′′
, τ

′
, ρ

′
; but the meaning remains the

same. A point to emphasize is that all the error functions are in multiplication

relation with the variable and this is what makes the floating-point round-off error

much complicated. For the fixed-point domain, the error functions are additive as

explained in Theorem 2. So, the functions are not multiplied but rather added at

the end of the equation. The error functions for the real part of fixed-point number

C
′′

are denoted as δ
′
, ε

′
, ξ

′
, λ

′
,τ

′′
, and ρ

′′
; while referring to the same type of

error functions as discussed before.
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C
′′
(q2, q1, q0) =

1

64

[∑
p

∑
n

C
′′
0 (n2, n1, n0)(U64)

(L−M) −D
′′
0 (n2, n1, n0)(V64)

(L−M)+

δ
′
1024p2+256p1+64p0+16n2+4n1+n0

+

ε
′
1024p2+256p1+64p0+16n2+4n1+n0

+

ξ
′
1024p2+256p1+64p0+16n2+4n1+n0

+

4095∑
i=1024p2+256p1

+64p0+16n2
+4n1+n0

λ
′
i

]
+ τ

′′
+ ρ

′′

(5.44)

Equation (5.45), which is the imaginary part of fixed-point number is rewritten with

the error functions denoted as δ
′′′

, ε
′′′

, ξ
′′′

, λ
′′′

,τ
′′′

, and ρ
′′′

.

D
′′
(q2, q1, q0) =

1

64

[∑
p

∑
n

C
′′
0 (n2, n1, n0)(V64)

(L−M) −D
′′
0 (n2, n1, n0)(U64)

(L−M)+

δ
′′′
1024p2+256p1+64p0+16n2+4n1+n0

+

ε
′′′
1024p2+256p1+64p0+16n2+4n1+n0

+

ξ
′′′
1024p2+256p1+64p0+16n2+4n1+n0

+

4095∑
i=1024p2+256p1

+64p0+16n2
+4n1+n0

λ
′′′
i

]
+ τ

′′′
+ ρ

′′′

(5.45)

Adding the error parameters leaves us just one step away before we start to formalize

the analysis after deriving the error that occurred in the conversion from one domain

to another. We start with the real to floating-point conversion and the round-off

error difference between the complex floating-point implementation and complex

real implementation of FFT-IFFT denoted as e(q2, q1, q0)

e(q2, q1, q0) = [C
′
(q2, q1, q0) + jD

′
(q2, q1, q0)]− [C(q2, q1, q0) + jD(q2, q1, q0)]

= C
′
(q2, q1, q0)− C(q2, q1, q0) + j[D

′
(q2, q1, q0)−D(q2, q1, q0)]

(5.46)
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Rewriting the above equation using Equations (5.38) and (5.39) gives the expanded

version Equation (5.47)

e(q2, q1, q0) =
1

64

[∑
p

∑
n

(
C
′
0(n2, n1, n0)(U64)

(L−M) −D
′
0(n2, n1, n0)(V64)

(L−M)

− C0(n2, n1, n0)(U64)
(L−M) + D0(n2, n1, n0)(V64)

(L−M)
)

+ j
(
C
′
0(n2, n1, n0)(V64)

(L−M) + D
′
0(n2, n1, n0)(U64)

(L−M)

− C0(n2, n1, n0)(V64)
(L−M) −D0(n2, n1, n0)(U64)

(L−M)
)]

(5.47)

Further rearranging in terms of (U64)
(L−M) and (V64)

(L−M) gives

e(q2, q1, q0) =
1

64

[∑
p

∑
n

(
C
′
0(n2, n1, n0)− C0(n2, n1, n0)

+ j
(
−D

′
0(n2, n1, n0) + D0(n2, n1, n0)

))
(U64)

(L−M)

+

(
D
′
0(n2, n1, n0)−D0(n2, n1, n0)

+ j
(
C
′
0(n2, n1, n0)− C0(n2, n1, n0)

))
(V64)

(L−M)

]

(5.48)

In order to have a terse format for the final error analysis, we assume

e0(q2, q1, q0) = C
′
0(n2, n1, n0)− C0(n2, n1, n0) + j

(
D
′
0(n2, n1, n0)−D0(n2, n1, n0)

)

(5.49)

Using the property of complex numbers and Equation (5.49) and taking the common

terms, Equation (5.48) is written in terms of e0,

e(q2, q1, q0) = e0(n2, n1, n0)
[
(U64)

(L−M) + j(V64)
(L−M)

]
(5.50)

Noting that both (U64)
(L−M) and (V64)

(L−M) are just real and imaginary parts of

(W64)
(L−M) as stated in Equations (5.30) and (5.31), we can write

e(q2, q1, q0) = e0(n2, n1, n0)(W64)
(L−M) (5.51)
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Finally, we write the error functions separately as f(n,p) in order to distinguish the

element from the rest. Following equation expresses the round-off error accumulated

due to real to floating-point conversion,

e(q2, q1, q0) =
1

64

[∑
p

∑
n

e0(n2, n1, n0)(W64)
(L−M) + f(n,p)

]
(5.52)

where, f(n,p) is written according to Equations (5.42),(5.43) and (5.48)

f(n,p) = C
′
0(n2, n1, n0)(U64)

(L−M)
[
(1 + δ(p,n))(1 + ξ(p,n))

4095∏

i=(p,n)

(1 + λi)(1 + τ)− 1
]

−D
′
0(n2, n1, n0)(V64)

(L−M)
[
(1 + ε(p,n))(1 + ξ(p,n))

4095∏

i=(p,n)

(1 + λi)(1 + τ)− 1
]

+ j

[
C
′
0(n2, n1, n0)(V64)

(L−M)
[
(1 + δ

′′
(p,n))(1 + ξ

′′
(p,n))

4095∏

i=(p,n)

(1 + λ
′′
i )(1 + τ

′
)− 1

]

−D
′
0(n2, n1, n0)(U64)

(L−M)
[
(1 + ε

′′
(p,n))(1 + ξ

′′
(p,n))

4095∏

i=(p,n)

(1 + λ
′′
i )(1 + τ

′
)− 1

]
]

(5.53)

The two variables n and p are used for the function as a short-hand for n = n2, n1, n0

and p = p2, p1, p0.

The above analysis can be adopted similarly to come at the following error function,

e
′
(q2, q1, q0), for the round-off error due to conversion from real to fixed-point domain

e
′
(q2, q1, q0) = C

′′
(q2, q1, q0)− C(q2, q1, q0) + j

[
D
′′
(q2, q1, q0)−D(q2, q1, q0)

]

(5.54)

Denoting the error as f ′(n,p) the final error can be written as

e
′
(q2, q1, q0) =

1

64

[∑
p

∑
n

e0(n2, n1, n0)(W64)
(L−M) + f ′(n,p)

]
(5.55)

where, f ′(n,p) is constructed according to Equations (5.38), (5.38), (5.44), and



5.5. Error Analysis of FFT-IFFT Combination 100

(5.45).

f ′(n,p) =δ
′
(p,n) + ε

′
(p,n) + ξ

′
(p,n) +

4095∑

i=(p,n)

λ
′
i + τ

′

+ j


δ

′′′
(p,n) + ε

′′′
(p,n) + ξ

′′′
(p,n) +

4095∑

i=(p,n)

λ
′′′
i + τ

′′′




(5.56)

Equation 5.56 is much more simplified than its real to floating-point counterpart

since this error is additive but not multiplicative To derive the errors due to floating-

point to fixed-point conversion we do not resort to derive those mammoth equations

as above, rather we use the previous derivations. If the two error results derived

previously are subtracted then the result gives the error we are looking for. Denoting

this error as e
′′
(q2, q1, q0), it can be written as

e
′′
(q2, q1, q0) = e

′
(q2, q1, q0)− e(q2, q1, q0) (5.57)

To summarize all the derivations above, we denote ℵ as any of the three errors -

f(n,p), f ′(n,p) or f ′′(n,p) for e
′′
; and η to denote the degree of the primes of e,

then it can be written

eη(q2, q1, q0) =
1

64

[∑
p

∑
n

e0(n2, n1, n0)(W64)
(L−M) + ℵ

]
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Figures 5.5 to 5.7 summarize all the error analysis in a flow-graph format discussed

so far. Figure 5.5 and 5.6 refer to the errors incur in the real parts of the floating-

point and fixed-point model. Starting with C
′
0(n2, n1, n0) from the left branch of

Figure 5.5 it is multiplied with U64(L −M) as shown between the edge of the first

two nodes. Next, the error occurred in the previous operation is multiplied in the

edge between second and third node. In the same way we can reach in the similar

calculation for D
′
0(n2, n1, n0). When the two branches meet in the bottom node,

they are subtracted from each other due to multiplication of the D
′
0 with −1 and

this operation adds to the next error which is expressed as 1 + ξN,P . Here, (N, P )

refers to 1024p2 + 256p1 + 64p0 + 16n2 + 4n1 + n0. Now, this error is labeled as

E
′
(p2, p1, p0, n2, n1, n0).

If the same calculation is repeated for C
′′
0 (n2, n1, n0) and D

′′
0 (n2, n1, n0), the error

at the end is labeled as E
′′
(p2, p1, p0, n2, n1, n0). But, this time the error func-

tions are all additive not multiplicative. We now look into figure 5.6 which is

the continuation of figure 5.5 to define the errors related with the six summa-

tions each having four iterations. As stated before, the error here is denoted as

1 + λi for floating-point and λi for fixed-point. The error calculation starts from

E
′
(0, 0, 0, 0, 0, 0) and E

′′
(0, 0, 0, 0, 0, 0) and the corresponding errors are multiplied

or added till E
′
(3, 3, 3, 3, 3, 3) and E

′′
(3, 3, 3, 3, 3, 3). At this point, we are left with

two more errors. The branch starting with node label 1
N

adds errors due to divi-

sion operation, which are denoted as ρ
′
and 1 + ρ for fixed-point and floating-point

respectively. And then the same constant is multiplied with rest of the what is

calculated so far and adds another error denoted as τ
′
and 1 + τ for fixed-point and

floating-point respectively. In the end C
′
and C

′′
are found as we calculated earlier.

The above discussion can be applied as it is for the calculation of the imaginary part

of floating-point and fixed-point model as shown in Figure 5.7 and 5.8.
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5.6 Formal Error Analysis in HOL

Any complex function can be modeled in HOL in a hierarchical way. It is evident

from preceding sections that a hierarchical approach is followed all the way to derive

the final equations keeping in mind that hardware designs are hierarchical and this

analysis then can be used readily to formally analyze the accumulation of round-off

error. We use different theories established in HOL to model the final error analysis.

It requires to start from the construction of complex number and then complex sum

in all three number domains. And, then these theories will be used to model FFT

and IFFT formally at the algorithmic level, which in turn will be used to model

the FFT-IFFT combination. Finally, the error analysis lemmas and theories are

developed to end with the formalization.

5.6.1 Ideal Complex Number Modeling

In order to define complex numbers in HOL a mechanism exists using type bijection

that defines new subtypes based on the existing ones. Such types are defined by

introducing a new type constant and asserting an axiom that characterizes it as

denoting a set in bijection with a non-empty subset of an existing type [32]. The

complex numbers are isomorphic to R × R, where R denotes real numbers. The

seminal work of John Harrison [24] established the theory of real numbers in HOL.

A mutually inverse type bijection of complex number is given as

complex_tybij =

`def (∀ a. complex (coords a) = a) ∧
∀ r. K T r = (coords (complex r) = r)

where complex : R2 → C and coords : C→ R2. Although, all the complex number

theories are well developed, it is imperative that some important definitions are

mentioned again for the sake of clarity. The real and imaginary part of a complex

number is defined using the pairTheory [33] as follows:
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Re = `def ∀ z. Re z = FST (coords z)

Im = `def ∀ z. Im z = SND (coords z)

where, FST and SND extracts the first and second element of a pair, respectively.

Since, conjugation is one of the major component in IFFT we define it as CNJ by

simply inverting the sign of imaginary part,

CNJ = `def ∀ z. CNJ z = complex (Re z,¬Im z)

The principal n-roots of unity is defined using Euler’s identity which makes it very

easy to implement

principal_root_1 =

`def ∀ n N.

principal_root_1 n N =

complex (cos ¬(2 :real) * pi * n / N),sin ¬(2 :real) * pi * n / N))

A trivial definition of the complex constant multiplied with the rest of the summa-

tions is defined as,

complex_64 = `def complex_64 = complex (1 / 64,0)

We omit to define compadd, compsub, compmul, complex add, complex sub, complex mul

and some other definitions to retain brevity of the thesis. Here, compadd, compsub,

and compmul take a pair of real number and then returns a pair of real num-

ber by adding, multiplying or subtracting the numbers. Whereas, complex add,

complex sub, and complex mul uses complex tybij to convert the corresponding

addition, subtraction and multiplication done using real numbers, but this time the

input type is of complex number rather than real. Since, complex sum—a recursive

definition used heavily throughout the definitions to follow, we mention it here

complex_sum =

`def ∀ f n m.

(complex_sum (n,0) f = complex (0,0)) ∧
(complex_sum (n,SUC m) f =

complex_sum (n,m) f + f (n + m))
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it models the summation shown in the equations described in the previous sections,

which takes a pair (n,0) for the upper and lower index and a function f. Having

described the most necessary definitions we formalize the IFFT model described in

Equation (5.24). In order to have a one to one relation between the mathematical

symbols of the equations and HOL code, we tried utmost to use the same symbols as

in the equations, although, it is not possible in some cases due to some syntactical

restrictions. For the definition below, REAL IFFT F , the variables can be traced

with the mathematical model. The let....in construct helps in local binding of

the summations to express the final output in terms of A3

`def ∀ x. REAL_IFFT_F x = (λp2 p1 p0.

(let A1 p0 n1 n0 = complex_sum (0,4) (λn2. CNJ (x n2 n1 n0) *

principal_root_1 (16 * & p0 * & n2) 64)

in

let A2 p0 p1 n0 = complex_sum (0,4) (λn1. A1 p0 n1 n0 *

principal_root_1 ((4 * & p1 + & p0) * (4 * & n1)) 64)

in

let A3 p0 p1 p2 = complex_sum (0,4) (λn0. A2 p0 p1 n0 *

principal_root_1 ((16 * & p2 + 4 * & p1 + & p0) * & n0) 64)

in

complex_64 * CNJ (A3 p0 p1 p2)))

Now, the following theorem is proved in order to formalize the expansion derived in

Equation (5.22). The three summations of the equation are written as complex 64

with their corresponding indexes using λ abstraction. The signal x is then multi-

plied with the twiddle factor modeled as principal root 1 with all the exponents

consisting of p0, p1, p2, n0, n1, n2. This theorem will be used for rewriting as further

theorems are developed.
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REAL_IFFT_EXPAND =

` ∀ A x. (A = REAL_IFFT_F x) =⇒
∀ p0 p1 p2. A p2 p1 p0 =

complex_64 *

complex_sum (0,4) (λn0.

complex_sum (0,4) (λn1.

complex_sum (0,4) (λn2. x n2 n1 n0 *

principal_root_1

¬(16 * & p0 * & n2 + (4 * & p1 + & p0) * (4 * & n1) +

(16 * & p2 + 4 * & p1 + & p0) * & n0)) 64)))

The FFT mathematical model in Equation (5.24) is also written in the same way

as IFFT,

REAL_FFT_F =

`def ∀ A. REAL_FFT_F A = (λq2 q1 q0.

(let B1 q0 p1 p0 = complex_sum (0,4)(λp2. A p2 p1 p0 *

principal_root_1 (16 * & q0 * & p2) 64)

in

let B2 q0 q1 p0 = complex_sum (0,4)(λp1. B1 q0 p1 p0 *

principal_root_1 ((4 * & q1 + & q0) * (4 * & p1)) 64)

in

let B3 q0 q1 q2 = complex_sum (0,4)(λp0. B2 q0 q1 p0 *

principal_root_1 ((16 * & q2 + 4 * & q1 + & q0) * & p0) 64)

in

B3 q0 q1 q2))

Now, Equation (5.25), the expanded version of FFT is proved as a theorem in HOL

for the same purpose described before. The output A from IFFT is fed as an input

of FFT. The two main building blocks of the system are at hand and these can now

be used to model FFT-IFFT in HOL. According to our description both the blocks

can be modeled in way of function and we define it as such:

`def ∀ x. REAL_IFFT_FFT_F x = REAL_FFT_F (REAL_IFFT_F x)
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If two of the previous theorems are true, then the expansion of FFT-IFFT combi-

nation should result in Equation (5.26) and it is proved as a theorem in HOL as

following,

REAL_IFFT_FFT_EXPAND =

` ∀ B x. (B = REAL_IFFT_FFT_F x) =⇒
∀ q0 q1 q2. B q2 q1 q0 =

complex_64 *

complex_sum (0,4) (λp0. complex_sum (0,4) (λp1.

complex_sum (0,4) (λp2. complex_sum (0,4) (λn0.

complex_sum (0,4) (λn1. complex_sum (0,4) (λn2.

x n2 n1 n0 * principal_root_1 ¬(16 * & p0 * & n2 +

(4 * & p1 + & p0) * (4 * & n1) +

(16 * & p2 + 4 * & p1 + & p0) * & n0)) 64 *

principal_root_1 (16 * & q0 * & p2 +

(4 * & q1 + & q0) * (4 * & p1) +

(16 * & q2 + 4 * & q1 + & q0) * & p0) 64))))))

5.6.2 Real Number Modeling

For modeling the design in real numbers, we define Z and OMEGA to have a compact

representation of the theorems. Both definitions take nine arguments,

Z = `def ∀ n0 n1 n2 p0 p1 p2 q0 q1 q2.

Z n0 n1 n2 p0 p1 p2 q0 q1 q2 =

16 * & q0 * & p2 + (4 * & q1 + & q0) * (4 * & p1) +

(16 * & q2 + 4 * & q1 + & q0) * & p0 −
(16 * & p0 * & n2 + (4 * & p1 + & p0)*

(4 * & n1)+ (16 * & p2 + 4 * & p1 + & p0) * & n0)

OMEGA = `def ∀ n0 n1 n2 p0 p1 p2 q0 q1 q2.

OMEGA n0 n1 n2 p0 p1 p2 q0 q1 q2 =

principal_root_1 (Z n0 n1 n2 p0 p1 p2 q0 q1 q2) 64

The Z is used in lieu of the very long exponent, abbreviated as L and M is Equa-

tion 5.27. The OMEGA is defined using Z as an argument to the previously defined
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principal root 1. At this point in modeling, we define C and D as stated in

Equation. (5.32) and (5.33). Initially, Re[.] and Im[.] is used on the ideal model to

extract the real and imaginary components.

IFFT_FFT_RE =

`def ∀ x n0 n1 n2. IFFT_FFT_RE x n0 n1 n2 =

Re (REAL_IFFT_FFT_F x n0 n1 n2)

IFFT_FFT_IM =

`def ∀ x n0 n1 n2. IFFT_FFT_IM x n0 n1 n2 =

Im (REAL_IFFT_FFT_F x n0 n1 n2)

Then the expansion of both of them is proved as theorems in HOL. An impor-

tant thing to be noted is the use of sum instead of complex sum. It is done

so due to the use of either real and imaginary expansion in the theorems, un-

like in previous theorems where a complex number is used. For the same reason

complex 64 is replaced with inv 64 to denote a simple inversion of a natural num-

ber. The definitions for OMEGA RE and OMEGA IM are not shown here. The theorems

REAL IFFT FFT RE EXPAND and REAL IFFT FFT IM EXPAND are proved formally for

the two equations of C and D, respectively.

REAL_IFFT_FFT_RE_EXPAND = ` ∀ x q2 q1 q0.

IFFT_FFT_RE x q2 q1 q0 =

inv 64 *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

Re (x n2 n1 n0) * OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2 −
Im (x n2 n1 n0) * OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2))))))

REAL_IFFT_FFT_IM_EXPAND = ` ∀ x q2 q1 q0.

IFFT_FFT_IM x q2 q1 q0 =

inv 64 *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

Re (x n2 n1 n0) * OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2 +

Im (x n2 n1 n0) * OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2))))))
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5.6.3 Floating-Point Modeling

The formal definitions required for the floating-point modeling is similar to the

ones described above. Here also a mutual inverse type bijection is required and

the definitions for real and imaginary component can be written in straightforward

way. We define float complex tybij in the same way we did for normal complex

number, to set the stage to use complex numbers of float type. Then, float Re

and float Im are defined to use the real and imaginary part of a floating point

complex number in the modeling. The function float OMEGA is defined in the same

way we did for complex OMEGA to abbreviate the twiddle factor in floating point

domain. We do not write the definitions of these here explicitly, rather we show

the more complicated definition of float complex sum used to model the complex

summation in floating-point number

float_complex_sum =

`def ∀ f n m.

(float_complex_sum (n,0) f =

float_complex (float (0,0,0),float (0,0,0))) ∧
(float_complex_sum (n,SUC m) f =

float_complex_sum (n,m) f + f (n + m))

In [25], John Harrison explains the IEEE floating-point formalization and its round-

ing issues. The rounding maps the real number to the nearest floating-point num-

ber, towards zero or towards positive or negative infinity. Here, the first format

To nearest is used and also the floating-point single precision denoted as float.

The definition float complex round is used to round a complex number to its

nearest floating-point. The round function takes three arguments—a pair denot-

ing the attribute for floating-point precision, float format; the rounding format,

To nearest; and the number to be rounded in real format, Re z or Im z. The

definition float complex 64 instantly demonstrates the use of this definition by

applying it on complex 64.



5.6. Formal Error Analysis in HOL 111

float_complex_round =

`def ∀ z. float_complex_round z =

float_complex (float (round float_format To_nearest (Re z)),

float (round float_format To_nearest (Im z)))

float_complex_64 =

`def float_complex_64 = float_complex_round complex_64

Next, we discuss the real number valuation of floating-point numbers. It is just the

inverse of rounding. The definition Val is used in conjunction with type bijection

for complex number to get the real number equivalent of any floating-point complex

number. A detailed description with the consideration of all corner cases can be

found in [25].

float_complex_Val =

`def ∀ z. float_complex_Val z =

complex (Val (float_Re z),Val (float_Im z))

where, Val is defined as

Val = `def ∀ a. Val a = valof float_format (defloat a)

A detailed definition for the functions valof and defloat can be found in the

HOL theory floatTheory [32]. The definitions for other related functions are as

real number modeling, and an elaboration is not provided here on them. Rather,

we prove two theorems for the mathematical models derived in Equations (5.38)

and (5.39) to formalize the floating-point models of FFT-IFFT design denoted as,

C
′
and D

′
. Following theorems, FLOAT IFFT FFT RE and FLOAT IFFT FFT IM prove

the real and imaginary part of the floating-point design as stated earlier. Starting

with the rounding of inv 64, the theorems show a nesting of six floating-point

summations
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FLOAT_IFFT_FFT_RE = ` ∀ x q0 q1 q2. FLOAT_IFFT_FFT_RE x q0

q1 q2 = float (round float_format To_nearest (inv 64)) * float_sum

(0,4) (λp0. float_sum (0,4) (λp1. float_sum (0,4) (λp2. float_sum

(0,4) (λn0. float_sum (0,4) (λn1. float_sum (0,4) (λn2.

float_Re (x n2 n1 n0) * FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2 −
float_Im (x n2 n1 n0) * FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2))))))

FLOAT_IFFT_FFT_IM = ` ∀ x q0 q1 q2. FLOAT_IFFT_FFT_IM x q0

q1 q2 = float (round float_format To_nearest (inv 64)) * float_sum

(0,4) (λp0. float_sum (0,4) (λp1. float_sum (0,4) (λp2. float_sum

(0,4) (λn0. float_sum (0,4) (λn1. float_sum (0,4) (λn2.

float_Re (x n2 n1 n0) * FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2 −
float_Im (x n2 n1 n0) * FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2))))))

5.6.4 Fixed-Point Modeling

The fixed-point modeling is different from what is done so far due to the primitive

parameters for arbitrary attributes related with fixed-point numbers. In order to

establish the required theorems for the design at hand, we define the mutual inverse

type bijection for fixed-point and the related definitions for real and imaginary

part extraction by fxp Re and fxp Im as done above. Definitions of arithmetic

operations can be found in [2] and the recursive complex summation is defined in a

fairly complex manner that deserves mentioning.

fxp_complex_sum =

`def ∀ X f n m.

(fxp_complex_sum (n,0) X f =

fxp_complex

(fxp (WORD (REPLICATE (streamlength X) F),X),

fxp (WORD (REPLICATE (streamlength X) F),X))) ∧
(fxp_complex_sum (n,SUC m) X f =

fxp_complex_add X (fxp_complex_sumc n m X f) (f (n + m)))
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The two fixed-point number arguments for fxp complex are passed through func-

tions streamlength : num#num#num → num and REPLICATE to set the number

of digits on the right hand side of the binary point of a fixed-point number. The

fracbit notation is now a part of any fixed-point operation as shown above. In the

same manner fixed-point summation can also be defined.

The rounding of fixed-point numbers takes an infinitely precise real number and

converts it into a fixed-point number. There are seven quantization modes formalized

in HOL fxpTheory for this purpose. The definition below defines a function that

takes a complex number and its attribute to convert it into a rounded fixed-point

complex number.

fxp_complex_round =

`def ∀ X z.

fxp_complex_round X z =

fxp_complex (Fxp_round X (Re z),Fxp_round X (Im z))

For the real number valuation of fixed-point numbers both signed and unsigned

numbers are considered in [2]. The function value [2] is defined that returns the

corresponding real value of a fixed-point number. We use it here to valuate fixed-

point complex number. The definition fxp complex value shows how it is done in

HOL,

fxp_complex_value =

`def ∀ z. fxp_complex_value z =

complex (value (fxp_Re z),value (fxp_Im z))

Now, the real and imaginary parts of FFT-IFFT can be modeled in fixed-point do-

main using all the definitions described above (some are omitted). Two theorems are

proved following the mathematical models described in Equations (5.40) and (5.41).

FxpAdd, FxpSub, and FxpMul are used in conjunction with attribute X to do ad-

dition, subtraction and multiplication on fixed-point numbers. Both the theorems
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have used two new variables in universal quatification, M and V. M is used to specify

different rounding modes and, V to define one of the five overflow modes. To note

further that we use fxp round instead of Fxp round because we are dealing with

fixed-point number itself not fixed-point complex number. While, the fxp round

takes a triplet, a real number and an overflow mode to return the rounded value in

fixed-point format; the Fxp round uses fxp round as one of its argument chooses

the first element of the pair returned from the function. The two theorems are

FXP_IFFT_FFT_RE = ` ∀ X M V x q0 q1 q2.

FXP_IFFT_FFT_RE X M V x q0 q1 q2 =

FxpMul X (FST (fxp_round X M (inv 64) V))

(fxp_sum (0,4) X (λp0. fxp_sum (0,4) X (λp1.

fxp_sum (0,4) X (λp2. fxp_sum (0,4) X (λn0.

fxp_sum (0,4) X (λn1. fxp_sum (0,4) X (λn2.

FxpSub X (FxpMul X (fxp_Re (x n2 n1 n0))

(FXP_OMEGA_RE X n0 n1 n2 p0 p1 p2 q0 q1 q2))

(FxpMul X (fxp_Im (x n2 n1 n0))

(FXP_OMEGA_IM X n0 n1 n2 p0 p1 p2 q0 q1 q2)))))))))

FXP_IFFT_FFT_IM = ` ∀ X M V x q0 q1 q2.

FXP_IFFT_FFT_IM X M V x q0 q1 q2 =

FxpMul X (FST (fxp_round X M (inv 64) V))

(fxp_sum (0,4) X (λp0. fxp_sum (0,4) X (λp1.

fxp_sum (0,4) X (λp2. fxp_sum (0,4) X (λn0.

fxp_sum (0,4) X (λn1. fxp_sum (0,4) X (λn2.

FxpAdd X (FxpMul X (fxp_Re (x n2 n1 n0))

(FXP_OMEGA_RE X n0 n1 n2 p0 p1 p2 q0 q1 q2))

(FxpMul X (fxp_Im (x n2 n1 n0))

(FXP_OMEGA_IM X n0 n1 n2 p0 p1 p2 q0 q1 q2)))))))))
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5.6.5 Error Analysis

Now that we have finished all the modeling of FFT-IFFT design in HOL formally

in all three domains, we are left with the final part of the modeling towards error

analysis of the design. We need some more definitions for that reason and starting

with the recursive definition of a product of functions in mul(n,m) f we model
n+m−1∏

i=m

f(i).

mul = `def ∀ f n m.

(mul (n,0) f = 1) ∧ (mul (n,SUC m) f = mul (n,m) f * f (n + m))

To formalize errors introduced to the real and imaginary components of both floating-

point and fixed-point designs, the effect of Val and value on arithmetic operations

is defined in HOL which is used as assumptions in all the theorems to be followed.

We did so because, the definitions of both the functions in HOL covers all the cases

including the crucial corner cases. Such a definition gives numerous subgoals as we

proceed deep inside the goal using tactics and tacticals. For example, in order to

prove a simple associativity theorem of three floating-point numbers, even without

any valuation functions applied on it gives a huge theorem to solve. The theorems

added in the assumption is later proved separately to prove that the all the proofs

done based on it are sound. Following Theorem 1, the rounding error due to valua-

tion of floating-point in real number are defined in [25], where a and b are fixed-point

numbers and e is a real

∀ a b. ∃e. Val (a + b) = (Val a + Val b) * (1 + e)

∀ a b. ∃e. Val (a − b) = (Val a − Val b) * (1 + e)

∀ a b. ∃e. Val (a * b) = (Val a * Val b) * (1 + e)

Following Theorem 2 the corresponding errors due to valuation of fixed-point num-

bers are defined below, where a and b are floating-point numbers and e is a real

∀ a b X. ∃e. value (FxpAdd X a b) = value a + value b + e

∀ a b X. ∃e. value (FxpSub X a b) = value a − value b + e

∀ a b X. ∃e. value (FxpMul X a b) = value a * fvalue b + e
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A confusion might arise as to why the operators are not overloaded for fixed-point

operations while it is done for floating-point? There is no syntactical or semantical

reason for doing so, neither any limitation in terms of the tool, rather it was an

arbitrary decision which has no bearing with HOL. Having the theories at hand we

can formalize the error incurred in FFT-IFFT real number rounding operation as

derived in Equations (5.42) and (5.43). Before that we define a function ER K to

abbreviate the formal description of errors

ER_K =

`def ∀ n0 n1 n2 p0 p1 p2.

ER_K n0 n1 n2 p0 p1 p2 =

1024 * p2 + 256 * p1 + 64 * p0 + 16 * n2 + 4 * n1 + n0

The floating-point valuation function Val is used in the corresponding formal def-

inition of Equations (5.42) and (5.43) and the errors are also modeled as defined

in the mathematical derivation. For example the error due to the multiplication

of float Im (x n2 n1 n0) and FLOAT OMEGA IM n0 n1 n2 p0 p1 p2 q0 q1 q2 is

defined as 1 + e (ER K n0 n1 n2 p0 p1 p2). The following two theorems are

proved in order to formally establish the floating-point errors:
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Real Part of Floating Point Round-Off Error:

--------------------------------------------

∀ x q0 q1 q2. ∃ t p l d e z. Val (FLOAT_IFFT_FFT_RE x q0 q1

q2) =

inv 64 *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

Val (float_Re (x n2 n1 n0)) *

Val (FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + d (ER_K n0 n1 n2 p0 p1 p2)) −
Val (float_Im (x n2 n1 n0)) *

Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + e (ER_K n0 n1 n2 p0 p1 p2))) *

(1 + z (ER_K n0 n1 n2 p0 p1 p2)) *

mul (ER_K n0 n1 n2 p0 p1 p2, 4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l i))))))) * (1 + t) * (1 + p)

Imaginary Part of Floating Point Round-Off Error:

-------------------------------------------------

∀ x q0 q1 q2. ∃ t′ p′ l′′ d′′ e′′ z′′. Val (FLOAT_IFFT_FFT_IM

x q0 q1 q2) =

inv 64 *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

Val (float_Re (x n2 n1 n0)) *

Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + d′′ (ER_K n0 n1 n2 p0 p1 p2)) −
Val (float_Im (x n2 n1 n0)) *

Val (FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + e′′ (ER_K n0 n1 n2 p0 p1 p2))) *

(1 + z′′ (ER_K n0 n1 n2 p0 p1 p2)) *

mul (ER_K n0 n1 n2 p0 p1 p2, 4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l′′ i))))))) * (1 + t′) * (1 + p′)
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For the fixed-point error formalization, the function value is used on the previously

proved theorems to get the real number valuation. Since the errors are additive

in this case, we write all the errors at the end of the code. Other than the use of

a different valuation function the other differences this code has is the use of the

function sum instead of mul since it is going to be summation of functions. Below

are the two theorems proved according to the equations developed in (5.44) and

(5.45)

Real Part of Fixed-Point Round-Off Error:

---------------------------------------------------------

∀ X x q0 q1 q2. ∃ t′′ p′′ l′ d′ e′ z′.

value (FXP_IFFT_FFT_RE X M V x q0 q1 q2) =

value (FST (fxp_round X M (inv 64) V)) *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

value (fxp_Re (x n2 n1 n0)) *

value (FXP_OMEGA_RE X n0 n1 n2 p0 p1 p2 q0 q1 q2) −
value (fxp_Im (x n2 n1 n0)) *

value (FXP_OMEGA_IM X n0 n1 n2 p0 p1 p2 q0 q1 q2) +

d′ n0 n1 n2 p0 p1 p2 q0 q1 q2 + e′ n0 n1 n2 p0 p1 p2 q0 q1 q2 −
z′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

sum (ER_K n0 n1 n2 p0 p1 p2, 4096 − ER_K n0 n1 n2 p0 p1 p2)

(λi. l′ i))))))) + p′′+t′′
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Imaginary Part of Fixed Point Round-Off Error:

-------------------------------------------------

∀ X x q0 q1 q2. ∃ t′′′ p′′′ l′′′ d′′′ e′′′ z′′′.

value (FXP_IFFT_FFT_RE X M V x q0 q1 q2) =

value (FST (fxp_round X M (inv 64) V)) *

sum (0,4) (λp0. sum (0,4) (λp1. sum (0,4) (λp2.

sum (0,4) (λn0. sum (0,4) (λn1. sum (0,4) (λn2.

value (fxp_Re (x n2 n1 n0)) *

value (FXP_OMEGA_IM X n0 n1 n2 p0 p1 p2 q0 q1 q2) −
value (fxp_Im (x n2 n1 n0)) *

value (FXP_OMEGA_RE X n0 n1 n2 p0 p1 p2 q0 q1 q2) +

d′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 + e′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 −
z′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

sum (ER_K n0 n1 n2 p0 p1 p2, 4096 − ER_K n0 n1 n2 p0 p1 p2)

(λi. l′′′ i))))))) + p′′′+ t′′′

The error calculation in Equation (5.47) gives the mathematical model for error

from ideal domain to floating point. We simply formalize it by subtracting the ideal

FFT-IFFT representation from the error prone floating-point one as follows,

IFFT_FFT_REAL_TO_FP_ERROR_def = ` ∀ x q0 q1 q2.

IFFT_FFT_REAL_TO_FP_ERROR x q0 q1 q2 =

complex (Val (FLOAT_IFFT_FFT_RE

(λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2) −
IFFT_FFT_RE x q0 q1 q2,

Val (FLOAT_IFFT_FFT_IM

(λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2) −
IFFT_FFT_IM x q0 q1 q2)

As derived earlier in order to have a concise representation, we defined e0 and define

it in HOL as ERROR 0 def,
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ERROR_0_def =

`def ∀ x q0 q1 q2.

ERROR_0 x q0 q1 q2 =

complex (Val (float_Re

((λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2)) −
Re (x q0 q1 q2),

Val (float_Im

(λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2)) −
Im (x q0 q1 q2))

We do not show the formal definitions of Equations (5.49), (5.50) and (5.51) since we

have already seen something similar above. Now, to complete the error analysis of

REAL to floating-point, we prove the following theorem to establish that the error

analysis derived in Equation (5.54) is the valid analysis for such case. It can be seen

from the code that all variables, functions and definitions are previously discussed

and can be mapped to its mathematical counterpart easily.
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∀ x q0 q1 q2. ∃ f. (IFFT_FFT_REAL_TO_FP_ERROR x q0 q1 q2 =

complex_64 * complex_sum (0,4) (λp0. complex_sum (0,4) (λp1.

complex_sum (0,4) (λp2. complex_sum (0,4) (λn0. complex_sum (0,4)

(λn1. complex_sum (0,4) (λn2.

ERROR_0 x n2 n1 n0 * OMEGA n0 n1 n2 p0 p1 p2 q0 q1 q2 +

f n0 n1 n2 p0 p1 p2 q0 q1 q2))))))) ∧
∃ t l d e z t′ l′′ d′′ e′′ z′′. f n0 n1 n2 p0 p1 p2 q0 q1 q2 =

complex ( Val (float_Re ((λn0 n1 n2. float_complex_round (x n0 n1

n2)) n0 n1 n2)) *

Val (FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + d n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *

mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l i) * (1 + t) − 1) −
Val (float_Im ((λn0 n1 n2. float_complex_round (x n0 n1 n2)) n0 n1 n2)) *

Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + e n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *

mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l i) * (1 + t) − 1),

Val (float_Re ((λn0 n1 n2. float_complex_round (x n0 n1 n2)) n0 n1 n2)) *

Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + d′′ n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + z′′ n0 n1 n2 p0 p1 p2 q0 q1 q2) *

mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l′′ i) * (1 + t′) − 1) −
Val (float_Im ((λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2)) *

Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + e n0 n1 n2 p0 p1 p2 q0 q1 q2) *

(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *

mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l i) * (1 + t′) − 1))
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The round-off error from real number to fixed-point domain can be written in the

same way as real to floating-point error analysis. The only extra thing is the use of

rounding and exception handling parameters for fixed-point operations.

IFFT_FFT_REAL_TO_FXP_ERROR_def = `def ∀ X M V x q0 q1 q2.

IFFT_FFT_REAL_TO_FXP_ERROR X M V x q0 q1 q2 =

complex

(value

(FXP_IFFT_FFT_RE X M V

(λq0 q1 q2. fxp_complex_round X (x q0 q1 q2)) q0 q1 q2) −
IFFT_FFT_RE x q0 q1 q2,

value

(FXP_IFFT_FFT_IM X M V

(λq0 q1 q2. fxp_complex_round X (x q0 q1 q2)) q0 q1 q2) −
IFFT_FFT_IM x q0 q1 q2)

We also define ERROR’ 0 to have some functions under one definition for concise

representation,

`def ∀ X M V x q0 q1 q2.

ERROR′_0 X M V x q0 q1 q2 =

complex (value (fxp_Re ((λq0 q1 q2.

fxp_complex_round X (x q0 q1 q2)) q0 q1 q2)) −
Re (x q0 q1 q2),

value (fxp_Im ((λq0 q1 q2.

fxp_complex_round X (x q0 q1 q2)) q0 q1 q2)) −
Im (x q0 q1 q2))

Formalizing REAL to fixed-point error is less complicated since the additive property

of fixed-point helps to isolate the error functions—δ, ε, ξ, λ ,τ , ρ. The following

theorem is proved in HOL to establish the error analysis derived for REAL to fixed-

point in Equations (5.55) and (5.56).
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∀ X M V x q0 q1 q2. ∃ f′. (IFFT_FFT_REAL_TO_FXP_ERROR X M V x q0 q1 q2 =

complex_64 *

cmplex_sum (0,4) (λp0. complex_sum (0,4) (λp1.

complex_sum (0,4) (λp2. complex_sum (0,4) (λn0.

complex_sum (0,4) (λn1. complex_sum (0,4) (λn2.

ERROR′_0 X M V x n2 n1 n0 * OMEGA n0 n1 n2 p0 p1 p2 q0 q1 q2 +

f′ n0 n1 n2 p0 p1 p2 q0 q1 q2))))))) ∧
∃t′ l′ d′ e′ z′ t′′′ l′ d′′′ e′′′ z′′′.

f′ n0 n1 n2 p0 p1 p2 q0 q1 q2 =

complex (d′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

e′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

z′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

sum (ER_K n0 n1 n2 p0 p1 p2,4096 −
ER_K n0 n1 n2 p0 p1 p2)(λi. l′ i) + t′,

d′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

e′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

z′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

e′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +

sum (ER_K n0 n1 n2 p0 p1 p2,4096 −
ER_K n0 n1 n2 p0 p1 p2) (λi. l′′′ i) + t′′′)

We are only left with the error that occurs between floating-point to fixed-point and

we formalize it using Equation (5.57). The error occurred during REAL to floating-

point—“e” and during REAL to fixed-point—“e
′
” is used directly to formalize the

error definition,

∀ X M V x q0 q1 q2. IFFT_FFT_FP_TO_FXP_ERROR X M V x q0 q1 q2

= IFFT_FFT_REAL_TO_FP_ERROR x q0 q1 q2 − IFFT_FFT_REAL_TO_FXP_ERROR

X M V x q0 q1 q2

Now, we prove the final theorem for floating-point to fixed-point error. We show a

skeleton of the actual HOL code rather writing the complete one since it is just the

right hand side of the previous two error analysis theorems
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∀ X M V x q0 q1 q2. IFFT_FFT_FP_TO_FXP_ERROR X M V x q0 q1 q2

= right−hand side of [ REAL to FP error theorem ] −
right−hand side of [ REAL to FXP error theorem ]

5.7 Discussion

The error analysis done above covers the OFDM rounding error analysis thoroughly

between different number domains. To establish the complete theory of error anal-

ysis we proved three main theorems with the help of formalized real and imaginary

part of FFT-IFFT expansion and also the theorems related to the error for arith-

metic operations. All definitions were derived heavily from existing theories, e.g.,

realTheory, boolTheory, ieeeTheory, floatTheory, fxpTheory, wordTheory, etc. There

is a very strong relationship between mathematical models and their formal coun-

terpart which might have been observed above. The definitions built on top of

established theories in turn helped to build the FFT and IFFT components; which

build the theory for the FFT-IFFT combinations. Then this theory is extended and

the operators are overloaded for establishing the real, floating-point and fixed-point

counterparts of the design using the floatTheory and fxpTheory.

For all the theorems and assumptions in the whole error analysis work it is impera-

tive that higher-order logic be used. The error analysis is based on the floating-point

and fixed-point theory of HOL, which are two of the most important additions in

HOL’s rich theory base. Besides quantification over variables and objects, there

are many theorems in both theories that make use of quantification over functions.

Moreover, almost all the definitions required to model the FFT-IFFT combination

needed higher-order logic for the same reason. The error analysis functions of both

floating-point and fixed-point—δ, ε, ξ, λ ,τ and ρ—are all existentially quantified

in the main theorems proved and these theorems construct the core of the final result.
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Throughout the proof of the theories built-in tactics and tacticals were used. In

many of these proofs case analysis and induction were used. Our main approach to

prove the theorems was to have a rough paper and pencil sketch of the approach

and then formalize it using the techniques available in the HOL tool. Many times

it happened that it was hard to prove the theorem as a whole in one shot and then

we break the goal in manageable size to prove the parts separately to combine later.

To accomplish this in a different way sometimes theorems are assumed in the proof

to concentrate in the core goal and later the assumed theorem is proved. Thus we

prove the theorems till the final error analysis between floating-point to fixed-point.

Through the course of the modeling and proof, many lemmas are developed, some

are trivial but essential and some are crucial to move to the next step in estab-

lishing a theorem. But, it is important to mention that the current theorems can

be proved in a better way which is realized gradually as we moved to much com-

plicated proofs and so the latter proofs are better and concise than the previous ones.

Another important issue needs to be addressed and also equally applicable for all

the theorems proved in Chapter 4 is that how it can be assured that the definitions

created by the user themselves are sound and really characterize what the system

user intends to formalize. In short, there is no way to verify that the modeling in

HOL done by the user reflects the hardware exactly. The tool can check all the type

requirements based on the initial information of the system provided by the user,

and if these information are wrong then the final formalization will also be wrong.

The HOL system is based on five axioms and eight primitive inference rules. All

the HOL theories are built on top of them and this is another reason of the lengthy

installation time required since all the built-in theories are to be proved before be-

coming part of the initial system. This is why there is no chance to have ambiguity

in the proof system of HOL. Although highly improbable, but a wrong implementa-

tion can be verified against a wrong specification. Each and every possible scenario



5.7. Discussion 126

can happen. The tool itself might not be free from bugs. That is, however, why a

tool like HOL needs expert users who have good knowledge of formal methods and

also of the system under verification. The same can be told about the real RTL

design in simulation where only the functionality of the system can be verified but

it can never be assured completely that the final product will exactly behave as the

specification due to manufacturing difficiencies or other factors.

Since HOL is an interactive tool where the user needs to guide every step of the

proof, it is also possible that the theorem prover can be guided to falsely proof a

system. But, HOL strongly checks the type of the terms and functions entered into

the system. This particular constraint also makes it very difficult to make simple

mistakes in defining wrong theorems thus also answers partially the concern men-

tioned in the previous paragraph. Still, if any user wants to trick the tool to generate

proof arbitrarily, he/she has to use oracle [32] mechanism that enables arbitrary for-

mulas to become elements of the thm type. By use of this mechanism, HOL can

utilize the results of arbitrary proof procedures. To avoid unsoundness, a tag is

attached to any theorem coming from an oracle. This tag is propagated through

every inference that the theorem participates in and if falsity becomes derived, the

offending oracle can be found by examining the tags component of the theorem. A

theorem proved without use of any oracle will have an empty tag, and can thus be

considered to have been proved solely by deductive steps in the HOL logic. Thus,

the tool ensures its security against misuse.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis is mainly concerned to demonstrate the use of formal verification tech-

niques, here, using theorem proving, to verify an implementation of an OFDM mo-

dem based on the IEEE 802.11a physical layer standard. The OFDM design is fairly

complex and some important design blocks were chosen for verification purposes. We

formally modeled the quadrature amplitude modulation and demodulation blocks,

serial to parallel block and the parallel to serial block in HOL. The specifications

of all the blocks are also modeled using the same formalism. Then, a functional

correctness proof is done using implication with the help of many lemmas developed

as the proof required for it and also using many built-in tactics. The end result

showed the flawless functionality of the original implementation after abstracting

the required functionality from the original design.

We also analyzed the errors in the OFDM system occurring at the time of convert-

ing from one number domain to the other. We used the IFFT-FFT combination

as a model for the error analysis of the whole system. The mathematical equa-

tions for 64 point radix-4 FFT and IFFT are developed in graphic details. We

127
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derived mathematical expressions for all three domains—ideal real, floating-point,

and fixed-point numbers. Then we derived fundamental theorems for the accumula-

tion of round-off error in the OFDM system. This formalization can be considered

as a large application of the formal error analysis framework described before and

shows the viability of such analysis even for larger scale systems as the one analyzed.

Having a totally bug-free hardware is a daunting task and it still did not attain

nowhere near where it can be said with confidence that a hardware will behave

according to desired specification. Formal verification shows light in alleviating

such problems but it is yet to develop its niche to be accepted as a novel technique

to completely integrate with the whole VLSI design flow. It is digital designer’s

dream to have their designs formally verified from specification to final product. A

beacon of hope is that state-of-the-art formal techniques have shown good trend to

complement the simulation technique and successfully applied in industry in critical

design verification. It can be concluded with certainty that, among all the formal

verification techniques, theorem proving will always have a special place in the formal

verification and error analysis of digital designs containing complex computational

blocks.

6.2 Future Work

The future work that can be carried out pertaining to this thesis might elucidate

new and interesting ideas and some suggestions are following:

1. Verifying the RTL implementation of OFDM block using the clocking constraints.

This work can complement the current thesis by taking into account clock transi-

tions and then it would be possible to verify the generation of control signals and

latching of data at specific times. For this, a good model of a RAM is needed to
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mimic the one that is implemented in the current design. Moreover, standard RTL

models of FFT and IFFT can also be attached to the system to stich all the signals

together to have a comprehensive verification of the total system. If a design can

be realized or obtained using the IEEE standard as it is, it would be a perfect com-

bination to have it verified using HOL.

2. Development of a parameterized error analysis pattern for any FFT or IFFT

design of arbitrary computing point and radix. Such parametric technique can fol-

low the approach of Wong [60] where he developed the wordtheory—a HOL theory

that can generate another theory of any bit as required by the user. Such work

can eliminate the tedious process of specifying designs formally again and again for

different computation points and radixes. And, in turn the error analysis can be

parameterized so that a comprehensive error analysis can be obtained for any arbi-

trary FFT-IFFT combination or each component itself.

3. Verifying the OFDM system using a combination of HOL and another powerful

computer algebra system such as Maple [43] or Mathematica [45]. For instance, a

system like Maple incorporates a high-level programming language, which allows the

user to define his/her own procedures; it also has packages of specialized functions,

which may be loaded to do work in other fields. Similar to Maple, the Mathematica

system is based on term-rewriting and supports both functional and procedural

programming. The computer algebra systems are extremely powerful and flexible

but often give results which require careful interpretation. In contrast, theorem

provers are very reliable but lack the powerful specialized decision procedures and

heuristics of the former. Both approaches can be complemented by combining them

in a novel way (e.g. [29]) to verify the OFDM system and similar designs.
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