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ABSTRACT

On the Formal Verification of Group Key Security Protocols

Amjad Gawanmeh, Ph.D.

Concordia University, 2008

The correctness of group key security protocols in communication systems remains

a great challenge because of dynamic characteristics of group key construction as we deal

with an open number of group members. Therefore, verification approaches for two par-

ties protocols cannot be applied on group key protocols. Security properties that are well

defined in normal two-party protocols have different meanings and different interpretations

in group key distribution protocols, and so they require a more precise definition before

we look at how to verify them. An example of such properties is secrecy, which has more

complex variations in group key context: forward secrecy, backward secrecy, and key inde-

pendence.

In this thesis, we present a combination of three different theorem-proving methods to ver-

ify security properties for group-oriented protocols.We target regular group secrecy, for-

ward secrecy, backward secrecy, and collusion properties for group key protocols. In the

first method, rank theorems for forward properties are established based on a set of generic

formal specification requirements for group key management and distribution protocols.

Rank theorems imply the validity of the security property to be proved, and are deducted

from a set of rank functions we define over the protocol. Rank theorems can only rea-

son about absence of attacks in group key protocols. In the second method, a sound and

complete inference system is provided to detect attacks in group key management proto-

cols. The inference system provides an elegant and natural proof strategy for such protocols
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compared to existing approaches. It complements rank theorems by providing a method to

reason about the existence of attacks in group key protocols. However, these two methods

are based on interactive higher-order logic theorem proving, and therefore require expen-

sive user interactions. Therefore, in the third method, an automation sense is added to the

above techniques by using an event-B first-order theorem proving system to provide invari-

ant checking for group key secrecy property and forward secrecy property. This is not a

straightforward task, and should be based on a correct semantical link between group key

protocols and event-B models. However, in this method, the number of protocol partic-

ipants that can be considered is limited, it is also applicable on a single protocol event.

Finally, it cannot model backward secrecy and key independence. We applied each of the

developed methods on a different group protocol from the literature illustrating the features

of each approach.
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Chapter 1

Introduction

1.1 Motivation

A typical security system consists of a number of principals such as people and comput-

ers, that communicate using a variety of channels. The security protocols are the rules that

govern these communications. They are typically designed so that the system will survive

malicious acts. Protocols are designed under certain assumptions about the threats because

protection against all possible attacks is too expensive. Protocols may be extremely simple

or very complex. For instance, the networks of cash machines have dozens of protocols

specifying how a cash machine interacts with customers, how it talks to the bank that op-

erates it, how the bank communicates with the network operator, how money gets settled

between banks, how encryption keys are set up between the various principals, and what

sort of alarm messages may be transmitted, such as instructions to capture a card. All these

protocols have to work together in a large and complex system, and most important, they

have to guarantee the security of communications when dealing with critical issues [5].

The meaning of “protocol” is: a prescribed sequence of interactions between entities

designed to achieve a certain goal. A protocol with security objective is called security
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protocol. Security protocols in particular shall provide security properties of distributed

systems. Cryptographic protocols are security protocols that use cryptographic mechanisms

such as encryption algorithms and digital signature schemes as basic components.

Group communication applications use encryption methods in order to limit access to

information for legitimate members only. They are also dynamic with regard to principals

participating in the group. So messages are protected by encryption using a chosen key,

which in the context of group communication is called the group key. Only those who

know the group key are able to recover the original message. In addition, the group may

require that membership changes cause the group key to be refreshed. Changing the group

key prevents a new member from decoding messages exchanged before they joined the

group or after they leave. If a new key is distributed to the group when a new member

joins, the new member cannot decipher previous messages even if it has recorded earlier

messages encrypted with the old key. Distributing the group key to legitimate members is

a complex problem. A group key distributor must provide another scalable mechanism to

distribute keys to the legitimate principals and must guarantee the secrecy of these group

keys.

The general requirements for protocols involving two or three parties [20] are well

understood, however, the case is different with group key protocols, where the key can be

distributed among a larger number of members who may join or leave the group at arbitrary

times. Therefore, security properties that are well defined in normal two-party protocols

have different meanings and different interpretations in group key protocols, and so they

require a more precise definition before we look at how to verify them.

An example of such properties is the secrecy property, which deals with the fact that

secret data should remain secret and not compromised. However, for group key protocols,

this property has a further dimension since there are long-term secret keys, short-term secret
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keys, in addition to present, future, and past keys; where a principal who just joined the

group and learned the present key should not be able to have enough information to deduce

any previous keys, or similarly a principal who just left the group should not have enough

information to deduct any future keys. This fact results in the concepts of forward secrecy,

backward secrecy and key independence (or collusion resistance) properties. Therefore,

systems designed for two-party protocols may not be able to model a group protocol, or its

intended security properties because such tools require an abstraction to a group of fixed

size to be made before the automated analysis takes place. This can eliminate chances of

finding attacks on the protocol.

There are many examples in the literature of protocols that have been used extensively

before it turns out that an attack can be taken against the protocol, even though the protocol

received intensive analysis, and thought to be correct before they were found to be flawn.

For instance, the Needham-Shroeder authenticated key distribution protocol [65], which

was found to allow an intruder to pass an old, compromised session key as a new one to

a legitimate party [54]; a protocol in an early draft of the CCITT X.509 draft standard

[21], for which Burrows, Abadi, and Needham [18] showed that an intruder can cause an

old session key to be accepted as a new one, whether or not it had been compromised;

Pereira and Quisquater [69] pointed out two attacks on the Group Diffie-Hellman protocol

[7]; another example is an attack on the Internet Key Exchange (IKE) protocol was found

independently by Ferguson and Schneier [38] and Zhou [87]. Kats and Shin [45] addressed

the case of attacks by malicious insiders for authenticated key exchange protocols. Pereira

and Quisquater [70] provided a systematic way to derive an attack against any Authenticated

Group Diffie-Hellman (A-GDH) type protocol with at least four participants and exhibit

protocols with two and three participants.
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We also have noticed that there is an increasing interest in deploying group key pro-

tocols in wireless networks such as the work in [64] and wireless sensor networks such as

the work in [63] and [22]. This brings more motivation for the need for correct and se-

cure group key protocols, and therefore, new efficient and scalable verification techniques

should be adapted.

These examples show that the informal design of cryptographic protocols is error

prone because reasoning about them is extremely difficult. This motivated people to use

formal methods [24] not only in the analysis and verification of protocols, but also in the

design of these protocols. So, cryptographic protocols are excellent candidates for rigorous

formal analysis. They are critical components of distributed security, very easy to express

and very difficult to evaluate by hand. Formal techniques can be used in various phases of

the design of a cryptographic protocols including the specification, the construction, and

the verification.

Most of the existing verification methods in the literature deal with secrecy and au-

thentication properties for two parties protocols. However, the time needed for verifying of

a protocol using tools is still exponential with respect to the number of messages. Conse-

quently, automatic verification of large protocols is infeasible without simplifications, as-

sumptions and abstractions. The verification of a multi-party security protocol by a model

checking [25] approach is even more problematic. It can only be done for instances with a

fixed number of users and fixed number of messages. In addition, it is infeasible to model

certain features of these protocols such as events, unbounded messages space, or unbounded

group members, and reason about using model checking approaches. Therefore, in order

to analyze a group key protocol in its full generality, theorem proving techniques [40] are

required.

Theorem proving is a formal method where the specification and implementation are
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expressed in first-order or higher-order logic. Then, relationship between the two models

is formed as a theorem to be proven within a deduction logic system. Formal methods

have not been used efficiently for verifying group key protocols, specially for properties

like forward and backward secrecy. In this thesis, we address the verification of group key

protocols, targeting properties that are specific for this class of protocols.

1.2 Group Key Security Protocols

Group key management protocols are used to generate and distribute keys. In this thesis we

use the term “group key protocols” or “group key security protocols” to refer to group key

management protocols.

The goals of security protocols are to provide security services for communicating en-

tities. The protocol involves a precise interaction between the entities in order to achieve the

required service, and sometimes a trusted third party is involved in this interaction. There

are two classes of protocols: authentication protocols which allow users to identify each

other, and key management protocols which aim to generate and distribute cryptographic

keys between principles.

The security services provided by security protocols were presented in [75], and can

be intuitively summarized as:

1. Data Integrity: the receiver of the message should be able to find out whether the

message was modified during transmission. Modification can occur accidentally, or

intentionally. No one should be able to substitute a false message for the original

message or part of it.

2. Authentication of origin: which means that we can be sure that a message we believe

it was originated from a certain node was indeed originated from that node.
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3. Establishing session keys between nodes: Keys are considered sensitive data items

that should be revealed only to legitimate users.

4. Secrecy (or confidentiality): which means that the intruder should not be able to

deduce anything about the legitimate users’ activity. Provided that an intruder is able

to read the message, he should not be able to derive its contents.

5. Non-repudiation: which is providing parties with evidence that certain steps of the

protocol has occurred to protect them from cheating by other users we assume to be

honest.

Other services that can be provided by security protocols include fairness, anonymity,

availability, protection against denial of service, and resistance to traffic analysis. Fairness,

means that none of the participants in the protocol is able to gain some advantage over

another, for example by refusing to continue after the other end has signed up, before he

has signed. Anonymity means that an observer will not be able to identify events that occur

during protocol runs, even though he/she can be able to deduce its occurrence. Availability

means that the protocol should achieve some desired goal. In denial of service attacks, an

tacker initiates an instance of a protocol and then drops out leaving the victim hanging, by

initiating and then dropping enough instances of the protocol, the victim will run out of

resources [58]. Traffic analysis is performed by intercepting and examining messages and

their routing in order to deduce information from patterns in communication [36].

A protocol can be designed to provide one or more of these services. The problem of

formally modeling these services received intensive discussion in [75]. More important is

how to proof that the protocol satisfy security measures imposed by these services.

As networking becomes more widespread and handle more and more tasks in a po-

tentially hostile environment, protocols should deal with this environment. Therefore, new
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protocols emerged like the Internet Key Exchange (IKE) protocol [41] and its latest version

IKEv1 [43], that not only must agree upon encryption keys, but on the algorithms to use.

Another example is the Secure Electronic Transaction (SET) protocol [56] that must be

able to process different types of credit card transactions. This of course caused increasing

the complexity of protocols and made verification and implementation of the protocol more

difficult.

The encryption, hashing, modulo and exponentiation methods are used in security

protocols and are known as algebraic properties of the protocol. In order to prove the

correctness of group key protocols, rigorous analysis of these protocols are mostly used

focusing on these algebraic properties. However, protocols can be subtle to non-algebraic

attacks where the intruder takes advantage of the distributive nature of these protocols.

Therefore, it is essential to prove the security of these protocol from both algebraic and

non-algebraic points of view.

1.3 Verification of Group Key Protocols: State-of-the-Art

In this section we review and discuss approaches for modeling and verification of group

key protocols, focusing more on those that are closely related to our work. The state of the

art methods are classified into two major categories: the first category deals with analysis

methods to verify group key protocols, and the second category deals with formal methods

for group key protocols.

The formal approach to security protocols uses simple logical reasoning. The analysis

approach, on the other hand, makes a delicate use of probability and computational com-

plexity. These two approaches have distinct views of primitive cryptographic and compu-

tational operations at different levels of abstraction. In the formal approach, cryptographic
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operations are formally modeled as functions on a space of symbolic expressions; their se-

curity properties are also modeled formally. This is done at a high level of abstraction. In

the analysis approach, cryptographic and computational operations are seen as functions on

strings of bits or algebraic expressions; their security properties are defined in terms of the

probability and computational complexity of successful attacks [1].

1.3.1 Analysis Methods

Pereira and Quisquater [69] proposed a systematic approach to analyze protocol suites ex-

tending the Diffie-Hellman key-exchange scheme to a group setting. They pointed out

several unpublished attacks against the main security properties claimed in the definition of

these protocols. The method provided is essentially manual and applicable only on GDH

protocols. In a more recent work Pereira and Quisquater [70] provided a systematic way to

derive an attack against any Authenticated GDH (A-GDH) type protocol with at least four

participants and exhibit protocols with two and three participants.

Truderung [83] presented a formalism, called selecting theories, which extends the

standard non-recursive term rewriting model and allows participants to compare and store

arbitrary messages. This formalism can model recursive protocols, where participants, in

each protocol step, are able to send a number of messages unbounded w.r.t. the size of the

protocol. This modeling, however, cannot be applied on non–recursive protocols such as

GDH or the Enclaves. In addition, the model provided is not readable and very complex to

construct.

Bresson et al. [14] presented a security model Group Diffie-Hellman protocols for

Authenticated Key Exchange (AKE) and used it to precisely define AKE and the entity-

authentication goal as well. Then, they defined in this model the execution of an authenti-

cated group Diffie-Hellman scheme and proved its security. In more recent efforts, Bresson
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et al. [15, 16] discussed the GDH problem thoroughly and suggested a model for this class

of protocols in the presence of malicious participants.

Horn [44] showed that the One-way Function Tree (OFT) protocol proposed by Sher-

man and McGrew [77] is subject to a particular kind of collusion attack that was pointed

out in which was solved in an improved version by Ku and Chin [51]. Recently, Xu et

al. [86] generalized the example attack to a generic collusion attack on OFT class of pro-

tocols. They provided necessary and sufficient conditions for this attack to exist. Then

they suggested a solution to prevent the attack with enhanced performance over previous

solutions.

These methods are appropriate for the analysis of algebraic related properties of pro-

tocols. However, there are examples of protocols that have been used extensively before

it turns out that an attack can be taken against them, even though the protocol received in-

tensive analysis, but the flaw could not be addressed. This triggered people towards using

formal methods to design and verify protocols. There are many approaches and tools that

have been developed in this direction, these are discussed next.

1.3.2 Formal Verification Methods

Formal methods use a combination of a mathematical or logical model of a system and its

requirements, together with an effective procedure for determining whether a proof that a

system satisfies its requirements is correct. Formal methods have gained attention in the

analysis of security protocols since the early trials of proving that protocols are secure.

Some flaws in famous protocols have been found using formal methods, where these pro-

tocols received intensive analysis before. This motivated people to use formal methods not

only in the analysis and verification of protocols, but also in the design of these protocols.

9



The last years have seen the emergence of successful applications of formal ap-

proaches to reasoning about security protocols. Earlier methods were concerned with rea-

soning about the events that a security protocol can perform, and make use of a causal

dependency that exists between protocol events. Methods like strand spaces [37] and the

inductive method of Paulson [68] have been designed to support an intensional, event-

based, style of reasoning. These methods have successfully tackled a number of protocols.

Syverson and Meadows [82] presented the formal requirements for authentication in key

distribution protocols to provide a single set of requirements to specify a whole class of

protocols, which can be fine-tuned for the particular application. Syverson and Meadows

extended this work in [59] and used the NPATRL language, a temporal requirement spec-

ification language for use with the NRL Protocol Analyzer, in order to specify the Group

Domain of Interpretation (GDOI) key management protocol [8]. In a subsequent work,

Meadows et al. [60] gave a detailed specification of the requirements for GDOI and pro-

vided a formal analysis of the protocol with respect to these requirements using the NRL

Protocol Analyzer. However, the problem with this approach is that no general set of re-

quirements for protocols requirements can be applied on a specific protocol, or can be

used for the refinement of protocol specifications during the design process. In addition,

the requirements they provide were for a single property, authentication, which is similar

in different protocols, whereas other properties may have different semantics in different

classes of protocols; like secrecy property.

Dutertre and Schneider [35] first introduced and used rank functions for the embed-

ding of CSP (Communication Sequential Process) in PVS in order to verify the authenti-

cation property of Needham-Shroeder public key protocol. They proposed the idea of rank

functions in order to enable CSP verification of the Needham-Shroeder protocol. Later,

Schneider [75] used the idea of rank functions for the verification of CSP. The work did
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not present a method that can be applied on security properties in other classes of pro-

tocols, specifically, group key protocols. In fact, the method, as is, may not be applied

on secrecy property for group key management protocols. In [30] Delicata and Schneider

described how their rank function approach is incapable of proving the correctness of pro-

tocols that are modeled using the process algebra CSP against forward secrecy property.

This shortcoming motivated them to propose another proof technique based on the concept

of a temporal rank function, where they use time stamps to tag messages and provide rank

for these tags. Even though the method is novel in its treatment for forward secrecy prop-

erty, the method considers partial forward secrecy since it provides only three ranks for

temporal messages: 0, n, or ∞. Delicata and Schneider [31] present an algebraic approach

for reasoning about secrecy in a class of Diffie-Hellman protocols. The technique uses the

notion of a message template to determine whether a given value can be generated by an

intruder in a protocol model. The work is restricted to certain algebraic form of messages

that are expressible as g raised to the power of a sum of products of integers, and there-

fore requires further extension to handle messages with different algebraic structures. The

authors relaxed the restrictions on the algebra of the protocol to allow the expression of its

messages. This is an interesting method, however it is based on establishing a hierarchy

of secrecy, where a message that can be leaked in the future is less secret than another

message. However, this concept may not be applied on backward secrecy and henceforth

collusion properties.

Layouni et al. [53] used a combination of three different approaches to prove the

correctness of Intrusion-tolerant Enclaves protocol [34, 33]. They used the Murphi model

checker in order to verify authentication property, and PVS to verify safety and liveness

properties such as proper agreement, agreement termination, and integrity, finally, they

used a Random Oracle model to manually proof robustness and unpredictability properties.
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The choice of the techniques was driven by the nature of the correctness arguments in each

module of the protocol, by the environment assumptions and the capability of the verifica-

tion approaches. This example shows that it is difficult to verify and analyze this class of

protocols. There was no single formalism where the protocol can fit and its verification is

feasible. However, the authors achieved a promising success in verifying a complex proto-

col such as Enclaves, the results could be improved further first by using the rank functions

to partition the message space and mechanically proof properties for the protocol [75], sec-

ond by providing correctness proofs for the consistency group membership when members

leave and join the group. Finally one of the biggest challenges is to perform the analysis of

the group key management module in PVS which requires the elaboration of some general

purpose theories that deal with probabilities which are not yet available in theorem provers.

The authors, however, suggest that this work can be complemented by performing the anal-

ysis of the group key management module in PVS in order to be able to verify properties

such as forward and backward secrecy.

In another work, Sun and Lin [81] extended the strand space theory [37] to analyze the

dynamic security of Group Key Agreement Protocols (GKAP) and discussed the conditions

of the security retention in the dynamic cases of the protocol. This work treats the analysis

dynamic aspects of the protocol with no reasoning about the correctness of the protocol

under these dynamic events. While this work provides a method to verify complex group

protocols, the proposed solutions focus only on specific aspects of one protocol rather than

focusing on general requirements.

Cremers [28] proposed an operational semantics for security protocols. The work

provides a generic description of the interpretation of such security protocols and what it

means for a protocol to ensure some security property. This work imposes explicit static

requirements for valid protocols, and verifies that the model is parametric with respect to
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the matching function and intruder network capabilities.

From the above account on related work, we noticed the lack of a single formalism to

model the protocols and reason about their security properties, such that the protocol can fit

and its verification is feasible. There is no formal link between the informal specification

and the provided protocol models and their security properties. Most approaches focus on

secrecy and authentication properties. Besides, there are no trials to reason about complex

features of key distribution properties such as key hierarchies that are not easy to handle.

Also, there is no generalized verification methodology that can be instantiated to prove the

correctness of a specific protocol. Finally, there are no well defined specification require-

ments, which will reduce the possibility of introducing errors into the protocol during the

design process. This justifies the need for a generic set of formal specification requirements

of group key protocol. We propose a framework to fill this gap by presenting new methods

to verify group key protocol specific properties, as it will be presented in the next section.

Some other recent works provide analysis and computational models for GDH like

protocols neglecting machine assisted verification techniques, such as theorem proving. In

addition, the focus on rigorous analysis of security of these protocols neglects possible

source of protocols vulnerabilities, where the intruder can take advantage of the distributive

nature of these protocols. Therefore, it is essential to prove the security of these protocol

from both algebraic and non-algebraic points of view.

1.4 Proposed Verification Methodology

We propose a framework for the formal specification and verification of group key security

protocols. In this framework, we first define the specification requirements for group key

protocols. Based on these requirements, we need to define a formal model with well-defined

semantics that can handle group key protocols and specify their security properties. This
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model should capture all specification requirements for group protocols such as the handling

of large, or even unlimited, number of participants, capturing the increasing different kinds

of environments within which the protocol works, capturing new protocols requirements

and properties: like forward and backward secrecy and immunity to collusion attacks, and

finally, providing methods for validation and verification in order to be able to reason about

the correctness of the protocol, and to prove its security against specific attacks. In addition,

these methods should be able to detect attacks if they exist.

The next step is to define verification methods that can handle the class of protocols

under investigation, and verify the required security properties for group key protocols. The

proposed verification methods should be able to prove the correctness of the group protocol

under investigation, verify security properties provided by the protocol, mainly safe key

distribution, and finally, handle a protocol model with abstracted features. In addition, these

methods should be efficiently implemented, i.e., their complexity should be reasonable.

Due to the inherent limitation of model checking approaches, we intend to use theo-

rem proving techniques as the underlying verification method. This means providing theo-

ries for establishing the impossibility of particular combinations of events. These verifica-

tion methods should be implemented in a feasible and sound environment. For this purpose,

we intend to use first-order and higher-order logics based theorem proving techniques pro-

vided by the event-B Click’n’Prove tool [4] PVS tool [66], respectively.

In order to reduce the complexity of the verification method, abstraction techniques

should be applied on the model. This, definitely will affect our certainty about the correct-

ness of the property. While trying to prove a specific property for the protocol, we need

to understand if we should consider all its primitives, or we can consider some of them

irrelevant to that property. Similarly, we can consider the abstraction of the protocol en-

vironment, the number of protocol sessions and the number of protocol participants. This
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provides a new model for the protocol at higher level of abstraction, which is called ab-

stract protocol [71]. This abstraction can serve in the design of protocols as well as their

verification. It is an improvement on the model and the verification approach.

Click’n’Prove
(Theorem Proving)

Event-B Model

Events Abstraction

Formal Protocol Model

Security PropertyGroup Protocol

PVS
(Theorem Proving)

Rank Functions

Inference SystemRank Theorems

Figure 1.1: Verification Methodology

Figure 1.1 displays a general view of the proposed verification methodology. Three

major techniques are used: in the first one, we use rank theorems to define the required

security property based on the concept of rank functions. Rank theorem are implemented

in PVS higher-order logic theorem prover. In the second approach, we provide a sound and

complete inference system to detect attacks in group key protocols. The inference system is

also implemented in PVS. Finally, we abstract our group protocol model to fit it to the first-

order logic theorem proving in event-B. We define a well-formed formal link between the

group protocol model and the event-B counterpart model. Based on this link, we propose

a solution to verify the required security properties, in particular group key secrecy and

forward secrecy properties, using the event-B invariant checking. The detailed view of
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each of the three methods is described below.

An overview of the rank theorems based approach is given in Figure 1.2, where a set

of rank functions is defined, and theorems to prove their soundness are established. This

set of rank functions is used in two directions: rank theorems and rank functions based

inference system. A general rank theorem is established based on rank functions, and its

correctness is established w.r.t the group protocol model and its security property. Then

two theorems are established for forward and backward secrecy, and their correctness is

established in PVS theorem prover. On top of forward and backward secrecy theorems, a

rank theorem is defined and verified for collusion property in the same way. Note that the

term “rank theorem” was first mentioned in [29] to refer to CSP theorems that encodes rank

functions to model authentication in security protocols.

We apply the implemented proof environment on the Enclaves protocol from SRI

[33] in order to verify related forward and backward secrecy properties. Then we defined

a rank theorem for collusion property on top of forward and backward secrecy. In our

approach, we establish the proof at the protocol level of abstraction, under the assumption of

perfect cryptography and algebraic conditions. More details will be described in a dedicated

chapter in the thesis.

The rank theorem is efficient in reasoning about the absence of attack, however, it is

necessary to be able to reason about the existence of attacks too. In addition, implementing

rank theorems requires a lot of user interaction with the verification tool because of the sep-

aration of rank functions from protocol events. This motivated us to improve the efficiency

of this method, and at the same time provide a way to reason about existence of attacks.

Based on the set of sound rank functions, we propose a sound and complete infer-

ence system to detect attacks in group key protocols (see Figure 1.3). The inference system
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Figure 1.2: Rank Theorems based Approach

provides an elegant and natural proof strategy for such protocols compared to existing ap-

proaches. Rank functions are combined with protocol events in a set of inference rules to

form a rank functions based inference system. Two theorems are established and proved

for the soundness and completeness of the inference system w.r.t the protocol model and

its security property. In this approach, it is necessary to show a formal link between the

original security property and the verified one in the tool. The above formalizations and

rank theorems were implemented using PVS. The inference system is implemented in PVS

and applied on the Group Diffie-Hellman (GDH) protocol. This protocol is vulnerable to a
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known attack in the existence of an active adversary. Therefore, it is more appropriate than

the Enclaves protocol in order to demonstrate the efficiency of this method in reasoning

about the existence of attacks. More details will be described in a dedicated chapter in the

thesis.

Group Protocols Formal Model

Set of Rank Functions

Rank Functions Map

Soundness

Inference Rules Formal Property

EmbeddingSecrecy

Soundness

Completeness

Group Key Secrecy

PVS

Rank Functions based Inference System

Figure 1.3: Inference System based Approach

Implementing the rank theorems and the inference system in higher-order logics the-

orem proving required a lot of effort and time, in addition, verifying properties is achieved

interactively with the theorem proving tool because of the decidability problem of higher-

order logics. In order to complement the previous methods, an event-B based automatic
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invariant checking is provided for a similar class of properties. This allows us to avoid

user interaction with the theorem proving tool, and reduce the time required to verify such

property. In this method, once a protocol is proven to be secure in the static case, it can

be easily proven to be secure in the dynamic case by considering a protocol event, where,

in this case, the number of members and messages in the protocol are abstracted under the

execution of a single event.

In order to reason about group protocols in the first-order logics, a map between the

group protocol model and event-B model semantics is defined. The event-B tool guarantees

the correctness of the invariant w.r.t the event-B model. The map from group protocols

to event-B model guarantees certain equivalence between the two models, under certain

conditions. Secrecy property is semantically implied in event-B invariant in a defined and

proved lemma. Then, a theorem is defined to guarantees that once an event-B invariant is

proved against event-B mode, we can conclude that the secrecy property is correct for the

group protocol mode. However, in the event-B method, compared to higher-order logics,

the number of protocol participants that can considered is limited, it is also applicability on

a single protocol event, finally, it cannot model backward secrecy and key independence.

We applied this method on the Tree-based Group Diffie-Hellman (TGDH) protocol

[49], for which we have proven secrecy property based on event-B refinement and the

Click’n’Prove tool. The TGDH protocol has a simple key management scheme based on

binary-tree structure, therefore, it is suitable for this method, since it is based on the first-

order logic, which is less expressive than higher order logic. Figure 1.4 depicts the formal

links in the proposed event-B approach. More details will be described in a dedicated chap-

ter in the thesis.
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Figure 1.4: Event-B based Approach

1.5 Thesis Contributions

The primary focus of this thesis is on the idea of using higher-order and first-order logic

theorem proving for the verification of security properties for group key protocols. The

thesis makes the following contributions:

• Provide a set of generic requirements of group key protocols, establish their formal

specifications, and define a formal model for this class of protocols. [Bio-CF-3,Bio-

TR-5]1

1The references with prefix Bio are provided in the Biography section at the end of the thesis.

20



• Verify security properties such as forward and backward secrecy, and, in addition,

mechanically verify collusion property under certain assumptions. This is, to the best

of our knowledge, the first such mechanized proof in the context of theorem proving

[Bio-CF-2].

• Present rank theorems to enable and mechanize the verification procedure of this class

of protocols, and prove the soundness of our approach by proving the correctness of

the rank theorem. We implemented this approach in PVS and illustrated it on the

Enclaves group protocol. [Bio-CF-3,Bio-TR-4]

• Provide a complete and sound inference system defined over rank functions. The

approach is based on an elegant and natural proof strategy for the verification of

group key protocols. We implement the inference system in PVS, and illustrate it on

the Group Diffie-Hellman protocol. [Bio-JR-1,Bio-TR-3]

• Provide an automatic approach using first-order logic theorem proving system in the

context of group key protocols verification to verify secrecy properties using event-B

invariant checking. Then, present a method for modeling and verification of for-

ward secrecy using event-B refinement. Finally, apply this method on the Tree-based

Group Diffie-Hellman protocol. [Bio-CR-1,Bio-TR-1,Bio-TR-2]

1.6 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we provide a brief introduction to the basic preliminaries and nota-

tions that will be used throughout the thesis. This includes group key protocols, protocol

notations, protocol attacks, theorem proving techniques, the PVS theorem prover, event-B

method, and the Click’n’Prove tool.
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Chapter 3 describes a formal model for the protocol. First, we give the formal no-

tations that will be used in the thesis, then, we give the formal specifications of secrecy

properties and protocol events. Finally, we give the definition of rank functions and the

requirements for a set of sound rank functions.

In Chapter 4, rank theorems for forward and backward secrecy properties are pre-

sented based on the group protocol model. We illustrate our approach on the verification of

forward and backward secrecy for the Enclaves protocol using PVS. Then we show how to

construct and prove collusion property from forward and backward secrecy.

Next, in Chapter 5, we introduce the inference system which is defined over a set of

sound rank functions. The inference system is embedded in PVS theorem prover. We show

an illustrative application of this system on a group key protocol, the Group Diffie-Hellman

protocol, providing a mechanized approach using theorem proving in the context of group

key protocols verification.

Chapter 6 presents an abstract approach for modeling and verification of group key

protocols by using event-B first-order logic invariant checking and refinement checking. We

present theorems that shows the correctness of the semantical link from the group protocol

model to the counterpart event-B model. Then we apply the method on the tree based Group

Diffie-Hellman protocol and verify it in the Click’n’Prove tool.

Finally, Chapter 7 concludes the thesis and outlines some future research directions.
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Chapter 2

Preliminaries

In this chapter we provide an introduction to the preliminaries that will be used in the rest

of this thesis. In the first section we introduce security protocols focusing more on group

key protocols. We also show an example of group key protocols, and an attack example

on group key protocols that can be generated taking advantage of the protocol messages

interaction. Then, in the second section, we overview the concept of theorem proving

approach and the PVS theorem proving tool. Finally, the notion of event-B method and the

Click’n’Prove invariant checking tool are presented.

2.1 Group Key Protocols and Attacks

Cryptographic protocols are used for establishing secure communication in order to allow

group members to exchange or establish keys to encrypt and authenticate messages within

the group. In a group communications context, new members can join or leave the group,

therefore the group requires that membership changes cause the group key to be refreshed.

It is intuitive to generate a new key so that a new member is prevented from decoding mes-

sages exchanged before he/she joined the group. If a new key is distributed to the group
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when a new member joins, the new member cannot decrypt previous messages encrypted

with the old key even if he/she has recorded any combination of earlier messages. In ad-

dition, changing the group key prevents a leaving group member from accessing the group

communication if it can receive the messages. If the key is changed as soon as a member

leaves, that member will not be able to decipher group messages encrypted with the new

key. However, distributing the group key to valid members is a complex problem. Rekeying

is a trivial method for sending the new group key to the old group members encrypted with

the old group key. Although rekeying the group before a new member joins is trivial, rekey-

ing the group after a member leaves is far more complex since any old key cannot be used

to distribute a new one. Therefore, a scalable and reliable mechanism should be provided

to generate and distribute the group key. Rafaeli and Hutchison [74] classified group key

management into three different types:

• Centralized group key management protocols. A single entity is employed for con-

trolling the whole group, hence a group key management protocol seeks to minimize

storage requirements, computational power on both client and server sides, and band-

width utilization.

• Decentralized architectures. The management of a large group is divided among

subgroup managers, trying to minimize the problem of concentrating the work in a

single place.

• Distributed key management protocols. There is no explicit key distribution center.

Members can generate key and perform access control and the generation of the key

can be either contributory, meaning that all members contribute some information to

generate the group key, or done by one of the members.
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2.1.1 Protocol Notation

A protocol is formulated as a sequence of messages, together with the names of the sender

and receivers, a message is given as

Message n a → b : data

where, a and b are users, data is the message content which can be composed of:

atoms: This may be names, variables and literal constants.

nonces: A nonce, usually notated like nA, is an unpredictable, freshly generated unique

number. The subscript is just a notational convenience indicating which participant created

it, in the real protocol there is no attached name tag or something similar that indicates its

creator.

encryption: The term {data}k denotes the encryption of data with the key k.

authentication: Signk(data) denotes the signature of data using the key k.

concatenation: a.b denotes the concatenation of a and b, i. e. the two terms are sent

consecutively.

In the following, we show a simple protocol to illustrate these concepts, the protocol

is a Challenge-Response, which can verify that two parties A and B share a common secret

key k without revealing it. It is commonly employed after a key exchange to assure that the

keys were not modified either accidentally or by an attacker:

1. A → B : nA

2. B → A : {nA}k.nB

3. A → B : {nB}k

After receiving the first message, B encrypts the nonce NA with his/her version of k

and sends it back. Now A can decrypt it again and compare the result to the number he/she
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originally sent. If they match, then under the assumption that k is not known to any attacker,

A can be sure that B has the same k as he/she has. The challenge is then performed the

other way around for convincing B of the fact.

2.1.2 Group Key Protocols Example

An example on group key protocols is the Diffie-Hellman key exchange [32]. This proto-

col, also called exponential key exchange, enables two participants to calculate a common

symmetric secret key solely from public information. It is based on public-key cryptogra-

phy and provides a practical solution to the key distribution problem. It enables two parties,

which have never communicated before, to establish a shared secret key by exchanging

messages over a public channel.

A prime number p and a primitive element g, where the powers of g run through all

possible remainders modulo p, are publicly known and can be the same for all participants.

The protocol participants A and B randomly choose their own secret keys a, and b respec-

tively. The values ga and gb can be published as public keys. Now the participants can

calculate the shared secret key k = (ga)b = (gb)a = gab.

1. A → B : ga

2. B → A : gb

3. A computes k = (gb)a

4. B computes k = (ga)b

The Computational Diffie-Hellman problem states that given < g, ga, gb > it is

hard to compute gab. In addition the Decision Diffie-Hellman Problem states that given
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< g, ga, gb, gc >, it is hard to check if gc = gab. Diffie-Hellman based protocols presented

in the literature rely on the complicity of these algebraic problems.

There are many extended protocols in the literature that are based on the DH agree-

ment. For instance, Steiner et al. [78] presented a Diffie-Hellman key distribution extended

to group communication in three different versions GDH.1, GDH.2, and GDH.3. They ex-

tended the well-known DiffieHellman key exchange method to groups of n parties. The au-

thors called refers to these protocols as initial key agreement (IKA) within a group. Once a

group is formed and the secure key is agreed upon, new members may join and group mem-

bers may leave. Any membership change must cause a corresponding group key change in

order to preserve group secrecy. Instead of rerunning full IKA for each membership change,

the authors suggested a less expensive solution called auxiliary key agreement (AKA) [79],

these protocols are claimed to be secure based on the polynomial indistinguishability of a

DiffieHellman key from an arbitrary random value.

Kim et al. [49] designed a static group key exchange protocol based on the extension

of the basic DH protocol by Steiner et al. [78]. The protocol is called Tree-based Group

Diffie-Hellman (TGDH) and it outputs group keys using the logical structure of a balanced

binary tree. The Internet Key Exchange (IKE) [41], and its latest version IKEv1 [43] are

also based on the basic Diffie-Hellman protocol.

2.1.3 Attacks on Protocols: Example

Man-in-the middle attack is a “form of active eavesdropping in which the attacker makes

independent connections with the victims and relays messages between them, making them

believe that they are talking directly to each other over a private connection when in fact

the entire conversation is controlled by the attacker. The attacker must be able to intercept

all messages going between the two victims and inject new ones, which is straightforward
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in many circumstances” [36].

An example of such an attack exists in the Diffie-Hellman key establishment scheme.

Despite the fact that the protocol is designed to work in the existence of passive adversary,

it is vulnerable to this attack in the existence of active adversary.

To execute the protocol, we chose a prime p and a primitive root g mod p. Primitive

is an algebraic term that means all numbers between 1 and p can be generated by taking

exponents of r mod p. The protocol works as follows, A chooses at random an integer a

and sends B the message:

A → B : m1 = ga mod p

B chooses an integer b and sends A the message

B → A : m2 = gb mod p

A calculates

A computes k1 = gba
mod p

B calculates

B computes k2 = gab
mod p

It is easy to prove that k1 = k2. Hence A and B can use K1 as a private key between

themselves. Note that A and B play a symmetric role in the generation of the key. Deriving

a from m1 and b from m2 is considered hard problem [78].

This Diffie-Hellman scheme has no way to ensure authentication. A man-in-the-

middle could pretend to be B and establish a shared key with A, therefore, reading all

messages that A believes to be sending to B. Similarly, the intruder could be doing the same

with B, with certain control over the network. The intruder monitors a run of the protocol

or part of it and at some time replays one or more of the messages. The intruder tricks an

agent into revealing some information, possibly by inducing him to perform specific steps

of the protocol.
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2.2 Theorem Proving and PVS

Formal methods allow a thorough analysis of the different paths which an intruder can take,

and also to specify precisely the system’s boundary, i.e., the interface between the system

and its environment. They can characterize a system’s behavior and its desired properties

precisely. They can prove that a system meets its specification and tell us under what

circumstances a system does not meet its specification by providing counterexamples like

intruder scenarios. Formal methods also help the designer to think about the protocol in a

proper and thorough way since he/she must have a clear idea of what exactly he/she wants

to achieve and must make assumptions explicit and non-ambiguous.

It should be emphasized that any proof of correctness is relative to both the formal

specification of the system and the formal specification of the desired properties. A sys-

tem proven correct with respect to an incorrect specification leaves us with no assurance

about the system at all. Another problem is the difference between an abstract mathemat-

ical model and a real-world instantiation of a system. Systems do not run isolated; they

operate in some environment. The formal specification of a system must always include

the assumptions made about an environment. As soon as one of these assumptions does

not hold, the conclusion is invalid. The main formal verification techniques are: model

checking and theorem proving.

One of the earliest approaches to formal verification was to describe both the imple-

mentation as well as the specification in a formal logic. The correctness result was then

obtained by proving in the logic, that the specification and implementation were suitably

related. Theorem proving is a technique where both the system and its desired properties

are expressed as formulas in some mathematical logic. The logic is given by a formal sys-

tem based on a set of axioms and inference rules. Theorem proving is the process of finding

proofs using axioms of the system. Steps in the proof appeal to the axioms and rules, and
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possibly derived definitions and intermediate lemmas. Theorem provers based on higher-

order logic are distinguished by a high level of expressiveness and generality compared to

model checkers. They do, however, require a lot of user expertise and interactivity. Al-

though, theorem proving is a slow process that requires much of human interaction, it gives

invaluable insight to the user on the system or the property being proved.

The powerful mathematical techniques such as abstraction and induction are strong

points of theorem proving. This make it a very flexible and powerful verification technique.

Formal logics that support theorem proving make it possible to construct a model at differ-

ent levels of abstraction and to prove properties on all classes of systems. However, it is

a time consuming process which can involve generating and proving literally hundreds of

lemmas.

Higher-order logic [17] is derived from the typed λ calculus. This logic is more

powerful than first or second-order. First-order logic [39] can only quantify over individual

variables, for instance, ∀x, yR(x, y) ⇒ P (x, y). Second-order logic can quantify over

predicates and functions, for instance, P ⇒ Q ≡ ∀R.(P ⇒ Q ⇒ R) ⇒ R; whereas

higher-order logic can quantify over arbitrary functions and predicates. Any proposition of

first-order logic can be translated into a proposition of higher-order logic, but the reverse

does not hold. However, higher-order logic has, some disadvantages. First it is incomplete,

second it is undecidable. Undecidable means there is no effective method for determining

whether arbitrary formulas are theorems of the logical system. Completeness means that

there are no true sentences in the system that cannot be proven in the system. Also there

is no complete deduction system for the second-order logic. Reasoning is more difficult in

higher order than in first-order logic. In addition, for any proof system, inference rules and

heuristics are needed. Finally, inconsistencies can arise in higher-order systems if semantics

not carefully defined [50].
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Theorem proving is a formal verification method in which the correctness of a design

is formulated as a theorem in a mathematical logic and the proof is checked using a general-

purpose theorem-prover. Based on first-order and high-order logic.

The verification of a theorem depends on the underlying logic used in theorem prov-

ing. First-order logic is semi-decidable because it is restricted to propositional calculus and

terms. Therefore sound and complete first-order logic automated reasoners are available

and can conduct completely automated proofs. On the other hand, the more expressive log-

ics, second and higher-order logics, can be used to model a wider range of problems than

first-order logic, however, theorem proving cannot be fully automated and requires user

interaction to guide the proof tools.

Theorem proving methods have been used for the verification of wide range of sys-

tems: hardware, software, protocols, hybrid, and many others. Among the mostly used

theorem provers are HOL (Higher-Order Logic) [40], Isabelle [67], PVS (Prototype Veri-

fication System) [66], Coq [23], ACL2 [47], and Click’n’Prove [4]. The major differences

between these systems is the way automatic decision procedures are integrated into the sys-

tem. This results in a different degree of automation among each others. In addition, these

systems use slightly different mathematical logics. However, they all require expertise in

using theorem proving technique, which is not fully automated and requires a large amount

of time to verify systems. The advantage of the deductive verification approach is its ability

to handle and verify complex systems because of the expressiveness of the logic used in

theorem provers. In this, we will use the PVS higher-order logic theorem prover and the

Click’n’Prove first order theorem prover. In the next section, we will briefly overview the

PVS theorem proving system.
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2.2.1 Prototype Verification System (PVS)

The Prototype Verification System (PVS) [66, 72, 76] is a mechanized environment for for-

mal specification and verification of systems. “PVS consists of a specification language,

a number of predefined theories, a type checker, formalized libraries, and an interactive

theorem prover that supports the use of several decision procedures and a symbolic model

checker with various utilities including a code generator, a random tester, and documenta-

tion” [72].

The specification language of PVS is based on classical, typed higher-order logic.

The base types include uninterpreted types that may be introduced by the user, and built-in

types such as the Booleans, integers, and reals. The type-constructors include functions,

sets, tuples, records, enumerations, and inductively-defined abstract data types, such as

lists and binary trees, and abstract data types. Predicate subtypes and dependent types can

be used to introduce constraints over user defined types as Type-Correctness Conditions

(TCCs), a separate collection of lemmata that must be proven to ensure well-typedness.

PVS specifications are organized into parameterized theories that may contain assumptions,

definitions, axioms, and theorems. Parameters can include constants, types, and theories.

Theory interpretations are used to instantiate the declared types and constants in a theory

with definitions. PVS expressions provide the usual arithmetic and logical operators, func-

tion application, lambda abstraction, and quantifiers, within a natural syntax [72].

The PVS theorem prover presents the current proof goal in the form of a sequent [76]:

[ -1] A1

[ -2] A2

[ -3] A3
...

|-------
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[1] B1

[2] B2
...

Ai and Bi are referred to as sequent formulas and consists of a number of antecedents

(Ai) and consequents (Bj). Note that antecedents or consequents can be empty, but not

both. The sequent intuitively means that the conjunction of the antecedents should imply

the disjunction of the consequents. The sequent represents the proof goal: A1∧A2∧A3 ⇒
B1 ∨B2, where A1, ..., B2 are propositions in the PVS language.

PVS expressions provide the usual arithmetic and logical operators, function appli-

cation, lambda abstraction, and quantifiers, within a natural syntax. Names may be freely

overloaded, including those of the built-in operators such as AND and +. Tabular specifica-

tions are supported, with automated checks for disjointness and coverage of conditions. An

extensive prelude of built-in theories provides hundreds of useful definitions and lemmas.

The PVS language provides interpreted or uninterpreted type declarations. In addi-

tion, subtype declarations are supported.

uninterpreted type : T: TYPE

uninterpreted subtype : S: TYPE FROM T

interpreted type : T: TYPE = int

enumeration type : T: TYPE = {r, g, b}

Variable declarations introduce new variables and associate a type with them. These

are logical variables, not program variables; they simply provide a name and associated type

so that binding expressions and formulas can be succinct. Constant declarations introduce

new constants, specifying their type and optionally providing a value. Since PVS is a higher

order logic, the term constant refers to functions and relations.

n: int
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c: int = 3

f: [int -> int] = (lambda (x: int): x + 1)

g(x:int): int = x + 1

The declaration for n simply introduces a new integer constant. Nothing is known

about this constant other than its type, unless further properties are provided by AXIOMs.

The other three constants are interpreted.

PVS allows a restricted form of recursive definitions for total functions so that the

function is defined for every value of its domain. This is ensured by a measure, which

is a function whose signature matches that of the recursive function. Recursive definitions

are treated as constant declarations, except that the defining expression is required, and a

measure must be provided.

Formula declarations introduce axioms, assumptions, theorems, and obligations. The

expression that makes up the body of the formula is a boolean expression. Theorems may be

introduced with many keywords such as CHALLENGE, COROLLARY, FORMULA, LEMMA,

PROPOSITION, SUBLEMMA, or THEOREM.

The PVS theorem prover provides a collection of powerful primitive inference pro-

cedures that are applied interactively under user guidance within a sequent calculus frame-

work. The primitive inferences include propositional and quantifier rules, induction, rewrit-

ing, simplification using decision procedures for equality and linear arithmetic, data and

predicate abstraction, and symbolic model checking. The implementations of these prim-

itive inferences are optimized for large proofs: for example, propositional simplification

uses BDDs, and auto-rewrites are cached for efficiency. User-defined procedures can com-

bine these primitive inferences to yield higher-level proof strategies.

Proof commands can be used by the user to introduce lemmas, expand definitions,

eliminate quantifiers (skolemise), split up a disjunct, or make a case distinction. More
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complex commands are also available, such as apply decision procedures, rewrite the for-

mula, apply a certain lemma, simplify using decision procedures, or even user-defined proof

strategies. Proofs yield scripts that can be edited, attached to additional formulas, and rerun.

This allows many similar theorems to be proved efficiently, permits proofs to be adjusted

economically to follow changes in requirements or design, and encourages the development

of readable proofs [72].

2.3 Event-B Method

The event-B method [3] uses the set-theoretical and logical notations of the B method and

provides new notations for expressing abstract models based on events. It provides invari-

ants proofs for a state-based system that is updated by guarded events. In order to model

a group key protocol in event-B first order logic, the semantics of the event-B language

should be formally related to the protocol model.

In event-B, an event consists of a guard and an action. The guard is a predicate

built on state variables and the action is a generalized substitution which defines a state

transition. An event may be activated once its guard evaluates to true and a single event may

be evaluated at once. The system is assumed to be closed and it means that every possible

change over state variables is defined by transitions; transitions correspond to events defined

in the model. The B method is based on the concept of machines (or systems) [2]. A

machine is composed of descriptive and operational specification:
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SYSTEM < name >

SETS < sets >

VARIABLES < variables >

INVARIANT < invariants >

INITIALISATION < initialization of variables >

EVENTS < events >

END

A descriptive specification describes what the system does by using a set variables,

constants, properties over constants and invariants which specify properties that machine’s

state verify. This constitutes the static definition of the model.

Operational specifications describe the way the system operates. It is composed of a

set of atomic events described by generalized substitutions. Formally, several substitutions

are defined in B. If we consider a substitution S and a predicate P representing a post-

condition, then [S]P represents the weakest precondition that establishes P after execution

of S. The substitutions occurring in event-B models are inductively defined by the following

expressions:

[SKIP]P ⇔ P

[BEGIN S END]P ⇔ [S]P

[S1||S2]P ⇔ [S1]P ∧ [S2]P

[ANY v WHERE G THEN S END]P ⇔ v[P ⇒ [S]P ]

[SELECT G THEN S END]P ⇔ G ⇒ [S]P

[x := E]P ⇔ P (x/E)

P (x/E) represents the predicate P where all the free occurrences of x are replaced

by the expression E. The guard and the action of an event define a before-after predicate

36



for this event. It describes relations between variables before the event holds and after this.

Proof obligations are produced from events in order to state that the invariant condition is

preserved. Let M be an event-B model with v being variables, carrier sets or constants.

The properties of constants are denoted by P (v), which are predicates over constants, and

the invariant by I(v). Let E be an event of M with guard G(v) and before-after predicate

R(v, v′). The initialization event is a generalized substitution of the form v : init(v). Initial

proof obligation guarantees that the initialization of the machine must satisfy its invariant:

Init(x) ⇒ I(x).

An event has a guard and an action, and it may occur only when its guard evaluates to

true. An event has one of the general forms where the SELECT form is just a particular

case of the ANY form.

2.3.1 Invariant

The consistency of an event-B model is established by proof obligations which guarantee

that the initialization verify the invariant and that each event should preserve the invariant.

The guard and the action of an event define a before-after predicate for this event. It de-

scribes a relation between variables before the event holds and after this. Proof obligations

are produced from events in order to state that the invariant condition is preserved.

Each event E, if it holds, has to preserve its invariant. The feasibility statement is

illustrated in Lemma 2.3.1 and the invariant preservation is given in Lemma 2.3.2 [61].

Lemma 2.3.1 I(v) ∧ G(v) ∧ P (v) ⇒ ∃v′.R(v, v′)

Lemma 2.3.2 I(v) ∧ G(v) ∧ P (v) ∧ R(v, v′) ⇒ I(v′)

An event-B model M with invariants I is well-formed, dented by M |= I only if M

satisfies all proof obligations. The B syntax for generalized substitutions defines three pred-

icates: a relation R, the subsets of the pre-states where G is true of the states in domain(R),
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and the subset of the pre-state where P is true. Let S be restricted to evaluations that satisfy

the invariant, S , {v|I(v)}. Each event can be represented by a binary relation rel. rel is

formally defined as rel , {v 7→ v′ | I(v) ∧ G(v) ∧ R(v, v′)}. The fact that the invariant

I(v) is preserved by event rel is simply formalized by saying that rel is a binary relation

built on S: rel ⊆ S × S. It is shown that this binary relation yields to both Lemmas 2.3.1

and 2.3.2 above [61].

The B syntax for generalized substitutions defines three predicates: a relation R and,

the subsets of the pre-states where G is true of the states in domain(R), and the subset of

the pre-state where P is true. Let S be restricted to evaluations that satisfy the invariant,

S , {v|I(v)}. Each event can be represented by a binary relation rel. rel is formally

defined as rel , {v 7→ v′ | I(v) ∧ G(v) ∧ R(v, v′)}. The fact that the invariant I(v) is

preserved by event rel is simply formalized by saying that rel is a binary relation built on

S: rel ⊆ S × S. It is shown that this binary relation yields to both Lemmas 2.3.1 and 2.3.2

above [61].

Lemma 2.3.1 guarantees that the active part of the relation is a total relation, i.e.,

when all predicates I, P, and G hold, formally G(v) ∧ P (v) ⊆ domain(R(v, v′)). Finally,

Lemma 2.3.2 guarantees that the postcondition of any operation must satisfy the machine

invariant. Initial proof obligation guarantees that the initialization of a machine must satisfy

its invariant.

Special rules for the initialization events are distinguished. RI(v, v′) is used to de-

note the predicate of the generalized substitution associated with this event. The following

initialization statements is obtained [61]:

Lemma 2.3.3 P (v) ⇒ ∃v′.RI(v, v′)

Lemma 2.3.4 P (v) ∧ RI(v, v′) ⇒ I(v′)
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2.3.2 Refinement

Refinement is a technique to deal with the development of complex systems. It consists

in building, starting from an abstract model, a sequence of models of increasing complex-

ity containing more and more details. These details could be introduced when using new

variables, adding details to abstract events or adding new events. A model in the sequence

is followed by a model it refines. The invariant of the refined model is not weaker than

the model it refines and it may contain new variables. The events are the same but may be

redefined. It is also used to transform an abstract model into a more concrete version by

modifying the state description [3]. The abstract state variables, v, and the concrete ones,

vc, are linked together by means of a gluing invariant J(v, vc). A number of proof obliga-

tions ensures that (1) each abstract event is correctly refined by its corresponding concrete

version, (2) each new event refines skip, (3) no new event takes control forever, and (4)

relative deadlock fairness is preserved. Suppose that an abstract model M with variables v

and invariant I(v) is refined by a concrete model Mc with variables vc and gluing invariant

J(v, vc). If RA(v, v′) and RC(vc, v
′
c) are respectively the abstract and concrete before-after

predicates of the same event, we have to prove the following statement:

(I(v) ∧ J(v, vc) ∧RC(vc, v
′
c)) ⇒ ∃v′.(RA(v, v′) ∧ J(v′, v′c))

This statement means that under the abstract invariant I(v) and the gluing invariant

J(v, vc), a concrete step RC(vc, v
′
c) can be simulated (v′) by an abstract one RA(v, v′) in

such a way that the gluing invariant J(v′, v′c) is preserved. A new event with before-after

predicate R(vc, v
′
c) must refine skip (x′ = x). This leads to the following statement to prove

: I(v) ∧ J(v, vc) ∧ RC(v, v′c) ⇒ J(v, v′c). Moreover, we must prove that a variant V (vc)

(valuation of variable v) is decreased by each new event (this is to guarantee that an abstract

step may occur). We have thus to prove the following for each new event with before-after

predicate Rc(vc, v
′
c) :
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I(v) ∧ J(v, vc) ∧ BA(v, v′) ⇒ V al(v′c) < V al(vc). At last, we must prove that a

concrete model does not introduce more deadlocks than the abstract one. This is formalized

by means of the following proof obligation:

I(v) ∧ J(v, vc) ∧G(M) ⇒ G(Mc)

where G(M) stands for the disjunction of the guards of the events of the abstract model,

and G(Mc) stands for the disjunction of the guards of the events of the concrete one. The

essence of the refinement relationship is that it preserves already proved system properties

including safety properties. The invariant of an abstract model plays a central role for

deriving safety properties; the goal is to obtain a formal statement of properties through the

final invariant of the last refined abstract model.

2.3.3 Click’n’Prove

Click’n’Prove [4] is a predicate theorem prover which offers an automatic semi-decision

procedure for first-order logics, and a systematic translation of statements written within

set theory into equivalent ones in first-order predicate calculus.

The proof assistant deals with the proofs of sequents of the following form:

hypothesis ` conclusion

where hypothesis denotes a possibly empty list of predicates and conclusion denotes a

predicate which is not conjunctive and usually implicative. Conducting a proof within this

framework leads to the application of some pre-defined inference rules able to transform

such a sequent into zero, one or more successor sequents.

In the Click’n’Prove language, the key words constants and variables are used to

define corresponding terms as follows:
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VARIABLES

x

, y

, m : 0..N

CONSTANTS

a

, b

An invariant is a condition on the state variables that must hold permanently. In order

to achieve this, it is just required to prove that, under the invariant in question and under the

guard of each event, the invariant still holds after being modified according to the transition

associated with that event. Invariants are defined as follows:

INVARIANT

w : BOOL

& t : BOOL

& (x = FALSE & t = FALSE => m = N)

Initializations are defined similarly as follows:

INITIALISATION

m := 0

|| w := FALSE

|| t := TRUE

Events are defined using SELECT or ANY statement described above:

EVENTS
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Event1 = skip;

Event2 =

SELECT

w = FALSE

& m /= N

THEN

t := TRUE

END

;
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Chapter 3

Formal Model for Group Key Protocols

In this Chapter, we introduce our formal specification requirements for group protocols

upon which we build each of the proposed verification methods. The intent is to introduce

the basic concepts notations that are going to be used in the rest of the thesis. The formal

notations to be used throughout the thesis is first presented. Then the formal definition

of group secrecy, including forward secrecy, backward secrecy, and key independence is

presented. Finally, the definition of rank function is presented, then the correction of a set

of sound rank functions, w.r.t. specific requirements, is established.

The formal notations is going to be used in the rank theorems method (chapter 4), the

inference system (chapter 5), and event-B based method (chapter 6). Rank functions will

only be used in chapters 4 and 5.

3.1 Formal Notations

The formal definition of group protocols requirements is necessary first for understanding

the protocol, and second for the protocol verification. Therefore, we are concerned with
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providing a formal definition for these requirements as a first step. We will consider dif-

ferent protocol design approaches, explore how these requirements are provided in these

protocols, and formally model them accordingly. Of these approaches, we mention here the

work of Wong et al. [85] about securely distributing re-key messages, Kikuchi [48] about

a scheme for group key distribution, Kim et al. [49] about tree-key for group key manage-

ment protocols, and finally the work of Rafaeli and Hutchison [73] about a decentralized

architecture to create and distribute symmetric cryptographic keys.

In this section we give the specification requirement of group key management pro-

tocols. Since there are many different approaches in the literature to design such protocols,

specially keys generation and distribution, the specification of these protocols and their

properties are informal. So we try to provide a common formal model for these specifica-

tions where most of commonly designed protocols fit. We need these formal specification

requirements for many reasons: first, to fill the gap between the informal protocols descrip-

tions on one hand and the formal protocol models and their implementations on the other

hand. Second, to integrate formal analysis in the design process of cryptographic protocols

and specifically group key protocols [59]. Finally, to give a better understanding of the

verification problem and suggest a verification method based on these requirements.

Freshness requirement imposes that when a principal receives a piece of information,

such as keys, then this information must have been fresh and currently valid. In this sense,

freshness is similar to those that have been defined for two parties protocols. Group secrecy

should guarantee that it is computationally infeasible to discover any group key. Forward

secrecy should guarantee that knowing a subset of old group keys will not lead to the com-

putation of any subsequent group key. Backward secrecy should guarantee that knowing a

subset of group keys will not lead to the computation of a preceding group key.

Group Joining or leaving events are operations that result in creating a new group with
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a new group key out of an existing group. Protocols should guarantee that above properties

remain valid when members join or leave the group. A Group Merge group event is the

operation where subgroups need to be merged back into a single group, a new group key is

computed and distributed to every member of the new group, and group keys for subgroups

are considered old or preceding keys. A Group Split group event is the operation of creating

two subgroups out of a single group, where every subgroup has an independent group key.

In this section we present our formal model and the notations we will use throughout

this thesis.

M: set of all possible messages (message space).

P : a honest principal who is willing to communicate.

P: set of knowledge of member P , P ⊆M.

S: secret messages space, the set of all secret messages, S ⊂ M. These are the messages

we want to keep hidden from the intruder. They are defined by the protocol.

I: a dishonest member. We assume that the intruder is a dishonest member who is trying to

find an attack in the protocol by using his/her unlimited resources and computational power.

In this thesis, we consider an attacker-centric threat modeling. The model starts with

an attacker, and evaluates their goals, and how they might achieve them. We state normal

assumptions about the intruder such as being able to encrypt or decrypt a message only

if he/she knows the appropriate key, or the ability to block, read, modify, or insert any

message in the system.

E: set of all events, or dynamic operations, i.e., join, leave, merge, and split. An event is

a term from the message space to the message space, E : M → M. It represents an action

the user can perform in order to obtain extra information and update his/her own set of

knowledge.

attack: we define attack w.r.t. confidentiality as the ability of the intruder to have a message
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in the set of secret messages in his own set of knowledge, attack ≡ m ∈ K and m ∈ S.

The notion of attack can be seen differently depending on the nature of the security property

under investigation.

KGt: the group session key is the key generated for the current session. Equivalently, it can

be the set of information that can be used to calculate the key. I /∈ Gt ⇒ KGt ∈ S
KGt+i

: a group session key for the group Gt+i that can be generated and used sometime in

the future, I /∈ Gt+i ⇒ KGt+i
∈ S.

KGt−i
: a group session key that was generated and used previously in time. I /∈ Gt−i ⇒

KGt−i
∈ S.

Group membership ∈: we define membership as follows: KGt ∈ P =⇒ P ∈ Gt, which

means a principal P is a member of the group Gt at this time, t, if the group key KGt is in

his set of principal P ’s knowledge P.

T: set of all possible traces, where a trace of events is the execution of the sequence of these

events. We use τ ∈ T, such that τ : E×M→ M, m ∈ M, then we write m = τ(E,M) to

say that a message m is generated by the trace τ by executing the set of events E on the set

of messages M , we also write τ(E,M) ; m to represent a predicate formula that evaluates

to true if and only if m = τ(E,M).

K0: set of initial knowledge of the intruder, where K0 ⊂ M. The initial knowledge of the

intruder is basically the information he/she can collect before executing the protocol events.

This information is usually public and known, so there are no secret information that is in

the intruder’s initial set of knowledge. In other words ∀m ∈M : m ∈ S⇒ m /∈ K0

K: set of knowledge of the intruder. The intruder updates this knowledge by executing

events. The intruder starts with the initial set of knowledge and the set of events, then, by

executing a sequence of events, he/she updates this set. K0 ⊆ K and K ⊆M.

Kf : set of knowledge of a user who is not currently a member of the group, i.e. has no
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access to the current group’s secret shares, and who was previously a member of the group.

Kf ∩ K = ∅. Also Kf ⊂ S, where S is the set of secret messages when this user was

member of the group. This is used to express the knowledge a member accumulated during

activity as a member of the group, and it will be used to model forward secrecy.

Kb: set of knowledge of a user who is not currently a member of the group, i.e. has no

access the current group’s secret shares, and who will be a member of the group in the

future. Kb ∩K = ∅. Also Kb ⊂ S, where S is the set of secret messages when this user will

be a member of the group. This is used to express the knowledge a member will accumulate

during activity as a member of the group, and it will be used to model backward secrecy.

Gt: current group, which can be formally defined as a set of principals who share a secret

key, or information that can be used to calculate the secret key.

Gt+i: a group that can share a secret key at future time.

Gt−i: a group that previously in time shared a secret key.

3.2 Group Secrecy and Events

3.2.1 Secrecy

Only members of the group should have access to keys. The important issue here, is wether

we want to allow users who just joined the group to have access to previously used keys,

also wether we want to allow users who just left the group to have access to keys that will

be generated hence after. To ensure the secrecy of old and new keys, every protocol uses a

mechanism for keys generation to guarantee that they cannot be calculated using the current

group session information including the key itself.

In the following, we give the formal definition of group secrecy, forward secrecy and

backward secrecy.

47



Definition 3.2.1 Group Key Secrecy: for any current group Gt, and a dishonest principal

I who knows a set of initial knowledgeK0, there is no trace t ∈ T that he/she can execute in

order to obtain the current group session key KGt . We use φ to represent group key secrecy

property.

I /∈ Gt ⇒ ¬∃τ ∈ T: KGt = τ(E,M), where E is the set events and M is the set of

messages.

This can be expressed as φ ≡ K ∩ S = ∅

Forward secrecy requires that a session key cannot be calculated from keys and infor-

mation that are generated before this key in time. Which means that compromising sessions

keys does not compromise previous session keys that were established for previous protocol

runs. In order for a protocol to satisfy this property, there should be no trace of events that

can lead to generating previously used keys by a user who was not part of the group at the

time when the key was generated. We formally model the forward secrecy requirement as

follows:

Definition 3.2.2 Forward Secrecy: for any current group Gt, and a dishonest principal I ,

where I ∈ Gt (I knows KGt), there is no trace T that he/she can execute in order to obtain

a previous group session key KGt−i
, where 0 < i < t.

I ∈ Gt ⇒ ¬∃τ ∈ T : KGt−i
= τ(E,M), where I /∈ Gt−i, and 0 < i < t.

This can be expressed as φf ≡ (K ∪Kf ) ∩ S = ∅

Backward secrecy requires that a session key cannot be calculated from keys and

information that are generated after this key in time. Which means that compromising

sessions keys does not compromise keys for future sessions. The main concern here is that

a user, who decides to leave the group, should not be able to use the information he/she

learned in order to calculate keys that may be used after he/she left. We formally model the

backward secrecy requirement as follows:
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Definition 3.2.3 Backward Secrecy: for any current group Gt, and a dishonest principal

I , where I ∈ Gt (I knows KGt), there is no trace T that he/she can execute in order to

obtain a previous group session key KGt+i
, where i > 0.

I ∈ Gt ⇒ ¬∃τ ∈ T : KGt+i
= τ(E,M), where I /∈ Gt+i and i > 0.

This can be expressed as φb ≡ (K ∪Kb) ∩ S = ∅

Definition 3.2.4 Key Independence: Key Independence guarantees that passive adver-

saries who know any proper subsets of group keys cannot collude their knowledge in order

to discover any other secret group key.

Key independence is known as collusion resistance property. The above definition is

a generalized one. In our treatment, we restrict the definition into colluding the knowledge

of two members only. This way, key independence can be defined in terms of forward and

backward secrecy being satisfied simultaneously as follows:

φc ≡ (K) ∪ (Kb ∪Kf ) ∩ S = ∅
This means that colluding the knowledge of two members, one of them being the

intruder, and using the new set of messages to update K should not result in any message in

S.

3.2.2 Joining and Leaving Groups

Any group key protocol must handle adjustments to group secrets subsequent to all mem-

bership change operations. Single member operations include member join or leave. Leave

occurs when a member wants to leave the group or forced to. Join occurs when a member

wants to have access to the current group. Although protocols may impose an agreement

criteria on joining and leaving groups, the effect of executing the event should result in a

new group setting, in case the event is executed successfully, i.e., the member is granted
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access to the group, or released from it. In our model, we assume that generating and dis-

tributing the new key is done whenever a single member joins or leaves the group, therefore,

we do not treat batch rekeying where a specific number of members should join or leave the

group before the protocol generates and distributes the new key.

Definition 3.2.5 A principal P joins the group Gt if P /∈ Gt, and there exists a trace

τ ∈ T that P can execute, where KGt+i
= τ(E,M) such that KGt+i

∈ P (or P ∈ Gt+i)

and KGt+i
6= KGn .

For this definition of join event, there is a time delay of i, which should be less than

the maximum join delay imposed by the protocol.

Definition 3.2.6 A principal P leaves the group Gt if P ∈ Gt, and there exists a trace

τ ∈ T that P can execute such that KGt+i
/∈ P (or P /∈ Gt+i).

3.2.3 Merging and Splitting Groups

Merging and splitting groups are considered as multiple members operations. Some pro-

tocols rely on distributing security management among distributed servers rather than on

one single server. This is obtained by having multiple groups. However, sometimes there

is a need to merge two groups (or more) or to split a current group into two groups. These

events affect the current groups settings and result in new settings that should maintain all

the security requirements of the protocol.

A merge event occurs when two groups with two different settings execute a trace of

events that result in a new group setting, where every member of each of the two groups is

a member of a new group. Whereas a split event occurs when one group executes a trace of
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events that result in two new different groups, where every member of the current group is

a member of one and only one of the new groups.

After these events are executed successfully, groups operate normally, and allow users

to join or leave according to the previous definitions.

Definition 3.2.7 A group G1t merges with group G2t, if there is a trace τ ∈ T that both

G1t and G2t can execute such that Gt+i = G1t ∪ G2t (which implies that ∀ P ∈ Gt+i,

KGt+i
∈ P), where KGt+i

= τ(E,M), KGt+i
6= KG1t and KGt+i

6= KG2t .

Definition 3.2.8 A group Gt splits into groups G1t+i and G2t+i, if there exists a trace

τ ∈ T that Gt can execute such that Gt = G1t+i ∪ G2t+i and G1t+i ∩ G2t+i = φ where

KGt 6= KG1t+n and KGt 6= KG2t+n .

Some events like split and merge, cannot be executed by normal group members

including the dishonest member, but by special members like group leaders.

3.2.4 Traces

We define traces since it will be used to prove the soundness of the inference system. We

use t to represent a single execution of one event or inference rule that updates the intruder

set of knowledge. For a given events e1, e2, ..., en ∈ E, the messages generated by executing

each event: m1 = e1(M0),m2 = e2(M), ..., mn = en(M). Now we can define t1, t2, ..., tn

as follows :

t1 : m1 = e1(K0), ρ(m1) = c1, K1 = K0 ∪ {m1}
t2 : m2 = e2(K1), ρ(m2) = c2, K2 = K1 ∪ {m2}
ti : mi = ei(Ki), ρ(mi) = ci, Ki = Ki−1 ∪ {mi}
...

tn : mn = en(Kn), ρ(mn) = cn, K = K ∪ {mn}
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We define a trace Tn ∈ T as the sequence of executing t1, t2, ..., tn in order.

Tn : t1, t2, ...tn; K = K0 ∪ {m1,m2, ..., mn}; ρ(mn) = cn. We say that mn =

Tn(E,M) which means that the trace Tn generates the message mn of rank cn.

3.3 Rank Functions

A rank function is a map between the set of facts about the protocol and the set of natural

integers. The set of facts include protocol events, protocol execution traces, keys, and mes-

sages. This map assigns a value or rank to each fact, such that facts that can be generated

by the protocol have positive rank, and facts that cannot be obtained by the intruder cannot

have positive rank. The ranks that are assigned will depend on the protocol itself, the initial

knowledge and capabilities of the intruder, and the property we want to prove. This map

function will be useful in partitioning the message space and enabling mechanized proof

of security protocols properties. The set of events and traces are concretely defined by the

protocol, which allows defining them at different levels of abstraction in the final step of

our approach.

The definition of the rank function is formally given as follows:

Definition 3.3.1 Rank Functions [35, 75]. A rank function ρ is a map function ρ : M →
Z which maps the set of all messages into integers.

An appropriate rank function should be defined for the protocol events, traces and

properties. This rank function is tailored for the security property we intend to verify,

forward secrecy and backward secrecy in our case. In general, security properties are con-

cerned with conditions under which the intruder can learn specific facts. We require that

facts are obtained by protocol principals only be possible after some other fact (like au-

thentication) has occurred. In order to establish a proof that a fact is not available to the
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intruder, we need to show that this specific fact has a characterizing property that enables its

generation, and the intruder does not have that property. To achieve this, we assign values

or rank to each fact, these ranks will depend on the protocol itself, the initial knowledge

and capabilities of the intruder, and finally the facts that we want to reveal to the intruder

[75].

We use the above definition and introduce the notion of a sound rank function, which

is defined as follows:

Definition 3.3.2 a rank function is sound if it satisfies the following condition: applying

an event on the intruder’s initial set of knowledge will not generate a zero rank:

∀m ∈ K0, e ∈ E, ρ(m) > 0 and ρ(e(m)) > 0, where e is an event in the set of

protocol events.

This intuitively means that the rank function will not generate or add any inconsis-

tency to the group model. Therefore, it will guarantee that zero ranks can only be generated

as a result of problems in the protocol.

It is necessary to verify that protocol participants cannot generate non-positive ranks.

The appropriate rank function we choose to apply on the protocol should be sound. We

define a set of rank functions with a number of requirements, which will be used to prove

the correctness of the rank function.

Definition 3.3.3 a rank function is initially sound if it satisfies these three requirements:

1. ∀m ∈M, ρ(m) >= 0, there are no negative ranks generated by the system.

2. ∀m ∈ K0, ρ(m) > 0, intruder initial knowledge must be of positive rank.

3. ∀m ∈ S, ρ(m) = 0, all secret messages must have a zero rank.
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Definition 3.3.4 Two events are invertible if each one is the inverse of the other.

e2(e1(m1)) = m1, where e1, e2 ∈ E, and m1 ∈M.

Definition 3.3.5 a rank function is invertible for all invertible events of inference rules.

e2(e1(m1)) = m1 ⇒ ρ(e2(e1(m1))) = ρ(m1), where e1, e2 ∈ E, and m1 ∈ M, and any

user of the system cannot apply an invertible event unless he/she is able to apply the inverse.

Definition 3.3.6 a rank function is bounded if ρ(m) − 1 ≤ ρ(e(m)) ≤ ρ(m) + 1, where

e ∈ E, and m ∈M.

Theorem 3.3.1 Rank Function Soundness

A rank function is sound, if it is initially sound, invertible and bounded.

The theorem states that a rank function with the above specifications is consistent. It ensures

that the zero rank cannot be generated by the initial knowledge of the intruder, or by the

definition of the rank function for the events. In other words, applying each single event

separately on the set of intruders initial knowledge will not generate a zero rank, simply

because a secret is not revealed to the intruder. Formally, ∀m ∈ K0, ρ(m) > 0 and

∀m ∈ K0, e ∈ E, ρ(e(m)) > 0. We use R to represent the set of all sound rank functions.

Proof. We prove this theorem using absurdum, by assuming that the rank function evaluates

to zero then we show that for all possible execution events, there exists no message in the

intruder’s initial set of knowledge that can generate this zero rank.

Assume there exists m ∈ M such that ρ(m) = 0, the message m is either in the intruders

initial set of knowledge (case (a) below) or generated after applying on single event on a

message in the intruder’s initial set of knowledge (case (b) below), therefore, we can write:

ρ(m) = 0 ⇒ ∃m′ ∈ K0:





(a) : m = m′ or

(b) : m = e(m′)
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Now we consider both cases and show the contradiction of the assumption:

For case (a): m = m′ , since the rank function ρ is initially sound by definition, then there

is a clear contradiction which can be stated as follows:

Only messages in S have the rank zero: ρ(m′) = 0 ⇒ m′ ∈ S. However, messages in S are

not in K0: m′ ∈ S ⇒ m′ /∈ K0. Which contradicts the assumption stated above: m′ ∈ K0.

Therefore ρ(m′) > 0 is valid.

For case (b): m = e(m′), and ρ(m) = 0: the message m is generated after the application

of one single event e on a message m′ from K0.

Since ρ is bounded, then we can say that the rank of the message m is bounded by the rank

of the message m′, we can write this as follows:

m = e(m′) ⇒ ρ(m′)− 1 ≤ ρ(m) ≤ ρ(m′) + 1

By assumption, we have ρ(m) = 0. This means that either ρ(m′) = 0 or ρ(m′) = 1 (from

above inequality). Now we consider both cases: The case where ρ(m′) = 0 and ρ(m′) = 1.

The first case is similar to case (a) above, and will lead to the same contradiction.

We consider the second possibility: ρ(m′) = 1, m = e(m′) and ρ(m′) = ρ(m) + 1.

ρ is invertible, therefore, there is an event e′ that we can apply on the message m to generate

the message m′, we can write:

m = e(m′), m′ = e′(m) and therefore m′ = e′(e(m′)) (which is a typical invertible relation

in encryption).

We have ρ(m′) = 1 and m′ = e′(m) therefore ρ(m) = ρ(m′)− 1

which means that the message m′ is generated after one single application of an event e′ in

the set of events on the message m: m′ = e′(m).

If the intruder can apply one single invertible event, then he/she can apply the other one.

Since the events e and e′ are invertible, and the intruder can apply e on m′ to generate m,

therefore he/she can also apply the event e′ on m to generate m′.
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This means that e, e′ ∈ E, m′ ∈ K0, and m ∈ S, so ρ(m) = 0 ⇒ m /∈ K0 or e /∈ E which

contradicts the assumption stated above.

The fact that the intruder cannot generate secret knowledge from its initial knowledge (with-

out executing the protocol), i.e., the intruder cannot decrypt a message encrypted with a

secret key.

¤
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Chapter 4

Rank Theorems

4.1 Introduction

Even though group protocols intuitively claim immunity against forward and backward

secrecy, the formal analysis and verification of these properties have received little attention

in the research community. Theorem proving, among other formal methods, can be used

in this context because of the ability of the logics behind it to capture and model special

features of group key protocols. In order to use theorem proving, the protocol specifications

and the security property should be modeled in the logic of the theorem prover, however

this is not a straightforward task.

Theorem proving has been used for the verification of security protocols. The in-

ductive approach was introduced by Paulson [68] and used by Bella et al. [11] to prove

properties for the Kerberos authentication system, then, for the verification of Secure Elec-

tronic Transaction (SET) protocol [10]. Later on, Bella [9] applied the inductive approach

to the verification of security protocols that make use of smart cards. These approaches

could successfully handle complex parts of these protocols, however, they are still unable

to handle forward and backward secrecy.
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In this chapter, a rank theorems based method is presented to reason about group

key protocols and their secrecy properties. Rank functions map facts about the protocol

into ranks, and define for every security property a theorem that implies the validly of the

property with respect to the protocol as depicted in Figure 4.1. The first step consists of

providing a formal model and precise definition for group protocols properties and events.

This will help eliminating the gap between the informal protocol specification and the for-

mal model. It will also provide a well defined protocol specification that can be directly

integrated into the verification methodology.

In the second step, we define map functions between the set of facts and the set

of integers. The set of facts include protocol events, protocol execution traces and the

security property. This mapping function will be useful in partitioning the message space

and enabling the mechanized proof of security protocols properties. The main idea is to

define rank theorems that provide conditions satisfied by a given rank function in order to

conclude that the security property satisfies its protocol model. We define for every security

property a theorem that implies the validly of the property with respect to the protocol. We

then show the proof of the correctness of the rank theorem. The set of events and traces

are concretely defined by the protocol. This allows their definition at different levels of

abstraction in the final step of our approach, which is implementing the rank theorems in

PVS and establishing their proof of correctness.

In order to prove the correctness of a specific property, we need to prove that its cor-

responding rank theorem is correct with respect to the protocol model. This is necessary to

prove that a rank theorem implies the correctness of the security property it models. The fi-

nal step is to mechanize the proof through PVS theorem prover through the implementation

of events of the protocol in PVS, and then use PVS theorem proving strategies to construct

the correctness of the rank theorem.

58



Formal Specification Requirements

ρ : M → Z

Rank Theorems

Security Property
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Rank FunctionSecurity Property Rank Theorem

PVS Implementation

Proof in PVS

Figure 4.1: Overview of the Rank Theorems based Methodology

The rank theorem is composed of a security property φ, a rank function ρ, and a group

protocol mode G, as illustrated in Figure 4.1. This is a general rank theorem that is used to

instantiate specific ones for forward secrecy, backward secrecy, and then key independence

under the condition that only two members can collude.

4.2 Rank Theorems Secrecy Properties

For the purpose of establishing the proof that a specific fact will not be available to the

intruder, we assign a value or rank to each fact, such that, facts that can be generated by

the system have positive rank, and facts that cannot be obtained by the intruder cannot
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have positive rank. The ranks that are assigned will depend on the protocol itself, the ini-

tial knowledge and capabilities of the intruder, and the property we want to prove. In our

approach, we will define suitable rank functions that map our formal specification require-

ments in order to obtain rank theorems, which are the properties we wish to prove. The

key result that provides the basis of the verification approach is that if these requirements

all hold, then no fact of non-positive rank can be generated by the system. This means that

these facts cannot be leaked to dishonest users.

The rank function should obey specific rules in order to be sound. First there are no

negative ranks generated by the system, ∀m ∈M, ρ(m) >= 0. In order to ensure that facts

and signals of positive rank can be generated, it is necessary to verify that each participant

cannot introduce anything of non-positive rank to the system. In other words, intruder initial

knowledge must be of positive rank, and only facts of positive ranks can be generated from

sets of facts of positive rank, ∀m ∈ K0, ρ(m) > 0. All messages that are supposed to be

secret and unknown to the intruder are mapped to zero rank, ∀m ∈ S, ρ(m) = 0. When

executing an event, the rank of the generated message is a bounded function of the rank

of the parameters of the event. For instance, for the encrypt event, we define ρ as follows,

if m2 = encrypt(m1, key) then ρ(m2) = ρ(m1) + 1, where m1,m2, and key ∈ M.

Similarly, we define ρ for the decrypt event as follows: if m2 = decrypt(m1, key) then

ρ(m2) = ρ(m1)− 1.

We define a property φ for a given group protocol G. This property states that a

dishonest user I cannot execute a trace in T in order to discover a secret in S, and is formally

modeled as follows:

φ = ∀τ ∈ T, τ(E,M) ; m ⇒ m /∈ S.

If this property is correct for the protocol G then we can write G |= φ. This is a general

secrecy property that will be used to define and prove the rank theorem. The target security
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property to be verified, i.e., forward secrecy, will be concretely defined later in this section.

Now, we define and prove a general rank theorem for this property as follows:

4.2.1 Rank Theorem

Theorem 4.2.1 Rank Theorem.

∀m ∈ K, ρ(m) > 0 ⇒ Gt |= φ, where m = τ(E,M), τ ∈ T, and ρ is a sound rank

function.

This means that for all traces τ ∈ T, a dishonest principal I can execute on a group

protocolGt. We say that the protocol satisfies a security property φ,Gt |= φ, if the protocol

can maintain a positive rank for the messages that can be generated by the intruder.

Proof. We assume there exists m ∈ K such that ρ(m) = 0, and we show that the property

φ is invalid.

ρ(m) = 0 ⇒ m ∈ S; S is a closed set, only messages in S have rank zero.

m ∈ K and m /∈ K0 ⇒ ∃τ ∈ T : m = τ(E,M), therefore,

τ(E,M) ; m is valid. Then we can write

∃τ ∈ T : τ(E,M) ; m ⇒ ρ(m) = 0, and so

∃τ ∈ T : τ(E,M) ; m ⇒ m ∈ S, this means

ρ(m) = 0 ⇒ ¬φ, and so

ρ(m) = 0 ⇒ Gt 6|= φ

¤

This general theorem is used in order to define a rank theorem for the forward secrecy,

backward secrecy and key independence properties.
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4.2.2 Rank Theorem for Forward Secrecy

Forward secrecy property, φf , is defined based on the formal specifications model, pre-

sented previously, as follows:

φf = ∀m ∈ S, I ∈ Gt ⇒ ¬∃τ ∈ T : τ(E,M) ; m

The rank function ρφ that maps the set of all messages to the appropriate ranks is

defined as follows, where ∀i ∈ Z : t + i >= 0 and t− i >= 0.

ρφ(m) =





0, if m ∈ S ∨ m = KGt−i

1, if m ∈ K0 ∨ m = KGt ∨ (m = KGt+i
∧ I ∈ Gt+i)

This means that for the validity of forward secrecy, we give rank zero to all the mes-

sages in the set of secret messages S, such as secrets shared between users and servers, and

all group keys that were generated before the current group key. However, for the keys

generated after the assumed dishonest used joined the group are mapped to a positive rank

because they are in his/her initial set of knowledge.

Now we can write the above theorem for forward secrecy property as follows:

Theorem Rank Theorem for Forward Secrecy Property

∀m ∈ K, ρφ(m) > 0 ⇒ Gt |= φf , where m = τ(E,M) and τ ∈ T.

This theorem is an instantiation of the main rank theorem defined above under the

same conditions, and its proof is the same.

4.2.3 Rank Theorem for Backward Secrecy

For backward secrecy, we define a rank function as follows:

ρb(m) =





0, if m ∈ S ∨ m = KGt+i

1, if m ∈ K0 ∨ m = KGt ∨ (m = KGt−i
∧ I ∈ Gt−i)
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Similarly, for the validity of backward secrecy, we give the rank zero to all secret

messages and all groups keys that are generated after the current group key. For these keys

generated before the assumed dishonest user leaves the group are mapped to a positive rank

because they are in his/her initial set of knowledge.

Theorem Rank Theorem for Backward Secrecy Property

∀m ∈ K, ρb(m) > 0 ⇒ Gt |= φb, where m = τ(E,M) and τ ∈ T

One of the advantages of introducing such theorems, is that, first, it is protocol in-

dependent, which means that we can apply it on different protocols as well as on the same

protocols at different levels of abstraction. Second, it is implementation independent, which

gives more freedom to verification tool choice without any modification on the previous

steps of our methodology. In addition, two theorems, once are proven to be correct, can be

used to prove collusion property. For this purpose we define a rank theorem for collusion

property based on the above two theorems as follows:

4.2.4 Rank Theorem for Key Independence

In order to define a theorem for key independence, and be able to prove it efficiently, we aim

at applying a simple and valid assumption on this property. We assume that two members

are colluding their knowledge, therefore, the subset of known keys can be divided into

two subsets: Kf and Kb. This simplification leads to proving key independence on top

of forward and backward secrecy, i.e., if the protocol satisfies both forward and backward

secrecy simultaneously.

This assumption excludes specific cases, where more than two members may collude

their knowledge. However, key independence is concerned with the case where two group

users may cooperate to achieve access to secret shares. Moreover, the case of combining
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the intruders’ knowledge in forward and backward secrecy can be generalized for more than

two members. Based on this assumption, we define a rank theorem for key independence

as follows:

Theorem Rank Theorem for Key Independence Property

Gt |= φc iff Gt |= φf ∧Gt |= φb

Passive adversaries who know a proper subset of group keys cannot discover any

other group key.

Proof. For key independence property, φc, the subset of group keys known by two adver-

saries can be included in two disjoin sets. Each one of these two subsets is equivalent to the

subsets of keys in case of forward and backward secrecy. Therefore, if the group protocol

model is correct for the adversary’s knowledge sets in both forward and backward secrecy,

it is correct for the adversaries’ knowledge set in key independence.

¤

This theorem is dependent on forward and backward secrecy, and it can be proven in

the implementation once these latter are proven to be correct.

4.3 PVS Implementation

The last step of our methodology is to mechanize the proof of the rank theorem using

a verification tool, for this purpose we choose the PVS theorem prover. Our model in

the PVS includes an embedding of the formal requirements that we defined for the events

and traces of execution, the rank functions and the rank theorem of the security property.

Then we prove in PVS that the rank theorem maintains a positive rank, which implies the

correctness of the property with respect to the protocol.
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We first formalized the general requirement, rank function and its lemmas, and the

rank theorem. First we show the type declarations we used for our model, which includes

the types of messages, events, key, a subtype of messages, and users, traces, and groups.

Actually, the type message is defined as a record that contains all the components of mes-

sages such as source of message, intended destination of message, key used for encryption,

and nonces.

MESSAGE : TYPE
EVENT : TYPE = MESSAGE, MESSAGE -> MESSAGE
KEY : TYPE FROM MESSAGE
USER : TYPE
TRACE : TYPE = set[EVENT]
GROUP : TYPE

Then we define the sets of messages we use in our model, including the set of all

messages, secret messages, events, traces, intruders initial knowledge, intruders updated

knowledge.

allmsgs: VAR set[MESSAGE]
allEvents: VAR set[EVENT]
secretKey: VAR set[KEY]
traces: VAR set[TRACE]
allEvents: VAR set[EVENT]
intInitKnldg : set[MESSAGE]
intKnldg : set[MESSAGE]

We define a number of variables for the users of the protocol, including normal users,

and leaders, in addition to the intruder. In our model, we abstract the network since it has

no effect based on the assumptions made about the intruder.

Then we define the prototypes for the events protocols can execute, which includes

the normal events, like send, receive, encrypt, and decrypt, in addition to the dynamic events
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I : VAR USER
U : array[n_users] of USER
L : array[n_leaders] of LEADER

such as join, leave, merge split. These events of the protocol are represented in PVS as a

data type in order to be sure that all actions are syntactically different.

Event : DATATYPE
BEGIN

send(msg_send, m_recv: USER,
s_msg: MESSAGE): send?

recv(m_recv, m_send: USER,
r_msg: MESSAGE) : recv?

join(user: USER, group : GROUP) : join?
leave(user: USER, group : GROUP) :leave?
merge(x_group, y_group : GROUP): merge?
split(group: GROUP) : split?

END event

In order to define the rank function for forward secrecy property we use the predicate

inSet which tells if a given message belongs to a specific set of messages. This predicate

is defined as follows:

inSet: [set[MESSAGE], MESSAGE -> bool] =
(LAMBDA (p: set[MESSAGE], m: MESSAGE): p(m)

Now we can define the rank function for forward secrecy property that initializes

every message in the intruders initial set of knowledge and all the messages in the set of

secret messages, this definition represents the initialization of the ranks of the messages in

the initial state of the protocol, when executing the protocol, every new generated message

will have a specific rank thats calculated depending on the events executed.

In order to update ranks of newly generated messages from events, we need lemmas
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rank (msg): RECURSIVE int =

CASES msg OF

userid(msg) : 1,

nonce (msg) : IF msg = Ni THEN 1 ELSE 0 ENDIF ,

public (msg) : 1,

secret (msg) : 0 ,

key(msg) : IF secretKey(m) THEN 1 ELSE 0 ENDIF,

inInitKnldg (msg) : 1

ENDCASES

for the rank functions consistency. Since rank functions should meet specific requirements

in order to be consistent and guarantee the correctness of the rank theorem, we state lemmas

that ensure the correctness of the rank function. The first lemma states that there are no

negative ranks generated by the system for any message.

updateRank(event,m1,m2, key, u1,u2) : nat =
CASES event OF

conc(m1,m2) : MIN(rank(m1),rank(m2)
encr(m1,key) : rank(m1)+1
decr(m1,key) : rank(m1)-1
send(u1,u2,m1) : rank(m1)
recv(u1,u2,m1) : rank(m1)

ENDCASES

The second lemma states that when executing an event, the rank of the generated

message is bounded by the rank of the message(s) used by the event, in other words, the

rank of the new message maintains the same value of the rank of the previous message,

incremented by one, or decremented by one.
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BEGIN
m1: VAR MESSAGE
non_neg_rank: LEMMA
FORALL m1: rank(m1) >= 0

END

BEGIN
m1: VAR MESSAGE
m2: VAR MESSAGE
e1: VAR EVENT

bounded_rank: LEMMA
m1 = e1(m2) IMPLIES
rank(m1) = rank(m2) OR
rank(m1) = rank(m2) + 1 OR
rank(m1) = rank(m2) - 1

END

The last lemma states that if applying two events in sequence will result in the original

message (i.e., inverse events), then the rank of the message after applying these two events

should remain the same. These lemmas are necessary to guarantee that when a zero rank is

generated, it is actually generated by executing a trace of events in the protocol, not by an

inappropriate map or inconsistency in the rank function definition.

BEGIN
m1: VAR MESSAGE
m2: VAR MESSAGE
e1: VAR EVENT
e2: VAR EVENT

inverse_event: LEMMA
m1 = e1(m2) AND m3 = e2(m2) AND m1 = m3

IMPLIES rank(m1) = rank(m3)
END

The rank function for backward secrecy property initializes every message in the

intruders initial set of knowledge and all the messages in the set of secret messages in the
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similar fashion we defined the rank function for forward secrecy. Here we assign a positive

rank for old keys that we assume were generated when the intruder was part of the group.

rankBack (msg): RECURSIVE int =

CASES msg OF
userid(msg) : 1,
nonce (msg) : IF m = Ni THEN 1 ELSE 0 ENDIF ,
public (msg) : 1,
secret (msg) : 0 ,
key(msg) : IF oldKey(msg) THEN 1 ELSE 0 ENDIF,
inInitKnldg (msg) : 1

ENDCASES

4.4 Application: Enclaves Protocol

In this section, we apply the proposed rank theorems method on the Enclaves group key pro-

tocol. First, we provide the description of the protocol, then the embedding and verification

in PVS.

4.4.1 Enclaves Protocol Description

Enclaves [33] is a protocol that enables users to share information and collaborate securely

through insecure networks such as the Internet and provides services for building and man-

aging groups of users. Authorized users can dynamically, and at their will, join, leave,

and rejoin an active group. The group communication service relies on a secure multi-

casting channel that ensures integrity and confidentiality of group communication. The

group-management service consists of user authentication, access control, and group-key

distribution. We apply our approach on this protocol and show the correctness of its forward

secrecy property. We intend to use the PVS model of the Byzantine agreement introduced in
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[53], and present a single model in PVS that includes the Intruder, group key management,

and security properties, in addition to the Byzantine agreement.

A user who is willing to join the group sends requests to a set of leaders. The leaders

locally authenticate the user, and establish an agreement protocol among them, as whether

or not to accept the user. Upon acceptance, the user is provided with the current group

composition, as well as information to construct the group-key. Each member is notified

when a new user joins or a member leaves the group in such a way that all members are in

possession of a consistent image of the current group-key holders.

The group-key management protocol in Enclaves relies on secure secret sharing.

Each of the n leaders knows only a share of the group key, and at least f + 1 shares are re-

quired to reconstruct the key. Any set of no more than f shares is insufficient. This ensures

that compromise of at most f leaders does not reveal the group key to the attacker.

In Enclaves, a new secret s and new shares must be generated whenever the group

changes. This must be done online and without a dealer, to avoid a single point of failure.

The n shareholders can individually compute their share of a common secret s without

knowing or learning s. One can compute s from any set of f + 1 or more such shares,

but f shares or fewer are not sufficient. The shareholders are the group leaders and g̃ is

derived from the group view using a one-way hash function. Leader Li computes its share

si using a share-generation function S, the value g̃, and a secret xi that only Li knows:

si = S(g̃, xi). Leader Li also gives a proof that si is a valid share for g̃. This proof does not

reveal information about xi but enables group members to check that si is valid [33].

The secrecy properties of the protocol rely on the hardness of computing discrete

logarithms in a group of large prime order which is constructed by selecting two large prime

numbers p and q such that p = 2q + 1. The numbers x1, . . . , , xn are distributed secretly to

the n leaders L1, . . . , Ln, respectively. A generator g and the elements g1, . . . , gn are made
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public. They must be known by all users and leaders. Leaders send hashed values of a

combination of prime number generator and the secret share to all users, who can compute

and verify the secret shares, and then use it to compute the key from the set of received

messages from leaders.

In the current PVS model, we made some assumptions about the protocol, including

abstracting the hash functions and the mathematical (exponentiation and module opera-

tions) computations in the secret key calculation. We also assumed that the group member

can compute the secret key only if he/she has all the necessary secret shares from group

leaders, this fact is imposed by the group key management of the protocol.

Concerning the threat model, we assume intruders can monitor the network and

choose to send messages on the network, either randomly or at their choice, in addition,

they can block, modify, or insert messages. Finally, we assume they are limited by crypto-

graphic constraints. For instance, they cannot decrypt messages without having the key, or

impersonate other participants by forging cryptographic signatures.

The PVS implementation was applied on the forward secrecy property, backward

secrecy property, and then on top of these two theorems, we define a theorem for collusion

property.

4.4.2 PVS Implementation

We formalized the protocol events in PVS, utilizing previous implementations by [52] and

[33], including all the operations that can be executed on the group. On top of these im-

plementations we define and verify theorems for forward, backward secrecy and collusion

property. In following, we show parts of the PVS implementation, which consists of a num-

ber of steps executed by users and leaders, a number of reachable states, and a number of

PVS propositions to reason about certain activities, like group key possession and joined
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status.

The first part of the code shows the concrete variables declarations that are used in

the implementation of the PVS protocol model.

BEGIN
A, B, C: VAR USER
S: VAR set[MESSAGE]
T: VAR TRACE
N, Nl, Nl1, Nl2, Na, Na1, Na2 : VAR NONCE
K, Ka, Kg, Kb: VAR KEY
q, q1, q2, q3: VAR global
e, e1, e2: VAR EVENT
n, n1, n2: VAR nat

Then, the execution steps of the protocol taken by a user and leaders in order to

complete the protocol are shown below [33].

step_01(q): bool =
q‘users(A0) = NotConnected and
q‘leader(A0) = NotConnected

step_02(q): bool =
EXISTS Na:
q‘users(A0) = WaitingForKey(Na) &
q‘leader(A0) = NotConnected &
(FORALL K, N: not PartsTrace(q)
(Encr(Shr(A0),Leader ++A0 ++Na ++N ++K)))

step_03(q): bool =
EXISTS Na, Nl, Ka:
q‘users(A0) = WaitingForKey(Na) &
q‘leader(A0) = WaitingForKeyAck(Nl, Ka) &
(FORALL K, N: PartsTrace(q)(Encr(Shr(A0),
Leader ++A0 ++Na ++N ++K))=> N=Nl & K=Ka)
& (FORALL N: not PartsTrace(q)

(Encr(Ka, A0 ++ Leader ++ Nl ++ N))) &
not PartsTrace(q)(Encr(Ka, A0 ++ Leader))

Next, the reachable states in the protocol are defined as lemmas, where, for every one,

there is a set of conditions to be satisfied.
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tran_01: LEMMA
Reachable(step_00, T)

(q1) AND step_01(q1) AND T(G)(q1, e, q2)
IMPLIES step_01(q2) OR step_02(q2)

OR step_12(q2)
tran_02: LEMMA
Reachable(step_00, T)
(q1) AND step_02(q1) AND T(G)(q1, e, q2)

IMPLIES step_02(q2) OR step_03(q2)
OR step_013(q2)

tran_03: LEMMA
Reachable(step_00, T)
(q1) AND step_03(q1) AND T(G)(q1, e, q2)

IMPLIES step_03(q2) OR step_04(q2)

Then, a preposition is defined to show the possession of a key by a specific user

after executing the necessary steps. Then we describe the connection state of a user which

indicates that a user is connected to the group if all the given premises are valid [33].

session_key_prop: PROPOSITION
Reachable(step_00, T)(q) AND q‘users(A0) =
Joined(N, Ka) => InUse(Ka, q)

joined_states: PROPOSITION
Reachable(step_00, T)(q) AND
Joined?(q‘users(A0)) AND
Joined?(q‘leader(A0))
=> EXISTS Ka, Na: q‘users(A0) =
Joined(Na, Ka) AND q‘leader(A0) =
Joined(Na, Ka)

END

At this point, we can instantiate our rank theorem for forward secrecy and check its

validity in the protocol states. Which means that starting from the first step in the protocol,

the initial step, and applying any trace, the rank of any message in the intruder knowledge

is positive.

At this point we encoded our forward secrecy property and our rank theorem for this

property in PVS as follows:
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forward_secrecy : THEORY
BEGIN

intKnldg : VAR set[MESSAGE]
msg : VAR MESSAGE
T : Event

fwd_secrecy_property: LEMMA

forward_secrecy(intKnldg,msg,T) =
FORALL msg,T : inSet(intKnldg,msg) and

Reachable(step_00, T) and
Protocol?(msg,intKnldg)

IMPLIES rank(msg) > 0

END forward_secrecy

This is the basic theorem we prove in PVS based on previous definitions. The set

intKnldg is updated by the intruder, and for every update we calculate the new rank as

shown above. The proof means that the intruder who executes any of the above defined

events for the protocol cannot obtain a message with rank zero.

Similarly, we can instantiate a rank theorem for backward secrecy and check its valid-

ity in the protocol states. However, here the rank function for backward secrecy is used. The

lemma should guarantees that any message in the intruder knowledge will remain positive.

Finally, we provide the definition of collusion property based on the definition of

forward and backward secrecy.

The rich datatype package of PVS helped in formalizing the protocol requirement

in a way that thoroughly captures the many subtleties on which the correctness arguments

of the protocol rely. The PVS theorem prover provides a collection of powerful primitive

inference procedures to help derive theorems, where higher level proof strategies can be

defined in order to make the verification process easier. This will allow similar theorems to

be proved efficiently, therefore; we can apply our methodology on similar properties like
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backward_secrecy : THEORY
BEGIN

intKnldg : VAR set[MESSAGE]
msg : VAR MESSAGE
T : Event

bwd_secrecy_property: LEMMA

backward_secrecy(intKnldg,msg,T) =
FORALL msg,T : inSet(intKnldg,msg) and

Reachable(step_00, T) and
Protocol?(msg,intKnldg)

IMPLIES rankBack(msg) > 0

END backward_secrecy

backward secrecy property efficiently and directly.

Using the features of PVS, we have proved that the protocol satisfies forward secrecy

property by establishing the correctness of the above theorem Rank Theorem for Forward

Secrecy Property in PVS. The proof was conducted using the set of general requirements in

addition to the protocol model, the implementation of the proof took around three months.

The proof of backward secrecy can be derived in a similar fashion, and in much shorter

time, given the experience gained.

4.5 Summary

In group key protocols, properties like forward and backward secrecy are very important

for protocols correctness, however, they did not receive enough attention in the literature.

This chapter presents rank theorems for forward and backward secrecy verification based

on the notion of rank functions. The correctness of the rank theorems is established by first

establishing the soundness of rank functions, then by showing that the rank theorem implies

the correctness of the security property with respect to the group protocol model.
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collusion_secrecy : THEORY
BEGIN

intKnldg : VAR set[MESSAGE]
msg : VAR MESSAGE
T : Event

collusion_property: LEMMA

collusion_secrecy(intKnldg,msg,T) =
FORALL msg,T : inSet(intKnldg,msg) and

Reachable(step_00, T) and
Protocol?(msg,intKnldg)

forward_secrecy(intKnldg,msg,T) and

backward_secrecy(intKnldg,msg,T)

END collusion_secrecy

Rank theorems are implemented in PVS to enable and mechanize the verification

procedure of the Enclaves protocols. Forward and backward secrecy rank theorems are

verified, then on top of these two, a rank theorem for key independence is established under

certain assumptions.

The implementation of the rank theorems methods, from our experiences, requires a

considerable amount of effort and time in theorem proving. To enhance the performance

of this technique we combine the rank function into the protocol events. This resulted in a

rank functions based inference system, an improved method to reason about messages and

events at the same level of higher-order logics. The rank functions based inference system

is presented in the next chapter.
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Chapter 5

Rank Functions based Inference System

5.1 Introduction

In theorem proving, trying to prove the correctness of an incorrect theorem may not lead to

a result, i.e., an indication that the theorem is incorrect. Therefore, it is necessary to be able

to reason about both existence and absence of attacks. Since rank theorems are based on

higher order logics, which is incomplete, the rank theorems are appropriate for reasoning

about the correctness of the protocol, i.e, absence of attacks. However, reasoning about

existence of attacks is not practical since the rank theorem implies that the rank function

must always be non-zero. In addition, implementing rank theorems required a lot of user

interaction with the verification tool, mainly because of the separation of rank functions

from protocol events.

To overcome these limitations, this chapter combines protocol events with rank func-

tions in order to obtain a rank functions based inference system. The inference system is

composed of a set of inference rules over rank functions, where, every rule can be applied

in order to generate new knowledge and assign new ranks to these generated messages.

Figure 5.1 shows the steps of the verification methodology, where the inference system is
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composed of a set of inference rules, each combines protocol events and rank functions, the

rules and security property are embedded in PVS. A special rule called Attack is defined to

represent the bottom of the system, and, when executed, illustrates an attack in the protocol.

This is illustrated on the verification of a generic Diffie-Hellman group protocol in the PVS.

Inference Rules

Rank FunctionsSecrecy Property

Formal Protocol 
Model

Rank Functions based Inference System

Protocol Events

Rank Function Security PropertyInference System

PVS Embedding

Proof in PVS

Figure 5.1: Overview of the Inference System based Methodology

Many efforts in the literature addressed DH style protocols. Kats and Shin [45] ad-

dressed the case of attacks by malicious insiders for authenticated key exchange protocols.

Verma et al. [84] handled questions arising in cryptographic protocol verification, in par-

ticular in modeling group key agreement schemes based on Diffie-Hellman-like functions.

Mazaré [57] proposed a symbolic model to analyze cryptographic protocols using bilin-

ear pairing. Boreale and Buscemi [13] used another symbolic approach to verify protocols

checking consistency of symbolic traces. Millen and Shmatikov [62] considered a sym-

bolic approach to reason about GDH protocol style operators, such as exponentiation, with

a bounded number of role instances.
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These works address the algebraic properties of DH style protocols. However, these

protocols can be subtle to non-algebraic attacks where the intruder takes advantage of mes-

sages interchange to establish the group key among members. Therefore, it is essential to

prove the security of these protocol from both algebraic and non-algebraic points of view.

In this chapter, we present a method to verify group protocols with respect to non-algebraic

attacks.

5.2 Inference System

“Rules of inference are syntactical transformation rules which one can use to infer a con-

clusion from a premise to create an argument. A set of rules can be used to infer any valid

conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A

sound and complete set of rules need not include every rule in the following list, as many

of the rules are redundant, and can be proven with the other rules” [36].

In this section, we present an inference system that consists of a set of inference rules.

Every rule represents an event in the protocol. Rules have a precondition that has to be

satisfied before they are applied. We define the pair 〈m, ρ(m)〉 to represent a message m and

its rank ρ(m). In the first rule, Encryption, if there is a message and its rank 〈m, ρ(m)〉, and

a key and its rank 〈k, ρ(k)〉, the intruder can apply this rule and generate a new encrypted

message. The rank of the new message is an increment of the rank of the old message if the

key is secret, i.e., if ρ(k) = 0, then 〈{m}k, ρ(m)+1〉 is generated. On the other hand, if the

key is not secret, the rank of the new message is equal to the rank of the old message, i.e, if

ρ(k) > 0, then 〈{m}k, ρ(m)〉 is generated. After executing this rule, the set of knowledge

is updated with newly generated messages. The intruder should only be able to execute

the second case, otherwise, if he/she knows 〈k, 0〉, then the rule Attack below should be

applied.

79



The rule Decryption works in opposite direction, given an encrypted message and

its encryption key, 〈{m}k, ρ({m}k)〉, and 〈k, ρ(k)〉, respectively. The system can apply

this rule and generate a new message that has a rank that equals to the decrement of the

original’s message rank if the key is secret, i.e., if ρ(k) = 0, then 〈m, ρ({m}k) − 1〉 is

generated. This case should not be applied by the intruder, since he/she is not supposed

to know 〈k, 0〉, otherwise, the rule Attack should be applied. If the key is not secret, the

system generates a new message that has the same rank as the old one, i.e., if ρ(k) > 0,

then 〈m, ρ({m}k)〉 is generated.

Similarly, we define Compose, where two message records are used to generate one

new message with one rank. The Decompose rule is used to separate an already composed

message. Another rule, Expo, is used to generate messages with the exponentiation opera-

tor. This operator is abstracted. Finally, the rule Attack is executed when there is a message

of rank zero in the intruders set of knowledge. Attack is defined with a precondition, such

that, when executed by the intruder, it indicates the occurrence of an attack by reaching the

bottom of the system ⊥.

The intruder, by executing these rules on the set of knowledge K, generates new

knowledge with new ranks and updates his/her set. For this system to work, we assume

the fairness of executing these rules, i.e., the intruder will not keep using the rule compose

forever, but other rules will have their chance to be executed, specially the rule Attack. The

set of rules in the inference system are:

For this inference system, we use the event Encr(m, k) to represent a message m

that is encrypted w.r.t. a symmetric encryption algorithm with the key k. The event

Decr(Encr(m, k), k) represents decrypting a message that is already encrypted, where the

same key used for the encryption is to be used for the decryption event. These two events

are invertible, therefore m = Decr(Encr(m, k), k). The event Comp(m1,m2) represents
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Rule1: Encryption: {〈m,ρ(m)〉,〈k,ρ(k)〉}
{〈m,ρ(m)〉,〈k,ρ(k)〉}∪{〈{m}k,ρ(m)+1〉} ρ(k) = 0

{〈m,ρ(m)〉,〈k,ρ(k)〉}
{〈m,ρ(m)〉,〈k,ρ(k)〉}∪{〈{m}k,ρ(m)〉} ρ(k) > 0

Rule2: Decryption: {〈{m}k,ρ({m}k)〉,〈k,ρ(k)〉}
{〈{m}k,ρ({m}k)〉,〈k,ρ(k)〉}∪{〈m,ρ({m}k)−1〉} ρ(k) = 0

{〈{m}k,ρ({m}k)〉,〈k,ρ(k)〉}
{〈{m}k,ρ({m}k)〉,〈k,ρ(k)〉}∪{〈m,ρ({m}k)〉} ρ(k) > 0

Rule3: Compose:
{〈m1,ρ1〉,〈m2,ρ2〉}

{〈m1,ρ1〉,〈m2,ρ2〉}∪{〈Comp(m1,m2),min(ρ1,ρ2)〉}

Rule4: Decompose:
{〈Comp(m1,m2),ρ1〉}

{〈Comp(m1,m2),ρ1〉}∪{〈m1,ρ1〉,〈m2,ρ1〉}

Rule5: Expo: {〈m1,ρ1〉,〈m2,ρ2〉}
{〈m1,ρ1〉,〈m2,ρ2〉}∪{〈m1

m2 ,ρ1−1〉}

Rule6: Attack: {〈m,0〉}
⊥ m ∈ K

two composed messages by concatenation. The function min gives the minimum rank from

two given ranks.

5.2.1 Soundness and Completeness

In this subsection we define theorems for the soundness and completeness of the approach.

The first theorem states that if we can find a message in the set of knowledge of the intruder

that has the rank zero, or equivalently, if the rule attack of the inference system is applied,

then there is an attack in the system. We assume fairness in applying the inference rules.

Theorem 5.2.1 Soundness

Let G be a security protocol, let ρ be a sound rank function, and let K0 be the set of

the initial knowledge of the intruder. Then, the protocol G has an attack if the inference

rule attack can be applied in a fair inference system.

∃m ∈ K : ρ(m) = 0 and ρ ∈ R⇒ ∃attack in G.
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Proof. We prove this theorem by deduction, where we assume the left hand side and deduce

the right hand side of the theorem.

Assume there exists m ∈ K such that ρ(m) = 0

Given that m ∈ K, then we have m = m0 ∈ K0, m = e(m0), or m = Tn(E,M). However,

ρ(m) = 0 ⇒ m /∈ K0, the rank function is sound since ρ ∈ R.

ρ(m) = 0 ⇒ @ (e ∈ E, m0 ∈ K0) : m = e(m0), since the rank function is sound.

It is clear now that there exists m ∈ K such that ρ(m) = 0 ⇒ ∃Tn ∈ T such that m =

Tn(E,M), which means that there exists a trace the intruder can execute to compute m.

Also ρ(m) = 0 ⇒ m ∈ S, since only messages in S have the rank zero. Hence, we find

that m ∈ S and m ∈ K. Therefore, the rule attack can be applied. Then, we can write:

attack ⇒ m ∈ S and m ∈ K. This means that there exists an attack in the system.

¤

The following corollary is deduced from the above theorem and states that if there

is no attack in the system, then a sound rank function will be greater than zero. It can be

viewed as the complementary case of the above theorem.

Corollary 5.2.1 Absence of Attack

Assuming the same conditions as Theorem 5.2.1, if the protocolG has no attack, then

the rule attack will never be applied in a fair inference system.

@attack in G⇒ ∀m ∈ K : ρ(m) > 0.

The second theorem states that if there is no message in the set of knowledge of the

intruder that has the rank zero, or equivalently, if the rule attack of the inference system can

never be applied, assuming fairness of the strategy application of inference rules, then there

is no attack in the system.
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Theorem 5.2.2 Completeness

Assuming the same conditions as Theorem 5.2.1, if the rule attack cannot be applied

in a fair inference system, then the protocol G has no attack.

∀m ∈ K : ρ(m) > 0, ρ ∈ R⇒ @attack in G.

Proof. We prove this theorem by absurdum. We assume the right hand side is false and

deduce a contradiction to the left hand side of the theorem.

Assume there exists an attack in the system, then we can write:

∃attack ⇒ ∃m such that m ∈ K and m ∈ S.

A message m in the intruder’s set of knowledgeKmeans that either the message is in his/her

initial set of knowledge K0, generated by applying one single event in E, or is generated

after applying a trace in T.

m ∈ K⇒ m = m0 ∈ K0, m ∈ K1 = E(K0), or m = Tn(E,M).

However, since ρ ∈ R is sound and m ∈ S then m /∈ K0 and m /∈ K1.

Therefore, m = Tn(E,M)

Since m ∈ S, then the rank of this message ρ(m) = 0.

So ∃attack ⇒ ρ(m) = 0.

Therefore, we conclude that ρ(m) > 0 ⇒ @attack.

¤

Corollary 5.2.2 Detecting Attacks

Assuming the same conditions as Theorem 5.2.1, if the rule attack can be applied in

a fair inference system, then the protocol G has an attack.

∃m ∈ K : ρ(m) = 0 and ρ ∈ R⇒ ∃attack in G.

This corollary states that when the rank function evaluates to zero, then there exists

an attack in the protocol. Theorems 5.2.1 and 5.2.2 and Corollaries 5.2.1 and 5.2.2 provide

the formal link between the protocol model and the inference system.
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The inference system can prove that an attack exists in the protocol using Theorem

5.2.1. However, the limitation of the Soundness Theorem comes in the type of implemen-

tation that will be used. In case of theorem proving, there is no guarantee that the attack

can be generated. This is a general problem and is applicable on any approach for tool

supported verification this type of protocols.

When reasoning about absence of attacks in the protocol, the inference system can

diverge in case we apply the Theorem 5.2.2. The inference system may terminate with a

result, depending on the nature of the protocol and the strategies used while conducting

theorem proving. However, there is no guarantee for termination because of two reasons:

first, the type of problem we are trying to solve has unbounded number of participants, and

unbounded message space. Second, the lower level implementation method, theorem prov-

ing, does not guarantee termination, which means the inference system may run infinitely

without reaching a result.

We still can reason about absence of attacks in protocols using Theorem 5.2.2. An

indirect proof can be generated by proving that the strategy is fair and the application of

our inference system diverges. This indirect proof can be achieved by generating partial

proofs that affirm that the inference system will diverge when the applied strategy is fair.

We believe that in order to be apply this approach, we have to provide an implementation

for the inference system that allows partial proofs based on divergence. This later issue will

be considered for further study.

This method complements the rank theorems method since it is more efficient in

reasoning about the existence of an attack, a limitation in the rank theorems method.
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5.3 PVS Embedding of the Inference System

In this section, we describe the embedding of the inference rules in PVS in order to be able

to apply it on the target group protocol.

An important and challenging part is how to define the inference system, and how to

instantiate it by the dishonest user. For this purpose, we represent each inference rule as

a PVS deduction statement which allows the user who is executing these rules to compute

new messages and add it to his/her own set of knowledge. In our case, the intruder is such

user. These rules are defined based on the events of the GDH protocol. We abstract the

mathematical power operation used in the protocol, since power operator is not supported

in PVS. Therefore αN is represented in PVS by the variable alphaN and its rank function

is defined of a type that maps MESSAGE to int.

MESSAGE : TYPE ALPHA: TYPE FROM MESSAGE nounc: int alpha: int

alphaN : ALPHA m: MESSAGE rankf: [MESSAGE -> int]

Next we define the appropriate inference rules for this protocol. These rules are used

by the intruder in order to build his/her set of knowledge starting from his initial knowledge

and applying one rule at a time. In addition to the rules compose, encrypt and decrypt, and

attack described above we show the rule expo which is used to generate the αN messages.

rule_compose(msg1: MESSAGE, msg2 : MESSAGE) : MESSAGE
= (comp(msg1,msg2), min(rankf(msg1), rankf(msg2)))

rule_decomp(msg1: MESSAGE) : [MESSAGE, int, MESSAGE, int]
= (left(msg1),rankf(msg1), (right(msg1), rankf(msg1))

rule_encr(msg1: MESSAGE, key: MESSAGE) : [MESSAGE, int]
= (append(msg1,key), rankf(msg1)-1)
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rule_decr(msg1: MESSAGE, key: MESSAGE) : [MESSAGE, int]
= (extract(msg1,key), rankf(msg1)+1)

rule_expo(a:ALPHA,N:int) : [ALPHA, int]
= (alphaN, rankf(a)-1)

rule_attack(msg: MESSAGE): bool =
rankf(msg) = 0

The above inference rules are used in PVS interactively, where it is upon the user to

choose which rule he/she can execute next. However, if the precondition is not satisfied for

a specific rule, then it cannot be executed. This way, the user can ensure the fairness of

the inference system. Decision procedures can be implemented to help in choosing which

rule to apply next, however, this will depend on the protocol and security property under

verification, otherwise, it will not be efficient in deducing the proof.

5.4 Application: GDH Protocol

In order to illustrate the proposed verification methodology, we consider the Group Diffie-

Hellman (GDH) protocol [78, 32], which is a basic group key management protocol widely

studied in the literature. In the first part, we show how to manually detect the attack in a

step by step application of the inference system. Then we use the PVS theorem prover in

order to implement the inference system and apply it on the protocol for two, three, and n-

users. Throughout this work, we assume perfect cryptographic conditions, we analyze the

key agreement nature of the protocol, and we abstract the algebraic exponentiation property

of the protocol.

Although the protocol is not a challenging case study, since it has been studied quite

enough in the literature, we use it as illustrative case to show the feasibility of our approach,

not to prove something that has been already proved before. In addition, we provide, to the
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best of our knowledge, a new attempt to use theorem proving in the context of group key

protocols verification. In the first part of this section we show how the inference system

can be applied directly on the GDH protocol of four participants. We demonstrate how the

attack is generated in the step by step application of the inference system. In the second

part, we discuss the embedding and generation of the verification of the protocol using

theorem proving in PVS.

5.4.1 Protocol Description and Attack Illustration

The protocol is used to generate and distribute a safe key between a group of members

over a non-secure network. It consists of two stages: upflow and downflow. The first stage

is used to collect contributions from all group members that will be used in calculating

the group key. Given n members in the group: P1, P2, ..., Pn, who are willing to generate a

secret key that will be used among them, the protocol works as follows: in the upflow stage,

every intermediate member Pi receives a collection of intermediate values from member

Pi−1, computes another value, by adding his/her own share of the key, appends it to the

values he/she received, and forwards this information to the next group member Pi+1. In

the downflow stage, the last member appends his own share of the key to every value he

received and sends them back to previous members. This way, every member receives

partial information to compute the key. The two stages of the protocol are

Stage 1 (Upflow): Mi −→ Mi+1

Round i: {αΠ(Nk|j∈[1,j])|j ∈ [1, i]}; i ∈ [1, n− 1]

Stage 2 (Downflow): Mn−i −→ Mn−i+1

Round n− 1 + i: {αΠ(Nk|j /∈[i,j])|j ∈ [1, i]}; i ∈ [1, n− 1]
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For example, in a group of four members, the first member uses a generator α and a

random number N1, computes {αN1} and forwards it to member P2. P2 chooses a random

number N2 and computes αN1N2 , then forwards {αN1 , αN1N2} to P3. P3 computes αN1N2N3

and forwards {αN1N3 , αN1N2 , αN1N2N3} to P4. Now P4 uses the last value and a random

number he/she generates, N4, to compute the group key αN1N2N3N4 . For the downflow stage,

the member raises all other values to N4 and sends back to P3 {αN4 , αN1N2N4 , αN1N3N4}.

P3 uses the latest value αN1N2N4 and his/her own random number N3 to compute the key,

raises the first value to N3 and sends {αN3N4 , αN1N3N4} back to P2, who uses the last one to

compute the key, then computes and sends αN2N3N4 to P1, who can compute the same key.

We choose a group of three members, P1, P2, and P3, and apply our verification

approach on the protocol, by defining the active intruder I , and executing the inference

system by this intruder. The case of three members is similar to four or five members,

however it is easier to illustrate and sorter to describe . The first step is to define the rank

function ρ for the set of messages in the message space M as follows:

ρ(m) =





0, if m ∈ {N1, N2, N3, α
N1N2N3 , αNiN2N3 ,

αN1NiN3 , αN1N2Ni , αN1N2N3Ni}

1, if m ∈ {Ni, α, αN1 , αN2 ,

αN3 , αN1N2 , αN1N3 , αN2N3}

Here, αN1N2N3 represents the group key members intend to generate, and Ni represent

the intruders nounce. For the protocol to be correct, there should not be a way for an

intruder to share a key with the rest of the members that can be considered as the group key,

even if its different from the group key the members intend to generate, simply because the

members have no clue about the final key, until each has enough shares from other members

to compute it. Therefore, we consider αNiN2N3 , αN1NiN3 , αN1N2Ni , αN1N2N3Ni as assumed
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group keys that the intruder should not be able to share with the members making them

believe it is the group key they intended to share when they started the protocol.

Then, we define the events that can be executes by members. This includes send(m),

recv(m), expo(m,n), comp(m1,m2), decomp(m1,m2), and block(m). The latest is an

event that can be executed only by the intruder. The rank function ρ can be defined for

these events as follows:

ρ(send(m)) = ρ(m)

ρ(recv(m)) = ρ(m)

ρ(expo(m, n)) = ρ(n) + 1

ρ(comp(m1,m2)) = ρ(min(m1,m2))

ρ(block(m)) = ρ(m)

ρ(m1) = ρ(m1.m2), ρ(m2) = ρ(m1.m2) for decomp(m1.m2) event.

The inference system is composed of an inference rule for each of these events in

addition to the inference rule Attack defined above. The event expo(m,n) models the ex-

ponent function used in the protocol. The intruder starts with an initial set of knowledge

K0 = {Ni, α}, and we assume he/she has the ability to fully monitor the network, send,

receive, or block messages on his/her will. We also assume that signing messages is not

used between members.

Even though the protocol is designed to work in the existence of a passive adversary,

we illustrate the attack generation by applying the protocol in the existence of an active

adversary I and three protocol members : P1, P2, and P3. This is because the infer-

ence system represents the model of the intruder. We divide the protocol interaction steps

between members, including the adversary, into different phases according to the activity

performed by the adversary for easier understanding of the attack generation.

The upflow stage of the protocol is started in the first phase, called P1 Phase, by
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member P1, who uses α, N1, and expo(α,N1) to compute αN1 , where ρ(αN1) = ρ(N1) +

1 = 1. P1 sends this message to next user in the group, P2. The intruder applies the

inference rules corresponding to the event recv(αN1), therefore, K = K′ ∪ {αN1}. We use

K′ to represent the intruder’s set of knowledge before he/she executes the inference rule.

This is illustrated as:

I : K0 = {Ni, α}

P1: expo(α, Ni) 7→ αNi; K = {Ni, α, αNi}

P1: expo(α, N1) 7→ αN1 , ρ(αN1) = ρ(N1) + 1 = 1

P1: send(αN1); P1 → P2

The intruder similarly applies the inference rule block(αN1), then, computes αNi

and sends it to the member P2, who computes αNiN2 , uses the compose rule to generate

αNi .αNiN2 and forwards it to the last member P3. This is illustrated as

I : recv(αN1), block(αN1); K = {Ni, α, αN1}

I : send(αNi); I → P2

P2: recv(αNi);

P2: expo(αNi , N2) 7→ αNiN2

P2: compose(αNi , αNiN2) 7→ αNi .αNiN2

P2: send(αNi .αNiN2); P2 → P3

The intruder can receive this message and block it, then, composes and sends to P3

the message αN1 .αNiN2 .P3 receives this latter message, decomposes it and uses the last term

αNiN2 to compute the key αNiN2N3 believing it is the intended group key. At this point the
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intruder’s set of knowledge is updated to the following: K = {Ni, α, αN1 , αN1Ni , αNiN2}.

This is the end of the upflow stage and illustrated as

I : recv(αNi .αNiN2), block(...); K = {Ni, α, αN1 , αNi .αNiN2}

I : decompose(αNi .αNiN2) 7→ αNi , αNiN2; K = K′ ∪ {αNiN2}

I : compose(αN1 , αNiN2) 7→ αN1 .αNiN2

I : send(αN1 .αNiN2); I → P3

Member P3 then starts the downflow stage. He/she receives the message αN1 .αNiN2 ,

and keeps αNiN2 to use it for group key calculation. Then, he/she computes, composes and

sends the message αN3 .αN1N3 back to user P2. The intruder will receive and block this

message, and therefore, updates his/her knowledge such that K = K′ ∪ {αN3 , αN1N3}.

The intruder composes the message αN3 .αNiN3 and sends it to P2. P2 receives the message

and he/she uses the last term αNiN3 to compute his/her key αNiN2N3 . Then he/she sends

back to user P1 the message αN2N3 .

P3: recv(αN1 .αNiN2)

P3: decompose(αN1 .αNiN2) 7→ αN1 , αNiN2

P3: expo(αNiN2 , N3) 7→ αNiN2N3; P3 generates a bad group key αNiN2N3

P3: expo(αN1 , N3) 7→ αN1N3;

P3: expo(α, N3) 7→ αN3;

P3: compose(αN3 , αN1N3) 7→ αN3 .αN1N3

P3: send(αN3 .αN1N3); P3 → P2

The intruder receives the message (αN3 .αN1N3), updates his/her set of knowledge,

91



blocks the message. Then, he/she computes and sends αNiN3 to P2 instead of the original

message. P2 in turn will use it to compute his/her key αN2N3Ni . The intruder updates his/her

set of knowledge at this point, and it will be K = K′ ∪ {αNiN3 , αNiN1N3}.

I : recv(αN3 .αN1N3), block(...); K = K′ ∪ {αN3 .αN1N3}

I : decompose(αN3 .αN1N3) 7→ αN3 , αN1N3; K = K′ ∪ {αN3 , αN1N3}

I : expo(αN3 , Ni) 7→ αNiN3;

I : compose(αNi , αNiN3) 7→ αNi .αNiN3

I : send(αNi .αNiN3); I → P2

P2: recv(αNi .αNiN3)

P2: decompose(αNi .αNiN3) 7→ αNi , αNiN3

P2: expo(αNiN3 , N2) 7→ αNiN2N3; P2 generates a bad group key αNiN2N3

P2: expo(αNi , N2) 7→ αNiN2

P2: send(αNiN2); P2 → P1

The intruder receives the message αN2N3 , updates his/her set of knowledge, blocks

the message, and instead, he/she sends αNiN3 to P1 who, in turn will use it to compute

his/her key αN1N3Ni . The intruder updates his/her set of knowledge at this point, and it will

be K = {Ni, α, αN1 , αN1Ni , αNiN2 , αN1N3 , αNiN2N3 , αNiN1N3}.

Now, given a fair system, the intruder can apply the inference rule Attack, since there

is a message in his/her set of knowledge that has the rank zero.

Since this protocol provides no authentication, this attack can be generated in a more

simple and trivial way, simply by allowing the intruder to play the rule of a group user, for

instance, P3. However, we choose to generate the attack using these complex steps to show
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I : recv(αNiN2), block(...)

I : expo(αN3 , Ni) 7→ αNiN3;

I : send(αNiN3); I → P1

P1: recv(αNiN3)

P1: expo(αNiN3 , N1) 7→ αNiN1N3; P1 generates a bad group key αNiN1N3

I : expo(αN1N3 , Ni) 7→ αNiN1N3; K = K′ ∪ {αNiN1N3}

I : Attack(〈αNiN1N3 , 0〉) 7→ ⊥

applicability of our inference system on such complex scenarios and its ability to generate

such attacks when they exist.

5.4.2 PVS Implementation

Next, we define in PVS the sets of messages we used, including the set of all messages,

secret messages, events, traces, intruders initial knowledge, intruders updated knowledge.

We also define the dishonest user I and a set of n users who all together will participate

in the protocol. We also define the intruder’s initial set of knowledge to be α, Ni as stated

above.

In order to conduct the verification for the secrecy property in PVS, we first con-

sidered the simple case of GDH protocol where two users are establishing the secret key.

For this purpose, we define two users and a dishonest user and the set of messages used in

the protocol. In addition, we show how the intruder updates his set of knowledge when a

message is sent between two users and blocked by the intruder. For illustration purposes,

we show parts of the protocol implementation including send and receive operations that

take place between users. The GDHP update function applies the inference rules on the set
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M: VAR set[MESSAGE]

Key: VAR set[KEY]

K: VAR set[MESSAGE]

A: VAR USER

I: VAR USER

S: VAR set[MESSAGE]

rule_initial(alpha: ALPHA) = K_0 := [alpha,Ni]

of messages and then updates the intruders set of knowledge. For the functions send and

receive, if the message is not blocked, then it is received at the destination user, the intruder

add the message to his set of knowledge, and finally he/she updates this set by executing

the function update. If the message is blocked, it is processed by the intruder.

GDHP_update?(K, I): bool =

(FORALL m: K do K := union(K, inf_rule(I,m)))

GDHP_send?(UserA, UserB, m) =

if(!block(UserA,UserB,m) then GDHP_recv(UserA,UserB,m)

addMsg(K,m)

GDH_update(K,I)

GDHP_recv?(UserA, UserB, m) =

addMsg(UserB.knldgSet,m)

The secrecy property we verify for this protocol is defined as a lemma stating that the

protocol satisfies this secrecy property if it does not execute the inference rule attack. The

property shows that when the protocol is initiated by a user and the intruder can execute the

events of the protocol (rules in the inference system), then the intruder will be able to share

a secret key between him/her and the user in the group. The property is defined as follows:
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secrecy_prop_x : THEORY

BEGIN

secrecy_attack: LEMMA

Reachable(rule_inital)AND knows(I,K_0)

IMPLIES Reachable(rule_attack)

END forward_secrecy

In the next step we verify the same property by executing the inference system on a

protocol between three users instead of two. The verification complexity and effort were

more in this case, however there was no technical changes in the verification techniques and

strategies used. In following we show how the property definition for the GDH protocol

with three users in PVS:

secrecy_prop_3 : THEORY

BEGIN

A, B, C: VAR USER

secrecy_attack: LEMMA

Reachable(rule_inital)AND knows(I,K_0) AND GDHP(A,B,C)

IMPLIES Reachable(rule_attack)

END secrecy_prop_3

The challenging part was to verify the N users case of GDH protocol. This was

achieved by applying the same proof strategies used for the three users case for an array

of n-users in order to show that the same attack can be generated in this case. In order to

show that the intruder can generate the attack for this case, we use induction on the number

of users, so we assume that the attack can be generated for n-users, then we show that the
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attack can be generated for n + 1-users. This is straightforward in PVS, since the same

inference rules that are applied in the n-users case can be iterated in the n + 1-users case

and then the additional user is treated in few more inference rules.

In the following, we show the secrecy property definition for the GDH protocol for

an array for n users:

secrecy_prop_n : THEORY

BEGIN

n: VAR int

users: array[n] of USER

secrecy_attack: LEMMA

Reachable(rule_inital)AND knows(I,K_0) AND GDHP(users)

IMPLIES Reachable(rule_attack)

END secrecy_prop_n

Implementing and verifying this part in PVS required hundreds lines of code, includ-

ing several proof strategies. We believe using the framework to verify similar protocols

can be achieved in shorter time given the provided implementation of the inference system

and the experience gained. As opposed to previous works, such is in [31], [57], [62], and

[83], our approach gives a simple, natural and elegant proof strategy. We found that, un-

der certain assumptions, the intruder can force members using the protocol to generate bad

keys, which is a well known weakness point in the protocol. The results we achieved are

very promising and we believe that our framework can be applied efficiently on protocols

of similar complexity level.

It is true that Diffie-Hellman based protocols are considered as an algebraic proto-

cols. Therefore, it could be argued that our approach is more appropriate for non-algebraic
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protocols, however, the non-algebraic framework described here is appropriate to model

the distributive features of such protocols, while most other works analyze this class of

protocols algebraically. We intended to keep our focus entirely within these non-algebraic

features which has prompted us to make some necessary assumptions to be able to model

and verify the protocol.

5.5 Summary

In this chapter, we combined protocol events with rank functions in order to obtain a rank

functions based inference system. This method is distinguished from rank theorems in

two aspects: first the inference system helps in reducing user interaction with the theorem

prover, second, the inference system is designed to reason about the existence of attacks

in the protocol, whereas, the rank theorems are more appropriate for reasoning about their

absence.

Discovering if the protocol is vulnerable for attacks from an intruder is done by exe-

cuting the inference system by a model of the intruder with specific assumptions about the

protocol and the intruder. This method is applied on the example protocol in the existence

of an active adversary. The case of a passive adversary is more restricted than an active

one. In addition, it has been shown that a protocol that is secure in the passive setting can

be considered secure in the active case [46].

The major shortcoming of this method, as well as the rank theorems, is its interac-

tivity. In the next chapter, we intend to apply abstraction techniques on the protocol model

in order to make automatic theorem proving feasible using first-order logic tools. This will

reduce the complexity of the verification process and make it more automatic, but it will

limit the applicability of the method on large scale and complex protocols.
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Chapter 6

Event-B based Verification

6.1 Introduction

In the previous chapter, we introduced a rank functions based inference system for verifi-

cation of secrecy in group key protocols that is implemented in higher-order logic theorem

proving. Implementing the inference system, and similarly, the rank theorems, in higher

order logic theorem proving, required a lot of effort and time, in addition, verifying prop-

erties is achieved interactively with the theorem proving tool because of the decidability

problem on higher-order logic. In addition, because higher-order logic is incomplete and

undecidable, there might be cases where the proof cannot be deduced. In order to provide

some automation, first-order logic, which is complete and semi-decidable, should be used.

In order to move from higher-order logics, to first-order logics, certain simplifications and

assumptions should be applied.

Events-based verification of security protocols was used by Crazzolara and Winskel

[26, 27] using mappings between process algebra, Petri nets, strand spaces and inductive

models to prove an authentication property for security protocols. Butler [19] combined

CSP and B method refinement in order to verify authentication property. Stouls and Potet
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[80] proposed a method to automatically enforce an abstract security policy on a network.

A different approach to achieve a similar objective was proposed in [12], where the au-

thors addressed the proof-based development of system models satisfying a security policy.

Andova et al. [6] presented a an events-based framework for easy verification of a large

and useful class of security protocols built from smaller sub-protocols. They applied their

framework to the composition of three protocols from security layer of WiMAX. However,

these efforts did not address group key protocols, specifically their dynamics aspects and

secrecy properties.

In order to model a group key protocol in event-B first order logic, the semantics of the

event-B language should be formally related to the protocol model. We define well-formed

conditions to guarantee that the event-B invariant is equivalent to the security property in

the group key protocol model. These conditions are particular to the group key protocol

model, and are essential to establish the equivalent event-B model. We show how an event-

B model can be structured from group key protocols model and then used to give a formal

semantics to protocols which support proofs of their correctness.

This method is illustrated on the tree based Group Diffie-Hellman protocol in order

to verify group key secrecy and forward secrecy.

6.2 Event-B Semantics based Verification

It is a practical solution to verify a security property using model checking tools, when

applicable. However, it is inconvenient because of two reasons: the state space explosion

problem of model checking, and the limited expressiveness of proposition logic based-

tools. Treating the problem at the first-order level requires applying a valid abstraction on

the protocol in order to fit to the proving system. This abstraction should be based on a

correct semantical link between the protocol model and the target model. In this method,
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we tackle this problem by using event-B as the target first-order model benefiting from the

automation and the expressiveness of first order logic.

Formal Specifications

Group Protocol

Event-B Model

SetsInvariantConstantsEvents Initializations

Verified Invariant for 
Protocol Model

Click'n'Prove
Invariant Check

Map into
Event-B

Formal Protocol Model

Secret Messages

Conditions

Messages

Protocol Events

Secrecy Property

Initial Knowledge

Figure 6.1: Overview of the Event-B Invariant based Method

The proposed verification methodology consists of a number of steps as shown in

Figure 6.1. In the first step, the group key protocol is specified formally using the model

presented in Chapter 3 in order to obtain precise protocol specifications. In addition, the

secrecy property expected to be checked by the system is described informally. In the sec-

ond step, the obtained specification is translated into event-B specification using mapping

relations presented in Figure 6.2. From this mapping we obtain an event-B model that cap-

tures the features of the group protocol mode. Next, the secrecy property φ is specified as

an invariant of the resulting event-B model I . Messages can be defined as a set with an

enumeration of all possible secret and known messages. The intruder initial knowledge,

K0, is directly defined as variable or set in the event-B initialization list. Secret messages
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are defined similarly. Protocol initial constraints, such as K0 ⊂ M and S ⊂ M, are defined

as properties that will be included in the invariant. Protocol join or leave events are defined

as event-B operations that update the intruder’s knowledge and the set of secret messages,

including the new generated key. Finally, the property is checked from the obtained global

system specification using the event-B invariant checking tool Click’n’Prove.

In Figure 6.2, protocol events and execution traces are mapped into event-B events,

messages generation conditions are mapped into events guards, and messages sets are used

to generate event-B model constants properties. The initial knowledge is defined as event-

B initializations, messages are mapped directly into sets, and finally the secrecy property

is defined as an invariant for the event-B model. The generation of the target event-B

model requires treating three parts: the static part which includes initializations and the

constant properties of the protocol, the dynamic part that represents events of the protocol,

and finally, enriching the resulting model with invariants describing the required secrecy

properties.

6.3 Verification of Secrecy as Event-B Invariant

The event-B semantics is close to the protocol model semantics. This relationship is demon-

strated by establishing a well-formed link between the semantics of both models. To

achieve this link, we are interested in showing that if the invariant I holds for event-B

machine M , then the safety property φ must hold for the group protocol model G. For-

mally, (M |= I) ⇒ (G |= φ). In terms of equivalence between the two models, we can

say that a protocol Model G is equivalent to an event-B model M , with regards to the secu-

rity property, if the property φ holds in the model G, and the invariant I holds in the model

M . To illustrate this equivalence we need to show that I ⇒ φ. Therefore, it is enough to

show that the invariant I , with regard to M , implies the safety property φ, with regard toG.
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Theorem 6.3.1 Secrecy Soundness.

A group protocol, G, satisfies its secrecy property, φ, if there is an equivalent event-B

model, M , that satisfies an event-B invariant, I , that implies the property φ. More formally,

for the definition (G , M), let (M |= I), and (I ⇒ φ) be correct lemmas, then,

((G , M) ∧ (M |= I) ∧ (I ⇒ φ) ⇒ (G |= φ).

The proof is divided into two parts, we assume that lemmas are correct, then we proof the

theorem based on that. In the next stage we proof each lemma separately.

Proof. Given (G , M), (M |= I), and (I ⇒ φ), we can deduce

(M |= I) ∧ (I ⇒ φ) ⇒ (M |= φ)

(G , M) ∧ (M |= φ) ⇒ (G |= φ)

¤

We first define the equivalence relation between G and M , then we proof the lemma

(I ⇒ φ). The lemma (M |= I) is assumed to be correct in the event-B tool.

Definition 6.3.1 A group protocol model G, is equivalent to an event-B model, M under

certain conditions and semantically correct map from G to M . G , M is defined as

follows:

For every component and condition in G there is an equivalent one in M . A protocol

model is composed of M,S,K,K0,E, φ, we map each component in G into an equivalent

one in M .

Messages sets are mapped into an event-B variables by defining v over the setM, and

messages sets relations are mapped to event-B constants properties. P (v) is a function of

M. These relations include the predicates about sets that should always hold.

Messages generation conditions are mapped into events guards. These conditions

include predicates that should hold prior to executing an event, like having the appropriate

key to encrypt or decrypt a message.
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G(v) = condition(M,E)

The secrecy property, φ, is mapped into an event-B invariant, I . This map is defined

in lemma 6.3.1.

An event in E is mapped into event R, an event, ec ∈ E with a precondition condition,

where m′ = ec(m1, m2, ...), the message generated from executing the even, can be defined

concretely using an event-B SELECT statement.

Nameevent =

ANY mWHERE

condition

THEN

R((m, m’)

This map defines the relation G , M .

Execution Traces and Events Event-B Events

Messages Generation Conditions Events Guards

Messages and Secret Messages Event-B Sets

Initial Knowledge Initializations

Security Property Invariant

Messages Properties Constants Properties

Figure 6.2: Mapping protocol primitives into event-B

To show that I ⇒ φ, we need to establish a well-formed link between event-B in-

variant and the safety property. We split this formal link into two parts: the first deals with

the initialization, and the second deals with executing the events. First we relate messages

in G to variables in M . In Figure 6.2, we describe a map from public messages and se-

cret messages to event-B sets and a map from messages sets relations to event-B constants

103



properties. This map relates the variable m over the set of messagesM directly to the vari-

able v over event-B carrier sets and constants. The semantical correspondence between the

variable m and the variable v is defined by this map.

We define the invariant I as I = Iinit∧ IE , where Iinit is the invariant predicate under

the initial conditions, and IE is the invariant predicate under executed events. Similarly, we

define the safety property φ = φinit ∧ φE .

Lemma 6.3.1 (I ⇒ φ) = ((Iinit ⇒ φinit) ∧ (IEφ ⇒ φE))

Proof. We define the well-formed conditions that guarantee the correctness of this Lemma

in two steps, we first show that (Iinit ⇒ φinit). We identify the initial events and initial

set of messages in G under which the formula (Iinit ⇒ φinit) holds. Then we define the

predicates P, I, G, and R presented in Lemmas 2.3.1 and 2.3.2 for the protocol model G

such that Lemma 6.3.1 holds.

The definition of the group key protocol must satisfy the initial soundness conditions: K0∩
S = ∅ and ∀ei ∈ Ei.m

′ := ei(m) ⇒ m′ /∈ S, where ei is an initial event that can be applied

on the intruder’s initial set of messages. We choose RI = E0 to be the set of events that can

be executed on K0.

We will define the constants property P and the initialization predicate RI for the model G

that will satisfy Lemmas 2.3.3 and 2.3.4. Then we define P , R, the predicate guards G, and

the invariant I for the model G that will satisfy Lemmas 2.3.1 and 2.3.2.

Case 1 (Iinit ⇒ φinit)

• P (m) = (K0 6= ∅) ∧ (K0 ⊂M) ∧ (K = K0)

• RI = (ei ∈ E) ∧ (∃(m′ ∈M,m ∈ K0) ·m′ := ei(m))

• I(m) = m ∈ K0 ⇒ m /∈ S
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The message generation event m′ := ei(m) is equivalent to the transition relation RI(v, v′).

This yields the formula P (m) ⇒ ∃ei ∈ Ei · m′ := ei(m) which is exactly Lemma 2.3.3

considering that RI = ei.

The invariant definition for the model G is I(m) = m ∈ K ⇒ m /∈ S. We need to show

that the invariant I holds for both I(m) and I(m′). Since the protocol is initially sound,

then both I(m) and I(m′) hold by the fact that K0 ∩ S = ∅ and that the initial events

cannot generate secret messages in S. If m′ := ei(m) then m′ /∈ S. Therefore we can write

(P (m) ∧ (m′ := ei(m))) ⇒ I(m′), which is corresponds to Lemma 2.3.3 considering that

RI = ei.

Case 2 (IE ⇒ φE)

• P (m) = (K ⊂M)

• I(m) = (m ∈ K⇒ m /∈ S)

• G(m) = (({m}k := encr(m, k) ⇒ k ∈ K) ∧ (m := decr({m}k, k) ⇒ m ∈ K))

• R = (e ∈ E) ∧ (∃m ∈ K,m′ ∈M ·m′ = e(m))

This message generation event is equivalent to the transition relation R(v, v′). Therefore,

applying the predicates P, I, and G will lead to the relation R. We can write the formula

P (m) ∧ I(m) ∧ G(m) ⇒ ∃e ∈ E · m′ = ei(m) which is equivalent to Lemma 2.3.1

considering that the relation R is equivalent to an existing event e ∈ E.

¤

The validity of the invariant I(m′) for the model G is expressed by the validity of

the predicates P, I, R, and G, where m′ := e(m). This can be written as I(m) ∧ P (m) ∧
G(m) ∧R ⇒ I(m′), which corresponds to Lemma 2.3.2.
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Under these conditions, we guarantee that when the invariant holds in event-B model,

the secrecy property definition holds for the group key protocol model. These predicates

should be considered carefully when providing the event-B implementation. Properties that

can be expressed as invariants are verified using the translation process and event-B tool.

This completes the proof of Theorem 6.3.1. The major restriction on this method is

that it can reason about the execution of a single protocol event, i.e. join or leave. However,

this is enough to model and verify group secrecy when a member joins or leaves the group.

6.4 Verification of Forward Secrecy in Event-B Refinement

In previous section, a well-formed link between the semantics of the group protocol and

event-B models is established. Then we showed that when the invariant I holds for event-B

machine M , the safety property φ must also hold for the group protocol model G. The

verification methodology for forward secrecy is built on top of the methodology we use for

secrecy.

The TGDH protocol designers [49] defined forward secrecy as follows: forward se-

crecy guarantees that a passive adversary who knows a contiguous subset of old group keys

(say {K0, K1, . . . , Ki}g) cannot discover any subsequent group key Kj for all i and j ,

where j > i. We will follow this definition when we consider the verification of the pro-

tocol designed in [49]. However, this is different from the definition presented in chapter

3.

Figure 6.3 below shows the necessary modifications needed. We will consider the

model M as an abstract one, and defined on top of that, a refined model, Mc, and a gluing

invariant J linking variables of the abstract model to those of the concrete or refined one

(Mc). In addition to the previous map defined from G to M , we will use the variable vc to
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represent the est of intruders message in the refined model. Therefore, J(v, vc) will repre-

sent the gluing invariant which represents forward secrecy property before the relation Rc.

In addition, we use I(vc) to represent the invariant in the refined model, which corresponds

to secrecy property of the refined protocol model, Gc. The relation Rc will be defined the

same way as the relation R.

Formal Specifications

Group Protocol

Event-B Model

Sets and VariablesInvariant

ConstantsEventsInitializations

Verified Forward Secrecy 
for Protocol Model

Click'n'Prove
Invariant Check

Map into 
Event-B

Formal Protocol Model

Gluing Invariant

Refined Sets

Secret Messages

Conditions

Messages

Protocol Events

Secrecy Property

Initial KnowledgeRefined Knowledge

Forward Secrecy

Figure 6.3: Refined Event-B Method for Forward Secrecy

In event-B refinement can be done with events or variable. In our case, the group

protocol join or leave events have the same semantics in both secrecy and forward secrecy,

therefore, it will have the same definition in both the abstract and refined event-B models,

i.e., Rc = R. We use R(v, v′) to represent join or leave events, which updates the intruder’s

set of knowledge, the variable v here. In the refined model, we will use the same relation,
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we call it Rc(vc, v
′
c), that will update the intruder’s set of knowledge, vc, in the refined model

MC .

The correctness of forward secrecy, φf , with regards to the event-B concrete model

Mc is achieved through the correctness of the gluing invariant J(v′, v′c). Figure 6.4 below

illustrates the link between the abstract and refined model to achieve a model for forward

secrecy in event-B.

R :

Rc :

V V’

Vc Vc’

J
Gluing
Invariant

J

Secrecy at 
Abstract ModelI : 

Secrecy at 
Refined Model

φ

φI : 

Forward
Secrecy

Figure 6.4: Relationship between Abstract and Refined Models

Theorem 6.4.1 Forward Secrecy Soundness.

A group protocol, Gc, satisfies its secrecy property, φf , if there is an equivalent event-

B model, M , that satisfies an event-B invariant, I , and a refined event-B model Mc that

satisfies an event-B invariant I , and a gluing variable J(v, vc) that implies φf in the exis-

tence of a relation Rc(Vc, Vc′).

Formally, let (Gc , Mc), (Ic ⇒ φf ), (M |= I), and (Mc |= Ic) be correct lemmas,

then

(Gc , Mc) ∧ (Mc |= Ic) ∧ (J ⇒ φf ) ⇒ (Gc |= φf ).

Proof. Assuming (Gc , Mc), (J ⇒ φf ), and (Mc |= J), we can deduce:

(Mc |= J) ∧ (J ⇒ φf ) ⇒ Mc |= φf .

(Gc , Mc) ∧Mc |= φf ⇒ (Gc |= φf ).
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Event-B invariant cannot reason about backward secrecy because invariant cannot be

used in a reverse manner, i.e., refining the intruder’s knowledge back in time. In backward

secrecy the intruder is assumed to be an active user in the group while trying to discover

older secret shares prior to his membership. Therefore, refinement of secrecy can only be

used for forward secrecy. Based on this, key independence (collusion) cannot be modeled

in this method as is.

6.5 Application: Secrecy in TGDH Protocol

In this section, we apply the approach on a group key protocol that generates a key in a

distrusted group. We show how the conditions defined for the correctness of the above

model can be concretely applied on a real protocol. The intended secrecy property, along

with its conditions, are efficiently defined and checked as event-B invariant.

We first introduce the basic Tree-based Group Diffie-Hellman protocol (TGDH) as it

is designed in [49]. All TGDH protocols have the following features:

• Each group member contributes an equal share to the group key, and the key is a

function of all current group members shares.

• The share of each member is secret and is never revealed.

• When a new member joins the group, one of the old members changes its share, and

new members’ shares are factored into the group key.

• When an existing member leaves the group, its share is removed from the new group

key, and at least one remaining member changes its key share.
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• All protocol messages are signed, time-stamped, sequence-numbered, and type-identified

by the sender.

After every membership change, all remaining members independently update the

key tree structure and recompute identical key trees after any membership event. A group

key can be computed from any members secret share and all blind keys on the co-path to

the root. Blind keys are the siblings of the nodes on the key path. The members own secret

share and all sibling blind keys on the path to the root enable a member to compute all

intermediate keys on its key-path, including the root group key. Figure 6.5 shows a binary

tree structure that represents the group members, their own secret shares, and the secret

sub-keys on every node up to the root. As part of the protocol, a group member can take on

a special sponsor role, which involves computing intermediate keys and broadcasting to the

group. Each broadcasted message contains the senders view of the key tree, which contains

each blind key known to the sender [49].

n4 n5

gn4n5 n6n1

n2 n3

gn2n3

gn1g
n

2
n

3

ggn1gn2n3 gn6gn4n5

gn6g
n

4
n

5

Figure 6.5: Tree-based GDH Protocol Binary Tree Structure

The group key is calculated by each member based on his/her key-path and blind

keys. For instance, for a member M3 at node n3, the key-path is the set of messages
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{n3, gn2n3 , gn1gn2n3}. The set of blind keys ordered as they appear up to the root is

{ gn2 , gn1 , ggn6gn4n5 }. The group key at the root is calculated directly using the two sets:

GroupKey = ggn1gn2n3 gn6gn4n5

The protocol designers presented four types of security properties: group key secrecy,

which guarantees that it is computationally infeasible for a passive adversary to discover

any group key, intuitively, that the attacker should not be able to obtain a key that honest

users think to be safe; forward secrecy guarantees that a passive adversary who knows a

contiguous subset of old group keys cannot discover any subsequent group key; backward

secrecy, which guarantees that a passive adversary who knows a contiguous subset group

keys cannot discover preceding group key, and finally, key independence, which guarantees

that a passive adversary who knows a proper subset of group keys cannot discover any other

group key. The authors of [49] provided an informal proof that their protocol satisfies these

security property. In this work, we provide a formal proof for group key secrecy property

under certain conditions. This property can be described as a correct key construction

property, which guarantees that only group members, who are of knowledge to their own

private shares, can calculate the group key at root. On the other hand, an adversary, who

has knowledge to all blind sub-keys cannot find a full path to calculate the root key.

n3 n4

gn3n4n3

n1 n2

gn1n2

gn3g
n1n2

n1 n2

gn1n2

ggn1n2gn3n4

join

Figure 6.6: Join Event in the TGDH Protocol
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We illustrate our method on a group protocol composed of three members, then we

apply a join event for a fourth member. Figure 6.6 shows the modification on the tree

structure when a new member joins the group, we define the group protocol components

before and after this event takes place. Assuming that a passive adversary is monitoring

the group activity, the knowledge set is built based on the blind keys interchanged between

members. Based on this configuration, we show all group protocol components, including

secrecy property, and the equivalent event-B model including the invariant, before the join

event takes place:

M = {n1, n2, n3, gn1 , gn2 , gn3 , gn1n2 , ggn1n2 , gn3gn1n2}
S = {n1, n2, n3, gn1n2 , gn3gn1n2}
K0 = {ni, gni}
K = {ni, gni , gn1 , gn2 , gn3 , ggn1n2}
GroupKey = gn3gn1n2

Then, we show the same components after the join event of a new member with a

new secret contribution n4. Note that group key secrecy has the same definition and should

be valid always, before and after a join (or leave) event takes place.

M = {n1, n2, n3, n4, g
n1 , gn2 , gn3 , gn4 , gn1n2 , gn3n4 ,

ggn1n2 , ggn3n4 , ggn1n2gn3n4}
S = {n1, n2, n3, n4, gn1n2 , gn3n4 , ggn1n2gn3n4}
K = {ni, g

ni , gn1 , gn2 , gn3 , gn4 , ggn1n2 , ggn3n4}
GroupKey = ggn1n2gn3n4

φ = GroupKey /∈ K ∧K ∪ S = ∅
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6.5.1 Secrecy Model in Event-B Invariant

The event-B model for the protocol components is described below. We first define the

event-B sets for blind keys (BLINDKEY S), the general set of messages (MS), the in-

truder’s set of messages (K), and the set of secret keys (S). Then we define a number of

variables over the above sets of messages. We describe the current status of the group by

initializations where each of the above sets is concretely defined. The secrecy property is

defined as an invariant that combines a set of conditions to be satisfied at the initialization

and after executing the event: K ∩ S = ∅. Some of the protocol characterizes can also be

encoded within this invariant, such as K ⊂ MS ∧ S ⊂ M . We also define an event to

represent the protocol action (join/leave).

The the TGDH protocol components are defined in Click’n’Prove tool as follows:

SYSTEM TGDHProtocol
SETS
BLINDKEY S /* set of Blind keys */
MS; /* set of messages */
K /* Intruder’s set of knowledge*/
S /* Set of secret messages */

VARIABLES
intruderKey, msgBefore,msgAfter, bk, Gkey

INVARIANT
/* malicious participant cannot evaluate to GK */
K ∩ S = ∅ ∧GKey /∈ K ∧K ⊂ MS ∧ S ⊂ MS . . .

INITIALISATION
BLINDKEY S := {gN1 , gN2 , gN3 , ggN1N2

, . . . };
MS := N1, g

N1 , N2, g
N2 , . . . };

K := gN1 , gN2 , . . .
S := {N1, N2, g

n1n2 , gn1n2gn3
, . . . }

EVENTS eventB tgdh , . . . /*for a protocol event*/
END

In the above event-B model, the sets of messages MS, K, and S, are directly defined

from the above sets M,K, and S, respectively. The group key has basically the same defi-

nition, and secrecy property is defined as an event-B invariant that contains, in addition to

group key secrecy, certain conditions on messages sets to insure the consistency of the map,
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(K ∩ S = ∅) ∧ GKey /∈ K ∧ K ⊂ MS ∧ S ⊂ MS. To be consistent with the group

structure, we also defined the set of blind keys in event-B as follows:

BLINDKEY S = {gN1 , gN2 , gN3 , ggN1N2 , . . . };

An event-B definition that captures the behavioral semantics of a join event which

will result in updating the intruder’s set of knowledge is described in Click’n’Prove tool as

follows:

eventB tgdh , /* for any message m */
ANY msgBefore, msgAfter, bk, . . . WHERE
msgBefore ∈ K ∧msgAfter = ggN3N4 ∧ . . .

THEN
/* update intruder’s set of messages after executing the event */
GKey := ggN1N2gN3N4 /* calculate group key */

K := K ∩msgAfter
/* update the set of secret messages */
S := S ∪ {Gkey, N4, g

N3N4 , . . . }
END

After this event is executed in the tool, new blind keys will be generated and added to

that set. The new secret group key is calculated based on the new contribution of the joined

member, n4.

GKey = ggn1n2gn3n4

In Click’n’Prove implementation, we first consider the static case of key construction

under the assumption that basic DH key construction (on tree leaf nodes) is correct. We

then consider the dynamic case by applying events such as join and leave and verify the

correctness of key construction for a bounded tree size and bounded number of events. The

event-B invariant has been proven totally. The number of generated proof obligations are

three, all proof obligations are proven automatically, and then the initial model of the group

key protocol is validated. The event-B invariant, I , defined in Click’n’Prove model above,

implies the group protocol secrecy semantically, I ⇒ φ. The event-B tool guarantees that

M |= I . We have shown in the previous section that the group protocol G is mapped into
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an event-B model M . Therefore we can conclude the correctness of the secrecy property φ

for the protocol model G, G |= φ.

The proposed solution allows us to verify the required property, however, one limita-

tion of our approach is related to the fact that event-B operations are defined only over finite

sets. Therefore, a bounded number of participants and protocol events should be applied.

Another limitation is due to the fact that we verify the property under the execution of a

single event. However, this approach is sufficient for the target property, where key distri-

bution is abstracted away because we are concerned only with modeling key construction

but not key distribution or authentication property.

In addition, to modeling the relationship between the secret keys and blind keys an

exponent operator is needed, therefore, the set of possible blinded keys is directly related

to the number of participants represented by the tree level, i.e, the model size in event-B is

directly related to the number of participants. Hence, a huge set of keys should be modeled,

where the automatic generation of these keys is infeasible because no exponent operator is

supported by event-B. Therefore, applying invariant checking becomes limited by the issue

of generating this set manually. Even though there are some limitations for the approach,

event-B can be used in modeling specific protocols behaviors, like key construction, and

tree-based protocol primitives can be modeled directly in event-B for safety properties ver-

ification.

6.5.2 Forward Secrecy Model in Event-B Refinement

We illustrate our method on a group protocol composed of three members, then we apply a

join event for a fourth member. Figure 6.7 shows the modification on the tree structure when

a new member joins the group, we define the group protocol components before and after

this event takes place. Assuming that a passive adversary is monitoring the group activity,
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the knowledge set is built based on the blind keys interchanged between members. Based

on this configuration, we show all group protocol components, including secrecy property,

and the equivalent event-B model including the invariant, before join event takes place:
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gn1n2
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(b) M4 joins the group

(c) M1 leaves the group (d) M5 joins the group

Figure 6.7: Forward Secrecy in the TGDH Protocol

In Figure 6.7 (a), the current set of messages, secret set of messages, and the current

group key are defined as follows:

M = {n1, n2, n3, gn1 , gn2 , gn3 , gn1n2 , ggn1n2 , gn3gn1n2}
S = {n1, n2, n3, gn1n2 , gn3gn1n2}
GroupKeya = gn3gn1n2
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Then, after member M4 joins the group, as shown in Figure 6.7 (b), the above vari-

ables become:

M = {n1, n2, n3, n4, g
n1 , gn2 , gn3 , gn4 , gn1n2 , gn3n4 , ggn1n2 , ggn3n4 , gn3gn1n2 ,

ggn1n2gn3n4}
S = {n1, n2, n3, n4, gn1n2 , gn3n4 , ggn1n2gn3n4}
GroupKeyb = ggn1n2gn3n4

The next step, is that we let member M1, who will be assumed to be dishonest later,

leave the group, where a new secret share n′2 is generated as in Figure 6.7 (c). The above

variables become:

M = {n1, n2, n′2, n3, n4, g
n1 , gn2 , gn′2 , gn3 , gn4 , gn1n2 , gn3n4 , ggn1n2 , ggn3n4 ,

gn3gn1n2 , ggn1n2gn3n4 , gn′2gn3n4}
S = {n′2, n3, n4, gn3n4 , gn′2gn3n4}
GroupKeyc = gn′2gn3n4

Finally, this is the join (or similarly leave) event on which we will check invariant for

the refined model. A new member, M4 joins the group as in Figure 6.7 (d), and we assume

that M1 is monitoring the group. We first illustrate secrecy first, then forward secrecy:

M = {n1, n2, n′2, n3, n4, n5, g
n1 , gn2 , gn′2 , gn3 , gn4 , gn5 , gn1n2 , gn3n4 , gn5n′2 ,

ggn1n2 , ggn3n4 , ggn5n′2 , gn3gn1n2 , ggn1n2gn3n4 , ggn5n′2gn3n4 , gn′2gn3n4}
S = {n′2, n3, n4, n5, gn3n4 , gn5n′2 , gn′2gn3n4 , ggn5n′2gn3n4}
GroupKeyd = ggn5n′2gn3n4

We define the set K, as viewed by a member monitoring the group from outside,

without being a member at any previous time. Before M5 joins the group:

K = {ni, g
ni , gn1 , gn2 , gn′2 , gn3 , gn4 , ggn1n2 , ggn3n4}

Then we show the set of messages of member M5 joins the group:

K = {ni, g
ni , gn1 , gn2 , gn′2 , gn3 , gn4 , gn5 , ggn1n2 , ggn3n4 , ggn5n′2}
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Secrecy implies that the intruder monitoring the group should not be able to calculate

the group key GroupKey5, (or any secret share or sub-key).

In forward secrecy the set of messages K is refined with the knowledge gained by

user M1 while member in the group, and is defined as:

K′ = {ni, n1, gni , gn1 , gn2 , gn′2 , gn3 , gn4 , gn5 , gn1n2 , ggn1n2 , ggn3n4 , ggn5n′2 , gn3gn1n2}
GroupKey = ggn1n2gn3n4

φf = GroupKeyd /∈ K′ ∧K′ ∪ S = ∅

6.6 Summary

The main objective of this chapter was to provide automated invariant checking for group

key secrecy and forward secrecy properties. This was not feasible in neither the rank func-

tions, nor the inference system methods. We used event-B invariants to model and verify

group key secrecy, then, on top of this, we used event-B refinement to model and verify

forward secrecy. For this purpose, a formal link between the semantics of group protocols

model and event-B was established. The result was combining event-B and group protocol

model to be able to use specific features in event-B to model protocol actions and verify

the required property. However, we restrict the group protocol model to be verified to cer-

tain conditions in order to guarantee the correctness of the method and the applicability of

first-order logic theorem proving. This includes the number of participants, abstracting the

exponentiation operator for Diffie-Hellman style protocols, and finally, applying a single

protocol event.

We applied this approach on a group key protocol, the tree based Group Diffie-

Hellman protocol and provided invariant checking for secrecy under the static and the dy-

namic case by applying a single event (join/leave). In contrast to our work, the authors of

the TGDH protocol [49] provided an informal, non-intuitive and simple proof for secrecy

118



property.

As a limitation of the approach, only invariant properties can be modeled and verified.

This is due to the target model and verification tool, namely, event-B and Click’n’Prove tool.

However, invariant checking is adequate to model many security properties. In addition, we

were able to conduct invariant checking for a limited number of tree levels due to the lack

of exponent operator in the prover.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Cryptographic protocols are used for establishing secure communication. In particular,

group key protocols allow group members to exchange or establish keys to encrypt and

authenticate messages within the group. After forming a group, members can encrypt, de-

crypt, and authenticate messages to and from other members of the group. Provided secure

underlying cryptography, anyone outside of the group cannot eavesdrop on the communi-

cation or inject a message that will successfully authenticate

The correctness of group key protocols in communication systems remains a great

challenge because of the sensitivity of the services provided. The verification problem

for group key protocols is more challenging because properties for these protocols are not

trivial extensions of the two-parties models.

Many approaches in the literature analyze group key protocols by extending methods

developed for two-parties protocols, such as the works of Crazzolara and Winskel [26, 27].

Other methods analyze the algebraic aspects of the protocol like the works of Mazaré [57],
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Millen and Shmatikov [62], and Verma et al. [84]. Other methods used theorem prov-

ing to prove authentication in GDH protocol [29], used PVS to verify the proper group

agreement in Enclaves protocol [53] , or used the Isabelle theorem prover for the verifica-

tion of the Kerberos authentication system [11] and Secure Electronic Transaction (SET)

protocol [10]. These approaches were unable to reason about group key secrecy from the

non-algebraic point of view, which can be a source of attacks for these protocols. Yet, to

reason about forward and backward secrecy is another problem.

In this thesis, we describe a framework for the formal specification and verification

of group key management protocols. The framework is based on three complementary

approaches: a rank theorems based approach, a rank functions based inference system, and

an event-B first-order theorem proving approach.

In the first two methods we adapted the idea of rank functions introduced by Schnei-

der et al. [35, 75] in order to be able to verify security properties for group oriented pro-

tocols. A set of sound rank functions that satisfy specific requirements is defined. Then,

this set of rank functions is used in two directions, in the first to define rank theorems that

guarantee the correctness of the security property, and in the second we define an inference

system that is composed of a set of inference rules over rank functions, where every rule

can be applied in order to generate new knowledge and assign new ranks to these generated

messages. A special rule called Attack is defined to represent the bottom of the system,

and when executed, illustrates an attack in the protocol. This way, reasoning about absence

of attacks is possible in the rank theorems, and reasoning about their existence is possible

using the inference system.

To overcome the heavy cost of interactive theorem proving as used in above two

methods, a third method has been proposed, where event-B first order theorem prover is

used to verify secrecy property as an event-B invariant. This is not a straightforward task,
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and is based on a correct semantical link between the two models. Forward secrecy is

modeled in event-B using refinement on top of secrecy.

The above methods were applied on different protocols from the literature. First we

applied the rank theorem proof environment on the Enclaves protocol in order to verify re-

lated forward secrecy and backward secrecy in PVS. Then we implemented the verification

of a generic Diffie-Hellman group protocol in PVS based on the inference system approach.

Finally, We applied the event-B based approach on a Tree based Group Diffie-Hellman pro-

tocol and used invariant checking to verify the correctness of key construction.

The reason why we applied every method on a different protocol is to compromise

between the complexity of the protocol with the efficiency of the method. The rank theorem

method is efficient in modeling complex features of the protocols since it is based on a

higher-order logic model, therefore, it is appropriate to choose a protocol with a complex

group key management procedure such as Enclaves. On the other hand, the event-B based

method is based on first-order logic, therefore, a protocol with simple key management is

preferable, such as TGDH protocol, where this method can perform better. To illustrate the

efficiency of the rank functions based inference system, a protocol with a known attack was

used.

This way, we were able to address security properties for group key protocols that

were not addressed formally before. We do not claim that our framework can deal with all

possible security protocols, or every group protocol. Each of the methods presented above

has its shortcomings and limitations. The major limitation of the rank theorems method is

in the implementation of the rank theorems, which requires a considerable amount of effort

and time in theorem proving. The rank theorem is defined at high level of abstraction in

order to capture the rank function and the security property requirements. Therefore, when

implemented in a theorem proving tool, it requires a lot of effort to be proven. In addition,
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it can only reason about absence of attacks.

The limitation of the inference system is again the implementation and proof inter-

activity. Besides, it can only efficiently reason about the existence of attacks. As a limi-

tation of the event-B semantics based approach, only invariant properties can be modeled

and verified. This is due to the target model and verification tool, namely, event-B and

Click’n’Prove. However, invariant checking is adequate to model many security properties.

In addition, we were able to conduct invariant checking for a limited number of tree levels

due to the lack of exponent operator in the prover.

The event-B semantics based method major limitations is the inability to reason about

backward secrecy and key independence. That is because group key secrecy refinement

results in forward secrecy, while, for backward secrecy, an opposite refinement in time is

required which is infeasible.

We believe we presented a promising approach to the verification of group key pro-

tocols. A significant advantage of our framework is its applicability on different types of

group protocols, and in addition, the ability to model and verify various types of group

secrecy properties. However, for the verification a considerable amount of reasoning is

needed to prove that the group protocols satisfy the intended security properties. The ex-

ception here is the event-B semantics based method, once the properties and the basic model

are established, using the invariant checking to deduce the validity of security properties of

the group protocol is essentially straightforward. In addition, the methods we present here

are considered complementary to cryptographic analysis techniques that are used to verify

group key protocols, since treating the protocol at the higher level of abstraction is done at

a lower cost.

Another interesting feature of our framework is that the theorem statements are not

strongly connected to the underlying semantics. They are therefore in a sense independent
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of the semantics. Indeed, we believe the framework could be transferred to any other se-

mantics powerful enough to express at least the notion of independence and the security

properties, and which has a similar execution model. In general, our theorems are tight in

the sense that if any precondition is not satisfied, the theorem is no longer true.

7.2 Open Issues and Future Work

The application of the inference system on group protocols in the existence of a passive

adversary should be investigated further. Another direction is to provide an implementation

of the inference system itself, rather than defining it in a theorem prover. This will provide

more flexibility for modeling different protocols. However, if we implement our inference

system, then we need to implement some strategies in order to guarantee the success of the

verification process. If necessary the user can help the system in order to find an attack.

The inference system can reason about absence of attacks in protocols using the Com-

pleteness Theorem 5.2.2. An indirect proof can be generated using the completeness theo-

rem by proving that the strategy is fair and the application of our inference system diverges.

This indirect proof can be achieved by generating partial proofs that affirm that the infer-

ence system will diverge when the applied strategy is fair. We believe that in order to be

apply this approach, we have to provide an implementation for the inference system that

allows partial proofs based on divergence. This later issue will be considered for further

study.

In the event-B based method, only invariant properties can be modeled and verified.

This is due to the target model and verification tool, namely, event-B and Click’n’Prove

tool. However, invariant checking is adequate to model properties that describe secrecy. An

interesting issue to be considered in the future is the ability to model and verify liveness

security properties using event-B. In addition, the event-B based model can be extended to
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handle parameterized number of participants. It will also be interesting to investigate the

possibility of modeling backward secrecy and key independence using event-B. However, in

order to achieve this, major modifications of the approach are required, mainly, tool support

should be investigated more. Other group protocols from [55] or [74] can be formalized and

verified using this approach.

Group key protocols have applications in wireless sensors networks and wireless net-

works. The verification problem in this case will be different because these networks are

ad-hoc, and therefore the threat model will be different.

Methods for high-level reasoning can treat increasingly complex security protocols.

Formal approaches suggest such high-level reasoning principles, and even permit auto-

mated proofs. In addition, some formal approaches capture naive but powerful intuitions

about these protocols. Formal reasoning about computational and analysis methods will in-

crease the appeal and accessibility of these methods [1]. However, to reason about analysis

and computational aspects in higher-order logics, specific theorems are needed for com-

putational complexity theory, algebraic computations schemes, and probabilistic theorems

[42] that can distinguish encryption and algebraic operations.
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