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Résumé 

 
L'égalisation du canal est une technique qui permet de réduire les interférences entres 

symboles causées par le canal radio-mobile. Généralement, un égaliseur consiste en des filtres 

numériques dont les coefficients sont mis à jour selon le critère de forçage à zéro ou le critère 

de la minimisation de l'erreur quadratique moyenne. La taille du filtre égaliseur est un 

paramètre important qui influence les performances globales du système. Quand cette taille 

est élevée, la complexité numérique de l'égalisation augmente considérablement à cause de la 

convolution numérique.  

Pour réduire la complexité des égaliseurs de tailles élevées, nous pouvons implémenter 

l'égaliseur dans le domaine fréquentiel. Le principe de ces derniers est de remplacer la 

convolution temporelle (filtrage) par une multiplication fréquentielle moins complexe. 

Toutefois, le passage au domaine fréquentiel nécessite l'utilisation des modules de la 

transformée de Fourier discrète (TFD).  

Dans ce travail nous nous intéressons aux égaliseurs fréquentiels. Dans un premier volet, nous 

analysons, à l'aide des simulations Monte-Carlo sous Matlab, les performances d'un égaliseur 

fréquentiel linéaire sous différentes conditions de propagation. Le deuxième volet du travail 

consiste  en la conception et l'implémentation d'un égaliseur fréquentiel sur un FPGA. Après 

la définition des besoins matériels et logiciels, nous présentons une méthodologie de 

conception et d'implémentation sur FPGA et nous discutons l'optimisation de l'architecture 

proposée.   
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Abstract 

 
The channel equalization is a technique allowing reducing the inter-symbol interference 

caused by the radio-mobile channel. Generally, an equalizer consists in digital filters where 

the coefficients are updated according to the zero forcing criteria or the mean square error 

minimization criteria. The equalizer size is an important parameter that influences the global 

performances of the system. When that size increases, the equalizer computational complexity 

augments considerably because of the convolution.   

To reduce the complexity of the long size equalizers, we can implement them in the frequency 

domain. The idea consists in replacing the convolution in the time domain by a less complex 

multiplication in the frequency domain. However, the passage to the frequency domain 

requires the use of the discrete Fourier transform (DFT) modules.   

In this work, we were interested to the frequency domain equalizers. First, based on Monte-

Carlo simulations on Matlab, we analyzed the performances of a linear frequency domain 

equalizer put under different propagation conditions. Secondly, we designed and we 

implemented the frequency domain equalizer on FPGA. After defining the required tools, we 

presented an FPGA design and implementation methodology and we discussed the 

optimization of the proposed architecture. 
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Chapter 1 

Introduction 
1.1 Motivation 

Nowadays, due to the radio-mobile development, the digital sound and image diffusion and 

the multimedia services increase, we attend a true explosion in terms of the request of the 

digital transmission techniques. These new services usually require transmitting a huge 

quantity of information in the narrowest frequency band if it is possible and also they require 

reducing the transmitted power or transmitting the information through some severe channels. 

So, it is obvious that achieving such objectives will cause some problems for the transmission 

system designers;   in fact, in the case of severe channels such as multipath channels, we need 

some techniques to avoid the inter-symbol interference (ISI) created by the frequency 

selectivity of the channels. 

To steer clear of the channel frequency selectivity, we can refer to a lot of techniques among 

them we can mention the equalization; time domain equalization has been the most used 

method of eliminating ISI, the most used architectures are the linear equalizer and the 

decision feedback equalizer. Those different equalizers consist in digital filters where the 

coefficients are generally updated using adaptive algorithms. The size of the filter is an 

important parameter which influences the global performances of the system. In fact, for a 

“better” equalization, the equalizer size must be bigger than the impulse response of the 

channel. So, when the equalizer size increases, the equalizer complexity increases 

considerably because of the digital convolution. Using common time domain techniques to 

compensate for distortion introduced by such channels may be very computationally intense. 

To decrease the filtering complexity, the equalizer can be implemented in the frequency 

domain. We talk in this case about the frequency domain equalizer. The idea of this technique 

consists in replacing the timing convolution with a frequency multiplication less, so this 

method offers a low complexity growth in comparison with the time domain approach. This 

technique requires the use of the Fast Fourier Transform (FFT) modules. 
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The objective of this master project is the implementation of the frequency domain equalizer 

on FPGA and the performance analysis of the designed system. We have first to identify the 

tools and the software required to achieve this project, then after implementing the equalizer, 

we have to compare the performance of what we implement with the theoretical performances 

of the frequency domain equalizers.    

1.2 Related work 

In 1965, Lucky led the way to the adaptive equalization by developing the zero forcing 

algorithm which was the corner stone for the high speed modems. Meanwhile, Widrow was 

working on an other algorithm called the Least Mean Square (LMS) algorithm which became 

very important for many applications. In 1973, Waltzman and Schwartz introduced the first 

frequency domain implementation of the LMS algorithm where the coefficients were updated 

using an isolated training sequence. Since then, researchers never stop developing the 

adaptive algorithms thanks to its efficiency in many domains. 

Due to its efficiency, the LMS algorithm knows a great use in various applications; among 

them we find the FPGA-signal processing based applications. The papers dealing with this 

topic are uncountable. We will try in this section to present some works dealing with the 

implementation of the LMS algorithm in FPGA which have been done. 

 The paper describing the most similar work to our project is that written by Dr. Chris Dick 

and Dr. Fred Harris. It is named FPGA QAM Demodulator Design [3]. This paper examines 

the FPGA implementation of an adaptive equalizer and carrier recovery loop for a 50 Mbps 

and 16-QAM receiver. To minimize inter-symbol interference in their project, Dr. Dick and 

Dr. Harris use an adaptive equalizer based on the LMS algorithm which is connected in 

cascade to a matched filter. To build their system, they employ a fully parallel design 

consisting of 8 FIR processing elements (PE) and 8 LMS processors. For the implementation 

on the Virtex II FPGA, the system level design tool System Generator was used. 

 

Some researchers working on FPGA implementation of adaptive equalizers try to modify the 

LMS algorithm in a way that the complexity when implementing in the hardware is reduced. 

This is the case of the project described in the paper named “algorithm and architecture design 

for a low-complexity adaptive equalizer” [1] where researchers implemented the GSPT LMS 

(Grouped Signed Power-of-Two LMS) algorithm to test the capability of an adaptive 
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equalizer in equalizing 8PSK signals in several practical channels. To ensure the efficiency of 

their algorithm, they implemented three adaptive equalizers based on the LMS algorithm, 

Chen’s scheme, and the proposed GSPT LMS algorithm. After comparison of the results, they 

found that the proposed GSPT LMS algorithm can be implemented with much lower 

complexity, which is about 30% of the hardware resource required by the conventional LMS 

algorithm, or about 50% of that in Chen’s scheme. 

 

Another paper dealing with adaptive filtering using LMS algorithm is called FPGA 

Implementation of a Single Channel GPS Interference Mitigation Algorithm [2]. In this 

project the paper’s writers implemented an adaptive filter for narrow band interference 

excision in Global Positioning Systems (GPS). The Adaptive Filter was implemented in 

schematic VHDL using four main blocks which are the Coefficient Update Block, the Input 

Signal Delay Block, the FIR Algorithm Block and the Tree Adder Block. The adaptive filter 

using 33 taps and a sampling rate of 8 MHz was tested with simulink and it converges in 

20µs. In this paper the writers conclude that “The single channel delayed LMS adaptive 

algorithm is an effective technique for removing narrow-band interfering signals from GPS 

receivers. It can be effectively implemented using FPGA technology that can be seamlessly 

inserted between a GPS antenna and receiver.” 

 

As we mentioned in the beginning of the section, there are a lot of papers dealing with the 

hardware implementation of the LMS algorithm applications. So, we tried to present the 

closest related work. 

 

1.3 Thesis outline  

The thesis is structured in the following way; chapter 2 discusses the notion of digital filtering 

and it focuses on the adaptive filtering by explaining its principle. Some applications of 

adaptive filtering are also presented in this chapter. Chapter 3 deals with equalization. Time 

domain and frequency domain equalizers are defined in this section as well as the algorithms 

used by each equalizer. The implementation of the equalizers, the tools used and a 

comparison analysis are presented in chapter 4. The fifth chapter opens new horizons by 

presenting new ideas that can be applied on this project as a further work.  
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Chapter 2 

Adaptive filtering 
2.1 Introduction 

Adaptive filters [22] are mainly digital filters using adaptive algorithms to update their 
coefficients. In this section, we will introduce the adaptive filter and we will enumerate their 
applications. 

2.2 Adaptive filtering 

Digital filters are mathematical algorithms which are used to modify the digital signals. It is 

the same procedure followed by the analogue filters to operate on the analogue signals.  

Equation 2.1 represents the output of a linear digital filter. 

 

          ���� � ∑ ����	�� 
 ����
���                                             2.1 

 

Where h(k), k = 0,1…N-1 are the filter coefficients, x(n) is the filter input and y(n) is the filter 

output.  

Digital filtering has a lot of advantages among them we can mention: 

• Easy implementation of adaptive filtering in case of the use of a programmable 

processor. 

• The reuse of the filter output and input can be guaranteed. 

• Analogue filters have limitations. 

• Can be improved as the VLSI technology is improved. 

• Performance is stable. 

• The filter can operate on more than one filter at the same time. 

• Precision. 

• It is beneficial for the biomedical applications since it can operate at lower frequencies.  
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As it has many advantages, it has also some drawbacks. The following points summarize 

the most remarkable disadvantages: 

• The hardware resource on which the filter is implemented can limit its  speed  

• Building a digital filter is much more difficult than building an analogue one.  

The adaptive filter coefficients are changing when they are operating in a changing 

environment. So, recursive algorithms are necessary to put the filter coefficients up to date. 

The most accurate example that reveals the importance of the adaptive filters is the telephone 

system where the echo caused by the impedance assorts represents a considerable source of 

annoyance for this system users. So, the adaptive filter has to eliminate this echo by imitating 

the echo response of the echo path. 

Although they do great job in most cases, implementing adaptive filters in the time domain 

can not be efficient for some applications where we have an increasing complexity and as a 

result a very long impulse response. For these special cases, we have resort to implement the 

adaptive filter in the frequency domain. From here, the importance of the Fast Fourier 

Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) is obvious since they are the 

means allowing the passage from the time domain to the frequency domain and from the time 

domain to the frequency domain. The conversion complexity is much less than the complexity 

of the time domain algorithm when the filter is long enough in a way that its length is equal or 

bigger than the crossover point where the computational cost of the frequency domain filter is 

less than the time domain one.   

2.3 Applications of adaptive filters 

Adaptive filters are very useful in case of transmitted signals with the minimum amount of 

information, that is why they are widely exploited in telecommunications, control systems, 

radar systems… 

Due to its flexibility and easy implementation, adaptive filters design and adaptive algorithms 

development are defined by the applications themselves. The most important applications for 

the adaptive filters are described in the following sections. 

 

2.3.1 System Identification 

System identification consists in modeling an unknown system and estimating its parameters 

by applying an experimental data. This technique is very efficient in case of dynamic system 
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with complex behavior, since it is not easy to model it and consequently to control it. So, we 

refer to collect some experimental data about the system responses by applying some 

specified excitations.  

 

 

Figure 2.1: System identification using adaptive filter [22] 

 

Figure 2.1 shows a block diagram of the system identification model. We have as a model for 

the unknown system an FIR filter with adjustable coefficients. 

We give the unknown system and the FIR filter model the same input u(n). An estimation 

error e(n) is produced by doing the difference between the outputs y(n) and d(n) of the 

adaptive filter which is the system model and the unknown system respectively. 

Now, using the estimation error e(n), the adaptive algorithm is updating the tap weights of the 

filter. This process is repeated until the estimation error e(n) reaches a given limit and then the 

unknown system response is deduced from the adaptive filter one.  

 

2.3.2 Adaptive equalization   

 

In telecommunications, transmitting data through wide channels requires the use of modems 

and accordingly the use of equalizers. Equalization is widely using the adaptive algorithms; 

we are talking about adaptive equalization. The purpose from using an adaptive equalizer is to 

compensate for the distortion and eliminate the inter-symbol interference caused by the 

channel noise.  
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Initially, a desired signal d(n) is defined for the adaptive equalizer. Then, the error estimation 

is calculated by making the difference between the equalizer output y(n) and the desired 

signal. The produced error is used to update the coefficients of the equalizer to reach its 

optimum values. The received signal is obtained by applying the equalizer output y(n) to a 

decision device. 

 

2.3.3 Echo Cancellation  

 

In telephony, full-duplex operation, transmitting and receiving channels from a two-wire 

telephone line are provided by a device called “hybrid”. Figure 2.2 shows the layout of the 

system. 

Transmitter

Receiver

Hybrid
Adaptive

Filter

+
-

+

Hybrid

Transmitter

Adaptive
Filter

Receiver+
-

+

Common
Line

X(n) X(n)

e(n) e(n)

Speaker A

Speaker Echo
Return Paths

Clean
Signal

Clean
Signal

Speaker B

Y(n) Y(n)

Speaker B
signal + echo of A

Speaker A
signal + echo of B

 

Figure 2.2: Echo cancellation using adaptive filter [22] 

 

An echo is generated because of the impedance mismatch between the hybrid and the 

telephone channel. I can be eliminated by using adaptive echo cancellers, based on adaptive 

algorithms, in the network. Updating the optimum coefficients of the echo canceller depends 

on calculating the error signal resulting from the difference between the estimate and the 

received signal.  
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2.3.4 Linear Predictive Coding of Speech Signals 

 

The speech signals can be digitally represented using the method of linear predictive coding 

(LPC). In LPC, the source vocal tract is modeled as a linear all-pole filter whose parameters 

are determined adaptively from speech samples by means of linear prediction. The speech 

samples u(n) are, in this case, the desired response, while u(n-1) forms the inputs to the 

adaptive FIR filter known as a prediction error filter. The error signal between u(n) and the 

output of the FIR filter, y(n), is then minimized in the least-squares sense to estimate the 

model parameters. At the receiver, using the model parameters and the error signal, the speech 

signal is synthesized. 

 

2.3.5 Array Processing 

Adaptive antenna arrays are behaving the same way as adaptive filters in terms of the 

processing techniques. Those arrays are generating a parallel set of signal samples by the 

mean of the spatial separation between the antenna elements instead of using the time-delayed 

or partly processed versions of a one-dimensional input signal. The adaptive antenna arrays 

are applied for bearing estimation and adaptive beam-forming. 

 

2.4 Conclusion 

The adaptive equalization is one of the adaptive filtering applications. They are used to 

eliminate the inter-symbol interference caused by the noise in the transmission channel. The 

next chapter will deal with the equalization in both frequency and time domain and it will 

compare between their performances.  
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Chapter 3 

Equalization 
3.1 Introduction 

As it is mentioned in the previous chapter, equalization is one of the applications of adaptive 

filtering. Its role consists in eliminating the ISI caused by the noise in the transmission 

environment. This chapter will present in details the time domain and the frequency domain 

equalizers by introducing their structures as well as the algorithms they use. 

3.2 Transmission chain presentation 

The whole transmission chain is represented by the figure below. 

 

Figure 3.1: Transmission chain [24] 

 

This communication chain is composed of a channel (transmission environment), a 

modulator, a demodulator and an equalizer. 

The channel is noisy by an Additive White Gaussian Noise (AWGN). 

The equalizer has to eliminate the inter-symbol interference presented in the received signal 

x[n] to get in its output the transmitted signal d[n]. 

3.3 Time domain equalization 

To get an output matching as much as possible the desired response, uncountable adaptive 
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algorithms are used to regulate the filter coefficients. One of the most used algorithms is the 

LMS algorithm. Its success is explained by its efficiency especially in terms of storage 

requirements and computational complexity. Adjusting filter coefficients using the LMS 

algorithm means that these coefficients are updated after every sample.  

 

The following scheme is explaining clearly the notion of the LMS algorithm using a coherent 

mathematical equation: 

Updated Value
of tap-weight

vector

Old Value of
tap-weight

vector
x

Learning
rate

parameter
+ Tap-input

vectorx Error
Signal

 

Figure 3.2:  The LMS Algorithm [22]  

LMS algorithm is very simple and very easy to implement that’s why it is adopted by most of 

real time systems. 

The LMS algorithm is described by the following steps:   

1. Choosing the desired response. The filter coefficient must be set to zero.  

                                                    � ���  �  0, � �  1, 2, 3, … , �                                         3.0 

Steps (2) to (4) are repeated every sampling instant (k): 

2. The output of the adaptive equalizer y(k) is get by multiplying element by element the 

input vector by the filter coefficients vector then the sum of all multiplications is done. 

                                                       ���� � � � ��� 	 ���
��

���
                                                  3.1 

3. Next, the error is defined by doing the subtraction between the desired signal and the 

equalizer output y(k) just before updating the coefficients of the equalizer. 

                                           � ��� � � ��� 
  � ���                        3.2 

4. Finally, the equalizer coefficients must be updated by multiplying the error calculated 

in the previous step by the step-size µ then by the equalizer input x(k). After that, the 

result is added to the previous value of the equalizer coefficients. 

                                               � �� � 1� � � ��� � 2 μ � ���	 ���                                     3.3 
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Updating the equalizer coefficients using the LMS algorithm requires that the parameters are 

defined accurately. The step size parameter µ and the number of filter coefficients N are the 

most important parameters that ensure the convergence of the equalizer to an output matching 

the best to the desired signal. 

Changing the values of µ and N has an impact on the equalizer behavior, that’s why we were 

testing the equalizer with a lot of values of the step size parameter to choose the best one 

which gives the optimum result. But, concerning the filter length we were limited by the 

hardware resources that’s why we adopted for this project small length filters. 

Although it is widely used due its efficiency, the LMS algorithm suffers from one major 

problem. It mainly deals with its complexity since its computational cost augments 

exponentially when the length of the filter augments. This problem is actually generated 

because the LMS algorithm is implemented in the time domain.  That’s why another version 

of the LMS algorithm was found to compensate that defect which is the BLMS algorithm or 

Block LMS algorithm. But, the efficiency of that algorithm in terms of computational cost can 

not be compared to implementing the adaptive equalizer in the frequency domain. 

3.4 Frequency domain equalization  
Data alteration between the frequency domain and the time domain requires the use of some 

tools ensuring the preservation of data during this transition. The most useful tool enabling 

representing a signal in the frequency domain is the discrete transform that helps to decrease 

the computational complexity related to signal processing just like convolution. One of the 

most efficient transforms allowing the transition between the two domains is the Fast Fourier 

Transform (FFT). It is the most used transform because of its advantages comparing to the 

other transforms:   

• It is efficient 

• It can represent data for even short data lengths 

• It is accurate in representing data 

 

3.4.1 Discrete Fourier Transform 

 

The Discrete Fourier Transform is one of the structures of the Fourier Transforms allowing to 

the conversion of a discrete signal from the time domain to the frequency domain.  
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The expression below represents the equation calculating the Discrete Fourier Transform.  

           ��� �  � x �nT�e�%&'()��

*��
                                              3.4 

It is obvious that this expression is similar to the equation allowing calculating the Fourier 

Transform for continuous signals in time domain. 

The DFT has two important properties which are: 

• Symmetry 

That means that the two elements X(k) and X(k+N) resulting by applying the Discrete 

Fourier Transform on the signal x are the same. As a result, it can be deduced that there is 

a periodicity with period N.  

 

• Convolution 

The circular convolution as well as the linear convolution can be deduced by the use of the 

Discrete Fourier Transform. The time convolution theorem declares that a convolution in 

time domain is transformed into a simple multiplication in the frequency domain. This is 

summarized by the following expression. 

                           	��� � 	 �m� , 	- �n� �  F�/  �k�  - �k�1                   3.5 

where x, x1 and x2 are finite periodic signals having the length and * expresses  circular 

convolution F-1 expresses the Inverse Discrete Fourier Transform. 

This property of the Discrete Fourier Transform has great importance for this project 

because instead of using convolution in time domain which can increase the computational 

cost, we can use the multiplication in the frequency domain and as a result we can get the 

same results with less complexity by just applying the DFT. 

3.4.2 The Fast Fourier Transform   
 

One of the most useful and efficient algorithms used to put in work the Discrete Fourier 

Transform is the Fast Fourier Transform (FFT). Its role consists in transforming a vector x 

expressed in time domain to its equivalent X in the frequency domain. To reduce the 

computational cost and to make the algorithm more efficient, The FFT is based on the 
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principle of the built in redundancy used by the DFT. Besides the FFT permitting the 

transformation of a signal from the time domain to the frequency domain, another algorithm 

allowing the conversion of a signal in the other direction that means from the frequency 

domain to the time domain; it is the Inverse Fourier Transform (IFFT).  

The computational complexity for the Discrete Fourier Transform is equal to N2 complex 

multiplies, but when we are talking about the FFT this number is decreased and its complexity 

is equal to (N/2) log2 (2N) complex multiplies + N complex adds. To get much better results, 

the block length N must be an integer power of 2. By doing this, we enhance the performance 

of the FFT algorithm. The FFT block length must be the same as the input signal block 

length.    

3.4.3 The Overlap-Save Algorithm 
 

As it is mentioned previously, the convolution property is the key to pass from the time 

domain to the frequency domain. The most important algorithms implementing convolution 

are the Overlap-Add and the Overlap-Save. These two algorithms are based on the 

convolution theorem stating that a convolution in the time domain is equivalent to a 

multiplication in the frequency domain. I terms of complexity, the Overlap-Save algorithm is 

more efficient than Overlap-Add algorithm. The earlier algorithm is overlapping the input 

blocks and to maximize its efficiency a 50% overlap is required; that means that the current 

input values are composed of a concatenation of the current input block and the previous one. 

By applying the IFFT, the last N samples must be discarded because of the circular 

convolution and then we concatenate the output samples to the others to finally form the 

Overlap-Save algorithm output. The figure below expresses the notion of the Overlap-Save 

algorithm. 
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Input Block Length 2N N Zeros + Impulse Response

2N point FFT 2N point FFT

Y(f) = X(f) x H(f)

2N point IFFT

Y(n) + circular artifacts
 

Figure 3.3: The overlap-save algorithm scheme [22] 

 

  

The length of the input block is 2N.     

1. The impulse response must have the same length as the FFT block that’s why N are 

added to it. 

 

2. The FFT is applied to the impulse response.      

                  2 ��� �  334 /����1                                                       3.6 

3. The FFT is applied to the input block. Since a 50% overlap is adopted then every 

current block is concatenated to the previous block. For the first block, N zeros must 

precede it.  

                                       ��� � 334/	���1                                          3.7 

4. The product of the FFT results in the steps 2 and 3 is now calculated. This 

multiplication must be done element by element. This multiplication in the frequency 

domain is equivalent to the convolution in the time domain.  

                                                   5��� �  ���. 2���                                                         3.8 

5. To pass to the time domain, the IFFT must be applied to Y(k).  

                                                          ���� � 7334/5���1                                          3.9                 

6. The last N samples of y(n) are discarded. However, the first N samples are added to the 

previous output samples 
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7. The input block is updated and the steps 3 to 7 are repeated. 

  

3.4.4 The Fast LMS Algorithm 
 

For this master project, implementing an adaptive frequency domain equalizer [22, 23] is 

based on an adaptive frequency domain algorithm called Fast LMS. This version of Fast LMS 

algorithm is based on the overlap-save convolution algorithm. Updating the equalizer 

coefficients in the frequency domain using the Fast LMS algorithm is similar to the process in 

the time domain using the LMS algorithm. One difference between the two procedures in 

terms of updating coefficients consists in that the Fast LMS algorithm updates the coefficients 

block by block not sample by sample. The following figure illustrates the principle of the Fast 

LMS algorithm. 

 

FFT IFFTX Save Last Block

+ Delay

X

FFT

Append
Zero Block

Delete Last
Block

IFFT

X FFT Append
Zero Block +

Conjugate

d(n)

y(n)

Gradient
Constraint

u(n)

mu

U(k) Y(k)

U*(k) E(k) e(n)

 

Figure 3.4:  the Fast LMS algorithm [22] 
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The 50% overlap is applied to the input blocks of size 2N and the filter coefficients are set to 

zero.  

The Fast LMS algorithm is described as follows: 

1.  The FFT is applied to a 2N input block got from the input signal.  

 8��� �  334/9���1                                                    3.9 

2. Multiplying U(k) by the filter coefficients gives the equalizer output in the frequency 

domain. The coefficients are adjusted before. 

             5��� � 8���. 2���                                        3.10 

    Then an IFFT is applied to Y(K) to get the result in the time domain.  

                                                           ���� �  7334/5���1                                                3.11 

Because of the circular convolution, only the last N samples must be kept and they will 

represent the output of the equalizer. 

                                                  ���� � ��� � 1 : 2��                                                 3.12 

3. Next, a subtraction between the desired signal and the current equalizer output must be 

calculated to calculate the error signal. 

                                                       ���� �  ���� 
  ����                                         3.13 

     Where e(n) is the error and d(n) is the desired signal.  

After that the error must be transformed to the frequency domain, that’s why an FFT is 

applied to e(n) after adding N zeros to its start.  

    ;��� � 334/<�=>?, ����1                                              3.14 

4. After calculating the conjugate of the U(k), it is multiplied by the error in the frequency 

domain. Then, an IFFT is applied to the result. Only the first N samples of this result are 

kept because of the circular convolution.   

 @��� �  7334/;���. 8A���1                                 3.15 

                                                          @��� �  @�1 : ��                                             3.16 

5.  A 2N point FFT is now applied on g(n) after adding N zeros to its end then the result is 

multiplied by the step size parameter µ. 
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            @��� � @���B>CC>D�� E� � <�=>?                       3.17 

2�k� �  μ. 334/@���1                                  3.18 

The obtained result consists in the update factor for the equalizer coefficients, that’s why it 

is added to the previous value of the filter coefficients. 

2�k � 1� � W�k� � 2�k�                                  3.19 

6. The updated equalizer coefficients are set and ready to be used with the next input block. 

From one iteration to another the error is decreasing since the coefficient are updated 

progressively. 

 

3.5 Conclusion 

In this chapter, a theoretical background about frequency domain and time domain 

equalization was presented by describing the algorithms used by both equalizers as well as 

their structures and the techniques they use such as FFT and IFFT. The preference of the 

frequency domain equalizer was also explained in this section. In the next chapter, an 

implementation of the two equalizers will be discussed and a comparison between the 

theoretical and practical results will be done. 
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Chapter 4 

Implementation 
4.1 Introduction: 

The theoretical background was introduced by the previous chapter. In this chapter, the 

practical work will be discussed. First, a tool exploration must be done to define the 

appropriate method that allows achieving this project objective. Then, the FPGA 

implementation flow will be described to finally comment the obtained results.   

4.2 Tools exploration: 

4.2.1 Introduction: 

The evolution known by the high-level tools translates the increase of the FPGA technology 

adoption, since the reprogrammable silicon delivers a lot of benefits to engineers, researchers 

and scientists of all domains. 

4.2.2 Catapult C Synthesis:                                                                                                                      

Catapult C Synthesis is a Mentor Graphics [21] product; it produces an RTL implementations 

from abstract specifications written in C, C++ or SystemC. The Catapult C flow consists in 

modeling, synthesizing, and verifying complex ASICs and FPGAs architectures as it is shown 

in the figure 4.1. 
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Figure 4.1: The Catapult design flow [21] 

 

 

4.2.3 AutoPilot FPGA:                                                  

 

AutoPilot FPGA is AutoESL’s [19] high level synthesis tool for FPGAs. AutoPilot FPGA 

takes a complex algorithm in the form of C, C++ or SystemC description or a combination of 

these languages and automatically generates an equivalent RTL that is ready for synthesis into 

an FPGA device. AutoPilot FPGA supports both Xilinx and Altera devices. 

 

For Xilinx: 

� Comprehensive Device Support  

Virtex-6, Virtex-5, Virtex-4, Virtex-II Pro, Virtex-II, Spartan-6, Spartan-3  

� Automatically generates all files required for FPGA implementation using Xilinx 

XST, ISE, EDK, and Synplify tools  

� Simulation and debugging flow works with ModelSim and Aldec simulators  

 

For Altera : 

� Comprehensive Device Support  

Stratix IV, Stratix III, Stratix II, Stratix, Cyclone III  
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� Automatically generates all files required for FPGA implementation using Altera 

Quartus II, SOPC Builder, and Synplify tools  

� Simulation and debugging flow works with ModelSim and Aldec simulators  

 

4.2.4 PICO for FPGA:                                                                  

PICO for FPGA has two products allowing an FPGA implementation from a C code 

specification; PICO Express and Pico Extreme. They are a Synphora [20] product, they take a 

C algorithm and a set of design requirements (clock frequency, throughput target and 

technology file) and create a series of implementation models (RTL, SystemC). Figure 2 

summarizes all the steps in the PICO Extreme design flow. 

 

 

Figure 4.2: Pico Extreme design flow [20] 

4.2.5 System Generator for DSP:                                                                 

System Generator is a DSP design tool from Xilinx [18] that enables the use of The 

Mathworks model-based design environment Simulink for FPGA design. All of the 

downstream FPGA implementation steps including synthesis and place and route are 

automatically performed to generate an FPGA programming file. 

 

System Generator provides a system integration platform for the design of DSP FPGAs that 

allows the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come 
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together in a single simulation and implementation environment. System Generator supports a 

black box block that allows RTL to be imported into Simulink and co-simulated with either 

ModelSim or Xilinx ISE Simulator. Figure 3 explains the operation principle of System 

Generator. 

 

 

 

Figure 4.3: System Generator design flow [18] 

4.2.6 Conclusion: 

Regarding to the different tools and its characteristics, we adopt for this project the system 

generator for DSP tool. In one hand, it is possible to implement the design described with 

similink directly in FPGA, in the other hand; we can download it for free from the Xilinx 

website.  

4.3 Implementation methodology: 

The specific objectives for this master project are the following: 

1. Simulation of the frequency domain equalizer using Matlab. 

2. Defining the required tools allowing the implementation of the frequency domain 

equalizer on FPGA. 

3. FPGA implementation of the frequency domain equalizer. 

4. Performance analysis. 
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As it is mentioned in the section 4.2, System Generator for DSP was chosen as the tool 

allowing the FPGA implementation of the frequency domain equalizer. 

System Generator is created to implement DSP applications on FPGA using the Mathworks 

model-based design tool Simulink. This tool is very easy to work with since it doesn’t require 

a previous knowledge of hardware design methodologies. Designing using System Generator 

only needs a DSP simulink modeling environment but based on a specific block set from 

Xilinx. All of the flow of the FPGA implementation steps is done automatically starting form 

synthesis, passing by place and route and arriving to generating the programming file. 

The first step in the design flow using System Generator is describing the specification using 

the Similink block sets. Then, System Generator defines the design hardware devices using 

the specific DSP Xilinx block set. After that, Xilinx Core Generator generates an optimized 

netlitst for the DSP blocks. The programming file, the bitstream, is automatically generated 

by the System Generator. This latter can also create a testbench based on the vectors used in 

the simulink specification and which can be run on Modelsim or Xilinx ISE Simulator. Figure 

4.4 summarizes the steps of the System Generator design flow.   

 

 

Figure 4.4: System Generator design flow [20] 
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For this project, the FPGA used for implementation is a Spartan 3 with one million gates. 

4.4 Time domain equalizer implementation: 

To test its functionality, the time domain equalizer was simulated using Matlab. To get 

reliable results, the equalizer must be tested in a well defined transmission environment; first 

we need a symbol generator which generates, in our case, random integer symbols with the 

range [0..15]. Second, the symbols go through a 16-QAM modulator and after that through 

the transmission channel. The channel used for matlab simulation is a Proakis A [4] channel. 

Its coefficients are [0.04, - 0.05, 0.07, - 0.21, -0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]. The channel 

is also noisy by an Additive White Gaussian Noise (AWGN). The equalizer is, then, required 

to eliminate ISI in the transmitted signal after going through that channel. Finally, the output 

of the equalizer is demodulated by a 16-QAM demodulator. Figure 4.5 shows the 

transmission chain components. 

  

 

 

 

 

Figure 4.5: Transmission chain scheme 

Using matlab, we simulate two types of time domain equalizers, one based on the LMS 

algorithm and the other one is based on the BLMS algorithm. The difference between the two 

equalizers is that the first is updating its coefficients after each sample and the second is 

updating it coefficients after an input block of samples.  

The simulation parameters are set as following: 

• SNR = 40 dB 

• Transmitted symbols = 10 000 

• µ = 0.002 

Source 16-QAM 
modulator  

x 

Channel 

y 
16-QAM 

demodulator  Equalizer 
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The following figure presents the constellation of the signal that enters to the equalizer as well 

as the constellation of the equalizer output signal. 

  

Figure 4.6: (a) Signal constellation before LMS-based equalization, (b) Signal constellation 

after LMS-based equalization   

As it is shown in figure 4.6.a, the signal entering to the equalizer is very noisy because it 

passes through an AWGN channel. But after going through the equalizer, we obtain a 16-

QAM constellation, presented by the figure 4.6.b, which means that the time domain equalizer 

eliminates the ISI and gives a signal that can be easily demodulated as an output. 

The error estimation is explicit in the figure 4.7. 

 

Figure 4.7: LMS equalizer error estimation 
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The figure above shows that the error is very high in the beginning since the equalizer is still 

updating its coefficients. It reaches a stable status after almost 2000 symbols where the value 

of the error rate is equal to –25 dB such that the SNR is equal to 40 dB. 

Using the LMS algorithm as the adaptive algorithm for the equalizer gives an error rate equal 

to 1.91% which means that by sending 10000 symbols, we only loose 191 symbols. 

We also simulate a BLMS based equalizer using Matlab using the same LMS equalizer 

parameters. We get the constellations of the equalizer input and output signal which are 

represented by the figure below.  

  

Figure 4.8: (a) Signal constellation before BLMS-based equalization, (b) Signal constellation 

after BLMS-based equalization   

The figure 4.8 shows that the BLMS-based equalizer gives the same results as the LMS-based 

equalizer. The BLMS equalizer is a time domain equalizer that succeeded to eliminates the 

ISI and gives almost the same performance as the LMS equalizer since the error rate given by 

the BLMS equalizer is 2.03% that means that only 203 symbols are lost from the whole 10000 

sent symbols. The only difference between the two time domain equalizers is that the LMS 

one is updating its coefficients after every sample and the BLMS one is updating its 

coefficients after every block of samples. The error estimation is given by the following 

curve. 
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Figure 4.9: BLMS equalizer error estimation 

From this curve, we can deduce that the error stable status for the BLMS equalizer is almost 

the same for the LMS one; it is equal to -25 dB. But, the BLMS algorithm converges slower 

than the LMS algorithm. It requires 3000 symbols to converge. 

Now, as a first step of the FPGA implementation flow, the LMS-based equalizer is described 

using the blocks of the simulink environment. The whole transmission chain is represented 

using the simulink block sets as it is shown in figure 4.10. 

 

Figure 4.10: Transmission chain with a 4-tap LMS equalizer in Simulink 

The figure above shows all the components of the transmission chain. First, we have a random 

integer generator. It generates random integer symbols belonging to the interval [0..15]. Then, 

a 16-QAM modulator is installed. After that, the signal must go through an AWGN multipath 
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channel, in our case, it is a 2-path channel after which a 4-tap time domain equalizer based on 

the LMS algorithm is set up to eliminate the ISI. Finally, we add a 16-QAM demodulator to 

get the received signal.   

The architecture of the LMS-based equalizer is given by the figure below.  

 

Figure 4.11: LMS equalizer in Simulink 

The equalizer has as input the noisy signal coming from the channel as well as the desired 

signal which is in our case the output signal of the modulator. The output signals of the 

equalizer are the equalized signal and the error estimation. From the architecture of the 

equalizer, we can easily notice that the equalizer is based on the LMS algorithm as it is 

described in section 3. 

Next, a simulation must be done to test the functionality of the time domain equalizer. That’s 

why the simulation parameters were set as following: 

• SNR = 40 dB 

• µ = 0.002 

• Filter taps = 4 

The figure 4.12 shows the constellation of the equalizer output signal. We can deduce from 

this constellation the efficiency of the equalizer.  
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Figure 4.12: Signal constellation after time domain equalization in Simulink 

In terms of error estimation, it is shown that the 4-tap time domain equalizer converges after 

almost 800 symbols to reach the value of -35 dB. The error estimation curve is represented by 

the figure 4.13 below. 

 

Figure 4.13: Error estimation   

To get a synthesizable version of the time domain equalizer, it must be described using the 

specific Xilinx block set in the simulink environment. The design must be put between two 

specific blocks called Gateway-in and Gateway-out. Their role consists in limiting the design 

that will be implemented in the FPGA from the other simulink blocks. The figure below 

shows the 4-tap time domain equalizer described using the Xilinx block set. 
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Figure 4.14: A System Generator description of the 4-tap time domain equalizer 

The yellow blocks represent the Gateway-in and the Gateway-out blocks. The other blocks 

are elementary blocks from the Xilinx block set which are essentially multipliers and adders 

and also some sub-systems doing complex addition and complex multiplication. 

To make sure of its functionality, we did a simulation for this design with the same 

parameters used with the standard simulink design. The signal constellations as well as the 

error estimation curve are given by the figures 4.15 and 4.16 respectively. 

 

Figure 4.15: Signal constellation after time domain equalization in Sys Gen 
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Figure 4.16: Error estimation curve 

Comparing the results given by the System Generator description and the standard Simulink 

blocks description of the 4-tap time domain equalizer, we can deduce that the Simulink design 

gives better results than the System generator one. In simulink, the symbols are described 

using the floating point but in System Generator only the fixed point is used. That’s why the 

simulink design gives more accurate results than the System Generator design. 

After designing the time domain model, we proceed to the FPGA implementation which is 

automatically done by the System Generator for DSP tool. It uses the Xilinx ISE 11.1 version 

to do all the flow. The design will be implemented in the Spartan 3 FPGA board with one 

million gates. The table 4.1 gives and clear idea about the FPGA logic blocks consumption by 

the design.  



31 

 

 

Table 4.1: Time domain equalizer synthesis report 

The table shows that the 4-tap LMS equalizer consumes almost 80% of the FPGA resources.  

For the frequency domain equalizer, we will go through the same steps as the time domain 

equalizer to finally compare between the two equalizers. 

4.5 Frequency domain equalizer implementation: 

The frequency domain equalizer is based on the Fast LMS algorithm to update its coefficients. 

To test its performances, we describe it and simulate it using Matlab  

The simulation parameters used for the frequency domain equalizer are the same used for the 

time domain equalizer. They are set as following: 

• SNR = 40 dB 

• Transmitted symbols = 10 000 

• µ = 0.002 

The two pictures below present the constellation of the input signal to the equalizer and the 

constellation of its output signal. 
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Figure 4.17: (a) Signal constellation before Fast LMS-based equalization, (b) Signal 

constellation after Fast LMS-based equalization   

The figure 4.17.a shows that the input signal to the equalizer is very noisy, and after 

equalization, a 16-QAM constellation was obtained which means that the frequency domain 

equalizer eliminates the ISI. 

The error estimation curve is given by the figure 4.18. 

 

Figure 4.18: Fast LMS equalizer error estimation 

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-90

-80

-70

-60

-50

-40

-30

-20

-10
Learning Curve

Iteration Number

O
ut

pu
t 

E
st

im
at

io
n 

E
rr

or
 in

 d
B



33 

 

The error estimation curve for the fast LMS equalizer shows that it converges within only 200 

symbols almost to reach an error rate equal to -40 db for an SNR equal to 40 dB. These results 

imply that the frequency domain equalizer is much more efficient in terms performance than 

the time domain equalizer.  

Using the Fast LMS algorithm as the adaptive algorithm for the equalizer gives an error rate 

equal to 1.83% which means that by sending 10000 symbols, we only loose 183 symbols. 

Now, the transmission chain must be described using the blocks of the simulink environment. 

The figure 4.19 shows the communication environment where the 4-tap frequency domain 

equalizer is tested.   

 

Figure 4.19: Transmission chain with a 4-tap Fast LMS equalizer in Simulink 

 

It is obvious from the figure above that the transmission chain enabling to test he frequency 

domain equalizer is the same as the chain used with time domain equalizer. 

The architecture of the Fast LMS-based equalizer is given by the figure below.  

 

Figure 4.20: Fast LMS equalizer in Simulink 
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Just like the time domain equalizer, the frequency domain equalizer has as input the noisy 

signal coming from the channel as well as the desired signal which is in our case the output 

signal of the modulator. The output signals of the equalizer are the equalized signal and the 

error estimation. In this equalizer architecture, we notice the use of three FFT blocks and two 

IFFT blocks allowing the alternation between the time domain and the frequency domain.  

Next, a simulation must be done to test the functionality of the frequency domain equalizer. 

The simulation parameters were kept the same as the time domain simulation parameters 

where: 

• SNR = 40 dB 

• µ = 0.002 

• Filter taps = 4 

The figure 4.12 shows the constellation of the equalizer output signal. The constellation 

shows no noise which implies that the equalizer is working perfectly.  

 

Figure 4.21: Signal constellation after time domain equalization in Simulink 

In terms of error estimation, it is shown that the 4-tap frequency domain equalizer converges 

after almost 200 symbols to reach the value of -40 dB. These results prove that the frequency 

domain equalizer is better than the time domain equalizer in terms of performance. The error 

estimation curve is represented by the figure 4.22 below. 
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Figure 4.22: Error estimation   

The frequency domain equalizer is described using the specific Xilinx block set in the 

simulink environment. We try to implement a 4-tap frequency domain equalizer on the one 

million gate Spartan 3 FPGA board but the design was very big that’s why we implemented a 

2-tap equalizer. The figure below shows the 2-tap frequency domain equalizer described using 

the Xilinx block set. 

 

Figure 4.23: A System Generator description of the 2-tap frequency domain equalizer 

The design contains elementary blocks from the Xilinx block set which are essentially 

multipliers and adders and also some sub-systems doing complex multiplication, FFT and 

IFFT. 
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The signal constellations as well as the error estimation curve given by the figures 4.24 and 

4.25 respectively show that the equalizer eliminates the ISI from the noisy input signal. 

 

Figure 4.24: Signal constellation after time domain equalization in Sys Gen 

 

 

Figure 4.25: Error estimation curve 

As it is mentioned for the time domain equalizer, the results got from the simulink model are 

better than those got from the System Generator model because for simulink symbol are 

described using floating point and for System Generator symbols are described using fixed 

point. 
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For the synthesis, place and route and FPGA implementation were done for the same one 

million gate Spartan 3 FPGA board and the table 4.2 gives the statistics of the used logic to 

implement the frequency domain equalizer design 

 

Table 4.2: Frequency domain equalizer synthesis report 

The table shows that the 2-tap Fast LMS equalizer consumes almost 60% of the FPGA 

resources.  

4.6 Comparison: 

Now that both time and frequency domain equalizers are implemented it is time to compare 

between the two domains in terms of performance and computational complexity. 

4.6.1 Computational complexity: 

For the LMS algorithm, getting an output sample requires N complex multiplications which 

mean that generating an N sample output block requires N2 complex multiplications. Also, 

updating the filter coefficients require N2 complex multiplications. In summary, the LMS 

algorithm complexity is equal to 2 N2 complex multiplications which is equivalent to 8 N2 real 

multiplications. 

Concerning the Fast LMS algorithm, the whole complexity results of the FFT and IFFT 

blocks. Since the computational complexity of an 2N FFT block is equal to (N/2) log2 (2N) in 

terms of complex multiplications then the 5 FFT and IFFT blocks need (5N/2) log2 (2N) 
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complex multiplications which is equivalent to 10N log2 (2N) real multiplications. The Fast 

LMS algorithm requires also two 2N complex vector products adding 16N real multiplication 

to its computational complexity. Finally, the cost of the Fast LMS algorithm in terms of 

computational complexity is equal to 10N log2 (2N)+16N. 

The number of the real multiplications required by the two algorithms for N symbol block is 

tabulated in the table 4.3 where N is equal to 2, 4, 8, 16 and 32. 

 N=2 N=4 N=8 N=16 N=32 

LMS 32 128 512 2048 8192 

Fast LMS 72 184 448 1056 2432 

 

Table 4.3: Equalizer complexity comparison 

From the table above, we deduce that the frequency domain equalizer is much better than the 

time domain equalizer in terms of computational complexity when N is equal or greater than 

8. These statistics confirm the FPGA implementation results that we got of the time domain 

and frequency domain equalizers. As it is declared in section 4.5, a 4-tap time domain 

equalizer consumes almost 80% of the FPGA resources. In another hand, the 4-tap frequency 

domain equalizer needs over than 200% of the FPGA resources to be implemented as it is 

shown in the table 4.4, which confirms the theoretical results confirming that when N is less 

than 8 the LMS algorithm offers significant savings over the Fast LMS algorithm. 

 

Table 4.4: Synthesis report of 4-tap frequency domain equalizer 

4.6.2 Performance: 

In terms of performance, all the simulation results according to Matlab, Simulink or 

SysGen/Simulink confirm that the frequency domain equalizer is more efficient than the time 
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domain equalizer. First, because it converges faster than the time domain equalizer and 

second because it reaches a lower error rate.  

4.7 Conclusion: 

In this section, we went through the whole hardware design flow to implement the time 

domain and the frequency domain equalizers on FPGA. Although, we were limited by the 

hardware resources, we succeed to deal with what we have to get reasonable results allowing 

us to compare between the two designs. Since this is a research work as it is a master project 

and also it is done in the HVG lab where formal verification techniques are subject for 

research, we will present in the next section some future ideas related to formal verification 

that can be applied for this project.   
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Chapter 5 

Conclusion & further work 
5.1 Conclusion: 

This master thesis was dealing with the implementation of a frequency domain equalizer on 

FPGA. Unlike the implementations previously described in the related work section which are 

based on improving the LMS algorithm to implement less complex and more efficient time 

domain equalizers on FPGA, the thesis contribution consists on implementing a frequency 

domain equalizer based on the Fast LMS algorithm on FPGA. It is proven by the signal 

processing researchers that the frequency domain equalizers are more efficient than the time 

domain equalizers, but in terms of hardware it is not proven yet. 

Therefore, we proceed first to a co-simulation of the transmission chain where all the blocks 

are implemented using simulink except the equalizer which is implemented on FPGA. Then, a 

comparison was made in this thesis between the time domain and the frequency domain 

equalizers implemented on FPGA and put under the same conditions. The convergence 

characteristics and the computational complexity of the LMS and the Fast LMS algorithm 

were examined. The results of this study are as follows: 

1. The Fast LMS algorithm based on the Overlap-Save algorithm gives better 

convergence than the LMS algorithm. The error estimation curve given by the 

frequency domain equalizer converges faster and reaches a lower error rate than the 

error curve given by the time domain equalizer. 

2. In terms of computational complexity, it is proven that the 4-tap frequency domain 

equalizer is more complex than the 4-tap time domain one in terms of hardware 

consumption. This result ensures the computational complexity comparison analysis 

of the two algorithms. 

The frequency domain algorithm offers significant savings in terms of computational 

complexity for long size equalizers. However, implementing those long size equalizers on 

FPGA requires a lot of hardware resources. It is proven in this master project that, using a one 
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million gate FPGA and the System Generator for DSP as a design tool, only a 2-tap frequency 

domain equalizer and a 4-tap time domain equalizer can be implemented. 

This thesis presented a hardware implementation project. Therefore, as a further work, formal 

verification techniques can be applied on the frequency domain equalizer design as explained 

in next section.   

5.2 Further work 

5.2.1 Introduction 

Designing consists in transforming a set of specifications into implementations. However, it is 

a long process; going from a specification described in high level language to an 

implementation of that specification on a hardware target implies the passage by many levels 

of abstractions: functional level, register transfer level, gate level…The impact of faulty 

design can be catastrophic since it can delays the time-to-market and as a result it can affects 

the company revenues. Therefore, the design verification would be necessary to avoid those 

problems. This process is the reverse process of design and it answers the question: does the 

implementation meet its specifications? In this chapter, we will present some ideas that can be 

subject of a PhD thesis. All of them are dealing with the verification techniques since this 

project was held in the Hardware Verification Group; the most famous lab of formal 

verification in North America.     

5.2.2 Simulation based and formal based verification techniques 

� Simulation-Based Verification 

Simulation-based verification [5] is the most used verification technique. Verifying a design 

using simulation consists in putting that design under a test bench where input stimuli are 

applied. The output of the test bench is compared to a reference one. The test bench is a 

program that supports the operations described in the design and also it has the ability to 

engender the input stimuli which can be generated before the simulation process or when 

simulation is running similarly to the output reference generation. Figure 5.1 summarizes the 

simulation based verification principle.     
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Figure 5.1: Simulation-based verification [25] 

 

Simulation is functional verification since it is based on what is called directed tests. It 

consists in generating input test vectors aiming to test a specific functionality of the design. 

To get a full simulation-based verification, simulation must not be done on large pieces of the 

design. Therefore, the simulation must be done on the lowest levels. There are many types of 

simulation depending on the different levels of the design; the designer level simulation where 

a macro is verified, the unit level simulation where a group of macros is verified, the element 

level simulation where an entire logical function like a processor is verified and the system 

level simulation where multiple chips are verified. Figure 5.2 shows the different levels of a 

design called the Hierarchical design. 

 

 

Figure 5.2: Hierarchical design [25] 
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� Formal Method-Based Verification 

The formal method-based verification [5] differs from the simulation-based verification in 

that it is not based on test patterns generation. It consists in proving that the implementation 

meets its specification using a mathematical reasoning just like a mathematical proof. Formal 

verification techniques are more efficient than simulation because the consideration of all 

cases is implicit and consequently a full verification is guaranteed. 

To get formally verify a design; we need to have a formal specification as well as a formal 

description of the implementation. Figure 5.3 summarizes the principle of the formal 

verification. 

 

 

Figure 5.3: Formal method-based verification [25] 

 

There are three techniques in formal verification which are equivalence checking, model 

checking and the theorem proving. 

5.2.3 Further work 

Figure 5.4: Verification techniques 
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Verification techniques can be broadly classified into three main categories: (1) formal 

methods based techniques; (2) simulation based techniques; and (3) test based techniques [5]. 

The formal verification techniques can be further classified into three main categories. They 

are (1) theorem proving, (2) model checking, and (3) equivalence checking. A class of 

verification techniques called the semi-formal verification techniques which combine both the 

formal and simulation based techniques are also commonly used.  

Semiformal techniques were developed to take advantage the best of the two techniques 

(formal techniques and simulation). Emulation is a technique in which the design and the 

properties are automatically synthesized in to hardware, for example on FPGA [6], thereby 

increasing the simulation speed by several orders of magnitude. This technique is useful when 

simulations have to be repeated several thousands of times, for example, in statistical 

simulations, or when access to the design environment is not easy. For example emulation can 

be used to create a realistic environment or just to speed up the simulation by off loading the 

computationally complex parts of the simulation to actual hardware.   

 

Figure 5.4 above shows a high level classification of the verification techniques used these 

days. Rest of this section briefly describes the verification techniques and explains how some 

of these techniques can be used to verify the functionality and performance of the Adaptive 

Filters, such as the implementation of the Fast Least Mean Squared (LMS) Adaptive 

Equalizer [7].    

 

� Semi-formal verification 

 

Applying functional or statistical verification [8] in our project is feasible. We have first to 

define the properties to be verified, in our case, we can take as property the algorithm 

adaptation rate, number of samples required for convergence,  average error rate or average 

mean squared error noise floor once the algorithm has converged. All of these properties 

provide some measure of performance of adaptive equalizer implementation. Then, instead of 

using testbench based on simple test vectors defined by the verifier, we formalize the property 

constraints in a formal way so we get the assertion; it is a kind of conditions which must be 

satisfied by the design. By formalizing the property in a formal way, we mean that the 

property be described in way such that it is clear what are the conditions which will make the 

property true, and what would happen if the property is true and when it false.   
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Figure 5.5: Assertion based verification 

 

We have to describe expected or unexpected conditions in device under test in a specialized 

language then we have to check to make sure that conditions are satisfied dynamically during 

simulation (functional verification) or statically. In case of conditions failure, then a bug is 

detected in the device.  

In the case of the functional assertion based simulation, we run simulation just once and then 

we check if the properties are valid. Most designs have random components in it or operate in 

an uncertain environment. Statistical assertion based techniques are used in such cases. In the 

case of statistical assertion based verification we  run simulation several times and then by 

applying the Monte Carlo method [9] we extract automatically some of the simulation results 

on which we can do statistical studies and then we see if the property constraints are satisfied 

or not.  

The advantages of using assertion based verification are that this technique is automatic and 

quick in debugging a device since it is a Combination of simulation and formal verification. It 

is automatic unlike many formal methods based techniques such as higher order logic theorem 

proving and does not have a state explosion problem such as model checking. Similar to 

simulation based techniques it also cannot not completely verify a design.   

What is required to get good results are methodologies for choosing good assertions, 

intelligent debug systems to understand and analyze assertions and their results and a standard 

assertion format and good tool support. 

 

� Theorem proving 

 

For this project, the performance of the adaptive filters [7] can be formally analyzed and 

compared using theorem proving. We can verify minimum and maximum error bounds and 

expectation and variance of error between the outputs of the two implementation of the 
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adaptive filter. 

 

First, we have to define the System Generator [10] and the Matlab [11] designs as models 

written in High-Order-Logic [12] representing, respectively, the fixed-point and the floating-

point implementations. Then, based on the outputs of those two models, y and y', we calculate 

the error which is given by the formula e=y-y'. After that, we can verify, given an adaptive 

filter algorithm and its fixed-point implementation what are the maximum and the minimum 

bounds on the error using a theorem prover [12, 13, 14, 15, 16]. 

 

We can also formally determine the statistical properties of the error. For example, its 

expectation, E[e], and its variance, VAR[e] [17]. Both the error bounds and the statistical 

properties will be generalized expressions in terms of the parameters of the adaptive algorithm 

and its implementation. 

Figure 5.6 summarizes the performance analysis methodology using theorem proving. 

 

Figure 5.6: Performance analysis methodology with theorem proving 

 

 

The use of the theorem proving as a formal performance analysis and verification technique, 

even though it needs some expertise, but it is much more useful and efficient than the run time 
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verification or simulation since it provides results as general expressions from which we can 

do verification for all possible cases which is not the case for simulation because to verify for 

all possible cases we may need an infinite amount of time which is impossible. 
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