
i

AU : 2009-2010

Université de Sousse

Ecole Nationale d’Ingénieurs de Sousse

A thesis submitted in conformity

with the requirements for the degree of Master in

« Systèmes Intelligents et Communicants »

« Option : Microélectronique des Systèmes Embarqués»

FPGA implementation of a frequency domain equalizer

by

Anis SOUARI

 Defended in 15/12/2010 in front of the jury

President : Bouraoui MAHMOUD, ENISo
Members of jury : Faten BENABDALLAH, ENISo
 Nejmeddine JOUIDA, ENISo
Supervisors : Mohamed Lassaad AMMARI, ENISo
 Sofiène TAHAR, Concordia University

©Souari2010

ii

Résumé

L'égalisation du canal est une technique qui permet de réduire les interférences entres

symboles causées par le canal radio-mobile. Généralement, un égaliseur consiste en des filtres

numériques dont les coefficients sont mis à jour selon le critère de forçage à zéro ou le critère

de la minimisation de l'erreur quadratique moyenne. La taille du filtre égaliseur est un

paramètre important qui influence les performances globales du système. Quand cette taille

est élevée, la complexité numérique de l'égalisation augmente considérablement à cause de la

convolution numérique.

Pour réduire la complexité des égaliseurs de tailles élevées, nous pouvons implémenter

l'égaliseur dans le domaine fréquentiel. Le principe de ces derniers est de remplacer la

convolution temporelle (filtrage) par une multiplication fréquentielle moins complexe.

Toutefois, le passage au domaine fréquentiel nécessite l'utilisation des modules de la

transformée de Fourier discrète (TFD).

Dans ce travail nous nous intéressons aux égaliseurs fréquentiels. Dans un premier volet, nous

analysons, à l'aide des simulations Monte-Carlo sous Matlab, les performances d'un égaliseur

fréquentiel linéaire sous différentes conditions de propagation. Le deuxième volet du travail

consiste en la conception et l'implémentation d'un égaliseur fréquentiel sur un FPGA. Après

la définition des besoins matériels et logiciels, nous présentons une méthodologie de

conception et d'implémentation sur FPGA et nous discutons l'optimisation de l'architecture

proposée.

iii

Abstract

The channel equalization is a technique allowing reducing the inter-symbol interference

caused by the radio-mobile channel. Generally, an equalizer consists in digital filters where

the coefficients are updated according to the zero forcing criteria or the mean square error

minimization criteria. The equalizer size is an important parameter that influences the global

performances of the system. When that size increases, the equalizer computational complexity

augments considerably because of the convolution.

To reduce the complexity of the long size equalizers, we can implement them in the frequency

domain. The idea consists in replacing the convolution in the time domain by a less complex

multiplication in the frequency domain. However, the passage to the frequency domain

requires the use of the discrete Fourier transform (DFT) modules.

In this work, we were interested to the frequency domain equalizers. First, based on Monte-

Carlo simulations on Matlab, we analyzed the performances of a linear frequency domain

equalizer put under different propagation conditions. Secondly, we designed and we

implemented the frequency domain equalizer on FPGA. After defining the required tools, we

presented an FPGA design and implementation methodology and we discussed the

optimization of the proposed architecture.

iv

To mo loving family

v

Acknowledgements

I would like to take this opportunity to express my gratitude to all people who contribute in

making this work possible.

First and foremost, I wish to thank my supervisors Dr. Mohamed Lassaad AMMARI and Dr.

Sofiène TAHAR for their assistance, guidance and patience throughout this project.

I am grateful to all HVG members for their encouragement, help and also the family

environment that they offer me. I specially would like to acknowledge the help of my dear

friends Naeem and Fariborz.

I thank all the faculty members of the Ecole Nationale d’Ingénieurs de Sousse and the staff of

the department of Electrical and Computer Engineering of Concordia University for their

support and hard work.

Finally, thank you Taoufik for your support and your help that you gave me in Canada.

vi

Table of Contents

List of Tables viii

List of Figures ix

List of abbreviations xi

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Related work ... 2

1.3 Thesis outline .. 3

2 Adaptive filtering ... 4

2.1 Introduction ... 4

2.2 Adaptive filtering .. 4

2.3 Applications of adaptive filters .. 5

 2.3.1 System identification .. 5

2.3.2 Adaptive equalization .. 6

2.3.3 Echo cancellation ... 7

2.3.4 Linear predictive coding of speech signals .. 8

2.3.5 Array processing .. 8

2.4 Conclusion ... 8

3 Equalization ... 9

3.1 Introduction ... 9

3.2 Transmission chain presentation ... 9

3.3 Time domain equalization .. 9

3.4 Frequency domain equalization .. 11

3.4.1 Discrete Fourier Transform ... 11

3.4.2 The Fast Fourier Transform ... 12

3.4.3 The Overlap-Save Algorithm ... 13

3.4.4 The Fast LMS Algorithm ... 15

3.4 Conclusion .. 17

4 Implementation .. 18

4.1 Introduction ... 18

vii

4.2 Tools exploration .. 18

4.2.1 Introduction .. 18

4.2.2 Catapult C Synthesis .. 18

4.2.3 Auto Pilot FPGA .. 19

4.2.4 PICO for FPGA ... 20

4.2.5 System Generator for DSP ... 20

4.2.6 Conclusion ... 21

4.3 Implementation methodology ... 21

4.4 Time domain equalizer implementation ... 23

4.5 Frequency domain equalizer implementation ... 31

4.6 Comparison ... 37

4.6.1 Computational complexity ... 37

4.6.2 Performance ... 39

4.7 Conclusion .. 39

5 Conclusion & further work .. 40

5.1 Conclusion .. 40

5.2 Further work .. 41

5.2.1 Introduction .. 41

5.2.2 Simulation based and formal based verification techniques 41

5.2.3 Further work ... 43

Bibliography 48

viii

List of Tables

Table 4.1 Time domain equalizer synthesis report .. 31

Table 4.2 Frequency domain equalizer synthesis report .. 37

Table 4.3 Equalizer complexity comparison .. 38

Table 4.4 Synthesis report of 4-tap frequency domain equalizer ... 38

ix

List of Figures
Figure 2.1 System identification using adaptive filter ... 6

Figure 2.2 Echo cancellation using adaptive filter ... 7

Figure 3.1 Transmission chain ... 9

Figure 3.2 The LMS Algorithm .. 10

Figure 3.3 The overlap-save algorithm scheme ... 14

Figure 3.4 The Fast LMS algorithm .. 15

Figure 4.1 The Catapult design flow .. 19

Figure 4.2 Pico Extreme design flow ... 20

Figure 4.3 System Generator design flow .. 21

Figure 4.4 System Generator design flow .. 22

Figure 4.5 Transmission chain scheme .. 23

Figure 4.6 (a) Signal constellation before LMS-based equalization, (b) Signal constellation

after LMS-based equalization .. 24

Figure 4.7 LMS equalizer error estimation .. 24

Figure 4.8 (a) Signal constellation before BLMS-based equalization, (b) Signal constellation

after BLMS-based equalization .. 25

Figure 4.9 BLMS equalizer error estimation ... 26

Figure 4.10 Transmission chain with a 4-tap LMS equalizer in Simulink 26

Figure 4.11 LMS equalizer in Simulink ... 27

Figure 4.12 Signal constellation after time domain equalization in Simulink 28

x

Figure 4.13 Error estimation .. 28

Figure 4.14 A System Generator description of the 4-tap time domain equalizer 29

Figure 4.15 Signal constellation after time domain equalization in Sys Gen 29

Figure 4.16 Error estimation curve .. 30

Figure 4.17 (a) Signal constellation before Fast LMS-based equalization, (b) Signal

constellation after Fast LMS-based equalization ... 32

Figure 4.18 Fast LMS equalizer error estimation .. 32

Figure 4.19 Transmission chain with a 4-tap Fast LMS equalizer in Simulink 33

Figure 4.20 Fast LMS equalizer in Simulink ... 33

Figure 4.21 Signal constellation after time domain equalization in Simulink 34

Figure 4.22 Error estimation .. 35

Figure 4.23 A System Generator description of the 2-tap frequency domain equalizer 35

Figure 4.24 Signal constellation after time domain equalization in Sys Gen 36

Figure 4.25 Error estimation curve .. 36

Figure 5.1 Simulation-based verification ... 42

Figure 5.2: Hierarchical design .. 42

Figure 5.3: Formal method-based verification ... 43

Figure 5.4 Verification techniques ... 43

Figure 5.5 Assertion based verification .. 45

Figure 5.6 Performance analysis methodology with theorem proving 46

xi

List of Abbreviations

AWGN Additive White Gaussian Noise

BLMS Block Least Mean Square

DFT Discrete Fourier Transform

Fast LMS Fast Least Mean Square

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

IFFT Inverse Fast Fourier Transform

ISI Inter-Symbol Interference

LMS Least Mean Square

QAM Quadrature Amplitude Modulation

SNR Signal-To-Noise Ratio

1

Chapter 1

Introduction
1.1 Motivation

Nowadays, due to the radio-mobile development, the digital sound and image diffusion and

the multimedia services increase, we attend a true explosion in terms of the request of the

digital transmission techniques. These new services usually require transmitting a huge

quantity of information in the narrowest frequency band if it is possible and also they require

reducing the transmitted power or transmitting the information through some severe channels.

So, it is obvious that achieving such objectives will cause some problems for the transmission

system designers; in fact, in the case of severe channels such as multipath channels, we need

some techniques to avoid the inter-symbol interference (ISI) created by the frequency

selectivity of the channels.

To steer clear of the channel frequency selectivity, we can refer to a lot of techniques among

them we can mention the equalization; time domain equalization has been the most used

method of eliminating ISI, the most used architectures are the linear equalizer and the

decision feedback equalizer. Those different equalizers consist in digital filters where the

coefficients are generally updated using adaptive algorithms. The size of the filter is an

important parameter which influences the global performances of the system. In fact, for a

“better” equalization, the equalizer size must be bigger than the impulse response of the

channel. So, when the equalizer size increases, the equalizer complexity increases

considerably because of the digital convolution. Using common time domain techniques to

compensate for distortion introduced by such channels may be very computationally intense.

To decrease the filtering complexity, the equalizer can be implemented in the frequency

domain. We talk in this case about the frequency domain equalizer. The idea of this technique

consists in replacing the timing convolution with a frequency multiplication less, so this

method offers a low complexity growth in comparison with the time domain approach. This

technique requires the use of the Fast Fourier Transform (FFT) modules.

2

The objective of this master project is the implementation of the frequency domain equalizer

on FPGA and the performance analysis of the designed system. We have first to identify the

tools and the software required to achieve this project, then after implementing the equalizer,

we have to compare the performance of what we implement with the theoretical performances

of the frequency domain equalizers.

1.2 Related work

In 1965, Lucky led the way to the adaptive equalization by developing the zero forcing

algorithm which was the corner stone for the high speed modems. Meanwhile, Widrow was

working on an other algorithm called the Least Mean Square (LMS) algorithm which became

very important for many applications. In 1973, Waltzman and Schwartz introduced the first

frequency domain implementation of the LMS algorithm where the coefficients were updated

using an isolated training sequence. Since then, researchers never stop developing the

adaptive algorithms thanks to its efficiency in many domains.

Due to its efficiency, the LMS algorithm knows a great use in various applications; among

them we find the FPGA-signal processing based applications. The papers dealing with this

topic are uncountable. We will try in this section to present some works dealing with the

implementation of the LMS algorithm in FPGA which have been done.

 The paper describing the most similar work to our project is that written by Dr. Chris Dick

and Dr. Fred Harris. It is named FPGA QAM Demodulator Design [3]. This paper examines

the FPGA implementation of an adaptive equalizer and carrier recovery loop for a 50 Mbps

and 16-QAM receiver. To minimize inter-symbol interference in their project, Dr. Dick and

Dr. Harris use an adaptive equalizer based on the LMS algorithm which is connected in

cascade to a matched filter. To build their system, they employ a fully parallel design

consisting of 8 FIR processing elements (PE) and 8 LMS processors. For the implementation

on the Virtex II FPGA, the system level design tool System Generator was used.

Some researchers working on FPGA implementation of adaptive equalizers try to modify the

LMS algorithm in a way that the complexity when implementing in the hardware is reduced.

This is the case of the project described in the paper named “algorithm and architecture design

for a low-complexity adaptive equalizer” [1] where researchers implemented the GSPT LMS

(Grouped Signed Power-of-Two LMS) algorithm to test the capability of an adaptive

3

equalizer in equalizing 8PSK signals in several practical channels. To ensure the efficiency of

their algorithm, they implemented three adaptive equalizers based on the LMS algorithm,

Chen’s scheme, and the proposed GSPT LMS algorithm. After comparison of the results, they

found that the proposed GSPT LMS algorithm can be implemented with much lower

complexity, which is about 30% of the hardware resource required by the conventional LMS

algorithm, or about 50% of that in Chen’s scheme.

Another paper dealing with adaptive filtering using LMS algorithm is called FPGA

Implementation of a Single Channel GPS Interference Mitigation Algorithm [2]. In this

project the paper’s writers implemented an adaptive filter for narrow band interference

excision in Global Positioning Systems (GPS). The Adaptive Filter was implemented in

schematic VHDL using four main blocks which are the Coefficient Update Block, the Input

Signal Delay Block, the FIR Algorithm Block and the Tree Adder Block. The adaptive filter

using 33 taps and a sampling rate of 8 MHz was tested with simulink and it converges in

20µs. In this paper the writers conclude that “The single channel delayed LMS adaptive

algorithm is an effective technique for removing narrow-band interfering signals from GPS

receivers. It can be effectively implemented using FPGA technology that can be seamlessly

inserted between a GPS antenna and receiver.”

As we mentioned in the beginning of the section, there are a lot of papers dealing with the

hardware implementation of the LMS algorithm applications. So, we tried to present the

closest related work.

1.3 Thesis outline

The thesis is structured in the following way; chapter 2 discusses the notion of digital filtering

and it focuses on the adaptive filtering by explaining its principle. Some applications of

adaptive filtering are also presented in this chapter. Chapter 3 deals with equalization. Time

domain and frequency domain equalizers are defined in this section as well as the algorithms

used by each equalizer. The implementation of the equalizers, the tools used and a

comparison analysis are presented in chapter 4. The fifth chapter opens new horizons by

presenting new ideas that can be applied on this project as a further work.

4

Chapter 2

Adaptive filtering
2.1 Introduction

Adaptive filters [22] are mainly digital filters using adaptive algorithms to update their
coefficients. In this section, we will introduce the adaptive filter and we will enumerate their
applications.

2.2 Adaptive filtering

Digital filters are mathematical algorithms which are used to modify the digital signals. It is

the same procedure followed by the analogue filters to operate on the analogue signals.

Equation 2.1 represents the output of a linear digital filter.

 ���� � ∑ ����	��
 ����
��� 2.1

Where h(k), k = 0,1…N-1 are the filter coefficients, x(n) is the filter input and y(n) is the filter

output.

Digital filtering has a lot of advantages among them we can mention:

• Easy implementation of adaptive filtering in case of the use of a programmable

processor.

• The reuse of the filter output and input can be guaranteed.

• Analogue filters have limitations.

• Can be improved as the VLSI technology is improved.

• Performance is stable.

• The filter can operate on more than one filter at the same time.

• Precision.

• It is beneficial for the biomedical applications since it can operate at lower frequencies.

5

As it has many advantages, it has also some drawbacks. The following points summarize

the most remarkable disadvantages:

• The hardware resource on which the filter is implemented can limit its speed

• Building a digital filter is much more difficult than building an analogue one.

The adaptive filter coefficients are changing when they are operating in a changing

environment. So, recursive algorithms are necessary to put the filter coefficients up to date.

The most accurate example that reveals the importance of the adaptive filters is the telephone

system where the echo caused by the impedance assorts represents a considerable source of

annoyance for this system users. So, the adaptive filter has to eliminate this echo by imitating

the echo response of the echo path.

Although they do great job in most cases, implementing adaptive filters in the time domain

can not be efficient for some applications where we have an increasing complexity and as a

result a very long impulse response. For these special cases, we have resort to implement the

adaptive filter in the frequency domain. From here, the importance of the Fast Fourier

Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) is obvious since they are the

means allowing the passage from the time domain to the frequency domain and from the time

domain to the frequency domain. The conversion complexity is much less than the complexity

of the time domain algorithm when the filter is long enough in a way that its length is equal or

bigger than the crossover point where the computational cost of the frequency domain filter is

less than the time domain one.

2.3 Applications of adaptive filters

Adaptive filters are very useful in case of transmitted signals with the minimum amount of

information, that is why they are widely exploited in telecommunications, control systems,

radar systems…

Due to its flexibility and easy implementation, adaptive filters design and adaptive algorithms

development are defined by the applications themselves. The most important applications for

the adaptive filters are described in the following sections.

2.3.1 System Identification

System identification consists in modeling an unknown system and estimating its parameters

by applying an experimental data. This technique is very efficient in case of dynamic system

6

with complex behavior, since it is not easy to model it and consequently to control it. So, we

refer to collect some experimental data about the system responses by applying some

specified excitations.

Figure 2.1: System identification using adaptive filter [22]

Figure 2.1 shows a block diagram of the system identification model. We have as a model for

the unknown system an FIR filter with adjustable coefficients.

We give the unknown system and the FIR filter model the same input u(n). An estimation

error e(n) is produced by doing the difference between the outputs y(n) and d(n) of the

adaptive filter which is the system model and the unknown system respectively.

Now, using the estimation error e(n), the adaptive algorithm is updating the tap weights of the

filter. This process is repeated until the estimation error e(n) reaches a given limit and then the

unknown system response is deduced from the adaptive filter one.

2.3.2 Adaptive equalization

In telecommunications, transmitting data through wide channels requires the use of modems

and accordingly the use of equalizers. Equalization is widely using the adaptive algorithms;

we are talking about adaptive equalization. The purpose from using an adaptive equalizer is to

compensate for the distortion and eliminate the inter-symbol interference caused by the

channel noise.

7

Initially, a desired signal d(n) is defined for the adaptive equalizer. Then, the error estimation

is calculated by making the difference between the equalizer output y(n) and the desired

signal. The produced error is used to update the coefficients of the equalizer to reach its

optimum values. The received signal is obtained by applying the equalizer output y(n) to a

decision device.

2.3.3 Echo Cancellation

In telephony, full-duplex operation, transmitting and receiving channels from a two-wire

telephone line are provided by a device called “hybrid”. Figure 2.2 shows the layout of the

system.

Transmitter

Receiver

Hybrid
Adaptive

Filter

+
-

+

Hybrid

Transmitter

Adaptive
Filter

Receiver+
-

+

Common
Line

X(n) X(n)

e(n) e(n)

Speaker A

Speaker Echo
Return Paths

Clean
Signal

Clean
Signal

Speaker B

Y(n) Y(n)

Speaker B
signal + echo of A

Speaker A
signal + echo of B

Figure 2.2: Echo cancellation using adaptive filter [22]

An echo is generated because of the impedance mismatch between the hybrid and the

telephone channel. I can be eliminated by using adaptive echo cancellers, based on adaptive

algorithms, in the network. Updating the optimum coefficients of the echo canceller depends

on calculating the error signal resulting from the difference between the estimate and the

received signal.

8

2.3.4 Linear Predictive Coding of Speech Signals

The speech signals can be digitally represented using the method of linear predictive coding

(LPC). In LPC, the source vocal tract is modeled as a linear all-pole filter whose parameters

are determined adaptively from speech samples by means of linear prediction. The speech

samples u(n) are, in this case, the desired response, while u(n-1) forms the inputs to the

adaptive FIR filter known as a prediction error filter. The error signal between u(n) and the

output of the FIR filter, y(n), is then minimized in the least-squares sense to estimate the

model parameters. At the receiver, using the model parameters and the error signal, the speech

signal is synthesized.

2.3.5 Array Processing

Adaptive antenna arrays are behaving the same way as adaptive filters in terms of the

processing techniques. Those arrays are generating a parallel set of signal samples by the

mean of the spatial separation between the antenna elements instead of using the time-delayed

or partly processed versions of a one-dimensional input signal. The adaptive antenna arrays

are applied for bearing estimation and adaptive beam-forming.

2.4 Conclusion

The adaptive equalization is one of the adaptive filtering applications. They are used to

eliminate the inter-symbol interference caused by the noise in the transmission channel. The

next chapter will deal with the equalization in both frequency and time domain and it will

compare between their performances.

9

Chapter 3

Equalization
3.1 Introduction

As it is mentioned in the previous chapter, equalization is one of the applications of adaptive

filtering. Its role consists in eliminating the ISI caused by the noise in the transmission

environment. This chapter will present in details the time domain and the frequency domain

equalizers by introducing their structures as well as the algorithms they use.

3.2 Transmission chain presentation

The whole transmission chain is represented by the figure below.

Figure 3.1: Transmission chain [24]

This communication chain is composed of a channel (transmission environment), a

modulator, a demodulator and an equalizer.

The channel is noisy by an Additive White Gaussian Noise (AWGN).

The equalizer has to eliminate the inter-symbol interference presented in the received signal

x[n] to get in its output the transmitted signal d[n].

3.3 Time domain equalization

To get an output matching as much as possible the desired response, uncountable adaptive

10

algorithms are used to regulate the filter coefficients. One of the most used algorithms is the

LMS algorithm. Its success is explained by its efficiency especially in terms of storage

requirements and computational complexity. Adjusting filter coefficients using the LMS

algorithm means that these coefficients are updated after every sample.

The following scheme is explaining clearly the notion of the LMS algorithm using a coherent

mathematical equation:

Updated Value
of tap-weight

vector

Old Value of
tap-weight

vector
x

Learning
rate

parameter
+ Tap-input

vectorx Error
Signal

Figure 3.2: The LMS Algorithm [22]

LMS algorithm is very simple and very easy to implement that’s why it is adopted by most of

real time systems.

The LMS algorithm is described by the following steps:

1. Choosing the desired response. The filter coefficient must be set to zero.

 � ��� � 0, � � 1, 2, 3, … , � 3.0

Steps (2) to (4) are repeated every sampling instant (k):

2. The output of the adaptive equalizer y(k) is get by multiplying element by element the

input vector by the filter coefficients vector then the sum of all multiplications is done.

 ���� � � � ��� 	 ���
��

���
 3.1

3. Next, the error is defined by doing the subtraction between the desired signal and the

equalizer output y(k) just before updating the coefficients of the equalizer.

 � ��� � � ���
 � ��� 3.2

4. Finally, the equalizer coefficients must be updated by multiplying the error calculated

in the previous step by the step-size µ then by the equalizer input x(k). After that, the

result is added to the previous value of the equalizer coefficients.

 � �� � 1� � � ��� � 2 μ � ���	 ��� 3.3

11

Updating the equalizer coefficients using the LMS algorithm requires that the parameters are

defined accurately. The step size parameter µ and the number of filter coefficients N are the

most important parameters that ensure the convergence of the equalizer to an output matching

the best to the desired signal.

Changing the values of µ and N has an impact on the equalizer behavior, that’s why we were

testing the equalizer with a lot of values of the step size parameter to choose the best one

which gives the optimum result. But, concerning the filter length we were limited by the

hardware resources that’s why we adopted for this project small length filters.

Although it is widely used due its efficiency, the LMS algorithm suffers from one major

problem. It mainly deals with its complexity since its computational cost augments

exponentially when the length of the filter augments. This problem is actually generated

because the LMS algorithm is implemented in the time domain. That’s why another version

of the LMS algorithm was found to compensate that defect which is the BLMS algorithm or

Block LMS algorithm. But, the efficiency of that algorithm in terms of computational cost can

not be compared to implementing the adaptive equalizer in the frequency domain.

3.4 Frequency domain equalization
Data alteration between the frequency domain and the time domain requires the use of some

tools ensuring the preservation of data during this transition. The most useful tool enabling

representing a signal in the frequency domain is the discrete transform that helps to decrease

the computational complexity related to signal processing just like convolution. One of the

most efficient transforms allowing the transition between the two domains is the Fast Fourier

Transform (FFT). It is the most used transform because of its advantages comparing to the

other transforms:

• It is efficient

• It can represent data for even short data lengths

• It is accurate in representing data

3.4.1 Discrete Fourier Transform

The Discrete Fourier Transform is one of the structures of the Fourier Transforms allowing to

the conversion of a discrete signal from the time domain to the frequency domain.

12

The expression below represents the equation calculating the Discrete Fourier Transform.

 ��� � � x �nT�e�%&'()��

*��
 3.4

It is obvious that this expression is similar to the equation allowing calculating the Fourier

Transform for continuous signals in time domain.

The DFT has two important properties which are:

• Symmetry

That means that the two elements X(k) and X(k+N) resulting by applying the Discrete

Fourier Transform on the signal x are the same. As a result, it can be deduced that there is

a periodicity with period N.

• Convolution

The circular convolution as well as the linear convolution can be deduced by the use of the

Discrete Fourier Transform. The time convolution theorem declares that a convolution in

time domain is transformed into a simple multiplication in the frequency domain. This is

summarized by the following expression.

 	��� � 	 �m� , 	- �n� � F�/ �k� - �k�1 3.5

where x, x1 and x2 are finite periodic signals having the length and * expresses circular

convolution F-1 expresses the Inverse Discrete Fourier Transform.

This property of the Discrete Fourier Transform has great importance for this project

because instead of using convolution in time domain which can increase the computational

cost, we can use the multiplication in the frequency domain and as a result we can get the

same results with less complexity by just applying the DFT.

3.4.2 The Fast Fourier Transform

One of the most useful and efficient algorithms used to put in work the Discrete Fourier

Transform is the Fast Fourier Transform (FFT). Its role consists in transforming a vector x

expressed in time domain to its equivalent X in the frequency domain. To reduce the

computational cost and to make the algorithm more efficient, The FFT is based on the

13

principle of the built in redundancy used by the DFT. Besides the FFT permitting the

transformation of a signal from the time domain to the frequency domain, another algorithm

allowing the conversion of a signal in the other direction that means from the frequency

domain to the time domain; it is the Inverse Fourier Transform (IFFT).

The computational complexity for the Discrete Fourier Transform is equal to N2 complex

multiplies, but when we are talking about the FFT this number is decreased and its complexity

is equal to (N/2) log2 (2N) complex multiplies + N complex adds. To get much better results,

the block length N must be an integer power of 2. By doing this, we enhance the performance

of the FFT algorithm. The FFT block length must be the same as the input signal block

length.

3.4.3 The Overlap-Save Algorithm

As it is mentioned previously, the convolution property is the key to pass from the time

domain to the frequency domain. The most important algorithms implementing convolution

are the Overlap-Add and the Overlap-Save. These two algorithms are based on the

convolution theorem stating that a convolution in the time domain is equivalent to a

multiplication in the frequency domain. I terms of complexity, the Overlap-Save algorithm is

more efficient than Overlap-Add algorithm. The earlier algorithm is overlapping the input

blocks and to maximize its efficiency a 50% overlap is required; that means that the current

input values are composed of a concatenation of the current input block and the previous one.

By applying the IFFT, the last N samples must be discarded because of the circular

convolution and then we concatenate the output samples to the others to finally form the

Overlap-Save algorithm output. The figure below expresses the notion of the Overlap-Save

algorithm.

14

Input Block Length 2N N Zeros + Impulse Response

2N point FFT 2N point FFT

Y(f) = X(f) x H(f)

2N point IFFT

Y(n) + circular artifacts

Figure 3.3: The overlap-save algorithm scheme [22]

The length of the input block is 2N.

1. The impulse response must have the same length as the FFT block that’s why N are

added to it.

2. The FFT is applied to the impulse response.

 2 ��� � 334 /����1 3.6

3. The FFT is applied to the input block. Since a 50% overlap is adopted then every

current block is concatenated to the previous block. For the first block, N zeros must

precede it.

 ��� � 334/	���1 3.7

4. The product of the FFT results in the steps 2 and 3 is now calculated. This

multiplication must be done element by element. This multiplication in the frequency

domain is equivalent to the convolution in the time domain.

 5��� � ���. 2��� 3.8

5. To pass to the time domain, the IFFT must be applied to Y(k).

 ���� � 7334/5���1 3.9

6. The last N samples of y(n) are discarded. However, the first N samples are added to the

previous output samples

15

7. The input block is updated and the steps 3 to 7 are repeated.

3.4.4 The Fast LMS Algorithm

For this master project, implementing an adaptive frequency domain equalizer [22, 23] is

based on an adaptive frequency domain algorithm called Fast LMS. This version of Fast LMS

algorithm is based on the overlap-save convolution algorithm. Updating the equalizer

coefficients in the frequency domain using the Fast LMS algorithm is similar to the process in

the time domain using the LMS algorithm. One difference between the two procedures in

terms of updating coefficients consists in that the Fast LMS algorithm updates the coefficients

block by block not sample by sample. The following figure illustrates the principle of the Fast

LMS algorithm.

FFT IFFTX Save Last Block

+ Delay

X

FFT

Append
Zero Block

Delete Last
Block

IFFT

X FFT Append
Zero Block +

Conjugate

d(n)

y(n)

Gradient
Constraint

u(n)

mu

U(k) Y(k)

U*(k) E(k) e(n)

Figure 3.4: the Fast LMS algorithm [22]

16

The 50% overlap is applied to the input blocks of size 2N and the filter coefficients are set to

zero.

The Fast LMS algorithm is described as follows:

1. The FFT is applied to a 2N input block got from the input signal.

 8��� � 334/9���1 3.9

2. Multiplying U(k) by the filter coefficients gives the equalizer output in the frequency

domain. The coefficients are adjusted before.

 5��� � 8���. 2��� 3.10

 Then an IFFT is applied to Y(K) to get the result in the time domain.

 ���� � 7334/5���1 3.11

Because of the circular convolution, only the last N samples must be kept and they will

represent the output of the equalizer.

 ���� � ��� � 1 : 2�� 3.12

3. Next, a subtraction between the desired signal and the current equalizer output must be

calculated to calculate the error signal.

 ���� � ����
 ���� 3.13

 Where e(n) is the error and d(n) is the desired signal.

After that the error must be transformed to the frequency domain, that’s why an FFT is

applied to e(n) after adding N zeros to its start.

 ;��� � 334/<�=>?, ����1 3.14

4. After calculating the conjugate of the U(k), it is multiplied by the error in the frequency

domain. Then, an IFFT is applied to the result. Only the first N samples of this result are

kept because of the circular convolution.

 @��� � 7334/;���. 8A���1 3.15

 @��� � @�1 : �� 3.16

5. A 2N point FFT is now applied on g(n) after adding N zeros to its end then the result is

multiplied by the step size parameter µ.

17

 @��� � @���B>CC>D�� E� � <�=>? 3.17

2�k� � μ. 334/@���1 3.18

The obtained result consists in the update factor for the equalizer coefficients, that’s why it

is added to the previous value of the filter coefficients.

2�k � 1� � W�k� � 2�k� 3.19

6. The updated equalizer coefficients are set and ready to be used with the next input block.

From one iteration to another the error is decreasing since the coefficient are updated

progressively.

3.5 Conclusion

In this chapter, a theoretical background about frequency domain and time domain

equalization was presented by describing the algorithms used by both equalizers as well as

their structures and the techniques they use such as FFT and IFFT. The preference of the

frequency domain equalizer was also explained in this section. In the next chapter, an

implementation of the two equalizers will be discussed and a comparison between the

theoretical and practical results will be done.

18

Chapter 4

Implementation
4.1 Introduction:

The theoretical background was introduced by the previous chapter. In this chapter, the

practical work will be discussed. First, a tool exploration must be done to define the

appropriate method that allows achieving this project objective. Then, the FPGA

implementation flow will be described to finally comment the obtained results.

4.2 Tools exploration:

4.2.1 Introduction:

The evolution known by the high-level tools translates the increase of the FPGA technology

adoption, since the reprogrammable silicon delivers a lot of benefits to engineers, researchers

and scientists of all domains.

4.2.2 Catapult C Synthesis:

Catapult C Synthesis is a Mentor Graphics [21] product; it produces an RTL implementations

from abstract specifications written in C, C++ or SystemC. The Catapult C flow consists in

modeling, synthesizing, and verifying complex ASICs and FPGAs architectures as it is shown

in the figure 4.1.

19

Figure 4.1: The Catapult design flow [21]

4.2.3 AutoPilot FPGA:

AutoPilot FPGA is AutoESL’s [19] high level synthesis tool for FPGAs. AutoPilot FPGA

takes a complex algorithm in the form of C, C++ or SystemC description or a combination of

these languages and automatically generates an equivalent RTL that is ready for synthesis into

an FPGA device. AutoPilot FPGA supports both Xilinx and Altera devices.

For Xilinx:

� Comprehensive Device Support

Virtex-6, Virtex-5, Virtex-4, Virtex-II Pro, Virtex-II, Spartan-6, Spartan-3

� Automatically generates all files required for FPGA implementation using Xilinx

XST, ISE, EDK, and Synplify tools

� Simulation and debugging flow works with ModelSim and Aldec simulators

For Altera :

� Comprehensive Device Support

Stratix IV, Stratix III, Stratix II, Stratix, Cyclone III

20

� Automatically generates all files required for FPGA implementation using Altera

Quartus II, SOPC Builder, and Synplify tools

� Simulation and debugging flow works with ModelSim and Aldec simulators

4.2.4 PICO for FPGA:

PICO for FPGA has two products allowing an FPGA implementation from a C code

specification; PICO Express and Pico Extreme. They are a Synphora [20] product, they take a

C algorithm and a set of design requirements (clock frequency, throughput target and

technology file) and create a series of implementation models (RTL, SystemC). Figure 2

summarizes all the steps in the PICO Extreme design flow.

Figure 4.2: Pico Extreme design flow [20]

4.2.5 System Generator for DSP:

System Generator is a DSP design tool from Xilinx [18] that enables the use of The

Mathworks model-based design environment Simulink for FPGA design. All of the

downstream FPGA implementation steps including synthesis and place and route are

automatically performed to generate an FPGA programming file.

System Generator provides a system integration platform for the design of DSP FPGAs that

allows the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come

21

together in a single simulation and implementation environment. System Generator supports a

black box block that allows RTL to be imported into Simulink and co-simulated with either

ModelSim or Xilinx ISE Simulator. Figure 3 explains the operation principle of System

Generator.

Figure 4.3: System Generator design flow [18]

4.2.6 Conclusion:

Regarding to the different tools and its characteristics, we adopt for this project the system

generator for DSP tool. In one hand, it is possible to implement the design described with

similink directly in FPGA, in the other hand; we can download it for free from the Xilinx

website.

4.3 Implementation methodology:

The specific objectives for this master project are the following:

1. Simulation of the frequency domain equalizer using Matlab.

2. Defining the required tools allowing the implementation of the frequency domain

equalizer on FPGA.

3. FPGA implementation of the frequency domain equalizer.

4. Performance analysis.

22

As it is mentioned in the section 4.2, System Generator for DSP was chosen as the tool

allowing the FPGA implementation of the frequency domain equalizer.

System Generator is created to implement DSP applications on FPGA using the Mathworks

model-based design tool Simulink. This tool is very easy to work with since it doesn’t require

a previous knowledge of hardware design methodologies. Designing using System Generator

only needs a DSP simulink modeling environment but based on a specific block set from

Xilinx. All of the flow of the FPGA implementation steps is done automatically starting form

synthesis, passing by place and route and arriving to generating the programming file.

The first step in the design flow using System Generator is describing the specification using

the Similink block sets. Then, System Generator defines the design hardware devices using

the specific DSP Xilinx block set. After that, Xilinx Core Generator generates an optimized

netlitst for the DSP blocks. The programming file, the bitstream, is automatically generated

by the System Generator. This latter can also create a testbench based on the vectors used in

the simulink specification and which can be run on Modelsim or Xilinx ISE Simulator. Figure

4.4 summarizes the steps of the System Generator design flow.

Figure 4.4: System Generator design flow [20]

23

For this project, the FPGA used for implementation is a Spartan 3 with one million gates.

4.4 Time domain equalizer implementation:

To test its functionality, the time domain equalizer was simulated using Matlab. To get

reliable results, the equalizer must be tested in a well defined transmission environment; first

we need a symbol generator which generates, in our case, random integer symbols with the

range [0..15]. Second, the symbols go through a 16-QAM modulator and after that through

the transmission channel. The channel used for matlab simulation is a Proakis A [4] channel.

Its coefficients are [0.04, - 0.05, 0.07, - 0.21, -0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]. The channel

is also noisy by an Additive White Gaussian Noise (AWGN). The equalizer is, then, required

to eliminate ISI in the transmitted signal after going through that channel. Finally, the output

of the equalizer is demodulated by a 16-QAM demodulator. Figure 4.5 shows the

transmission chain components.

Figure 4.5: Transmission chain scheme

Using matlab, we simulate two types of time domain equalizers, one based on the LMS

algorithm and the other one is based on the BLMS algorithm. The difference between the two

equalizers is that the first is updating its coefficients after each sample and the second is

updating it coefficients after an input block of samples.

The simulation parameters are set as following:

• SNR = 40 dB

• Transmitted symbols = 10 000

• µ = 0.002

Source 16-QAM
modulator

x

Channel

y
16-QAM

demodulator Equalizer

24

The following figure presents the constellation of the signal that enters to the equalizer as well

as the constellation of the equalizer output signal.

Figure 4.6: (a) Signal constellation before LMS-based equalization, (b) Signal constellation

after LMS-based equalization

As it is shown in figure 4.6.a, the signal entering to the equalizer is very noisy because it

passes through an AWGN channel. But after going through the equalizer, we obtain a 16-

QAM constellation, presented by the figure 4.6.b, which means that the time domain equalizer

eliminates the ISI and gives a signal that can be easily demodulated as an output.

The error estimation is explicit in the figure 4.7.

Figure 4.7: LMS equalizer error estimation

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-70

-60

-50

-40

-30

-20

-10

0

10

20
Learning Curve

Iteration Number

O
ut

pu
t
E

st
im

at
io

n
E

rr
or

 in
 d

B

25

The figure above shows that the error is very high in the beginning since the equalizer is still

updating its coefficients. It reaches a stable status after almost 2000 symbols where the value

of the error rate is equal to –25 dB such that the SNR is equal to 40 dB.

Using the LMS algorithm as the adaptive algorithm for the equalizer gives an error rate equal

to 1.91% which means that by sending 10000 symbols, we only loose 191 symbols.

We also simulate a BLMS based equalizer using Matlab using the same LMS equalizer

parameters. We get the constellations of the equalizer input and output signal which are

represented by the figure below.

Figure 4.8: (a) Signal constellation before BLMS-based equalization, (b) Signal constellation

after BLMS-based equalization

The figure 4.8 shows that the BLMS-based equalizer gives the same results as the LMS-based

equalizer. The BLMS equalizer is a time domain equalizer that succeeded to eliminates the

ISI and gives almost the same performance as the LMS equalizer since the error rate given by

the BLMS equalizer is 2.03% that means that only 203 symbols are lost from the whole 10000

sent symbols. The only difference between the two time domain equalizers is that the LMS

one is updating its coefficients after every sample and the BLMS one is updating its

coefficients after every block of samples. The error estimation is given by the following

curve.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Q

ua
dr

at
ur

e

In-Phase

Scatter plot

26

Figure 4.9: BLMS equalizer error estimation

From this curve, we can deduce that the error stable status for the BLMS equalizer is almost

the same for the LMS one; it is equal to -25 dB. But, the BLMS algorithm converges slower

than the LMS algorithm. It requires 3000 symbols to converge.

Now, as a first step of the FPGA implementation flow, the LMS-based equalizer is described

using the blocks of the simulink environment. The whole transmission chain is represented

using the simulink block sets as it is shown in figure 4.10.

Figure 4.10: Transmission chain with a 4-tap LMS equalizer in Simulink

The figure above shows all the components of the transmission chain. First, we have a random

integer generator. It generates random integer symbols belonging to the interval [0..15]. Then,

a 16-QAM modulator is installed. After that, the signal must go through an AWGN multipath

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-70

-60

-50

-40

-30

-20

-10

0

10

20
Learning Curve

Iteration Number

O
ut

pu
t

E
st

im
at

io
n

E
rr

or
 in

 d
B

27

channel, in our case, it is a 2-path channel after which a 4-tap time domain equalizer based on

the LMS algorithm is set up to eliminate the ISI. Finally, we add a 16-QAM demodulator to

get the received signal.

The architecture of the LMS-based equalizer is given by the figure below.

Figure 4.11: LMS equalizer in Simulink

The equalizer has as input the noisy signal coming from the channel as well as the desired

signal which is in our case the output signal of the modulator. The output signals of the

equalizer are the equalized signal and the error estimation. From the architecture of the

equalizer, we can easily notice that the equalizer is based on the LMS algorithm as it is

described in section 3.

Next, a simulation must be done to test the functionality of the time domain equalizer. That’s

why the simulation parameters were set as following:

• SNR = 40 dB

• µ = 0.002

• Filter taps = 4

The figure 4.12 shows the constellation of the equalizer output signal. We can deduce from

this constellation the efficiency of the equalizer.

28

Figure 4.12: Signal constellation after time domain equalization in Simulink

In terms of error estimation, it is shown that the 4-tap time domain equalizer converges after

almost 800 symbols to reach the value of -35 dB. The error estimation curve is represented by

the figure 4.13 below.

Figure 4.13: Error estimation

To get a synthesizable version of the time domain equalizer, it must be described using the

specific Xilinx block set in the simulink environment. The design must be put between two

specific blocks called Gateway-in and Gateway-out. Their role consists in limiting the design

that will be implemented in the FPGA from the other simulink blocks. The figure below

shows the 4-tap time domain equalizer described using the Xilinx block set.

29

Figure 4.14: A System Generator description of the 4-tap time domain equalizer

The yellow blocks represent the Gateway-in and the Gateway-out blocks. The other blocks

are elementary blocks from the Xilinx block set which are essentially multipliers and adders

and also some sub-systems doing complex addition and complex multiplication.

To make sure of its functionality, we did a simulation for this design with the same

parameters used with the standard simulink design. The signal constellations as well as the

error estimation curve are given by the figures 4.15 and 4.16 respectively.

Figure 4.15: Signal constellation after time domain equalization in Sys Gen

30

Figure 4.16: Error estimation curve

Comparing the results given by the System Generator description and the standard Simulink

blocks description of the 4-tap time domain equalizer, we can deduce that the Simulink design

gives better results than the System generator one. In simulink, the symbols are described

using the floating point but in System Generator only the fixed point is used. That’s why the

simulink design gives more accurate results than the System Generator design.

After designing the time domain model, we proceed to the FPGA implementation which is

automatically done by the System Generator for DSP tool. It uses the Xilinx ISE 11.1 version

to do all the flow. The design will be implemented in the Spartan 3 FPGA board with one

million gates. The table 4.1 gives and clear idea about the FPGA logic blocks consumption by

the design.

31

Table 4.1: Time domain equalizer synthesis report

The table shows that the 4-tap LMS equalizer consumes almost 80% of the FPGA resources.

For the frequency domain equalizer, we will go through the same steps as the time domain

equalizer to finally compare between the two equalizers.

4.5 Frequency domain equalizer implementation:

The frequency domain equalizer is based on the Fast LMS algorithm to update its coefficients.

To test its performances, we describe it and simulate it using Matlab

The simulation parameters used for the frequency domain equalizer are the same used for the

time domain equalizer. They are set as following:

• SNR = 40 dB

• Transmitted symbols = 10 000

• µ = 0.002

The two pictures below present the constellation of the input signal to the equalizer and the

constellation of its output signal.

32

Figure 4.17: (a) Signal constellation before Fast LMS-based equalization, (b) Signal

constellation after Fast LMS-based equalization

The figure 4.17.a shows that the input signal to the equalizer is very noisy, and after

equalization, a 16-QAM constellation was obtained which means that the frequency domain

equalizer eliminates the ISI.

The error estimation curve is given by the figure 4.18.

Figure 4.18: Fast LMS equalizer error estimation

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-90

-80

-70

-60

-50

-40

-30

-20

-10
Learning Curve

Iteration Number

O
ut

pu
t

E
st

im
at

io
n

E
rr

or
 in

 d
B

33

The error estimation curve for the fast LMS equalizer shows that it converges within only 200

symbols almost to reach an error rate equal to -40 db for an SNR equal to 40 dB. These results

imply that the frequency domain equalizer is much more efficient in terms performance than

the time domain equalizer.

Using the Fast LMS algorithm as the adaptive algorithm for the equalizer gives an error rate

equal to 1.83% which means that by sending 10000 symbols, we only loose 183 symbols.

Now, the transmission chain must be described using the blocks of the simulink environment.

The figure 4.19 shows the communication environment where the 4-tap frequency domain

equalizer is tested.

Figure 4.19: Transmission chain with a 4-tap Fast LMS equalizer in Simulink

It is obvious from the figure above that the transmission chain enabling to test he frequency

domain equalizer is the same as the chain used with time domain equalizer.

The architecture of the Fast LMS-based equalizer is given by the figure below.

Figure 4.20: Fast LMS equalizer in Simulink

34

Just like the time domain equalizer, the frequency domain equalizer has as input the noisy

signal coming from the channel as well as the desired signal which is in our case the output

signal of the modulator. The output signals of the equalizer are the equalized signal and the

error estimation. In this equalizer architecture, we notice the use of three FFT blocks and two

IFFT blocks allowing the alternation between the time domain and the frequency domain.

Next, a simulation must be done to test the functionality of the frequency domain equalizer.

The simulation parameters were kept the same as the time domain simulation parameters

where:

• SNR = 40 dB

• µ = 0.002

• Filter taps = 4

The figure 4.12 shows the constellation of the equalizer output signal. The constellation

shows no noise which implies that the equalizer is working perfectly.

Figure 4.21: Signal constellation after time domain equalization in Simulink

In terms of error estimation, it is shown that the 4-tap frequency domain equalizer converges

after almost 200 symbols to reach the value of -40 dB. These results prove that the frequency

domain equalizer is better than the time domain equalizer in terms of performance. The error

estimation curve is represented by the figure 4.22 below.

35

Figure 4.22: Error estimation

The frequency domain equalizer is described using the specific Xilinx block set in the

simulink environment. We try to implement a 4-tap frequency domain equalizer on the one

million gate Spartan 3 FPGA board but the design was very big that’s why we implemented a

2-tap equalizer. The figure below shows the 2-tap frequency domain equalizer described using

the Xilinx block set.

Figure 4.23: A System Generator description of the 2-tap frequency domain equalizer

The design contains elementary blocks from the Xilinx block set which are essentially

multipliers and adders and also some sub-systems doing complex multiplication, FFT and

IFFT.

36

The signal constellations as well as the error estimation curve given by the figures 4.24 and

4.25 respectively show that the equalizer eliminates the ISI from the noisy input signal.

Figure 4.24: Signal constellation after time domain equalization in Sys Gen

Figure 4.25: Error estimation curve

As it is mentioned for the time domain equalizer, the results got from the simulink model are

better than those got from the System Generator model because for simulink symbol are

described using floating point and for System Generator symbols are described using fixed

point.

37

For the synthesis, place and route and FPGA implementation were done for the same one

million gate Spartan 3 FPGA board and the table 4.2 gives the statistics of the used logic to

implement the frequency domain equalizer design

Table 4.2: Frequency domain equalizer synthesis report

The table shows that the 2-tap Fast LMS equalizer consumes almost 60% of the FPGA

resources.

4.6 Comparison:

Now that both time and frequency domain equalizers are implemented it is time to compare

between the two domains in terms of performance and computational complexity.

4.6.1 Computational complexity:

For the LMS algorithm, getting an output sample requires N complex multiplications which

mean that generating an N sample output block requires N2 complex multiplications. Also,

updating the filter coefficients require N2 complex multiplications. In summary, the LMS

algorithm complexity is equal to 2 N2 complex multiplications which is equivalent to 8 N2 real

multiplications.

Concerning the Fast LMS algorithm, the whole complexity results of the FFT and IFFT

blocks. Since the computational complexity of an 2N FFT block is equal to (N/2) log2 (2N) in

terms of complex multiplications then the 5 FFT and IFFT blocks need (5N/2) log2 (2N)

38

complex multiplications which is equivalent to 10N log2 (2N) real multiplications. The Fast

LMS algorithm requires also two 2N complex vector products adding 16N real multiplication

to its computational complexity. Finally, the cost of the Fast LMS algorithm in terms of

computational complexity is equal to 10N log2 (2N)+16N.

The number of the real multiplications required by the two algorithms for N symbol block is

tabulated in the table 4.3 where N is equal to 2, 4, 8, 16 and 32.

 N=2 N=4 N=8 N=16 N=32

LMS 32 128 512 2048 8192

Fast LMS 72 184 448 1056 2432

Table 4.3: Equalizer complexity comparison

From the table above, we deduce that the frequency domain equalizer is much better than the

time domain equalizer in terms of computational complexity when N is equal or greater than

8. These statistics confirm the FPGA implementation results that we got of the time domain

and frequency domain equalizers. As it is declared in section 4.5, a 4-tap time domain

equalizer consumes almost 80% of the FPGA resources. In another hand, the 4-tap frequency

domain equalizer needs over than 200% of the FPGA resources to be implemented as it is

shown in the table 4.4, which confirms the theoretical results confirming that when N is less

than 8 the LMS algorithm offers significant savings over the Fast LMS algorithm.

Table 4.4: Synthesis report of 4-tap frequency domain equalizer

4.6.2 Performance:

In terms of performance, all the simulation results according to Matlab, Simulink or

SysGen/Simulink confirm that the frequency domain equalizer is more efficient than the time

39

domain equalizer. First, because it converges faster than the time domain equalizer and

second because it reaches a lower error rate.

4.7 Conclusion:

In this section, we went through the whole hardware design flow to implement the time

domain and the frequency domain equalizers on FPGA. Although, we were limited by the

hardware resources, we succeed to deal with what we have to get reasonable results allowing

us to compare between the two designs. Since this is a research work as it is a master project

and also it is done in the HVG lab where formal verification techniques are subject for

research, we will present in the next section some future ideas related to formal verification

that can be applied for this project.

40

Chapter 5

Conclusion & further work
5.1 Conclusion:

This master thesis was dealing with the implementation of a frequency domain equalizer on

FPGA. Unlike the implementations previously described in the related work section which are

based on improving the LMS algorithm to implement less complex and more efficient time

domain equalizers on FPGA, the thesis contribution consists on implementing a frequency

domain equalizer based on the Fast LMS algorithm on FPGA. It is proven by the signal

processing researchers that the frequency domain equalizers are more efficient than the time

domain equalizers, but in terms of hardware it is not proven yet.

Therefore, we proceed first to a co-simulation of the transmission chain where all the blocks

are implemented using simulink except the equalizer which is implemented on FPGA. Then, a

comparison was made in this thesis between the time domain and the frequency domain

equalizers implemented on FPGA and put under the same conditions. The convergence

characteristics and the computational complexity of the LMS and the Fast LMS algorithm

were examined. The results of this study are as follows:

1. The Fast LMS algorithm based on the Overlap-Save algorithm gives better

convergence than the LMS algorithm. The error estimation curve given by the

frequency domain equalizer converges faster and reaches a lower error rate than the

error curve given by the time domain equalizer.

2. In terms of computational complexity, it is proven that the 4-tap frequency domain

equalizer is more complex than the 4-tap time domain one in terms of hardware

consumption. This result ensures the computational complexity comparison analysis

of the two algorithms.

The frequency domain algorithm offers significant savings in terms of computational

complexity for long size equalizers. However, implementing those long size equalizers on

FPGA requires a lot of hardware resources. It is proven in this master project that, using a one

41

million gate FPGA and the System Generator for DSP as a design tool, only a 2-tap frequency

domain equalizer and a 4-tap time domain equalizer can be implemented.

This thesis presented a hardware implementation project. Therefore, as a further work, formal

verification techniques can be applied on the frequency domain equalizer design as explained

in next section.

5.2 Further work

5.2.1 Introduction

Designing consists in transforming a set of specifications into implementations. However, it is

a long process; going from a specification described in high level language to an

implementation of that specification on a hardware target implies the passage by many levels

of abstractions: functional level, register transfer level, gate level…The impact of faulty

design can be catastrophic since it can delays the time-to-market and as a result it can affects

the company revenues. Therefore, the design verification would be necessary to avoid those

problems. This process is the reverse process of design and it answers the question: does the

implementation meet its specifications? In this chapter, we will present some ideas that can be

subject of a PhD thesis. All of them are dealing with the verification techniques since this

project was held in the Hardware Verification Group; the most famous lab of formal

verification in North America.

5.2.2 Simulation based and formal based verification techniques

� Simulation-Based Verification

Simulation-based verification [5] is the most used verification technique. Verifying a design

using simulation consists in putting that design under a test bench where input stimuli are

applied. The output of the test bench is compared to a reference one. The test bench is a

program that supports the operations described in the design and also it has the ability to

engender the input stimuli which can be generated before the simulation process or when

simulation is running similarly to the output reference generation. Figure 5.1 summarizes the

simulation based verification principle.

42

Figure 5.1: Simulation-based verification [25]

Simulation is functional verification since it is based on what is called directed tests. It

consists in generating input test vectors aiming to test a specific functionality of the design.

To get a full simulation-based verification, simulation must not be done on large pieces of the

design. Therefore, the simulation must be done on the lowest levels. There are many types of

simulation depending on the different levels of the design; the designer level simulation where

a macro is verified, the unit level simulation where a group of macros is verified, the element

level simulation where an entire logical function like a processor is verified and the system

level simulation where multiple chips are verified. Figure 5.2 shows the different levels of a

design called the Hierarchical design.

Figure 5.2: Hierarchical design [25]

43

� Formal Method-Based Verification

The formal method-based verification [5] differs from the simulation-based verification in

that it is not based on test patterns generation. It consists in proving that the implementation

meets its specification using a mathematical reasoning just like a mathematical proof. Formal

verification techniques are more efficient than simulation because the consideration of all

cases is implicit and consequently a full verification is guaranteed.

To get formally verify a design; we need to have a formal specification as well as a formal

description of the implementation. Figure 5.3 summarizes the principle of the formal

verification.

Figure 5.3: Formal method-based verification [25]

There are three techniques in formal verification which are equivalence checking, model

checking and the theorem proving.

5.2.3 Further work

Figure 5.4: Verification techniques

44

Verification techniques can be broadly classified into three main categories: (1) formal

methods based techniques; (2) simulation based techniques; and (3) test based techniques [5].

The formal verification techniques can be further classified into three main categories. They

are (1) theorem proving, (2) model checking, and (3) equivalence checking. A class of

verification techniques called the semi-formal verification techniques which combine both the

formal and simulation based techniques are also commonly used.

Semiformal techniques were developed to take advantage the best of the two techniques

(formal techniques and simulation). Emulation is a technique in which the design and the

properties are automatically synthesized in to hardware, for example on FPGA [6], thereby

increasing the simulation speed by several orders of magnitude. This technique is useful when

simulations have to be repeated several thousands of times, for example, in statistical

simulations, or when access to the design environment is not easy. For example emulation can

be used to create a realistic environment or just to speed up the simulation by off loading the

computationally complex parts of the simulation to actual hardware.

Figure 5.4 above shows a high level classification of the verification techniques used these

days. Rest of this section briefly describes the verification techniques and explains how some

of these techniques can be used to verify the functionality and performance of the Adaptive

Filters, such as the implementation of the Fast Least Mean Squared (LMS) Adaptive

Equalizer [7].

� Semi-formal verification

Applying functional or statistical verification [8] in our project is feasible. We have first to

define the properties to be verified, in our case, we can take as property the algorithm

adaptation rate, number of samples required for convergence, average error rate or average

mean squared error noise floor once the algorithm has converged. All of these properties

provide some measure of performance of adaptive equalizer implementation. Then, instead of

using testbench based on simple test vectors defined by the verifier, we formalize the property

constraints in a formal way so we get the assertion; it is a kind of conditions which must be

satisfied by the design. By formalizing the property in a formal way, we mean that the

property be described in way such that it is clear what are the conditions which will make the

property true, and what would happen if the property is true and when it false.

45

Figure 5.5: Assertion based verification

We have to describe expected or unexpected conditions in device under test in a specialized

language then we have to check to make sure that conditions are satisfied dynamically during

simulation (functional verification) or statically. In case of conditions failure, then a bug is

detected in the device.

In the case of the functional assertion based simulation, we run simulation just once and then

we check if the properties are valid. Most designs have random components in it or operate in

an uncertain environment. Statistical assertion based techniques are used in such cases. In the

case of statistical assertion based verification we run simulation several times and then by

applying the Monte Carlo method [9] we extract automatically some of the simulation results

on which we can do statistical studies and then we see if the property constraints are satisfied

or not.

The advantages of using assertion based verification are that this technique is automatic and

quick in debugging a device since it is a Combination of simulation and formal verification. It

is automatic unlike many formal methods based techniques such as higher order logic theorem

proving and does not have a state explosion problem such as model checking. Similar to

simulation based techniques it also cannot not completely verify a design.

What is required to get good results are methodologies for choosing good assertions,

intelligent debug systems to understand and analyze assertions and their results and a standard

assertion format and good tool support.

� Theorem proving

For this project, the performance of the adaptive filters [7] can be formally analyzed and

compared using theorem proving. We can verify minimum and maximum error bounds and

expectation and variance of error between the outputs of the two implementation of the

46

adaptive filter.

First, we have to define the System Generator [10] and the Matlab [11] designs as models

written in High-Order-Logic [12] representing, respectively, the fixed-point and the floating-

point implementations. Then, based on the outputs of those two models, y and y', we calculate

the error which is given by the formula e=y-y'. After that, we can verify, given an adaptive

filter algorithm and its fixed-point implementation what are the maximum and the minimum

bounds on the error using a theorem prover [12, 13, 14, 15, 16].

We can also formally determine the statistical properties of the error. For example, its

expectation, E[e], and its variance, VAR[e] [17]. Both the error bounds and the statistical

properties will be generalized expressions in terms of the parameters of the adaptive algorithm

and its implementation.

Figure 5.6 summarizes the performance analysis methodology using theorem proving.

Figure 5.6: Performance analysis methodology with theorem proving

The use of the theorem proving as a formal performance analysis and verification technique,

even though it needs some expertise, but it is much more useful and efficient than the run time

47

verification or simulation since it provides results as general expressions from which we can

do verification for all possible cases which is not the case for simulation because to verify for

all possible cases we may need an infinite amount of time which is impossible.

48

Bibliography
1. Chun-Nan Chen, Kuan-Hung Chen, and Tzi-Dar Chiueh “Algorithm And Architecture

Design For A Low-Complexity Adaptive Equalizer” IEEE, 2003, PP II304-II307.

2. Gabriel Bucco, Matthew Trinkle, Doug Gray and Wai-Ching Cheuk “FPGA
Implementation of a Single Channel GPS Interference Mitigation Algorithm” Journal of
Global Positioning Systems (2004) Vol. 3, No. 1-2: 106-114.

3. Chris Dick and Fred Harris “FPGA QAM Demodulator Design” Springer-Verlag Berlin

Heidelberg 2002, PP. 112-121.

4. J. G. Proakis, Digital Communications, McGraw-Hill, New York, NY, USA, 4th edition,
2001.

5. William K. Lam. Hardware Design Verification: Simulation and Formal Method-based

Approaches. 2005: 1-23.

6. Wiley. FPGA-based implementation of signal processing systems. 2008

7. Simon Haykin. Communication Systems, 5th edition. 2009.

8. Foster, Harry, Krolnik, Adam, Lacey, David. Assertion-Based Design, 2nd edition. 2004.

9. Rubenstein, Reuven Y, Kroese, Dirk P, Botev, Zdravko I, Taimre, Thomas. Simulation

and Monte Carlo Method, 2nd edition. 2008.

10. http://www.xilinx.com/support/sw_manuals/sysgen_gs.pdf3

11. http://www.mathworks.com/

12. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. 1993

13. Matt Kaufmann, Panagiotis Manolios and J Strother Moore. Computer-Aided Reasoning

ACL2 Case Studies. 2000.

14. http://pvs.csl.sri.com

15. http://isabelle.in.tum.de/

16. http://coq.inria.fr/

17. Richard A. Johnson, Miller & Freund's probability and statistics for engineers, 8th

edition.

18. Xilinx Inc.:
http://www.xilinx.com/tools/sysgen.htm

 http://china.xilinx.com/publications/prod_mktg/pn0010676-2.pdf

19. Auto ESL Inc.:

49

http://www.autoesl.com/

20. Synphora Inc. :
http://www.synphora.com/

21. Mentor Graphics :

http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/
http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/upload/
Catapult_DS.pdf

22. Myles O Fril, Frequency Domain Adaptive Filtering. Master’s thesis, National

University of Ireland, 2005.

23. P. A. Dmochowski. Frequency domain equalization for high data rate multipath
channels. Master's thesis, Queen's University, 2001

24. Christophe Laot. Égalisation autodidacte et turbo-égalisation, Application aux canaux

sélectifs en fréquence. PhD thesis, Université de Rennes 1, 1997

25. Sofiène Tahar, Formal verification. 2000

