AU :2009-2010

Université de Sousse

Ecole Nationale d’Ingénieurs de Sousse

A thesis submitted in conformity

with the requirements for the degree of Master in

« Systémes Intelligents et Communicants »

« Option : Microélectronique des Systemes Embarqués»
FPGA implementation of a frequency domain equalizer
by

Anis SOUARI

Defended in 15/12/2010 in front of the jury

President : Bouraoui MAHMOUD, ENISo

Members of jury Faten BENABDALLAH, ENISo
Nejmeddine JOUIDA, ENISo

Supervisors : Mohamed Lassaad AMMARI, ENISo

Sofiéene TAHAR, Concordia University

©Souari2010

Réesumé

L'égalisation du canal est une technique qui perdeetréduire les interférences entres
symboles causeées par le canal radio-mobile. Gé@méedit, un égaliseur consiste en des filtres
numeriques dont les coefficients sont mis a jolorske critére de forcage a zéro ou le critere
de la minimisation de l'erreur quadratigue moyene.taille du filtre égaliseur est un
parametre important qui influence les performarglebales du systéme. Quand cette taille
est élevée, la complexité numérique de I'égalisaisgmente considérablement a cause de la

convolution numérique.

Pour réduire la complexité des égaliseurs de sailevées, nous pouvons implémenter
I'égaliseur dans le domaine fréquentiel. Le priacge ces derniers est de remplacer la
convolution temporelle (filtrage) par une multiglion fréquentielle moins complexe.
Toutefois, le passage au domaine fréquentiel niéeebatilisation des modules de la

transformée de Fourier discrete (TFD).

Dans ce travail nous nous intéressons aux egaiseiquentiels. Dans un premier volet, nous
analysons, a l'aide des simulations Monte-Carls $datlab, les performances d'un égaliseur
fréquentiel linéaire sous différentes conditionspdepagation. Le deuxiéme volet du travalil
consiste en la conception et lI'implémentation @galiseur fréquentiel sur un FPGA. Apres
la définition des besoins matériels et logicielsus présentons une méthodologie de
conception et d'implémentation sur FPGA et nousudts I'optimisation de I'architecture

proposee.

Abstract

The channel equalization is a technique allowinduotng the inter-symbol interference
caused by the radio-mobile channel. Generally, qarakzer consists in digital filters where
the coefficients are updated according to the fercng criteria or the mean square error
minimization criteria. The equalizer size is an ortpnt parameter that influences the global
performances of the system. When that size incsedise equalizer computational complexity

augments considerably because of the convolution.

To reduce the complexity of the long size equadizese can implement them in the frequency
domain. The idea consists in replacing the conuamtuin the time domain by a less complex
multiplication in the frequency domain. Howevergtpassage to the frequency domain

requires the use of the discrete Fourier trans{@F) modules.

In this work, we were interested to the frequenoyndin equalizers. First, based on Monte-
Carlo simulations on Matlab, we analyzed the pemnforces of a linear frequency domain
equalizer put under different propagation condgiorsecondly, we designed and we
implemented the frequency domain equalizer on FP&#er defining the required tools, we
presented an FPGA design and implementation melbggoand we discussed the

optimization of the proposed architecture.

To mo loving family

Acknowledgements

| would like to take this opportunity to express gnatitude to all people who contribute in
making this work possible.

First and foremost, | wish to thank my superviddrsMohamed Lassaad AMMARI and Dr.

Sofiene TAHAR for their assistance, guidance arteepee throughout this project.

| am grateful to all HYG members for their encowagnt, help and also the family
environment that they offer me. | specially woukkelto acknowledge the help of my dear

friends Naeem and Fariborz.

| thank all the faculty members of the Ecole Nagilend’'Ingénieurs de Sousse and the staff of
the department of Electrical and Computer Engimgenf Concordia University for their

support and hard work.

Finally, thank you Taoufik for your support and ytelp that you gave me in Canada.

Table of Contents

List of Tables viii
List of Figures IX
List of abbreviations Xi
L g8 0o 18 ox 1 oo ST 1
00 1Y [0 117 Ui (o] 1RO PPPPPPUPPPPPR R 1
1.2 REIATE WOTK ...ttt e e e e e e e e e e e bbbt e et e e et e e e e e aaeeeas 2
1.3 TRESIS OULINE ... e 3
P o F=T oL Y= 1= 1 o SRS 4
P22 I [o (o To (3 Tod 1 o] o PP PPPPPRPR 4
WA N = 1oL 1)Y= 11 (=T [T 4
2.3 Applications of adaptive filErSuueueiiiii e 5
2.3.1 System identifiCatiONcmeeeeeeieeeeeeeer e e e e e e e e ee e e e e e 5
2.3.2 Adaptive eqUAliZatIONccoooe e 6
2.3.3 ECNO CaNCEIIALION ...t 7
2.3.4 Linear predictive coding of speech signals..........cccooovvieiiiiiiiiiiiiiiiiieeeees 8
2.3.5 AITAY PrOCESSING . .eeeeiiiiieeeeieet e eemmeeeeetttba e e s e e e e e e e e e e e e eeeeeesebsbnnnnnssssbnnnnaaneeeens 8
2.4 CONCIUSION ...t ettt eeaeeeeeeenenennnnns 8
G o [BT 2= 1 o o S 9
G0 A [o1 (oo (3 Tod 1 o] o PP PPPPPPPRPR 9
3.2 Transmission Chain PreSENTALION....... . eeeeeeeeeeeerteeeeeeeeiii e ereeersaa s e e e aaeaeaees 9
3.3 Time domain eqUAaliZAtiONceeieeeemereeeieeeii s e s e e e e e e e e e e eeeeeeeeeeneeeeeeeennnennnnas 9
3.4 Frequency domain equalization............cceuueuuiueuieiiiiiiiee e eeeeee e 11
3.4.1 Discrete Fourier TranSfOrM ccceeeiriiiiiiiieeee e eerree e 11
3.4.2 The Fast Fourier TransSfOrmM cceeeeiiiiiiiiicieeee e 12
3.4.3 The Overlap-Save AlgOrithm........ccccoiviiiiii e 13
3.4.4 The Fast LMS AIQOrithm..........coo i 15
I @] o 11 5] o] o PP PUPPPPPP PP 17
A ITMPIEMENTALION.ottt sttt b et st esb e s e e se e beeneesreenresneens 18
v R 11 oo [3o 1o o RSP 18

Vi

v WeTo] SR =t o] (o] 7= i o] o P 18

v R [1 o o 11 o 1o o I RSSO RPPPPP 18
4.2.2 Catapult C SYNINESIScoo e 18
4.2.3 AULO PO FPGA ... e e e e 19
O e (@@ I (o] g o = 7 PRSPPI 20
4.2.5 System Generator fOr DSP.........ooiccoeeemiiiiee e 20
N S @] [11 11 (o] SR UTPT 21
4.3 Implementation MethodOlOgYooiieeeeeeiie e 21
4.4 Time domain equalizer implementationo 23
4.5 Frequency domain equalizer implementatioN.uveeiiiiniieeeeeeeeeeeeeeeeeee 31
I o .4 0= U 1= o PSP 37
4.6.1 Computational COMPIEXILY...........uurcemmmmuunniiiiaeeeeeeeeeeereeeereerrrn e ————————————— 37
4.6.2 PeITOIMANCEottt ettt et e e e e e e e e e e e e s e s s nnneeeeaeeeeeeeaeennaaans 39
A 0] o T 11 11 o [PPSO PPPPPRRTP 39
5CoNCIUSION & TUMTNEN WOFK ..o 40
ST I O] o 1151 o] o PP PUUPPPPP PP 40
5.2 FUMNEI WOTK ..oeiiiiiiiieeee ettt e e e e e e s e ne e 41
SN2 A [g 10T U Tox 1 o] o HO T TPPPPOP 41
5.2.2 Simulation based and formal based verificatBzhniques.............cccccceeeieennennn. 1.4
5. 2.3 FUIMNEI WOIK ..o ettt e e e e e e e e e e e e e e e e e e eeeeeeneennnnes 43
Bibliography 48

Vil

List of Tables

Table 4.1 Time domain equalizer SyNthesiS rEPOLt cee....evvvvveeiiiiiiee e 31
Table 4.2 Frequency domain equalizer syntheSiSTepQ.........cooovvviviiiiiiiiiiiiiiiiiieeeeeeee 37
Table 4.3 Equalizer complexity COMPATISON .. e eeeeeeeereeeireriiiiniiiaaseeeeeeeaeaaeeaaaaaaaaees 38
Table 4.4 Synthesis report of 4-tap frequency darmegualizer............cccceeeeiveeeeeieiiiicne. 38

viii

List of Figures

Figure 2.1 System identification using adaptivEefil..............ccccooeiiiiiiiiieeeee e, 6
Figure 2.2 Echo cancellation using adaptive filter..........cccoeeiieiiiiiiiiiieeeeeee 7
Figure 3.1 TranSmiSSION CRAINoviceeeeeeeee e e e e e e e e aaes 9
Figure 3.2 The LMS AIQOrthm ... e 10
Figure 3.3 The overlap-save algorithm scheme...............ccccooiiircccccc e, 14
Figure 3.4 The Fast LMS algorithmeeeiiiiiiiiiiec e 15
Figure 4.1 The Catapult design flOWccoaiiii e 19
Figure 4.2 Pico Extreme design floWccceeeeeoioii e 20
Figure 4.3 System Generator design flOWccueeeee i, 21
Figure 4.4 System Generator design flOW ... 22
Figure 4.5 Transmission Chain SChEMEuuceeeiiieieiee e e 23

Figure 4.6 (a) Signal constellation before LMS-lhsgualization, (b) Signal constellation

after LMS-based equaliZationoocccccceeiieiieeeieirs s e e ee e e e ee e e 24

Figure 4.7 LMS equalizer error @Stimation ...ccuuee oo iiiiiiiieiiiiiiiiene e ee e e e e 24

Figure 4.8 (a) Signal constellation before BLMSdshgqualization, (b) Signal constellation

after BLMS-based equaliZation...............cueeeeri e iiiiieeeeesiss s e e e e e e e e ee e e e e e e e eeeaaannes 25
Figure 4.9 BLMS equalizer error €Stimationeevvuvviiiiiiiiieeeeeeeeeeeeeeeevieeeeeeeeeennann 26
Figure 4.10 Transmission chain with a 4-tap LMSatdger in Simulink 62
Figure 4.11 LMS equalizer in SIMUINK........ccooiiiiiiiicies e eeeeveeeeee e 27
Figure 4.12 Signal constellation after time domagoalization in Simulink 28

Figure 4.13 Error @StMALIONuuiiieeeieeieceeiiiiii s e e e e e e e e e eee e e eaaannn e as 28

Figure 4.14 A System Generator description of thapitime domain equalizer................... 29
Figure 4.15 Signal constellation after time domeguoalization in Sys Gen 29.
Figure 4.16 Error eStiMation CUINVEccccciiiiieieeiiiiiiiiiiee e s e e e e e eeeaeeeeseeseeeeeeeeesesnsnnnnnn 30

Figure 4.17 (a) Signal constellation before Fast S-Mased equalization, (b) Signal

constellation after Fast LMS-based equalization..............cccccccoeeeiiiiiiiiviiiiviieeeeiiiis 32
Figure 4.18 Fast LMS equalizer error estimation.............coooeeiiiiiiiiiiiiiiiiies e 32
Figure 4.19 Transmission chain with a 4-tap FasSL&dualizer in Simulink....................... 33
Figure 4.20 Fast LMS equalizer in SIMUIINKcccooriiiiiii e 33
Figure 4.21 Signal constellation after time domeguoalization in Simulink...................... 34
Figure 4.22 Error @SHMALIONeeiieeiieececieiiiire et e e e eee e as 35
Figure 4.23 A System Generator description of thapfrequency domain equalizer-.......... 35
Figure 4.24 Signal constellation after time domegunalization in Sys Gen 36..
Figure 4.25 Error @StiMation CUINVEciiiiiiiiiiiiiiiiias e e e e e e eeeeeeeeeseeennnnns 36
Figure 5.1 Simulation-based Verificationuuiiiiiiiii e 42
Figure 5.2: Hierarchical deSign oo 42
Figure 5.3: Formal method-based verifiCatioN.uviiiiiiiiie e, 43
Figure 5.4 Verification tECNNIQUESeceeeiiiiiiiiie s 43
Figure 5.5 Assertion based VErifiCatioN.....cccccc.oooeeeeeiiiiiiieee e e e 45
Figure 5.6 Performance analysis methodology widotem provingccccevvvvvvvvnnnns 46.

List of Abbreviations

AWGN Additive White Gaussian Noise
BLMS Block Least Mean Square

DFT Discrete Fourier Transform

Fast LMS Fast Least Mean Square

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array
IFFT Inverse Fast Fourier Transform
ISI Inter-Symbol Interference

LMS Least Mean Square

QAM Quadrature Amplitude Modulation
SNR Signal-To-Noise Ratio

Xi

Chapter 1
Introduction

1.1 Motivation

Nowadays, due to the radio-mobile development,diggal sound and image diffusion and
the multimedia services increase, we attend adwxpdosion in terms of the request of the
digital transmission techniques. These new servicasally require transmitting a huge
guantity of information in the narrowest frequer@nd if it is possible and also they require
reducing the transmitted power or transmittingitifermation through some severe channels.
So, it is obvious that achieving such objectivels gause some problems for the transmission
system designers; in fact, in the case of sestemanels such as multipath channels, we need
some techniques to avoid the inter-symbol interfeee (ISI) created by the frequency

selectivity of the channels.

To steer clear of the channel frequency selectiviy can refer to a lot of techniques among
them we can mention the equalization; time domajnabzation has been the most used
method of eliminating ISI, the most used architezsuare the linear equalizer and the
decision feedback equalizer. Those different egagdi consist in digital filters where the
coefficients are generally updated using adaptigeradhms. The size of the filter is an

important parameter which influences the globafqgrerances of the system. In fact, for a
“better” equalization, the equalizer size must hbggér than the impulse response of the
channel. So, when the equalizer size increases, etipgalizer complexity increases

considerably because of the digital convolutioningscommon time domain techniques to
compensate for distortion introduced by such chiznmay be very computationally intense.
To decrease the filtering complexity, the equalizan be implemented in the frequency
domain. We talk in this case about the frequenayalo equalizer. The idea of this technique
consists in replacing the timing convolution withfraquency multiplication less, so this

method offers a low complexity growth in compariseith the time domain approach. This

technique requires the use of the Fast Fouriersfoam (FFT) modules.

The objective of this master project is the implatagon of the frequency domain equalizer
on FPGA and the performance analysis of the dediggstem. We have first to identify the
tools and the software required to achieve thigeptpthen after implementing the equalizer,
we have to compare the performance of what we im@fe with the theoretical performances

of the frequency domain equalizers.
1.2 Related work

In 1965, Lucky led the way to the adaptive equéliraby developing the zero forcing

algorithm which was the corner stone for the highesl modems. Meanwhile, Widrow was
working on an other algorithm called the Least M&auare (LMS) algorithm which became
very important for many applications. In 1973, Vealan and Schwartz introduced the first
frequency domain implementation of the LMS algaritivhere the coefficients were updated
using an isolated training sequence. Since thesearehers never stop developing the

adaptive algorithms thanks to its efficiency in maomains.

Due to its efficiency, the LMS algorithm knows agt use in various applications; among
them we find the FPGA-signhal processing based egqpdns. The papers dealing with this
topic are uncountable. We will try in this sectit;n present some works dealing with the
implementation of the LMS algorithm in FPGA whicave been done.

The paper describing the most similar work to praject is that written by Dr. Chris Dick
and Dr. Fred Harris. It is named FPGA QAM Demodulddesign [3]. This paper examines
the FPGA implementation of an adaptive equalizet @arrier recovery loop for a 50 Mbps
and 16-QAM receiver. To minimize inter-symbol iriegence in their project, Dr. Dick and
Dr. Harris use an adaptive equalizer based on #& lalgorithm which is connected in
cascade to a matched filter. To build their systéiney employ a fully parallel design
consisting of 8 FIR processing elements (PE) ab!8 processors. For the implementation

on the Virtex Il FPGA, the system level design t8gktem Generator was used.

Some researchers working on FPGA implementaticedaptive equalizers try to modify the

LMS algorithm in a way that the complexity when iempenting in the hardware is reduced.
This is the case of the project described in thEepaamed “algorithm and architecture design
for a low-complexity adaptive equalizer”’ [1] wheaesearchers implemented the GSPT LMS

(Grouped Signed Power-of-Two LMS) algorithm to teéke capability of an adaptive

equalizer in equalizing 8PSK signals in severatfictal channels. To ensure the efficiency of
their algorithm, they implemented three adaptiveatigers based on the LMS algorithm,
Chen’s scheme, and the proposed GSPT LMS algori#flfiterx comparison of the results, they
found that the proposed GSPT LMS algorithm can in@lemented with much lower

complexity, which is about 30% of the hardware wese required by the conventional LMS

algorithm, or about 50% of that in Chen’s scheme.

Another paper dealing with adaptive filtering usihg/S algorithm is called FPGA
Implementation of a Single Channel GPS InterfereNtggation Algorithm [2]. In this
project the paper's writers implemented an adapfilter for narrow band interference
excision in Global Positioning Systems (GPS). Theaptive Filter was implemented in
schematic VHDL using four main blocks which are @eefficient Update Block, the Input
Signal Delay Block, the FIR Algorithm Block and tfieee Adder Block. The adaptive filter
using 33 taps and a sampling rate of 8 MHz wasdestith simulink and it converges in
20us. In this paper the writers conclude that “Theglenchannel delayed LMS adaptive
algorithm is an effective technique for removingroa-band interfering signals from GPS
receivers. It can be effectively implemented udiiRGA technology that can be seamlessly

inserted between a GPS antenna and receiver.”

As we mentioned in the beginning of the sectioereghare a lot of papers dealing with the
hardware implementation of the LMS algorithm apgiicns. So, we tried to present the

closest related work.

1.3 Thesis outline

The thesis is structured in the following way; dea2 discusses the notion of digital filtering
and it focuses on the adaptive filtering by explagnits principle. Some applications of
adaptive filtering are also presented in this cllapThapter 3 deals with equalization. Time
domain and frequency domain equalizers are defimeélis section as well as the algorithms
used by each equalizer. The implementation of theakzers, the tools used and a
comparison analysis are presented in chapter 4.fifthechapter opens new horizons by
presenting new ideas that can be applied on thiggras a further work.

Chapter 2
Adaptive filtering

2.1 Introduction

Adaptive filters [22] are mainly digital filters ungy adaptive algorithms to update their
coefficients. In this section, we will introduceetldaptive filter and we will enumerate their
applications.

2.2 Adaptive filtering

Digital filters are mathematical algorithms whicte aised to modify the digital signals. It is
the same procedure followed by the analogue filteroperate on the analogue signals.

Equation 2.1 represents the output of a lineataligjiter.
y(n) = ZiZg h(k)x(n — k) 2.1

Whereh(k), k = 0,1...N-Jlare the filter coefficients¢(n) is the filter input ang/(n) is the filter
output.

Digital filtering has a lot of advantages amongihee can mention:
Easy implementation of adaptive filtering in casetloe use of a programmable
processor.
The reuse of the filter output and input can berguizzed.
Analogue filters have limitations.
Can be improved as the VLSI technology is improved.
Performance is stable.
The filter can operate on more than one filtehatgame time.
Precision

It is beneficial for the biomedical applicationa it can operate at lower frequencies.

As it has many advantages, it has also some dr&sbabe following points summarize

the most remarkable disadvantages:

« The hardware resource on which the filter is imgatad can limit its speed

- Building a digital filter is much more difficult #n building an analogue one.
The adaptive filter coefficients are changing whimey are operating in a changing
environment. So, recursive algorithms are necessaput the filter coefficients up to date.
The most accurate example that reveals the impmetahthe adaptive filters is the telephone
system where the echo caused by the impedancesasspresents a considerable source of
annoyance for this system users. So, the adapligetias to eliminate this echo by imitating

the echo response of the echo path.

Although they do great job in most cases, implemgnadaptive filters in the time domain
can not be efficient for some applications wherehaee an increasing complexity and as a
result a very long impulse response. For theseiapeases, we have resort to implement the
adaptive filter in the frequency domain. From heiee importance of the Fast Fourier
Transform (FFT) and the Inverse Fast Fourier Tiamsf(IFFT) is obvious since they are the
means allowing the passage from the time domaiheadrequency domain and from the time
domain to the frequency domain. The conversion dexily is much less than the complexity
of the time domain algorithm when the filter is ¢gp@nough in a way that its length is equal or
bigger than the crossover point where the compmutaticost of the frequency domain filter is

less than the time domain one.

2.3 Applications of adaptive filters

Adaptive filters are very useful in case of transed signals with the minimum amount of
information, that is why they are widely exploitedtelecommunications, control systems,
radar systems...

Due to its flexibility and easy implementation, ptige filters design and adaptive algorithms
development are defined by the applications themaselThe most important applications for

the adaptive filters are described in the followssgtions.

2.3.1 System Identification

System identification consists in modeling an unknsystem and estimating its parameters

by applying an experimental data. This techniqueeiy efficient in case of dynamic system

with complex behavior, since it is not easy to maodand consequently to control it. So, we
refer to collect some experimental data about ty&tesn responses by applying some

specified excitations.

- Unknown din)

System l
+ —
o) | e\
N/
FIR Filter y(n) T
— Model
Adaptive
Algorithm - '

Figure 2.1: System identification using adaptivefi[22]

Figure 2.1 shows a block diagram of the systemtifiestion model. We have as a model for
the unknown system an FIR filter with adjustableftiocients.

We give the unknown system and the FIR filter matiel same input u(n). An estimation
error e(n) is produced by doing the difference leemvthe outputs y(n) and d(n) of the
adaptive filter which is the system model and thenown system respectively.

Now, using the estimation error e(n), the adapdilg®rithm is updating the tap weights of the
filter. This process is repeated until the estioratrror e(n) reaches a given limit and then the

unknown system response is deduced from the a@afdter one.

2.3.2 Adaptive equalization

In telecommunications, transmitting data throughevthannels requires the use of modems
and accordingly the use of equalizers. Equalizaigowidely using the adaptive algorithms;

we are talking about adaptive equalization. Thepse from using an adaptive equalizer is to
compensate for the distortion and eliminate therisymbol interference caused by the

channel noise.

Initially, a desired signal d(n) is defined for tadaptive equalizer. Then, the error estimation
is calculated by making the difference between dhealizer output y(n) and the desired
signal. The produced error is used to update thedficeents of the equalizer to reach its
optimum values. The received signal is obtainedapplying the equalizer output y(n) to a

decision device.

2.3.3 Echo Cancellation

In telephony, full-duplex operation, transmittingdareceiving channels from a two-wire

telephone line are provided by a device called fiayb Figure 2.2 shows the layout of the

system.
Speaker A Speaker B
. Common .
Transmitter X(n) Line X(n) Transmitter
v A v v %y
Adaptive . . Adaptive
Filter Hybrid Hybrid Filter
Receiver Receiver
Signal
Speaker Echo
Speaker B Return Paths Speaker A
signal + echo of A signal + echo of B

Figure 2.2: Echo cancellation using adaptive fij&#]

An echo is generated because of the impedance neisnietween the hybrid and the

telephone channel. | can be eliminated by usingtadaecho cancellers, based on adaptive
algorithms, in the network. Updating the optimuneficients of the echo canceller depends
on calculating the error signal resulting from théference between the estimate and the

received signal.

2.3.4 Linear Predictive Coding of Speech Signals

The speech signals can be digitally representatyubie method of linear predictive coding
(LPC). In LPC, the source vocal tract is modelec dimear all-pole filter whose parameters
are determined adaptively from speech samples gnsef linear prediction. The speech
samples u(n) are, in this case, the desired respamsile u(n-1) forms the inputs to the
adaptive FIR filter known as a prediction errotefil The error signal between u(n) and the
output of the FIR filter, y(n), is then minimized the least-squares sense to estimate the
model parameters. At the receiver, using the mpdeimeters and the error signal, the speech

signal is synthesized.

2.3.5 Array Processing

Adaptive antenna arrays are behaving the same wagdaptive filters in terms of the
processing techniques. Those arrays are generatipgrallel set of signal samples by the
mean of the spatial separation between the antengents instead of using the time-delayed
or partly processed versions of a one-dimensiamalti signal. The adaptive antenna arrays

are applied for bearing estimation and adaptiversEaming.

2.4 Conclusion

The adaptive equalization is one of the adaptilteriing applications. They are used to
eliminate the inter-symbol interference causedh®ynoise in the transmission channel. The
next chapter will deal with the equalization in fbbdtequency and time domain and it will

compare between their performances.

Chapter 3
Equalization

3.1 Introduction

As it is mentioned in the previous chapter, eqadiin is one of the applications of adaptive
filtering. Its role consists in eliminating the 1Shused by the noise in the transmission
environment. This chapter will present in detdiie time domain and the frequency domain

equalizers by introducing their structures as aslthe algorithms they use.

3.2 Transmission chain presentation

The whole transmission chain is represented bYigliee below.

d[n] + _ X[n]

Channel _..(E.; Equa lizer :*-"[11] J d"[n]
A

w[n]

Figure 3.1: Transmission chain [24]

This communication chain is composed of a chanmegngmission environment), a

modulator, a demodulator and an equalizer.
The channel is noisy by an Additive White Gausdlase (AWGN).

The equalizer has to eliminate the inter-symbatrierence presented in the received signal

X[n] to get in its output the transmitted signahid[

3.3 Time domain equalization

To get an output matching as much as possible ¢seatl response, uncountable adaptive

9

algorithms are used to regulate the filter coedfits. One of the most used algorithms is the
LMS algorithm. Its success is explained by its aadincy especially in terms of storage
requirements and computational complexity. Adjugtiilter coefficients using the LMS

algorithm means that these coefficients are updated every sample.

The following scheme is explaining clearly the natof the LMS algorithm using a coherent

mathematical equation:

Updated Value Old Value of Learning .
of tap-weight tap-weight | + rate X Tap-input X Error
vector Signal
vector vector parameter

Figure 3.2: The LMS Algorithm [22]

LMS algorithm is very simple and very easy to inmpént that's why it is adopted by most of

real time systems.
The LMS algorithm is described by the followingpste

1. Choosing the desired response. The filter coefitanrust be set to zero.
h() =0,i=1,23,..,N 3.0

Steps (2) to (4) are repeated every sampling ingtgn

2. The output of the adaptive equalizer y(k) is getroytiplying element by element the
input vector by the filter coefficients vector thir@ sum of all multiplications is done.

y(k) = YR (D)x (1) 13

3. Next, the error is defined by doing the subtracti@tween the desired signal and the
equalizer output y(k) just before updating the Gorits of the equalizer.
e(k)=y(k)— d k) 3.2
4. Finally, the equalizer coefficients must be upddigdnultiplying the error calculated
in the previous step by the step-siz¢ghen by the equalizer input x(k). After that, the
result is added to the previous value of the eganbkoefficients.
h(k+1)=h(k)+2pe (k)x (k) 3.3

10

Updating the equalizer coefficients using the LM§&thm requires that the parameters are
defined accurately. The step size paramgtand the number of filter coefficient¢ are the
most important parameters that ensure the conveegefithe equalizer to an output matching

the best to the desired signal.

Changing the values @f andN has an impact on the equalizer behavior, that'y wé were
testing the equalizer with a lot of values of thepssize parameter to choose the best one
which gives the optimum result. But, concerning fiter length we were limited by the
hardware resources that's why we adopted for tfagept small length filters.

Although it is widely used due its efficiency, thé1S algorithm suffers from one major
problem. It mainly deals with its complexity sindes computational cost augments
exponentially when the length of the filter augnsenthis problem is actually generated
because the LMS algorithm is implemented in theetdomain. That's why another version
of the LMS algorithm was found to compensate ttedect which is the BLMS algorithm or
Block LMS algorithm. But, the efficiency of thatgalrithm in terms of computational cost can

not be compared to implementing the adaptive eggraiin the frequency domain.

3.4 Frequency domain equalization

Data alteration between the frequency domain aadithe domain requires the use of some
tools ensuring the preservation of data during tt@assition. The most useful tool enabling
representing a signal in the frequency domain esdiscrete transform that helps to decrease
the computational complexity related to signal pssing just like convolution. One of the
most efficient transforms allowing the transitiogtlween the two domains is the Fast Fourier
Transform (FFT). It is the most used transform heeaof its advantages comparing to the

other transforms:

- ltis efficient
- It can represent data for even short data lengths
- Itis accurate in representing data

3.4.1 Discrete Fourier Transform

The Discrete Fourier Transform is one of the strregt of the Fourier Transforms allowing to

the conversion of a discrete signal from the tiramdin to the frequency domain.

11

The expression below represents the equation edilcglthe Discrete Fourier Transform.
X (k)= YV x (nT)eikwnT 3.4
n=0 ’
It is obvious that this expression is similar te #quation allowing calculating the Fourier

Transform for continuous signals in time domain.
The DFT has two important properties which are:
e Symmetry

That means that the two elemeit&) and X(k+N) resulting by applying the Discrete
Fourier Transform on the signal x are the samea Assult, it can be deduced that there is
a periodicity with periodN.

+ Convolution

The circular convolution as well as the linear aantion can be deduced by the use of the
Discrete Fourier Transform. The time convolutiordfem declares that a convolution in
time domain is transformed into a simple multipfica in the frequency domain. This is

summarized by the following expression.
x(n) = x; (m) * x5 (n) = F1{X; (k) X, (K)} 3.5

wherex, x; andx; are finite periodic signals having the length dnelkpresses circular

convolutionF* expresses the Inverse Discrete Fourier Transform.

This property of the Discrete Fourier Transform hgieat importance for this project
because instead of using convolution in time domdiich can increase the computational
cost, we can use the multiplication in the freqyetiemain and as a result we can get the

same results with less complexity by just applytimg DFT.

3.4.2 The Fast Fourier Transform

One of the most useful and efficient algorithmsduse put in work the Discrete Fourier

Transform is the Fast Fourier Transform (FFT).rt& consists in transforming a vector

expressed in time domain to its equivalefitin the frequency domain. To reduce the

computational cost and to make the algorithm mdfieient, The FFT is based on the
12

principle of the built in redundancy used by theTDMesides the FFT permitting the
transformation of a signal from the time domairthe frequency domain, another algorithm
allowing the conversion of a signal in the otherediion that means from the frequency

domain to the time domain; it is the Inverse Faufiansform (IFFT).

The computational complexity for the Discrete Feurfransform is equal to N2 complex
multiplies, but when we are talking about the FRIE humber is decreased and its complexity
is equal to (N/2) log2 (2N) complex multiplies +ddmplex adds. To get much better results,
the block length N must be an integer power of Y dBing this, we enhance the performance
of the FFT algorithm. The FFT block length mustthe same as the input signal block
length.

3.4.3 The Overlap-Save Algorithm

As it is mentioned previously, the convolution pedy is the key to pass from the time
domain to the frequency domain. The most impor&gorithms implementing convolution
are the Overlap-Add and the Overlap-Save. These #@gorithms are based on the
convolution theorem stating that a convolution he ttime domain is equivalent to a
multiplication in the frequency domain. | termsaaimplexity, the Overlap-Save algorithm is
more efficient than Overlap-Add algorithm. The earlalgorithm is overlapping the input
blocks and to maximize its efficiency a 50% overigpequired; that means that the current
input values are composed of a concatenation ofdheent input block and the previous one.
By applying the IFFT, the lasN samples must be discarded because of the circular
convolution and then we concatenate the output Emp the others to finally form the
Overlap-Save algorithm output. The figure belowregpes the notion of the Overlap-Save

algorithm.

13

Se

Figure 3.3: The overlap-save algorithm scheme [22]

The length of the input block i$\2

1. The impulse response must have the same lengtheaBRT block that's wh\ are
added to it.

2. The FFT is applied to the impulse response.
W (k) = FFT {h(k)} 3.6
3. The FFT is applied to the input block. Since a 50%&rlap is adopted then every
current block is concatenated to the previous bléak the first blockN zeros must
precede it.
X(k) = FFT{x(k)} 3.7

4. The product of the FFT results in the steps 2 ands ow calculated. This
multiplication must be done element by elementsTiultiplication in the frequency
domain is equivalent to the convolution in the tidoenain.

Y(k) = X(k).W (k) 3.8

5. To pass to the time domain, the IFFT must be appbé’ (k)
y(n) = IFFT{Y (k)} 3.9

6. The lastN samples of/(n) are discarded. However, the fildtsamples are added to the

previous output samples

14

7. The input block is updated and the steps 3 to Tegreated.

3.4.4 The Fast LMS Algorithm

For this master project, implementing an adaptregjiency domain equalizer [22, 23] is
based on an adaptive frequency domain algorithtacc&ast LMS. This version of Fast LMS

algorithm is based on the overlap-save convolutgorithm. Updating the equalizer

coefficients in the frequency domain using the EA8E algorithm is similar to the process in

the time domain using the LMS algorithm. One de#fece between the two procedures in
terms of updating coefficients consists in thatfast LMS algorithm updates the coefficients
block by block not sample by sample. The followfiggire illustrates the principle of the Fast
LMS algorithm.

— . -

Gradient
Constraint

U*(k) E(k) e(n) d(n)

Figure 3.4: the Fast LMS algorithm [22]

15

The 50% overlap is applied to the input blocksiné N and the filter coefficients are set to

zero.
The Fast LMS algorithm is described as follows:

1. The FFT is applied to a 2N input block got frora thput signal.
U(k) = FFT{u(n)} 3.9

2. Multiplying U(K) by the filter coefficients gives the equalizer auitpn the frequency
domain. The coefficients are adjusted before.
Y(k) =U(k).W(k) 3.10

Then an IFFT is applied to Y(K) to get the lesuthe time domain.
y(n) = IFFT{Y(k)} B.1

Because of the circular convolution, only the Ilssamples must be kept and they will

represent the output of the equalizer.
y(n) =y(N +1 - 2N) 13.

3. Next, a subtraction between the desired signalthadcurrent equalizer output must be
calculated to calculate the error signal.
e(n) = dn) — y(n) 3.13

Wheree(n)is the error and(n) is the desired signal.

After that the error must be transformed to thediency domain, that's why an FFT is

applied toe(n) after addingN zeros to its start.
E(k) = FFT{zeros,e(n)} 3.14

4. After calculating the conjugate of thé(k), it is multiplied by the error in the frequency
domain. Then, an IFFT is applied to the result.yahk firstN samples of this result are
kept because of the circular convolution.

g(n) = IFFT{E(k).U'(k)} 3.15

gn)=g(1->N) 3.16

5. A 2N point FFT is now applied on g(n) after adding Nozeto its end then the result is
multiplied by the step size parameter

16

g(n) = g(n)followed by N zeros 3.17
Wi(k) = wFFT{g(n)} 3.18

The obtained result consists in the update factothfe equalizer coefficients, that's why it

is added to the previous value of the filter caméints.
Wy(k+ 1) = W(k) + W, (k) 3.19

6. The updated equalizer coefficients are set andyreatbe used with the next input block.
From one iteration to another the error is decrepsince the coefficient are updated

progressively.

3.5 Conclusion

In this chapter, a theoretical background aboutuemcy domain and time domain

equalization was presented by describing the dlyos used by both equalizers as well as
their structures and the techniques they use ssidf-& and IFFT. The preference of the
frequency domain equalizer was also explained is $ection. In the next chapter, an
implementation of the two equalizers will be dismeg and a comparison between the

theoretical and practical results will be done.

17

Chapter 4
Implementation

4.1 Introduction:

The theoretical background was introduced by thevipus chapter. In this chapter, the
practical work will be discussed. First, a tool kxption must be done to define the
appropriate method that allows achieving this proj@bjective. Then, the FPGA
implementation flow will be described to finallyrooent the obtained results.

4.2 Tools exploration:

4.2.1 Introduction:

The evolution known by the high-level tools trats$athe increase of the FPGA technology
adoption, since the reprogrammable silicon delieelst of benefits to engineers, researchers

and scientists of all domains.
4.2.2 Catapult C Synthesis:

Catapult C Synthesis aMentor Graphicq21] product; it produces an RTL implementations
from abstract specifications written in C, C++ grst@mC. The Catapult C flow consists in
modeling, synthesizing, and verifying complex ASEP&l FPGAs architectures as it is shown

in the figure 4.1.

18

C++ [Systeml

Cyeln Accurate
—~— S

Constraints

SHEIHINLE TN

INTERFACE SYMTHESIS
g .

RTL Syntheasis

ASIC/FPGA

Figure 4.1: The Catapult design flow [21]

4.2.3 AutoPilot FPGA:

AutoPilot FPGAIs AutoESLs [19] high level synthesis tool for FPGAAutoPilot FPGA
takes a complex algorithm in the form of C, C++SgistemC description or a combination of
these languages and automatically generates avadenti RTL that is ready for synthesis into
an FPGA deviceAutoPilot FPGAsupports botkXilinx andAltera devices.

For Xilinx:

v' Comprehensive Device Support
Virtex-6, Virtex-5, Virtex-4, Virtex-11 Pro, Virtexl, Spartan-6, Spartan-3
v' Automatically generates all files required for FP@Aplementation using Xilinx
XST, ISE, EDK, and Synplify tools
v" Simulation and debugging flow works with ModelSimdaAldec simulators

For Altera :

v" Comprehensive Device Support
Stratix 1V, Stratix Ill, Stratix I, Stratix, Cycloe Il

19

v' Automatically generates all files required for FPG@Aplementation using Altera
Quartus Il, SOPC Builder, and Synplify tools
v" Simulation and debugging flow works with ModelSimdaAldec simulators

4.2.4 PICO for FPGA:

PICO for FPGA has two products allowing an FPGA implementatioonfra C code

specification;PICO ExpresandPico ExtremeThey are &ynphorgd20] product, they take a
C algorithm and a set of design requirements (clbekjuency, throughput target and
technology file) and create a series of implemémamodels (RTL, SystemC). Figure 2

summarizes all the steps in tARECO Extremedesign flow.

Figure 4.2: Pico Extreme design flow [20]

4.2.5 System Generator for DSP:

System Generator is a DSP design tool from Xilid8][that enables the use of The
Mathworks model-based design environment Simuliok FPGA design. All of the
downstream FPGA implementation steps including tssis and place and route are

automatically performed to generate an FPGA prograng file.

System Generator provides a system integratioriophatfor the design of DSP FPGAs that
allows the RTL, Simulink, MATLAB and C/C++ comportenof a DSP system to come

20

together in a single simulation and implementagaironment. System Generator supports a
black box block that allows RTL to be imported irf@onulink and co-simulated with either
ModelSim or Xilinx ISE Simulator. Figure 3 explainke operation principle of System

Generator.

; ; : Real-time Debug
DSP System Simulation (ixing ChipScops)

MATLAB/Simulink

HDL XILINX
z . SYSTEM)
Co-Simulation GENERATOR

For DSP

PCl, JTAG
Simulate / Hardware
HDL Modules : Implementation in-the-loop

Figure 4.3: System Generator design flow [18]
4.2.6 Conclusion:

Regarding to the different tools and its charastes, we adopt for this project the system
generator for DSP tool. In one hand, it is posstblemplement the design described with
similink directly in FPGA, in the other hand; wencdownload it for free from the Xilinx

website.
4.3 Implementation methodology:

The specific objectives for this master projectthefollowing:

1. Simulation of the frequency domain equalizer usitailab.

2. Defining the required tools allowing the implemdita of the frequency domain
equalizer on FPGA.

3. FPGA implementation of the frequency domain eqealiz

4. Performance analysis.

21

As it is mentioned in the section 4.2, System Gatoerfor DSP was chosen as the tool

allowing the FPGA implementation of the frequenoynéin equalizer.

System Generator is created to implement DSP atjgits on FPGA using the Mathworks
model-based design tool Simulink. This tool is veagy to work with since it doesn’t require
a previous knowledge of hardware design methodetoddesigning using System Generator
only needs a DSP simulink modeling environment lmaged on a specific block set from
Xilinx. All of the flow of the FPGA implementatiosteps is done automatically starting form

synthesis, passing by place and route and arriaingnerating the programming file.

The first step in the design flow using System Gatwe is describing the specification using
the Similink block sets. Then, System Generatomdsfthe design hardware devices using
the specific DSP Xilinx block set. After that, Xik Core Generator generates an optimized
netlitst for the DSP blocks. The programming filee bitstream, is automatically generated
by the System Generator. This latter can also eradestbench based on the vectors used in
the simulink specification and which can be runMdelsim or Xilinx ISE Simulator. Figure

4.4 summarizes the steps of the System Generatamdgow.

Develop
Executable Spec
in Simulink

Systamr
v Generator

evelop Sysiem
= Generator
Al DSH represaniation
Biockset o
w
— ___E Automatic RTL Testbench
=] anaration Ganeration
Xilinx CoreGen 9

|
L

e RTL Verification
Wil with ModelSim

Implementation
Flow

Bistream
FPGA
Figure 4.4: System Generator design flow [20]

22

For this project, the FPGA used for implementaiga Spartan 3 with one million gates.
4.4 Time domain equalizer implementation:

To test its functionality, the time domain equalizeas simulated using Matlab. To get
reliable results, the equalizer must be testedwelhdefined transmission environment; first
we need a symbol generator which generates, ircasg, random integer symbols with the
range [0..15]. Second, the symbols go through A8 modulator and after that through
the transmission channel. The channel used foramaiimulation is a Proakis A [4] channel.
Its coefficients are [0.04, - 0.05, 0.07, - 0.21.5; 0.72, 0.36, 0, 0.21, 0.03, 0.07]. The channel
is also noisy by an Additive White Gaussian NoB®®/GN). The equalizer is, then, required
to eliminate ISI in the transmitted signal afteingpthrough that channel. Finally, the output
of the equalizer is demodulated by a 16-QAM demaidul Figure 4.5 shows the

transmission chain components.

X > Source) 16-QAM
modulator
y
Channel
16-QAM .
Y < demodulator [Equalizer |¢

Figure 4.5: Transmission chain scheme

Using matlab, we simulate two types of time domequalizers, one based on the LMS
algorithm and the other one is based on the BLMBrahm. The difference between the two
equalizers is that the first is updating its caméiints after each sample and the second is

updating it coefficients after an input block ohgaes.
The simulation parameters are set as following:

+ SNR=40dB
* Transmitted symbols = 10 000
e u=0.002
23

The following figure presents the constellatiorilod signal that enters to the equalizer as well

as the constellation of the equalizer output signal

Scatter plot Scatter plot

Quadrature
o
L)
' []
Foo
y o
C4
s e
0e¥,
L]
)
L]
o
(1
o
[]
[]
L]
L]

Quadrature

In-Phase In-Phase

Figure 4.6: (a) Signal constellation before LMSdxhequalization, (b) Signal constellation

after LMS-based equalization

As it is shown in figure 4.6.a, the signal enteriogthe equalizer is very noisy because it
passes through an AWGN channel. But after goingudin the equalizer, we obtain a 16-
QAM constellation, presented by the figure 4.6.hjclh means that the time domain equalizer

eliminates the ISI and gives a signal that candsflyedemodulated as an output.

The error estimation is explicit in the figure 4.7.

Learning Curve

Qutput Estimation Error in dB

-70

I I | I I I I | I
o] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Number

Figure 4.7: LMS equalizer error estimation

24

The figure above shows that the error is very hiigthe beginning since the equalizer is still
updating its coefficients. It reaches a stableustafter almost 2000 symbols where the value
of the error rate is equal to —25 dB such thalSN&® is equal to 40 dB.

Using the LMS algorithm as the adaptive algoritlanthe equalizer gives an error rate equal
to 1.91% which means that by sending 10000 symba@xnly loose 191 symbols.

We also simulate a BLMS based equalizer using Matlaing the same LMS equalizer
parameters. We get the constellations of the exprainput and output signal which are

represented by the figure below.

Scatter plot Scatter plot

tﬁ‘#

(A)

f't_..

Quadrature
Quadrature
N
T

'
N
T

%

In-Phase In-Phase

Figure 4.8: (a) Signal constellation before BLM & equalization, (b) Signal constellation
after BLMS-based equalization

The figure 4.8 shows that the BLMS-based equaliagss the same results as the LMS-based
equalizer. The BLMS equalizer is a time domain égeathat succeeded to eliminates the
ISI and gives almost the same performance as th® eiyualizer since the error rate given by
the BLMS equalizer is 2.03% that means that only &mbols are lost from the whole 10000
sent symbols. The only difference between the tw@ tdomain equalizers is that the LMS
one is updating its coefficients after every samafel the BLMS one is updating its
coefficients after every block of samples. The emstimation is given by the following

curve.

25

20

Learning Curve

Output Estimation Error in dB

-60 -

-70

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Number

Figure 4.9: BLMS equalizer error estimation

From this curve, we can deduce that the erroratstiatus for the BLMS equalizer is almost

the same for the LMS one; it is equal to -25 dBt, Bue BLMS algorithm converges slower

than the LMS algorithm. It requires 3000 symbolsdaverge.

Now, as a first step of the FPGA implementationvflthe LMS-based equalizer is described

using the blocks of the simulink environment. Theole transmission chain is represented

using the simulink block sets as it is shown iufg4.10.

A ™ L
Randem Pl Rectangular ;b—y
Integer A6-CLAM
Gain2
Rectangular QA .
todulator z b
Basebandi
IntegerDeIay1GEin3

Addd

AAGH

AGN
Channel

»
uik)

1

Buffer

¥

[

Unbuffer

Aftert

WAL

Simulink 4 tap time
domain equalizer

+ Ia
15-QAM Terminatord

Rectangular QAM
Demodulator
Baseband2

4B

C a
To
Sample E

Frame Conversion2 Ermord

Figure 4.10: Transmission chain with a 4-tap LM8adizer in Simulink

The figure above shows all the components of @n@stnission chain. First, we have a random
integer generator. It generates random integer sigiielonging to the interval [0..15]. Then,

a 16-QAM modulator is installed. After that, thgrsal must go through an AWGN multipath

26

channel, in our case, it is a 2-path channel aftech a 4-tap time domain equalizer based on
the LMS algorithm is set up to eliminate the 1IShdfly, we add a 16-QAM demodulator to
get the received signal.

The architecture of the LMS-based equalizer ismgivg the figure below.

Product1

Figure 4.11: LMS equalizer in Simulink

The equalizer has as input the noisy signal corfriogp the channel as well as the desired
signal which is in our case the output signal af thodulator. The output signals of the
equalizer are the equalized signal and the erromason. From the architecture of the
equalizer, we can easily notice that the equaligdbased on the LMS algorithm as it is

described in section 3.

Next, a simulation must be done to test the funetlity of the time domain equalizer. That's

why the simulation parameters were set as following

* SNR=40dB
e H=0.002
* Filter taps =4

The figure 4.12 shows the constellation of the égeaoutput signal. We can deduce from

this constellation the efficiency of the equalizer.

27

Scatter Plot

3 % A 1y i
i L " i

Cuadrature Amplitude
[mm]

-3 -2 -1 0 1 2 3
In-phase Amplitude

Figure 4.12: Signal constellation after time domegpialization in Simulink

In terms of error estimation, it is shown that theap time domain equalizer converges after
almost 800 symbols to reach the value of -35 dE dinor estimation curve is represented by

the figure 4.13 below.

Equalizer Error [dE)

Figure 4.13: Error estimation

To get a synthesizable version of the time domgumkzer, it must be described using the
specific Xilinx block set in the simulink environmie The design must be put between two
specific blocks called Gateway-in and Gateway-®teir role consists in limiting the design
that will be implemented in the FPGA from the ottsgmulink blocks. The figure below
shows the 4-tap time domain equalizer describetgusie Xilinx block set.

28

. e
) == O
= N]
=i

'

Figure 4.14: A System Generator description ofdttiep time domain equalizer

The yellow blocks represent the Gateway-in andGlageway-out blocks. The other blocks
are elementary blocks from the Xilinx block set @thiare essentially multipliers and adders

and also some sub-systems doing complex additidrcamplex multiplication.

To make sure of its functionality, we did a simidat for this design with the same
parameters used with the standard simulink dedipe. signal constellations as well as the

error estimation curve are given by the figure$4nd 4.16 respectively.

Scatter Plot

3| ¥ % 3 &
2
=R F 3 - v
=
£
3 @
ER W # & ¥
-2
3 » £ 4 %
-3 -2 -1 0 1 2 3

In-phase Amplitude

Figure 4.15: Signal constellation after time domegualization in Sys Gen

29

Equalizer Error [dB]

Figure 4.16: Error estimation curve

Comparing the results given by the System Genedascription and the standard Simulink
blocks description of the 4-tap time domain equailizve can deduce that the Simulink design
gives better results than the System generator lonsimulink, the symbols are described
using the floating point but in System Generatdy dhe fixed point is used. That's why the

simulink design gives more accurate results tharBystem Generator design.

After designing the time domain model, we proceedhe FPGA implementation which is
automatically done by the System Generator for B8P It uses the Xilinx ISE 11.1 version
to do all the flow. The design will be implementedthe Spartan 3 FPGA board with one
million gates. The table 4.1 gives and clear ideauathe FPGA logic blocks consumption by
the design.

30

Device Utilization Summary -1

Logic Utilization Used Available Utilization MNote{s)
Murnber of Slice Flip Flops 144 15,360 1%
Murnber of 4 input LUTs 12,230 15,360 T
Murnber of occupied Slices 6,275 7,680 a1%:

Murnber of Slices containing only related logic 6,275 6,275 100%;

Number of Slices containing unrelated logic 1] 6,278 0%
Total Number of 4 input LUTs 12,240 15,360 T

Murnber used as logic 12,086

Murnbet used as a rouke-thry 10

Numnber used as Shift regiskars 144
Murnber of bonded I0Bs 233 391 5%,
Murnber of BUFGMLKS 1 a 12%
Average Fanout of Mon-Clock Mets 2,39

Table 4.1: Time domain equalizer synthesis report
The table shows that the 4-tap LMS equalizer corsuatmost 80% of the FPGA resources.

For the frequency domain equalizer, we will go tlglo the same steps as the time domain

equalizer to finally compare between the two eqead.
4.5 Frequency domain equalizer implementation:

The frequency domain equalizer is based on thellStalgorithm to update its coefficients.
To test its performances, we describe it and sitautaising Matlab

The simulation parameters used for the frequencyailo equalizer are the same used for the
time domain equalizer. They are set as following:

 SNR=40dB
* Transmitted symbols = 10 000
e u=0.002

The two pictures below present the constellatiothefinput signal to the equalizer and the

constellation of its output signal.

31

Scatter plot Scatter plot

4,
°l | 00g ® . : °® o0 o0 .o
(] v ®
| g0 R
ar] * et ..’.‘: S, e
27 L]
2% 0 . ° ° . ©® had B
. g -
2f] | S AIRY { WD L)
e ¢ b el R K« SN e 4
L] L]] L]
g ot] g ol it .
K E °« ¥, .‘.ho .::o . ‘...
] & s s Tt . RS
2L | 1 o3 o R o, s % Ve
zof ° ..‘ 8 .'o. ° 'o~
2
4L i o .,"g 0%, %5, 0 ..:.. ° : A3
3 oo ° .“'$ ®e
...o ° ® % Q% ":. o % oo
6 i o 00
4t
6 4 2 0 2 4 6 4 2 0 2 4
In-Phase In-Phase

Figure 4.17: (a) Signal constellation before FddS:based equalization, (b) Signal

constellation after Fast LMS-based equalization

The figure 4.17.a shows that the input signal te #gualizer is very noisy, and after
equalization, a 16-QAM constellation was obtainddolv means that the frequency domain

equalizer eliminates the ISI.

The error estimation curve is given by the figureg4

Learning Curve
-10 T T T

Output Estimation Error in dB

-70H -

-90

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Number

Figure 4.18: Fast LMS equalizer error estimation

32

The error estimation curve for the fast LMS equalighows that it converges within only 200
symbols almost to reach an error rate equal tabifdr an SNR equal to 40 dB. These results
imply that the frequency domain equalizer is muddrerefficient in terms performance than

the time domain equalizer.

Using the Fast LMS algorithm as the adaptive atgorifor the equalizer gives an error rate

equal to 1.83% which means that by sending 10061bels, we only loose 183 symbols.

Now, the transmission chain must be described usdplocks of the simulink environment.
The figure 4.19 shows the communication environmérgre the 4-tap frequency domain

equalizer is tested.

Randem [— R

tangul T o ——
Integer 16-QAM T T . wLr
Gaig AUWGH e * *
Rect“:n:u:atr TAM b . 16D Terminatort
odulator
e o AWGH Ractangular DAM
Integer Delay #ain aad hanmel Demodulater

"’d(") = Baseband
4B

Simulink Frequency Domain E. [Coarversion

To

Frame Conwersion Error

h A
=
=

Figure 4.19: Transmission chain with a 4-tap FadSlequalizer in Simulink

It is obvious from the figure above that the trarssion chain enabling to test he frequency

domain equalizer is the same as the chain usediwithdomain equalizer.

The architecture of the Fast LMS-based equalizgivisn by the figure below.

Kiraywactor
MURIpl

Figure 4.20: Fast LMS equalizer in Simulink
33

Just like the time domain equalizer, the frequedeognain equalizer has as input the noisy
signal coming from the channel as well as the ddssignal which is in our case the output
signal of the modulator. The output signals of ¢a@alizer are the equalized signal and the
error estimation. In this equalizer architecture, motice the use of three FFT blocks and two

IFFT blocks allowing the alternation between tmedgidomain and the frequency domain.

Next, a simulation must be done to test the fumetlity of the frequency domain equalizer.
The simulation parameters were kept the same asirttee domain simulation parameters

where:

« SNR=40dB
e n=0.002
* Filter taps =4

The figure 4.12 shows the constellation of the égeia output signal. The constellation

shows no noise which implies that the equalizevasking perfectly.

Scatter Plot

Cluadrature Amplitude

30 20 0 1 2 3 4
In-phase Amplitude

Figure 4.21: Signal constellation after time domegpialization in Simulink

In terms of error estimation, it is shown that theap frequency domain equalizer converges
after almost 200 symbols to reach the value ofdB0These results prove that the frequency
domain equalizer is better than the time domairakzgr in terms of performance. The error

estimation curve is represented by the figure 8 &aw.

34

Equalizer Errar [dB]

e “| ”W':fl H m}'*" llf i

100 200 300 400 500 E00 700 800 900 1000

Figure 4.22: Error estimation

The frequency domain equalizer is described ushey dpecific Xilinx block set in the
simulink environment. We try to implement a 4-tapguency domain equalizer on the one
million gate Spartan 3 FPGA board but the desigs vaay big that's why we implemented a
2-tap equalizer. The figure below shows the 2-tagdency domain equalizer described using
the Xilinx block set.

Figure 4.23: A System Generator description of2tiap frequency domain equalizer

The design contains elementary blocks from thenXilblock set which are essentially
multipliers and adders and also some sub-systenmg ammplex multiplication, FFT and
IFFT.

35

The signal constellations as well as the erromegion curve given by the figures 4.24 and

4.25 respectively show that the equalizer elimisidte ISI from the noisy input signal.

Scatter Plot

o -

+
3 L e LT et *)
Wt +
ER s 4 S
* +o Mh4 ine
2
* -
2 .| o o5 L2 .
= + e f R bt S A
E 3 T £343 "
=] . 44 ’t
z
@ 0
=
E 0.0
= 1 B - - B0 +*a
= - *F e R iy
=] ¥ * % - : +
+
2
+
-, +
o[e e W e
., S o '“F'*

3 2 -1 0 1 2 3
In-phase Amplitude

Figure 4.24: Signal constellation after time domegualization in Sys Gen

Equalizer Error [dB]

.ml.ﬂ |,||"I|'| E. 1!" I-| h M I ._ || ""

o o M fi

Figure 4.25: Error estimation curve

As it is mentioned for the time domain equalizbge tesults got from the simulink model are
better than those got from the System Generatorembecause for simulink symbol are
described using floating point and for System Gatoersymbols are described using fixed

point.

36

For the synthesis, place and route and FPGA impiéatien were done for the same one

million gate Spartan 3 FPGA board and the tablegi/2s the statistics of the used logic to

implement the frequency domain equalizer design

Device Utilization Summary | -1

Logic Utilization Used Available utilization Mote(s)
Murnber of Slice Flip Flops) 15,380 1%
Murnber of 4 input LIITs 2,157 15,360 S59%
Murnber of occupied Slices 4,315 7,680 BE%n

Mumber of Slices containing only related logic 4,318 4,318 100%;:

Mumber of Slices containing unrelated logic 0 4,318 0%
Total Mumber of 4 input LUTs 2,173 15,360 59%

Mumber used as logic 2,157

Mumber used as a route-thru 16
Murnber of bonded I0Bs 201 391 51%:
Murnber of BUFGMUES 1] 12%
Average Fanouk of Mon-Clock Mets 2,49

Table 4.2: Frequency domain equalizer synthesisrtep

The table shows that the 2-tap Fast LMS equalioeisemes almost 60% of the FPGA

resources.

4.6 Comparison:

Now that both time and frequency domain equalizeesimplemented it is time to compare

between the two domains in terms of performancecantputational complexity.

4.6.1 Computational complexity:

For the LMS algorithm, getting an output sampleurszs N complex multiplications which

mean that generating dh sample output block requirdé’ complex multiplications. Also,

updating the filter coefficients requité’ complex multiplications. In summary, the LMS

algorithm complexity is equal ® N complex multiplications which is equivalent8d\f real

multiplications.

Concerning the Fast LMS algorithm, the whole comipyeresults of the FFT and IFFT
blocks. Since the computational complexity of2dFFT block is equal toN/2) log (2N) in
terms of complex multiplications then the 5 FFT dR&T blocks need (9/2) log (2N)

37

complex multiplications which is equivalent toNL@og, (2N) real multiplications. The Fast
LMS algorithm requires also tw2N complex vector products addid@§N real multiplication
to its computational complexity. Finally, the cadtthe Fast LMS algorithm in terms of

computational complexity is equal toNl@og, (2N)+16N.

The number of the real multiplications requiredtbg two algorithms foN symbol block is

tabulated in the table 4.3 where N is equal to, 8,46 and 32.

N=2 N=4 N=8 N=16 N=32
LMS 32 128 512 2048 8192
Fast LMS 72 184 448 1056 2432

Table 4.3: Equalizer complexity comparison

From the table above, we deduce that the frequdamgain equalizer is much better than the
time domain equalizer in terms of computational ptaxity when N is equal or greater than
8. These statistics confirm the FPGA implementatsults that we got of the time domain
and frequency domain equalizers. As it is declaredection 4.5, a 4-tap time domain
equalizer consumes almost 80% of the FPGA resoultesother hand, the 4-tap frequency
domain equalizer needs over than 200% of the FP&sAurces to be implemented as it is
shown in the table 4.4, which confirms the theosdtresults confirming that when N is less

than 8 the LMS algorithm offers significant savirgy@r the Fast LMS algorithm.

Device Utilization Summary (estimated values)

Logic Utilization

Used

=1

=Availahle

' utilization

Mumber of Slices

16069

7630

209% |

humber of Slice Flip Flops

161

15360

1%

Mumber of 4 input LUTs

31551

15360

205% |

Number of bonded I0OBs

2401

391

614%

Mumber of GCLKs

1

8|

12%

Table 4.4: Synthesis report of 4-tap frequency doraqualizer
4.6.2 Performance:

In terms of performance, all the simulation resudiscording to Matlab, Simulink or

SysGen/Simulink confirm that the frequency domajoadizer is more efficient than the time

38

domain equalizer. First, because it converges rfasi@n the time domain equalizer and

second because it reaches a lower error rate.

4.7 Conclusion:

In this section, we went through the whole hardwaesign flow to implement the time
domain and the frequency domain equalizers on FP@#ough, we were limited by the
hardware resources, we succeed to deal with whdtawe to get reasonable results allowing
us to compare between the two designs. Sincedlasesearch work as it is a master project
and also it is done in the HVG lab where formalifiation techniques are subject for
research, we will present in the next section s@uti#e ideas related to formal verification

that can be applied for this project.

39

Chapter 5
Conclusion & further work

5.1 Conclusion:

This master thesis was dealing with the implememadf a frequency domain equalizer on
FPGA. Unlike the implementations previously desedilin the related work section which are
based on improving the LMS algorithm to implemesgsl complex and more efficient time
domain equalizers on FPGA, the thesis contributionsists on implementing a frequency
domain equalizer based on the Fast LMS algorithmFBGA. It is proven by the signal

processing researchers that the frequency domaializgrs are more efficient than the time

domain equalizers, but in terms of hardware itosproven yet.

Therefore, we proceed first to a co-simulationhad transmission chain where all the blocks
are implemented using simulink except the equaliech is implemented on FPGA. Then, a
comparison was made in this thesis between the tiomain and the frequency domain
equalizers implemented on FPGA and put under tmeeseonditions. The convergence
characteristics and the computational complexityhef LMS and the Fast LMS algorithm

were examined. The results of this study are dgvist

1. The Fast LMS algorithm based on the Overlap-Sawgorihm gives better
convergence than the LMS algorithm. The error ediom curve given by the
frequency domain equalizer converges faster anchesaa lower error rate than the
error curve given by the time domain equalizer.

2. In terms of computational complexity, it is provérat the 4-tap frequency domain
equalizer is more complex than the 4-tap time donume in terms of hardware
consumption. This result ensures the computatiooaiplexity comparison analysis

of the two algorithms.

The frequency domain algorithm offers significaraviags in terms of computational
complexity for long size equalizers. However, inmpénting those long size equalizers on
FPGA requires a lot of hardware resources. Itav@n in this master project that, using a one

40

million gate FPGA and the System Generator for RSR design tool, only a 2-tap frequency
domain equalizer and a 4-tap time domain equatiaerbe implemented.

This thesis presented a hardware implementatiojegirol herefore, as a further work, formal
verification techniques can be applied on the feeqy domain equalizer design as explained

in next section.

5.2 Further work

5.2.1 Introduction
Designing consists in transforming a set of speaiifons into implementations. However, it is
a long process; going from a specification descdribe high level language to an
implementation of that specification on a hardwarget implies the passage by many levels
of abstractions: functional level, register translievel, gate level...The impact of faulty
design can be catastrophic since it can delaysirtieeto-market and as a result it can affects
the company revenues. Therefore, the design vatitbic would be necessary to avoid those
problems. This process is the reverse processsigmand it answers the question: does the
implementation meet its specifications? In thisptba we will present some ideas that can be
subject of a PhD thesis. All of them are dealinghvihe verification techniques since this
project was held in the Hardware Verification Grpupe most famous lab of formal
verification in North America.
5.2.2 Simulation based and formal based verificatigzhniques

v' Simulation-Based Verification
Simulation-based verification [5] is the most usedification technique. Verifying a design
using simulation consists in putting that desigmlaema test bench where input stimuli are
applied. The output of the test bench is compaced teference one. The test bench is a
program that supports the operations describedhendesign and also it has the ability to
engender the input stimuli which can be genera&fdrb the simulation process or when
simulation is running similarly to the output redace generation. Figure 5.1 summarizes the

simulation based verification principle.

41

Test pattern

N

Design
Under Test
(DUT)

Eeference
Model

>,

Results Checking

Figure 5.1: Simulation-based verification [25]

Simulation is functional verification since it isa¥ed on what is called directed tests. It
consists in generating input test vectors aimingetd a specific functionality of the design.

To get a full simulation-based verification, sintida must not be done on large pieces of the
design. Therefore, the simulation must be doneherldwest levels. There are many types of
simulation depending on the different levels of design; the designer level simulation where
a macro is verified, the unit level simulation wéer group of macros is verified, the element
level simulation where an entire logical functiokel a processor is verified and the system

level simulation where multiple chips are verifigdgure 5.2 shows the different levels of a

design called the Hierarchical design.

Swvstem

e

Chip

VANN

Macro (ALY

T

Figure 5.2: Hierarchical design [25]

42

v" Formal Method-Based Verification

The formal method-based verification [5] differorr the simulation-based verification in
that it is not based on test patterns generattororisists in proving that the implementation
meets its specification using a mathematical reagoust like a mathematical proof. Formal
verification techniques are more efficient than emion because the consideration of all
cases is implicit and consequently a full verifioatis guaranteed.

To get formally verify a design; we need to haviam@nal specification as well as a formal
description of the implementation. Figure 5.3 sumpes the principle of the formal

verification.

(Sys) (G e Beah
\\\S} stem Model) System Fapecmcanon;\

N7
AN

correct!

not correct!
(error trace)

Figure 5.3: Formal method-based verification [25]

There are three techniques in formal verificatidnichi are equivalence checking, model

checking and the theorem proving.

5.2.3 Further work

Emulation Semi-formal Formal
Verification Verification

Functional Statistical Equivalence Model Theorem
Verification Verification Checking Checking Proving

Simulation

Figure 5.4: Verification techniques

Verification techniques can be broadly classifiedoithree main categories: (1) formal
methods based techniques; (2) simulation baseditpeds; and (3) test based techniques [5].
The formal verification techniques can be furthiassified into three main categories. They
are (1) theorem proving, (2) model checking, anfl €guivalence checking. A class of
verification techniques called the semi-formal freattion techniques which combine both the
formal and simulation based techniques are alsoxeamty used.

Semiformal techniques were developed to take adgenthe best of the two techniques
(formal techniques and simulation). Emulation iseahnique in which the design and the
properties are automatically synthesized in to ward, for example on FPGA [6], thereby
increasing the simulation speed by several ordensagnitude. This technique is useful when
simulations have to be repeated several thousahdsmes, for example, in statistical
simulations, or when access to the design envirohmsenot easy. For example emulation can
be used to create a realistic environment or uspeed up the simulation by off loading the

computationally complex parts of the simulatioratbual hardware.

Figure 5.4 above shows a high level classificatbrthe verification techniques used these
days. Rest of this section briefly describes thefieation techniques and explains how some
of these techniques can be used to verify the iomality and performance of the Adaptive
Filters, such as the implementation of the Faststddean Squared (LMS) Adaptive

Equalizer [7].

v Semi-formal verification

Applying functional or statistical verification [8h our project is feasible. We have first to
define the properties to be verified, in our case, can take as property the algorithm
adaptation rate, number of samples required fovemence, average error rate or average
mean squared error noise floor once the algoritlas ¢onverged. All of these properties
provide some measure of performance of adaptivalegu implementation. Then, instead of
using testbench based on simple test vectors defipehe verifier, we formalize the property
constraints in a formal way so we get the asserttas a kind of conditions which must be
satisfied by the design. By formalizing the propeirt a formal way, we mean that the
property be described in way such that it is clelat are the conditions which will make the

property true, and what would happen if the propesrtrue and when it false.

44

Property

l

Input ——» DUT ——+& QOutput

Figure 5.5: Assertion based verification

We have to describe expected or unexpected conglitrodevice under test in a specialized
language then we have to check to make sure tinglitaans are satisfied dynamically during
simulation (functional verification) or staticallyn case of conditions failure, then a bug is
detected in the device.

In the case of the functional assertion based sitiom, we run simulation just once and then
we check if the properties are valid. Most desigage random components in it or operate in
an uncertain environment. Statistical assertiort@aschniques are used in such cases. In the
case of statistical assertion based verification m@ simulation several times and then by
applying the Monte Carlo method [9] we extract auwdtically some of the simulation results
on which we can do statistical studies and therseeeif the property constraints are satisfied
or not.

The advantages of using assertion based verifitaie that this technique is automatic and
quick in debugging a device since it is a Comboratf simulation and formal verification. It

is automatic unlike many formal methods based tegl@s such as higher order logic theorem
proving and does not have a state explosion proldean as model checking. Similar to
simulation based techniques it also cannot not ¢etely verify a design.

What is required to get good results are methodetodor choosing good assertions,
intelligent debug systems to understand and anaggertions and their results and a standard

assertion format and good tool support.

v" Theorem proving
For this project, the performance of the adaptilter§ [7] can be formally analyzed and
compared using theorem proving. We can verify mimmand maximum error bounds and

expectation and variance of error between the ¢sitpé the two implementation of the

45

adaptive filter.

First, we have to define the System Generator fif@] the Matlab [11] designs as models
written in High-Order-Logic [12] representing, resgfively, the fixed-point and the floating-

point implementations. Then, based on the outpiutisose two models, y and y', we calculate
the error which is given by the formula e=y-y'. éftthat, we can verify, given an adaptive
filter algorithm and its fixed-point implementatiovhat are the maximum and the minimum

bounds on the error using a theorem prover [1214315, 16].

We can also formally determine the statistical prips of the error. For example, its
expectation, E[e], and its variance, VAR[e] [17]otB the error bounds and the statistical
properties will be generalized expressions in tesfrthe parameters of the adaptive algorithm
and its implementation.

Figure 5.6 summarizes the performance analysisadetbgy using theorem proving.

Model 1 Model 2 Specification
FPGA Matlab

\

€ ax E[e] - * Theorem
€ min VAR]e] - s Prover
Proof of
Correciness

Figure 5.6: Performance analysis methodology widotem proving

The use of the theorem proving as a formal perfageanalysis and verification technique,

even though it needs some expertise, but it is muate useful and efficient than the run time

46

verification or simulation since it provides resudts general expressions from which we can
do verification for all possible cases which is tie# case for simulation because to verify for
all possible cases we may need an infinite amottne which is impossible.

a7

Bibliography

1. Chun-Nan Chen, Kuan-Hung Chen, and Tzi-Dar Chiuvdbdrithm And Architecture
Design For A Low-Complexity Adaptive Equaliz&tEE, 2003, PP 11304-11307.

2. Gabriel Bucco, Matthew Trinkle, Doug Gray and Wik Cheuk FPGA
Implementation of a Single Channel GPS Interferévitgation Algorithni Journal of
Global Positioning Systems (2004) Vol. 3, No. 16-114.

3. Chris Dick and Fred HarriFPGA QAM Demodulator Desi§ispringer-Verlag Berlin
Heidelberg 2002, PP. 112-121.

4. J. G. ProakisDigital CommunicationsMcGraw-Hill, New York, NY, USA, 4th edition,
2001.

5. William K. Lam. Hardware Design Verification: Simulation and Forndkthod-based
Approaches2005: 1-23.

Wiley. FPGA-based implementation of signal processingesys2008

Simon Haykin Communication Systemd” Bdition 2009.

Foster, Harry, Krolnik, Adam, Lacey, Davilssertion-Based Design’“&dition 2004.

© © N o

Rubenstein, Reuven Y, Kroese, Dirk P, Botev, Zkoaly Taimre, ThomasSimulation
and Monte Carlo Method "2edition 2008.

10. http://www.xilinx.com/support/sw manuals/sysgenpd£3

11. http://www.mathworks.com/
12. M. J. C. Gordon and T. F. Melhanintroduction to HOL: A theorem proving

environment for higher order logid 993

13. Matt Kaufmann, Panagiotis Manolios and J StroMeore. Computer-Aided Reasoning
ACL2 Case Studie2000.

14. http://pvs.csl.sri.com

15. http://isabelle.in.tum.de/

16. http://coq.inria.fr/

17. Richard A. JohnsonMiller & Freund's probability and statistics for gmeers, 8th
edition

18. Xilinx Inc.:

http://www.xilinx.com/tools/sysgen.htm
http://china.xilinx.com/publications/prod mktg/pri@B76-2.pdf

19. Auto ESL Inc.:

48

http://www.autoesl.com/

20.Synphora Inc. :
http://www.synphora.com/

21.Mentor Graphics :
http://www.mentor.com/products/esl/high level swsils/catapult synthesis/
http://www.mentor.com/products/esl/high_level swsils/catapult synthesis/upload/
Catapult_DS.pdf

22.Myles O Fril,Frequency Domain Adaptive Filteriniylaster’s thesis, National
University of Ireland, 2005.

23.P. A. DmochowskiFrequency domain equalization for high data ratdtipath
channels Master's thesis, Queen's University, 2001

24.Christophe LaotEgalisation autodidacte et turbo-égalisation, Apption aux canaux
sélectifs en fréquencPhD thesis, Université de Rennes 1, 1997

25. Sofiene Taharormal verification 2000

49

