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Abstract

Quantitative theories in information flow is becoming nowadays very important
in the area of information system security. It is so indispensable in different
fields such as secure information flow, anonymity protocols and side-channel
analysis. In fact, there is a growing interest in applying these theories in electronic
communication, auctioning, voting and payment.
The consensus of quantitative information flow was introduced under the context
of Shannon entropy and mutual information. The main goal of quantitative
information flow is to compute the bounds of the threat that a secret information
is leaked due to an external attack.
Our major focus in this work is to model the risk that the secret is correctly
guessed in one try. Considering this model, we argue that the proposed consensus
based on Shannon entropy failed to give good security guarantees; it sometimes
leads to a confusion, this was mentioned by G. Smith, where the problem is that a
random variable with high vulnerability to be guessed can have a large Shannon
entropy.
We propose to use min-entropy and belief-min-entropy as better alternatives. The
latter one is taking into account the attackers’ extra knowledge. Both of these
notions will be used in order to model and analyze the information leakage in
deterministic and probabilistic systems. We will conduct our work in the core of
the Higher-Order-Logic Theorem Proving in which we are going to formalize the
new concepts previously presented. We will then apply our theory to analyze the
information behavior in a cascade of channels. We prove that the leakage of two
cascade channels can not exceed the leakage of the first channel.

Key Words: Information Flow, Security Systems, Min-Entropy, Belief-Min-
Entropy, Information Theory, Quantitative and Probabilistic Models, Vulnerability.
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Résumé

La notion de théories quantitatives dans le flux d’information est de plus fréquente,
elle a une grande importance dans le domaine de la sécurité des systèmes d’information.
Elle est donc indispensable dans différents domaines tels que le flux d’informations
sécurisé, protocoles anonymat et l’analyse des canaux litéraux. En fait, il y a
un intérêt croissant pour l’application de ces théories dans la communication
électronique, vente aux enchères, les systèmes de vote et le paiement en ligne.
Le flux quantitatif d’information a été introduit dans le contexte de l’Entropie
de Shanon et l’Information Mutuelle. L’objectif principal de circulation de
l’information quantitative est de calculer les limites de la menace qu’une in-
formation secrète soit révélée.
Notre objectif majeur dans ce travail est de modéliser le risque que le secret est
bien deviné à premier coup. Considérant ce modèle, nous soutenons que le con-
sensus proposé, basée sur l’entropie de Shanon, omis de donner quelques bonnes
garanties de sécurité, il conduit parfois à des confusions, nous pouvons le voir dans
l’exemple proposé dans, où le problème est qu’une variable aléatoire avec une forte
vulnérabilité à deviner peut avoir une grande entropie de Shanon.
Nous allons donc utiliser de meilleures alternatives au lieu des traditionnelles
proposées par Shanon, l’une basée sur l’entropie Rényi, qui est l’entropie minimale
et l’autre est en tenant compte des croyances supplémentaires des attaquants, ce
qui est l’entropie minimale à croyance. Ces deux notions seront utilisées afin de
modéliser les fuites d’informations et de les analyser pour les systèmes détermin-
istes ainsi que ceux probabilistes.
Mots clés: Flux d’Information, les systèmes de sécurité, Entropie Minimale,
Entropie Minimale à Croyance, Théorie de l’Information, Modèles Quantitatifs et
Probabilistes, Vulnérabilité.
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Chapter 1

Introduction

1.1 Motivation

In critical systems, protecting the confidentiality of sensitive information is one
of the most fundamental security issues. It becomes increasingly important in
many fields such as communication, auction, online merchant services and voting.
One of the classical way is to try to enforce noninterference, this approach says
that low outputs and high inputs are independent; i.e. seeing the low output, the
system should reveal nothing about the high input.

Unfortunately, avoiding the interference is not always easy, because sometimes
we have to reveal information that depends on the high inputs. In a password
checker for example, we have to reject an incorrect password, but this reveals
information about what the secret password is not. One approach to relaxing
noninterference is to develop a quantitative theory of information flow that lets us
talk about “how much” information is being leaked.

For that reason, many protocols for security and protection of the confidentiality
have been proposed. Recently, all the frameworks aiming to analyze and verify
these kinds of protocols have been designed based on probabilistic behaviors and
approaches. In fact, the data to be protected often range in real domains which
means that they are characterized by statistical properties. These protocols often
use randomised strategies to put out the relation between the information to be
protected and the observable outcomes.
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To illustrate this phenomena, we can cite DCNets (Dining Cryptographers) [2],
Crowds [17], Onion Routing [20], and Freenet [13] that are protocols using the
principle of hiding the secret information.

From the formal point of view, the degree of protection is the inverse of the
leakage, i.e. the quantity of the secret information that can be revealed from the
observable. Recent techniques of information hiding using possibilistic approaches
have been replaced by nondeterminism. Some examples of these approaches are
those based on epistemic logic [8], which is a logic of knowledge and belief, and
on process algebra, also called process calculi [18] which is a family of approaches
for formally modelling concurrent systems. It has recently been revealed that the
possibilistic view is too abusive, it uses to consider systems of different degrees
of protection equivalent. For that reason, using the probabilistic approaches is
therefore more appropriate due to their high level of protection. These techniques
express the property of not revealing “quantitative” information about the secrets.
In order to express the degree of protection in a quantitative way, we have to go
through the notions of Information Theory and Statistics which are going to be
detailed in the next chapters.

1.2 Problem Description

The main problem in this project is how to quantify the information flow and
analyze it in order to minimize or even avoid, when it is possible, the information
leakage and then decrease the vulnerability of the system. In other words, having
two distributions, the higher input and the low output, we try to quantify the
system uncertainty with an appropriate model that offer a better way to evaluate
the security of the confidential data of the secret input.

The model proposed should cover the different type of programs, both determin-
istic and probabilistic which is the more common. Another issue that we should
take care of is the behavior of the program when an adversary’s extra knowledge
about the input is introduced. That means the attacker has an initial “belief”
about the secret information in addition to the observable output. The challenge is
to decrease the vulnerability of critical systems, in which a confidential information
is correctly guessed in one try.
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Figure 1.1: Problem Description

1.3 State of the Art

In this section we are going to give an overview about some techniques that
could be used in the analysis of probabilistic systems and especially, the information
systems. We will show how suitable each technique is in relation to our problem.
Then we will present some related work that have been conducted in the area
formalization of information theory.

1.3.1 Probabilistic Analysis Techniques

Due to the large domain of probability, many researchers around the world are
trying to improve the quality of computer based probabilistic analysis. In the
information theory, the notion probability theory is strongly recommended since
all the quantities of information are measured and analyzed using probabilities.
The challenge within the probabilistic analysis is to afford a framework that
ensure precise and accurate analysis methods, can be used to analyze a variety
of problems, and of course can be used easily. So, we provide a brief account of
the state of-the-art probabilistic analysis approaches that have been used in the
analysis of critical systems.
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Simulation

Today, one of the major technique used is simulation [5] which is the most
commonly used computer based probabilistic analysis technique. Simulation is
an important feature in engineering systems or any system that involves many
processes. For example in electrical engineering, delay lines may be used to simulate
propagation delay and phase shift caused by an actual transmission line.

Computer simulation has become a useful part of modeling many natural
systems as well as in engineering to gain insight into the operation of those systems.
A good example of the usefulness of using computer simulation can be found in
the field of network traffic simulation and information flow transactions. In such
simulations, the model behavior will change each simulation according to the set
of initial parameters assumed for the environment.

As an example of works related to the information analysis using simulation we
can mention the “Reconciling belief and vulnerability in information flow” [9].

Model Checking

Probabilistic model checking resolves the problem of: given a model of a system,
test automatically whether this model meets a given specification. Typically, the
systems one has in mind are hardware or software systems, and the specification
contains safety requirements such as the absence of deadlocks and similar critical
states that can cause the system to crash. Model checking is a technique for
automatically verifying correct properties of finite-state systems.

Model checking can be also considered as a technique for verifying finite state
concurrent systems such as sequential circuit designs and communication protocols.
As far as we know there is no previous work related to the verification of the
information flow that uses the model checking as a probabilistic technique.

It has a number of advantages over traditional approaches that are based on
simulation, testing, and deductive reasoning. In particular, model checking is
automatic and usually quite fast. Also, if the design contains an error, model
checking will produce a counterexample that can be used to pinpoint the source
of the error. But from another point of view it is limited to finite state spaces.
Our problem can not be handled with finite state machine because sometimes the
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state space is infinite. The model checking is not very expressive to tackle such
problem; we are using many quantifiers over functions and variable, things that
that this approach can not do.

Theorem Proving

Theorem proving [7] is another widely used formal verification technique. We
first mathematically model the problem to be analyzed and then verify some
properties using computer based formal tools. Formal logics as a modeling medium
makes theorem proving a technique that formally verifies any system that can be
described mathematically, and this gives theorem proving verification approach
more flexibility. Theorem provers are mainly based on some well-known axioms
and inference rules. Any new theorems must be created from the basic axioms
and inference rules or any other theorems already proved.

Probabilistic analysis based on higher-order logic theorem prover can be con-
ducted by first modeling the behavior of the system that needs to be analyzed in
higher-order logic, while expressing its random elements in terms of formalized
random variables. The next step is using this model to express the probabilistic
and statistical properties of the system. For this effect, we need to have to know
definitions of probabilistic and statistical properties of random variables in the
environment of higher-order logic, such as, PMF, CDF, expectation and variance,
etc. Finally, theorems corresponding to the probabilistic and statistical properties
of the system model can be mechanically checked for correctness in a theorem
prover.

The above mentioned theorem proving based probabilistic analysis approach
tends to overcome the limitations of the two previous approaches. Due to the
formal nature of the models and properties, probabilistic analysis carried out in a
theorem proving environment will be free from any approximation and precision
issues. Similarly, the high expressibility of higher-order logic allows us to analyze a
wider range of systems without any modeling limitations, so that it can overcome
the state-space explosion problem in the case of probabilistic model checking.
In the environment of theorem proving no work has been conducted in the infor-
mation hiding area.
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1.3.2 Formalization of Information Theory

After presenting some approaches of the probabilistic analysis that could be
useful to conduct the quantification and the verification of the information flow,
we present here some of the works related to our project.

The foremost requirement for conducting the formal probabilistic analysis of
the quantitative information flow problem in a theorem prover is to have access
to a higher-order-logic formalization of probability and information fundamentals.
Several formalizations of those notions have been reported in the open literature.

Coble [4] formalized the main concepts of Lebesgue integration and further
used these fundamentals to formalize the information theory in HOL. He analyzed
the quantitative information flow and in order to define the mutual information
he utilized the product space as well as the Radon-Nikodym derivative. He used
that formalized theory to analyze the privacy and the anonymity guarantees and
proposed the Dining Cryptographers as a case study for that. However, Coble’s
formalization of Lebesgue integral can only consider finite-valued measures, func-
tions and integrals.

Building on top of Coble’s work, Mhamdi [15] generalized the formalizations of
the probability and information theory by introducing the notion of extended real
numbers, the Borel sigma algebra which covers larger classes of functions in terms
of integrability and convergence. He further used these fundamentals to formalize
the measure of entropy, relative entropy and mutual information.

In parallel to the previous work, J. Hölzl[12, 11] formalized also, in the en-
vironment of Isabelle/HOL, a generic version of the measure, probability and
information theory. His definition was done in the same way in Coble’s work.
He used the measure and the probability theories to define the Kullback-Leibler
divergence, entropy, conditional entropy, mutual information and conditional mu-
tual information and verify the properties related to the quantification of the
information represented by a random variable.
We are going to utilize in our project the theories, probability and information,
formalized in Mhammdi’s work due to their completeness and availability in HOL
in order to formally verify the information flow using min-entropy and belief-min-
entropy. The analysis results can be claimed to be 100% precise, which is an
achievement that has not been reported in the open literature so far.
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1.4 Proposed Method

After revealing the problem we want to deal with, the related works and the
different techniques that could be used in order to overcome this problematic, we
present in this section our proposed solution that we adopted within this project.
Considering the foundations of quantitative information flow, our model will be

Figure 1.2: Proposed Methodology Overview

described as a program (protocol) having a high input H and produces a low
output L. An attacker A can observe L and may be able to get some information
about H. We would like to quantify the amount of the initial uncertainty (H), the
amount of the remaining uncertainty and the difference between them which is
the amount of the information leacked from L.
Our major goal can be described following the schema below:

“initial uncertainty = information leacked + remaining uncertainty”

In order to analyze the previous schemas we defined a new framework based on
Min-Entropy and Belief Min-Entropy. We first formalize the entropies we need to
quantify the previous uncertainties. Then we start proving the different related
properties. We consider deterministic and probabilistic program c having as input
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Figure 1.3: Information Flow Analysis

H and producing L.
During the whole process, we focus our attention on a specific threat model: the
probability that the value of H can be correctly guessed by an adversary A in one
try.

Because of the limitations of the consensus related to Shanon entropy, we
propose other alternatives that are based on the concept of vulnerability which is
in close relation with the Bayes risk. The vulnerability V (X) is the maximum of
the distributions of X. This measure is considered to be the worst-case that the
secret information is correctly guessed in one try.
We then generalize our model to take into account the attacker’s belief. The idea
says that the adversary assumes some knowledge about the a priori distributions
of the hidden input and its correlation. We use here then the belief-vulnerability
which is the expected probability of guessing the hidden input in one try given the
adversary’s belief. In other words, the adversary chooses the value of the secret
input having the maximum a posteriori probability according to his belief. The
belief-vulnerability of the secret information is then expressed as a function of the
a posteriori distributions and the the adversary’s knowledge.
We finally showed the strength of our model and definitions by applying them to
various threat scenarios.
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1.5 Outline of the Report

After presenting the problematic and the way to overcome it, the rest of the
thesis will be organized as follows: In Chapter 2, we are giving an overview about
the preliminaries and what we will need in order to tackle this work. We first
introduce the environment of work, which is HOL theorem prover, the useful
theories which are the Probability and the Information theories, and then a brief
description of the entropy measures, the min-entropy and the belief-min-entropy.
In the next 2 chapters, Chapter 3 and Chapter 4, we will detail the work by
describing the new definitions, proving the related properties, quantifying the
amount of uncertainty and analysing the information flow for probabilistic and
deterministic programs using Min-Entropy and Belief Min-Entropy.
Chapter 4 will then show the strength of our theoretical work by applying the
formalizations on different scenarios of threat programs. We will also show the
usefulness on a case study, Min-Entropy leakage of channels in cascade. In this
application we prove that the min-entropy leakage of a cascade of two channels
can not exceed the leakage of the first channel.
In the final chapter we will give an overview about what it has been done and
present some future works that will be handled later on.

9



Chapter 2

Preliminaries

This section will cover the different utile notions related to our work that we
are going to use in order to resolve our problem as well as the environment in
which our project will be conducted.

2.1 HOL Theorem Proving

Higher-Order Logic (HOL) [7, 1] is an interactive theorem prover developed by
Mike Gordon at the University of Cambridge for conducting proofs in higher-order
logic. It utilizes the simple type theory of Church [3] along with Hindley-Milner
polymorphism [16] to implement higher-order logic. HOL has been successfully
used as a verification framework for both software and hardware as well as a
platform for the formalization of pure mathematics. In mathematics and logic, a
higher-order logic is a form of predicate logic that is distinguished from first-order
logic by additional quantifiers and a stronger semantics. Higher-order logics with
their standard semantics are more expressive, but their model-theoretic properties
are less well-behaved than those of first-order logic.

The term "higher-order logic" is commonly used to mean higher order simple
predicate logic. Here "simple" indicates that the underlying type theory is simple,
not polymorphic or dependent.
The HOL System is an environment for interactive theorem proving in higher order
logic. Its most outstanding feature is its high degree of programmability through
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the meta-language ML. The system has a wide variety of uses from formalizing
pure mathematics to verification of industrial hardware. Academic and industrial
sites world-wide are using HOL. HOL denotes a family of interactive theorem
proving systems sharing similar (Higher order) logics and implementation strategies.
Systems in this family follow the LCF approach as they are implemented as a
library in some programming language. This library implements an abstract data
type of proven theorems so that new objects of this type can only be created using
the functions in the library which correspond to inference rules in higher-order-logic.
As long as these functions are correctly implemented, all theorems proven in the
system must be valid. In this way, a large system can be built on top of a small
trusted kernel.

One of the advantages of HOL is that it is not limited by the size of the state
space. Large systems that cannot be verified using the model checker can still be
verified by the theorem prover. The use of formal logics as a modeling medium
makes theorem proving a very flexible verification technique as it is possible to
formally verify any systems that can be described mathematically.

The soundness of HOL theorem proving guarantees that valid results are
provable; hence, overcoming the inaccuracies of simulation and paper-and-pencil
based techniques. Higher-order logic is a system of deduction with a precise
semantics and is expressive enough to be used for the specification of almost all
classical mathematics theories. Due to its high expressiveness, higher-order logic
can be utilized to precisely model the behavior of any system, while expressing its
random or unpredictable elements in terms of formalized random variables, and
any kind of system property, including the probabilistic and statistical ones, as
long as they can be expressed in a closed mathematical form.

2.2 Probability Theory

Probability provides mathematical models for random phenomena and experi-
ments. The purpose is to describe and predict relative frequencies (averages) of
these experiments in terms of probabilities of events. The classical approach to
formalize probabilities, which was the prevailing definition for many centuries,
defines the probability of an event A as p(A) = NA

N
, where NA is the number of
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outcomes favorable to the event A and N is the number of all possible outcomes
of the experiment. Problems with this approach include the assumptions that
all outcomes are equally likely (equiprobable) and that the number of possible
outcomes is finite. Kolmogorov later introduced the axiomatic definition of
probability, which provides a mathematically consistent way for assigning and
deducing probabilities of events.

This approach consists in defining a set of all possible outcomes, Ω, called the
sample space, a set F of events which are subsets of and a probability measure p
such that (Ω, F, p) is a measure space with p(Ω) = 1. Using measure theory to
formalize probability has the advantage of providing a mathematically rigorous
treatment of probabilities and a unified framework for discrete and continuous
probability measures. In this context, a probability measure is a measure function,
an event is a measurable set and a random variable is a measurable function. The
expectation of a random variable is its integral with respect to the probability
measure.
Definition 2.2.1. (Probability Space)

(Ω, F, p) is a “probability space” iff it is a measure space and p(Ω) = 1. A
probability measure is a measure function and an event is a measurable set.
Definition 2.2.2. (Independent Events)

Two events A and B are independent iff p(A ∩ B) = p(A)p(B). Here A ∩ B
is the intersection of A and B, that is, it is the event that both events A and B
occur.
Definition 2.2.3. (Random variable)

X : Ω → R is a “random variable” iff X is (F,B(R)) measurable where F
denotes the set of events. Here we focus on real-valued random variables but the
definition can be adapted for random variables having values on any topological
space thanks to the general definition of the Borel sigma algebra.
Definition 2.2.4. (Independent Random variable)

Two random variables X and Y are independent iff ∀A,B ∈ B(R), the events
X ∈ A and Y ∈ B are independent.
The set X ∈ A denotes the set of outcomes ω for which X(ω) ∈ A. In other
words X ∈ A = X−1(A). Equivalently, X and Y are independent iff ∀A,B ∈
B(R), p(X ∈ A ∩ Y ∈ B) = p(X ∈ A).p(Y ∈ B). The event X ∈ A is used to
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define the probability mass function (PMF) of a random variable.
Definition 2.2.5. (Probability Mass Function : PMF)

The “probability mass function” pX of a random variable X is defined as the
function assigning to A the probability of the event X ∈ A.

∀A ∈ B(R), pX(A) = p(X ∈ A) = p(X−1(A)) (2.1)

The joint PMF of two random variables and of a sequence of random variables are
defined as

∀A,B ∈ B(R), pXY (A,B) = p(X ∈ A ∩ Y ∈ B) = p(X−1(A) ∩ Y −1(B)) (2.2)

∀A1, ..An ∈ B(R), pX1X2..Xn(A1, ..An) = p(
n⋂
i=1

Xi ∈ Ai) = p(
n⋂
i=1

X−1
i (Ai)) (2.3)

Definition 2.2.6. (Expected value)

The “expected value” of a random value X is defined as the integral of X with
respect to the probability measure. E[X] =

∫
ΩXdp The properties of the expectation

are the following

• E[X + Y ] = E[X] + E[Y ]

• E[aX] = aE[X]

• E[a] = a

• X ≤ Y then E[X] ≤ E[Y ]

• X and Y are independent then E[XY ] = E[X]E[Y ]
Definition 2.2.7. (Variance and Covariance)

The “variance” of a random variable X is defined as V ar(X) = E[| X − E[X] |2].
The “covariance” of two random variables X and Y is defined as Cov(X, Y ) =
E[(X − E[X])(Y − E[Y ])]. Two random variables X and Y are uncorrelated iff
Cov(X, Y ) = 0. The variance and covariance have the following properties

• V ar(X) = E[X2]− E[X]2

• Cov(X, Y ) = E[XY ]− E[X]E[Y ]
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• V ar(X) ≥ 0

• ∀a ∈ R, V ar(aX) = a2V ar(X)

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

• If X,Y uncorrelated then V ar(X + Y ) = V ar(X) + V ar(Y )

• If ∀i 6= j,Xi, Xj are uncorrelated,then V ar(∑N
i=1Xi) = ∑N

i=1 V ar(Xi)

2.3 Information Theory

In this section we briefly describe the different notions of the Information Theory
that shore our work and illustrate our model.
Information Theory [14] is a branch of quantifying information. It is used in
different area such as signal processing, data compression, storing and communi-
cating data. Recently, it was commonly used in cryptography and information
flow analysis [19]. We use different tools of information theory to reason about
the uncertainty of a random variable.

The most important elements of the information theory are the entropy, the
mutual information, the relative entropy, the conditional entropy and the Rényi’s
entropy.
Let X, Y to denote discrete random variables and the corresponding x, y and
X ,Y for their values and set of values respectively. We denote by p(x), p(y) the
probability of x and y respectively and by p(x, y) their joint probability. The
Shannon entropy (X) of X is defined as:

H(X) = −
∑
x∈X

p(x)log p(x) (2.4)

The entropy measures the uncertainty of a random variable. It takes its maximum
value log|X | when X is uniformly distributed and its minimum value 0 when X is
a constant. We take the logarithm with a base 2 and thus measure entropy in bits.
The conditional entropy:

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y)log p(x|y) (2.5)
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measures the amount of uncertainty of X when Y is known. It can be shown
that 0 ≤ H(X|Y ) ≤ H(X) with the leftmost equality holding when Y completely
determines the value of X and the rightmost one when Y reveals nothing about X,
i.e., X and Y are independent random variables. Comparing H(X) and H(X|Y )
give us the notion of mutual information, denoted I(X;Y ) and defined by:

I(X;Y ) = H(X)−H(X|Y ) (2.6)

It is non-negative, symmetric and bounded byH(X). In other words 0 ≤ I(X;Y ) =
I(Y ;X) ≤ H(X). The relative entropy or Kullback-Leibler distance between 2
probability distributions p and q on the same set X , denoted D(p‖q), is defined as:

D(p‖q) =
∑
x∈X

p(x)log p(x)
q(x) (2.7)

It is non-negative (but not symmetric) and it is 0 if and only if p = q. The relative
entropy measures the inaccuracy or information divergence of assuming that the
distribution is q when the true distribution is p. The guessing entropy G(X) is the
expected number of tries required to guess the value of X optimally. The optimal
strategy is to guess the values of X in decreasing order of probability. Thus if
we assume that X = {x1, x2, . . . , xn} and xi’s are arranged in decreasing order of
probabilities, i.e., p(x1) ≥ p(x2) ≥ . . . ≥ q(xn), then

G(X) =
∑

1≤i≤n
ip(xi) (2.8)

The min-entropy H∞(X) of a random variable is given by:

H∞(X) = −log maxx∈X p(x) (2.9)

It is an instance of the Rényi-entropy

Hα(X) = 1
1− α log (

∑
x∈X

P [X = x]α) (2.10)

with α =∞. The min-entropy measures the difficulty for an attacker to correctly
guess the value of X in one try (obviously using the optimal strategy above). It
can be shown that H∞(X) ≤ H(X) with equality when X is uniformly distributed.
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In general, H(X) can be arbitrary higher than H∞(X), since it can be arbitrary
high even if X assumes a given value with probability close to 1.
The belief-min-entropy of two random variables X and Y , such that X describes
the input distribution and Y describes the adversary’s additional information
about X, is given by:

H∞(X : Y ) = −log (
∑
y∈Y

pρ(y) 1
|Γy|

∑
x∈Γy

pρ(x|y)) (2.11)

where Γy = argmaxx∈X pβ(x|y) such that pρ denotes the a priori input distribution
and pβ denote the a priori adversary’s assumed distribution.
The following table provides an overview about the HOL4 functions and symbols
we are going to use
As we mentioned above, our main concern in this project is to evaluate the security

Table 2.1: HOL Symbols and Functions
HOL Symbol Meaning

∀ Logical for all
∃ Logical exists
∧ Logical and
∨ Logical or

(a, b) A pair of two elements
λx.fx Function that maps x to f(x)
∅ Empty Set

a ∈ S a in S
FINITE S S is a finite set

A ⊆ B A is a subset of B
A ∩ B A intersection B
A ∪ B A union B

disjoint A B Sets A and B are disjoint
extreal_max_set A The maximum element in a set A

IMAGE f A Set with elements f(x) for all x ∈ A
SIGMA (λn. f n) s

∑
n∈s f(n)

distribution p X Probability function (λ x.p(X = x))
random_variable X p Borel Random variable function

properties of the confidential information. So in the next two chapters we are going
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to describe the work that we did. They will cover the different approaches and
formalizations that are needed in order to conduct the analysis of the information
flow. The first one will handle the different notions related to the analysis of the
information leakage using the min-entropy and the second part will focus on the
analysis using the belief-min-entropy.
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Chapter 3

Formal Analysis of Information
Flow Using Min-Entropy

Due to the lack of the consensus on the Shanon entropy we are going to explore
other alternatives offering measures that better evaluate the security regarding
the probability of guessing the secret input H in one try.

3.1 The A Priori Behavior

In order to model that solution, we propose to use the notion of the vulnerability
that will be used to define information leakage based on min-entropy.

Definition 3.1.1. (The Vulnerability of a Random Variable)

Given a random variable X with the space of possible values X , the vulnerability
of X, denoted V (X), is given by

V (X) = max
x∈X

P [X = x]. (3.1)

The vulnerability V (X) is then considered as the worst-case probability that the
adversary A can guess the value of X correctly in one try.

It is clear from this definition that it only depends on the maximum of the
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distribution of X, which means that it is only focusing on the greatest risk of
guessing X. Here, this measure is a probability so it is always between 0 and
1. But since we would like to quantify the information flow, which is in bits, we
extend the definition of the vulnerability into an entropy that maps V (X). This
measure is known as the min-entropy.
Definition 3.1.2. (The Min-Entropy)

The min-entropy of a random variable X, denoted H∞(x), is given by

H∞(X) = −log(V (X)) = −log(max
x∈X

P [X = x]) (3.2)

In Higher-Order-Logic (HOL), in order to formalize that notion, we need first to
define a function that returns the maximum of a set and the base-2 logarithm.
Once done the min-entropy is expressed in HOL by

` min_entropy H p = -log(extreal_max_set(IMAGE(λh.

distribution p H {h}) (H(Ω)))

where the extreal_max_set refers to the function returning the maximum of
a set, and IMAGE f s return the image of a set s by f .
After defining the notion of min-entropy, we prove its related properties. We first
prove the following property
Theorem 3.1.1. (Upper bound of the Min-Entropy)

∀x b. x ∈ X and (P [X = x] ≤ 2−b)⇒ b ≤ H∞(x)

This property determines an upper bound of the min-entropy.By just reasoning
about the value of the distribution of the random variable, we can get the maximum
value that H∞ can reach.

In case the random variable is uniformly distributed among n values, where
n is the cardinal of the set H (|H|), the min-entropy H∞ is equal to log n. In
Higher-Order-Logic we formalize this theorem as following

` ∀p H. FINITE (Ω) ∧ (random_variable H p Borel) ∧
∀h. h ∈ H(Ω) ⇒ distribution p H {h}= 1

|H(Ω)| ⇒
min_entropy H p = log |H(Ω)|

where Ω = p_spacep. In this theorem, the first assumption is needed for the
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computation of the maximum of a set, because this function is only defined for
finite sets. The proof of that property is simple, we first rewrite the distribution
by its value expressed in the 4th assumption and then with the logarithm property
we get the expected result.

3.2 The A Posteriori Behavior

In the previous section, we only considered the high input which is the initial
uncertainty, that was modeled by the Min-Entropy (H∞(H)). In this section, in
order to quantify the information leakage, we need another quantity that models
the remaining uncertainty. Corresponding to the schema we considered before

“information leakage = initial uncertainty - remaining uncertainty”

the remaining uncertainty will be modeled by the conditional min-entropy.
As a first step, we consider the conditional vulnerability, which gives the expected
probability of guessing X in one try, given Y :
Definition 3.2.1. (The Conditional Vulnerability)

Given (jointly distributed) random variables X and Y , the conditional vulnera-
bility V (X|Y ) is defined as

V (X|Y ) =
∑
y∈Y

P [Y = y]V (X|Y = y) =
∑
y∈Y

P [Y = y] max
x∈X

P [X = x|Y = y] (3.3)

For the probabilistic programs we notice that it is easier to calculate V (H|L)
from the a priori distribution on H and the matrix of conditional distribution
P [L = l|H = h]. This relation is expressed by the Bayes’ rule
Theorem 3.2.1. (The Bayes’ Rule)

P [H = h|L = l]P [L = l] = P [L = l|H = h]P [H = h] (3.4)

The formal version of this theorem in HOL is

` ∀p H L h l. FINITE (Ω) ∧ random_variable H p Borel ∧
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random_variable L p Borel ∧
(∀h. h ∈ Ω ⇒ {h} ∈ events p) ⇒
conditional_distribution p H L (h,l) * distribution p

L l =

conditional_distribution p L H (l,h) * distribution p

H h

Using the Bayes’ rule, we can conduct the following analysis that gives us another
form of the conditional vulnerability (later the conditional min-entropy)

V (H|L) =
∑
l∈L

P [L = l]V (H|L = l)

=
∑
l∈L

P [L = l] max
h∈H

P [H = h|L = l]

=
∑
l∈L

max
h∈H

P [H = h|L = l]P [L = l]

=
∑
l∈L

max
h∈H

P [L = l|H = h]P [H = h]

(3.5)

We next define the conditional min-entropy that will model the remaining un-
certainty, which is the probability of guessing the value of X after observing the
output.
Definition 3.2.2. (The Conditional-Min-entropy)

The conditional min-entropy of two random variables X and Y , denoted
H∞(X|Y ) is defined as

H∞(X|Y ) =log 1
V (X|Y )

=− log(V (X|Y ))0

=− log(
∑
y∈Y

max
x∈X

P [Y = y]P [X = x|Y = y])

(3.6)

Formally, this definition is expressed in HOL as follows

` ∀p H L.
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conditional_min_entropy p H L = - log(
∑

l∈L(Ω)
extreal_max_set(

IMAGE (λh. distribution p L{l} *

conditional_distribution p H L ({h},{l})) (H(Ω))))

where SIGMA f s means ∑
x∈s f(x)

We will then use our new definitions to formalize the information leakage. This
quatity is expressed as the difference between the quantity of information in the
input (initial uncertainty) and the one in the output (remaining uncertainty),
previously modeled respectively by the Min-Entropy (H∞(H)) and the conditional
min-entropy (H∞(H|L)).
Definition 3.2.3. (The Information Leakage)

The information leaked between two distributions of random variables X and
Y , denoted IL(X;Y ), is

IL(X;Y ) = H∞(X)−H∞(X|Y ) (3.7)

We focus next on some specific programs, especially deterministic programs with a
uniformly distributed input. In order to do that, we have to express the condition
that we defined as follows
Definition 3.2.4. (The Determinism Condition)

` ∀L c. deterministic_cond L c = (L = (λx. c))

We established this condition over the output random variable which is the best
way to express the determinism which means that the output value is always
known. This definition operates over a random variable and assign to it a constant.
It leads us to extract a number of consequences that will guide us through our
analysis. The following results will be based on the determinism condition. As a
first result, the conditional-distribution (P (L|H)) will only take the values 0 and
1.
Theorem 3.2.2. (Deterministic Conditional Distribution Cases)

` ∀p H L h l. (prob_space p) ∧
∀h. h ∈ (Ω) ⇒ {h} ∈ events p ∧
FINITE (Ω) ∧
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deterministic_cond L c ⇒
conditional_distribution p L H ({l},{h}) = 1 ∨
conditional_distribution p L H ({l},{h}) = 0

As a direct consequence of the previous result, the input state space can be
described as the union of two sets depending on the value of P(L|H)
Theorem 3.2.3. (Deterministic Events’ Space)

∀L l. H = {h|h ∈ H ∧ P (L = l|H = h) = 0} ∪ {h|h ∈ H ∧ P (L = l|H = h) = 1}
(3.8)

The proof of this theorem is based on Theorem 3.2.2 and some notions from the
set theory.

After proving all the properties we need to compute the information leakage
for deterministic programs. The mathematical description of that theorem is
Theorem 3.2.4. (Information Leakage for Deterministic Program)

If a program is deterministic modeled by an initial uncertainty H and a remain-
ing uncertainty L whenre H is uniformly distributed, then the information leaked
is log|L|

IL∞(H;L) = log|L| (3.9)

This result is expressed in HOL as

` ∀H L p. FINITE (Ω) ∧ random_variable H p Borel ∧
random_variable L p Borel ∧ ∀h.h∈(Ω)⇒{h}∈ events p ∧
∀h.h∈ H(Ω)⇒(distribution p H {h} = 1

|H|) ∧
deterministic_cond L c ⇒
information_leakage p H L = log|L|

The proof of this result was conducted using Theorem 3.2.2 and Theorem 3.2.3
that have been extracted from the determinism condition, rewriting techniques
and notions from the set theory as well as the following property related to the
maximum of two sets that was proved in the meanwhile

max(s ∪ t) = max(max s,max t) (3.10)
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where the max in bold refers to the maximum of two extended reals and the other
max refers to the maximum of a set. The interpretation of the result proved in
Theorem4 is that for a deterministic program with a uniformly distributed input,
the information leaked depends only on the output of the program. That says the
larger the output space is, the greater the quantity of information leaked will be.

We mentioned in this chapter a model for quantifying the information flow using
the consensus of the min-entropy. The high secret input or the initial uncertainty
was modeled by H∞(H), the remaining uncertainty by H∞(H|L) and the difference
between these two measures gives us how mach information has been leaked. We
also tackled a special case of the deterministic programs and proved that for this
kind of programs the quantity of information leaked depends only on the observable
output, the larger the output state space is, the more vulnerable the system is.

In the next chapter we will present another model to analyze the information
flow. This approach will take into consideration the attacker’s belief defined as an
extra knowledge about the system behavior.
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Chapter 4

Formal Analysis of Information
Flow Using Belief Min-Entropy

In this chapter we are going to tackle the information flow analysis using a
different approach taking into consideration the adversary’s extra knowledge about
and the behavior of the program.
As mentioned in the previous section , we are going also to use the notion of
vulnerability as a starting point and we are going to define the belief-vulnerability.
For that quantity we are going to distinguish between the a priori belief-vulnerability
and the a posteriori belief-vulnerability. The first one take into account only the
input and the adversary’s belief before observing the output and the second one
considers in addition the observable output.

4.1 The A Priori Behavior

Let B be teh random variable modeling the adversary’s additional information
about a a high level random variable X. Then the belief-vulnerability of X is the
expected probability of guessing X in one try given the adversary’s belief B. Since
we have two behavior in this model, one related to the system and another one
related to the belief behavior. We then represent these two aspects by two differen
distributions pρ and pβ.
Given an additional information B = b, the adversary will choose a value having
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the maximal conditional probability according to her belief, that is a value x′ ∈ Γb,
where Γb = argmax

x∈X
pβ(x|b), where the argmax

x∈X
pβ(x|b) returns the elements from

X having the maximal conditional-distribution. The vulnerability of X given b
is then the real probability that the adversary’s choice is correct, which is the
conditional probability pρ(x′|b). As there might be many values of X with the
maximal conditional probability, the attacker will pick uniformly at random one
element in Γb. Hence we have the following definition.
Definition 4.1.1. (The A Priori Belief Vulnerability)

Let X be a random variable and B the adversary’s extra knowledge about X.
Then the belief-vulnerability of X, denoted V (X : B), is defined as

V (X : B) =
∑
b∈B

1
|Γb|

p(b)
∑
x∈X

p(x|b) (4.1)

In order to define this quantity in HOL we need first to formalize the set Γb, denoted
in our case belief_set p q X B b, where p et q are two probability spaces
since we have two different distributions pρ and pβ. Hence the belief vulnerability
is defined as

` ∀p q X B. belief_vulnerability p q X B =∑
b∈B

1
|Γb| * distribution p B {b} *∑
x∈Γb

conditional_distribution p X B ({x},{b})

From the belief vulnerability we can easily define the Belief Min-Entropy

H∞(X : B) =− log(V (X : B))

=− log(
∑
b∈B

1
|Γb|

p(b)
∑
x∈X

p(x|b))
(4.2)

Let Belief⊥(A,B) be the set of totally inaccurate beliefs,

Belief⊥(X,B) = {(x, b)|b ∈ B, x ∈ Γb and pρ(x|b) = 0} (4.3)

Then the following result holds
Theorem 4.1.1. (Infinite Belief Min-Entropy)

Let X be a random variable and B the adversary’s extra knowledge about X
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then

(x, b) ∈ Belief⊥(X,B)⇒ H∞(X : B) = +∞

The proof of this result was a direct consequence of the rewriting of the belief
min-entropy using the Bayes’ rule.
Next, we show that under some constraints the Min-Entropy of a random variable is
less or equal then belief min-entropy and under some others the belief min-entropy
is equal to the conditional min-entropy. These two results were formalized and
proved in HOL by computing different notions from the set theory and using some
properties related to the maximum of a set and also the Bayes’ rule
Theorem 4.1.2. (Relation between Min-Entropy and Belief Min-Entropy)

If ∀b ∈ B, x ∈ Γb ⇒ pρ(b|x) ≤ 1
|B| thenH∞(X) ≤ H∞(X : B)

Theorem 4.1.3. (Belief Min-Entropy and Conditional Min-Entropy)

If ∀b ∈ B, a ∈ Γb ⇒ pρ(b|a) = maxa′∈A pρ(a′|b) thenH∞(A : B) = H∞(A|B)

After verifying these few results, we are going to reason about the effect of the
adversary’s initial belief accuracy. We first give a definition of the accurate initial
belief.
Definition 4.1.2. (Accurate Initial Belief)

An adversary’s initial belief is c-accurate (0 < c ≤ 1) if that holds

∀ b ∈ B, 1
Γb

∑
a∈Γb

pρ(a|b) ≥ c ∗max
a∈A

pρ(a|b)

The formal version of the previous definition in HOL is

` ∀X B p q b c. c_accurate_initial_belief X B p q b c =

0<c ∧ c≤1 ∧ c *

extreal_max_set

(IMAGE (λx. conditional_distribution p X B

({x},{b})) X(Ω1))≤
1
|Γb| *

∑
x∈Γb

conditional_distribution p X B ({x},{b})

The c-accurate belief has an impact on the vulnerability of X in presence of extra
information by a factor at least c, this result is proved in the following theorem
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Theorem 4.1.4. If the adversary’s belief is c-accurate then

H∞(X : B) ≤ H∞(X|B) + log(1
c

) (4.4)

In HOL we formalize this property as follows

` ∀p q X B c. (FINITE(Ω1)) ∧
(∀x. x ∈ Ω1 ⇒ {x} ∈ events p) ∧
(random_variable X p Borel) ∧
(random_variable B p Borel) ∧
(∀b. c_accurate_initial_belief X B p q b c) ⇒
(belief_min_entropy p q X B ≤
(conditional_min_entropy p X B + log1

c
))

Next we proved the relation between the conditional min-entropy and the belief
min-entropy in the general case saying that the conditional min-entropy is always
less than or equal to the belief min-entropy thus we have

H∞(X|B) ≤ H∞(X : B) (4.5)

And finally, we show that when X is uniformly distributed, we can obtain a better
upper bound. We begin by recalling the result saying, if X is uniformly distributed
and the program is deterministic then

H∞(X|B) = log( |X |
|B|

) (4.6)

Thus we have the following theorems
Theorem 4.1.5. (Upper Bound of the Belief Min-Entropy in a deterministic
program)

If X is uniformly distributed and the actual correlation pρ(b|x) is deterministic
then

log( |X |
|B|

) ≤ H∞(X : B) (4.7)

In the environment of Higher Order Logic this result is

` ∀X B sp ev p1 p2 c. FINITE (Ω1) ∧
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Ω1 6= ∅ ∧ random_variable X Ω1 Borel ∧
random_variable B Ω1 Borel ∧
∀x b. x ∈ belief_set (sp,ev,p1) (sp,ev,p2) X B b ∧
∀b. b ∈ B(Ω1) ∧
∀x. x ∈ Ω1 ⇒ {x} ∈ events (sp,ev,p1) ∧
∀x. x ∈ belief_set (sp,ev,p1) (sp,ev,p2) X B b ⇒

distribution (sp,ev,p1) X {x} = 1
A(Ω1) ∧

deterministic_cond B c ⇒ log |A(Ω1)|
|B(Ω1)| ≤

belief_min_entropy sp ev p1 p2 X B

The proof of this theorem of this theorem is a direct consequence from (4.6) and
(4.5).

4.2 The A Posteriori Behavior

Let B denote the adversary’s observation. We define the belief-vulnerability
conditioned to the low observations of the adversary and we notice that in this
case, the low observed output could be helpful for the adversary in order to select
the inaccurate beliefs. In addition, if an observation is contradicting with his
initial belief about the extra information b, that means that there is no high input
x ∈ Γb such that pρ(y|x) > 0. In the other hand, a belief b is compatible to an
observation y, if there exists a high input x ∈ Γb verifying pρ(y|x) > 0. Let y and b
be the adversary’s observation and initial belief respectively. He will then only try
values x ∈ Γb for which pρ(y|x) > 0 if his belief and observation are compatible.
Otherwise, as the evidence contradicts his belief, he will throw it away and only
use the observation.
Let Γb,y denote the set of possible adversary’s choices according to both his belief
and his low observation. Then

Γb,y =


argmax

x∈X
pβ(x|b, y) if b and y are compatible

argmax
x∈X

pβ(x|y) otherwise
(4.8)

In HOL we defined this set as belief_conditionned_set p q X B Y b

y. Then we define the a posteriori belief-vulnerability as follows
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Definition 4.2.1. (A Posteriori Belief-Vulnerability)

Let X be the high input of a program, Y its low output and B the adversary’s
initial belief about A. Then the belief-vulnerability of X given Y , denoted V (X|Y :
B), is defined as

∑
y∈Y

∑
b∈B

pρ(y, b)
1
|Γb,y|

∑
x ∈ Γb p(x|y, b) (4.9)

` ∀X B p q. conditional_belief_vulnerability p q X B Y =∑
y∈Y (Ω)

∑
b∈B(Ω)

joint_distribution p B Y ({b},{y}) *

1
|Γb| *∑
x∈Γb

belief_conditional_distribution p X Y B

({x},{y},{b})

Next we define the remaining uncertainty (H∞(X|Y : B)) from the a posteriori
belief-vulnerability the same way as previously. As in the previous section, we
then define the notion of adversary’s post belief’s accuracy.
Definition 4.2.2. (Post-Belief’s Accuracy)

An adversary’s post-belief is c-accurate if c∗maxx∈X pρ(x|b, y) ≤ 1
|Γb,y |

∑
x∈Γb,y

pρ(x|b, y)
for all y ∈ Y and b ∈ B. We can show then that a 1-accurate post-belief is an
information (100% accurate)
Theorem 4.2.1. (100% Accurate Post-Belief)

Let A be the high input of a program, O its low output and B be an additional
information about A. If the adversary’s post-belief is 1-accurate then

H∞(A|O : B) = H∞(A|B,O) (4.10)

` ∀X B Y p q.

FINITE (Ω) ∧ random_variable X p Borel ∧
random_variable B p Borel ∧ random_variable Y p Borel ∧
∀x. x ∈ (Ω) ⇒ {x} ∈ events p ∧
∀b y. c_accurate_post_belief X B Y p q b y 1 ⇒
conditional_belief_min_entropy p q X B Y =

conditional_joint_min_entropy p X B Y
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We then establish the following bound for the remaining uncertainty based on
the belief-vulnerability and we get a relation between the remaining uncertainty
and another quantity that we defined as conditional joint Min-Entropy, the last
mentioned quantity will help us to establish the deterministic uncertainty in the
output.
Theorem 4.2.2. (Lower Bound for Remaining Uncertainty)

Let X be a random variable, B the additional information about X and Y be
the low output of the program. Then

H∞(X|Y,B) ≤ H∞(X|Y : B) (4.11)

which is formalized in HOL as follows

` ∀X B Y p q.

FINITE (Ω) ∧ random_variable X p Borel ∧
random_variable B p Borel ∧ random_variable Y p Borel ∧
∀x. x ∈ (Ω) ⇒ {x} ∈ events p ⇒
conditional_joint_min_entropy p X B Y ≤
conditional_belief_min_entropy p q X B Y

From the previous result we can verify the same property related to the special case
of deterministic program where in addition the input X is uniformly distributed.
Hence
Theorem 4.2.3. (Lower Bound for Remaining Uncertainty in Deterministic
Program)

If X is uniformly distributed and both the protocol and the actual correlation
between X and B are deterministic then

log( |X |
|Y|.|B|

) ≤ H∞(X|Y : B) (4.12)

From the above result, we conclude that the belief behavior helps the adversary
in choosing more reliable initial knowledge based on the observations. The above
mentioned properties have been verified before [9] but the main novelty of our
work was to re-verify these results using an interactive theorem prover. Based on
the soundness of theorem proving, the formally verified theorems are guaranteed
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to be accurate and contain all the required assumptions. Moreover, these formally
verified results can be built upon to reason about information flow analysis of
various applications within the sound core of a theorem prover. For illustration
purposes, the information leakage of cascade of channels is formally analyzed in
the next section. These added advantages have been attained at the cost of human
effort in formalizing and interactively verifying the above mentioned results. The
proof script [10] is composed of 3400 lines of code and took about 1000 man-hours
of development time [10].
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Chapter 5

Case Study

The previous section establishes the reasonableness of our definitions in terms of
their theoretical properties. Now we show the utility of our approach by applying it
to various threat scenarios. And then we will extend the range of these scenarios to
tackle a heavier case study: Min-Entropy leakage of Channels in Cascade. In this
application we are going to use our theories to evaluate the information leakage of
cascade channels.

5.1 Small Scenarios

In this section we are targeting a simple scenarios of attacks. We define the input
and the output spaces as well as the transition function and we will quantitatively
analyze the information flow.
Example 1: Let A be a random variable with publicly-known uniform a priori
distribution over A = {0, 1, 2, 3}. Assume that the adversary’s additional
observable is the parity of A, i.e. B = {0, 1}, with the following deterministic
belief’s correlation pβ(bk|ai) = p(aimod2 = bk). In other words, the adversary
believes that her additional information accurately reflects that the value of A
is an even number if B = 0 and odd otherwise. Now suppose that A is the high
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input of the deterministic program C1 below, whose low output is

O =

 1 if a ∈ {0, 1}
2 otherwise.

PROG 1

BEGIN
O ← log(A+ 2)

END

In the case of wrong belief, i.e., when the attacker believes that the value of A
is even (resp. odd) when it actually is odd (resp. even), his low observation of
PROG C1 does not allow him to correct his belief. Indeed, both observations can
be induced by any number under the different conditions.
Example 2: Suppose that A is uniformly distributed over {0, 1, 2, 3} and the
adversary’s extra information is about the parity of A. Assume that the a priori
distribution of A is publicly-known, i.e., ∀a ∈ A, pβ(a) = pρ(a). Assume also that
the adversary believes that his extra information is accurate, that is he assumes
the following correlation:

pβ(b|a) b0 b1

a0 1 0
a1 0 1
a2 1 0
a3 0 1

Then we have here, Γ0 = {0, 2} and Γ1 = {1, 3}. Considering the follow-
ing program a and B previously defined and the output is O = {0, 1, 2}.

PROG 2

BEGIN
O ← log(A+ 1)
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END

Both the program and the adversary’s assumed correlation are deterministic, it is
therefore easy to compute the adversary’s belief conditional distribution pβ(a|o, b)
and the associated possible choices Γo,b.

pβ(a|o, b) a0 a1 a2 a3 Γbk,oj

b0, o0 1 0 0 0 {a0}
b0, o1 0 0 1 0 {a2}
b0, o2 0 0 0 1 {a3}
b1, o0 1 0 0 0 {a0}
b1, o1 0 1 0 0 {a1}
b1, o2 0 0 0 1 {a3}

We proceed now to the analysis of two programs described above. Each of these
two programs is analysed under the following hypothesis.

• The high input A is uniform and publicly-known. Thus

∀a ∈ A pρ(a) = pβ(a) = 1
|A|

• The adversary believes that her extra info is accurate, that is she assumes
the correlation shown in table below.
Thus Γ0 = {0, 2} and Γ1 = {1, 3}.

• The real correlation between A and B is of the form of the matrix shown in
table below. It is easy to see that the adversary’s initial belief is therefore
c-accurate.

• B and O are independent.

pβ(b|a) b0 b1 pρ(b|a) b0 b1

a0 1 0 a0
c

1+c
1

1+c

b1 0 1 a1
1

1+c
c

1+c

b2 1 0 a2
c

1+c
1

1+c

b3 0 1 a3
1

1+c
c

1+c
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We denote by IUx the initial uncertainty computed using approach x ∈ {c, v, bv}
where c, v and bv denote the consensus, vulnerability and belief-vulnerability
approaches respectively.
We begin by PROG 1 of Example 1. Since A is uniformly distributed then
IUc = IUv = log|A| = 2. Furthermore, RUv = log(|A|/|O|) = log 4

2 = 1 = RUc

since PROG 1 is deterministic.

Theorem 1:
` ∀X p.

(random_variable X p Borel) ∧
(∀x. x ∈ X(Ω)) ⇒ (distribution p X {x} = 1

|X(Ω)|) ∧
FINITE (Ω) ∧
IMAGE X (p_space p) = {0;1;2;3} ⇒
min_entropy X p = 2

Theorem 2:
` ∀X Y p c.

FINITE (Ω) ∧ (X(Ω) = {0;1;2;3}) ∧
(Y(Ω) = {1;2}) ∧ (random_variable X p Borel) ∧
(random_variable Y p Borel) ∧
(∀x. x ∈ Ω ⇒ {x} ∈ events p) ∧
(∀x. x ∈ X(Ω) ⇒ (distribution p X {x} = 1

|X(Ω|)) ∧
deterministic_cond Y c ⇒
conditional_min_entropy p X Y = 1

Thus, when we do not take into account the attacker’s belief, then ILc = ILv = 1.

Theorem 3:
` ∀X Y p.

FINITE (Ω) ∧ (X(Ω) = {0;1;2;3}) ∧
(Y(Ω) = {1;2}) ∧ random_variable X p Borel ∧
random_variable Y p Borel ∧
∀x. x ∈ (Ω) ⇒ {x} ∈ events p) ∧
∀x. x ∈ X(Ω) ⇒ (distribution p X {x} = 1

|X(Ω)|) ∧
deterministic_cond Y c ⇒
information_leakage p X Y = 1
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Now let consider the uniformly c-accurate attacker’s belief. Then we have IUbv =
−log( c

2(c+1)). And then we get RUbv = −log( c
1+c). Therefore for all c, ILbv = 1.

Thus, the adversary’s initial knowledge about the parity of A does not affect the
quantity of information leaked by PROG 1.
However, the real question is not how much information is leaked by this program,
but what the remaining uncertainty represents in term of security threat to the high
input. Even though the adversary’s belief does not affect the quantity of information
leaked, it dramatically affects both the initial and remaining uncertainty. As a
consequence from that we deduce that inaccurate beliefs strengthen the security of
the program (by confusing the adversary), whilst accurate beliefs may weaken it.
Thus, a deliberate randomization of the parity of the high input in order to confuse
the adversary is a good strategy to strengthen the security of this program.
We continue our analysis with PROG 2 of Example 2 which is a slight modification
of PROG 1. Again IUc = IUv = log|A| = 2 and IUbv = −log( c

2(c+1)). For the
remaining uncertainty we have RUc = 0.585, RUv = 0.415 and RUbv = −log( 2c+1

2(1+c)).
Therefore, ILc = 1.415, ILv = 1.585 and ILbv = log(2c+1

c
) .

Unlike PROG 1, the information leakage of this program can be arbitrary
high when the inaccuracy of the adversary’s belief is high whilst its remaining
uncertainty RUbv remains very low even for inaccurate beliefs. As already noticed
in Example 2, this program leaves A highly vulnerable of being guessed and a
deliberate padding of A in order to confuse the adversary is of little help. It means
that highly inaccurate beliefs slightly strengthen the security of PROG 2.

5.2 Leakage in Cascade Channels

After dealing with small attacks scenarios in the previous section, we will
present in this section a very important application. The major goal is to reason
about the information flow of channels in cascade and analyze the leakage in such
systems. We will first expose the notions of channels and cascade of channels. We
will then show how to measure the quantity of information using our Min-Entropy
theory developed previously and we will finally verify the property related to the
information leakage in a cascade of channels.
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5.2.1 Channels and Cascade of Channels

Channels

As defined in [6], the channel is a triplet (A,B, CAB), where A is defined as a
finite set of the critical inputs, B the observable output and CAB is the channel
matrix representing the transitional probabilities from the input to the output of
the channel. In order to make it easier we are going to use a function that maps
this matrix which is the conditional probability of obtaining the output b such
that the input is a.
In HOL our definition will be as follows
Definition 5.2.1. (Channel)

` ∀A A B p f. channel p X Y f =

(random_variable A p Borel) ∧
(random_variable A p Borel) ∧
∀a b. (a ∈ (IMAGE A (p_space p))) ∧

(b ∈ (IMAGE B (p_space p))) ∧
(f(a,b) = (conditional_distribution p B A (b,a)))))

Noting the property that for every row the sum of probabilities is 1, we proved
using our definitions that for every input a ∈ A,

∑
b∈B P (B = b|A = a) = 1.

The formalization of this theorem in Higher Order Logic environment is

Theorem 1:
` ∀ p A B a. FINITE (p_space p) ∧
p_space p 6= ∅ ∧ random_variable A p Borel ∧
random_variable B p Borel ∧
∀x. x ∈ p_space p ⇒ {x} ∈ events p ∧
0 < distribution p A a ∧
events p = POW(p_space p) ⇒∑
b∈B conditional_distribution p B A (b,a)) = 1
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Cascade of Channels

We talk about cascade of channels when we have a communication system
composed of two channels in sequence, (A, C ′, CAC′) and (C ′,B, CC′B) where the
outputs of the first one are the inputs of the second one. In such systems, the

Figure 5.1: Channels in Cascade

final output is produced in two steps, it first passes through the first channel
then flows through the second one. We then can say that the whole system
behavior is controlled by the first channel, in terms of quantity of information.
By definition, the cascade of channels (A, C ′, CAC′) and (C ′,B, CC′B) is the channel
(A,B, CAC′ ∗ CC′B).
Definition 5.2.2. (Cascade Channel)

` ∀A A C B p f. cascade_channel p A C B f g =

channel p A C f ∧
channel p C B g ∧
∀a b. joint_distribution p A B (a,b) =∑

c joint_distribution p A C ({a}, {c}) *

conditional_distribution p B C ({b}, {c})

In this definition the cascade condition is expressed by the last equation since the
matrix channel of the system is the multiplication of the two channel matrices.

5.2.2 Measuring Information Flow using Min-Entropy

Let (A,B, CAB) be a channel, A and B are 2 random variables modeling respec-
tively the secret input and the observable output, and let A be an adversary who
is trying to attack the system and get the secret A. As we mentioned previously,
the amount of information flowing from A to B considering the fact that A is
observing the output B can be expressed as follows:

39



leakage = initial uncertainty - remaining uncertainty

In our project, we are considering the worst case scenario, A will recover the
critical information in one guess. So the Min-Entropy theory is used in order to
quantify information flow. The a priori distribution will be modeled as a function
of the maximum input distribution and the a posteriori behavior is expressed as
a function of the maximum over A of the distribution of guessing a such that
observing b as well as the initial distribution. Thus our schemas will be

leakage = min-entropy(A) - conditional min-entropy(A|B)
IL∞(A,B) = H∞(A)−H∞(A|B)

5.2.3 Leakage in Cascade Channel

After presenting the foundations of channels, cascade channels and the measures
we are going to use to quantify the information flow, we will now show how the
min-entropy leakage behave in a cascade of channels. Considering the structure
of such system, two channels in cascade, we can anticipate that the maximum
quantity of information leaked through the system can not exceed the leakage of
the first channel. We then prove this property in the following theorem.

Theorem 2:
Let (A,B, CAB) be the cascade of (A, C ′, CAC′) and (C ′,B, CC′B). Then we have
IL∞(A,B) <= IL∞(A, C ′)

In the core of Higher Order Logic the previous theorem is expressed as

` ∀ p A C B f g.

cascade_channel p A C B f g ∧
FINITE (p_space p) ∧
(p_space p) 6= ∅ ∧
events p = POW (p_space p) ∧
∀x. 0 < distribution p B {x} ∧
∀x. 0 < distribution p C {x} ∧
(∀x. x IN (p_space p) ⇒ {x} ∈ events p) ⇒
information_leakage p A B ≤ information_leakage p A C
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In order to prove this theorem we used some real analysis and properties of
the logarithm function. We simplified our goal until we reached the level of
vulnerabilities. In this case our theorem will by in the following form

V∞(A|B) ≤ V∞(A|C)

We follow up by using the constraints of our goal and the probability theorems
previously proved in order to reach our final result. The major steps of the proof
of this property are

V (A|B) = ∑
bmaxa p(B = b) ∗ p(A = a|B = b)

= ∑
bmaxa p(A = a,B = b)

Using the property of cascade we defined at the beginning of this section we get

p(A=a | B=b) = ∑
c p(A=a , C=c) * p(B=b | C=c)

≤ ∑
cmaxa p(A=a , C=c) * p(B=b | C=c)

We replace the previous results in our main goal. After we utilized the property
we already proved before of swapping the sums, EXTREAL_SWAP_SIGMA_SIGMA
and then theorem conditional_distribution_sums1 saying: The sum of
the conditional distribution over the first state space of the random variable is
equal to 1, we got

V(A | B) ≤ ∑
cmaxa p(A=a , C=c)

When we reach this point, we simply use some real analysis related to the multi-
plication and division as well as some of definition we got our main goal proved.
The property cited above needed almost 850 lines of HOL code with the related
theorems.

5.2.4 Discussion

Due to the formal nature of the model and the soundness of the mechanical
theorem prover, the analysis is guaranteed to be free of approximation and precision
errors and thus the results obtained are mathematically precise and confirmed the
results of paper-and-pencil based analysis approaches. This precision of analysis
is a novelty that, to the best of our knowledge, has not been achieved by any
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other existing computer-based probabilistic analysis approaches. In the Definition
6 of the cascade channel behavior, the transition functions, f and g, are general
functions that provide generic results. In model checking approach parameters and
functions should be specified. Furthermore the result verified in Theorem 9 can
be extended to the Min-Entropy analysis of information leakage of n channels in
cascade using induction techniques. We can prove that the Min-Entropy leakage of
n channels in cascade will not exceed the leakage of the first channel. The main key
to verify this property is the definition of the cascade condition. Mathematically,
we can express the connection of n channels as follows
Let X0 be the random variable modeling the input of the system and Xn the one
modeling the output, thus
∀ i. (0 ≤ i ≤ n) ⇒ P(X0,Xi) =

∑
Xi−1

P(X0,Xi−1) * P(Xi|Xi−1)

Based on what we defined previously and what already existed, this condition can
be formalized in HOL4 as

` ∀X p f n. n_cascade_channel p X n f =

∀i. (1≤i≤n) ⇒ channel p (X (i-1)) (X i) (f i) ∧
∀x y i. joint_distribution p (X 0) (X i) (x,y) =∑

z

joint_distribution p (X 0) (X (i-1)) (x,z) *

conditional_distribution p (X (i-1)) (X i) (z,y)

The ability to express and verify generic properties, quantified for all values of the
variables, is the main strength of theorem proving as can be seen from the above
definition and the property related to the information leakage of n channels in
cascade. This property is an ongoing task, once verified, can hold for any number
of cascade of channels and can be specialized to obtain expression and values for
particular scenarios. Probabilistic model checking, which is the other main stream
formal method, cannot provide such generic results due to the inherent state-space
explosion problem.
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Chapter 6

Conclusions

In this project, we tried to focus on a specific threat model: the expected
probability that an adversary could guess the secret input value in one try, given the
observable output. We used for that model a new definition based on vulnerability,
belief-vulnerability, min-entropy and belief min-entropy instead of the traditional
consensus definitions of quantitative information flow based on Shanon entropy
which do poorly with the threat model in question.

This project was conducted in the environment of HOL theorem proving in
order to overcome the different limitations of simulation and paper and pencil
techniques. This approach provides accurate results and a minimum of errors that
could occur due to human behavior or the us of a lot of approximations.

The main purpose of that project is to formally analyse the information flow
in different programs and protocols by evaluating the security of confidential
information. We used for the analysis two approaches, one based on the min-
entropy and the other based on the belief min-entropy. In the first model we defined
the initial uncertainty by the min-Entropy Hand the remaining uncertainty by the
conditional min-entropy, that means the fact of guessing H given L, where L maps
the low output. After formalizing those two notions in HOL, we verified different
results on how to calculate vulnerability which seems encouraging, especially for
the special case of a deterministic program mapping a uniformly distributed H to
an output L. For there we found that the leakage is simply log|L|.

The second approach incorporates the attacker’s beliefs. We tried to investigate
the impact of such extra knowledge on the security of the secret information. The
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analysis in the core of Higher-Order-Logic theorem proving reveals that inaccurate
extra information tends to confuse the adversary by increasing his uncertainty
about the hidden secret while accurate information may increase its vulnerability.
We also showed the strength of the proposed definitions both theoretically and by
applying them to various threat scenarios.

In order to point out the usefulness of our theory, we applied our formalizations
into an case study, the information flow in the cascade of channels. This kind of
system is a very interesting structure since it is a small model of most of the real
communication systems such us protocols and networks. The information flows
through a channels in cascade in two steps such that the output of one channel will
be the input of the next channel. In this application we verified the Min-Entropy
information leakage and we proved that the leakage of a cascade of channels cannot
exceed the leakage of the first channel. This result could be extended to tackle
systems with deterministic behavior and prove that the vulnerability such systems
will only depend on the vulnerability of the second channel.

Due to the formal nature of the model and the soundness of the mechanical
theorem prover, the analysis is guaranteed to be free of approximation and precision
errors and thus the results obtained are 100% precise and confirmed the results of
paper-and-pencil based analysis approaches. This precision of analysis is a novelty
that, to the best of our knowledge, has not been achieved by any other existing
probabilistic analysis approaches.

The proposed higher-order-logic theorem proving based probabilistic analysis
approach could be very useful in different future directions. The reasonableness of
these definitions could be assessed in different kind of applications having a threat
scenarios. We are aiming to apply it on the Crowds protocol [17] and maybe
further directions such as Freenets [13]. Both of these applications present a threat
scenario, we try to use our model in order to analyse the threat and verify some
results related to the quantification of the information leaked and then based on
the results of analysis we can take the appropriate measures that offer better way
to evaluate the security of the confidential information.

As a future direction, our work could be developed to analyze information flow
in a way that starting from a specific bound of information leakage that shouldn’t
be exceeded it evaluates the input set considering the output set. This work could
be conducted in order to ensure a specific level of security of critical information.
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