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Montréal, Québec, Canada

April 2008

c© Osman Hasan, 2008



CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Osman Hasan

Entitled: Formal Probabilistic Analysis using Theorem Proving

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Haghighat, Fariborz

Dr. Slind, Konrad

Dr. Ait Mohamed, Otmane

Dr. Elhakeem, Ahmed K.

Dr. Li, Hon Fung

Dr. Tahar, Sofiène

Approved by

Chair of the ECE Department

2008

Dean of Engineering



ABSTRACT

Formal Probabilistic Analysis using Theorem Proving

Osman Hasan, Ph.D.

Concordia University, 2008

Probabilistic analysis is a tool of fundamental importance to virtually all sci-

entists and engineers as they often have to deal with systems that exhibit random

or unpredictable elements. Traditionally, computer simulation techniques are used to

perform probabilistic analysis. However, they provide less accurate results and cannot

handle large-scale problems due to their enormous computer processing time require-

ments. To overcome these limitations, this thesis proposes to perform probabilistic

analysis by formally specifying the behavior of random systems in higher-order logic

and use these models for verifying the intended probabilistic and statistical properties

in a computer based theorem prover. The analysis carried out in this way is free from

any approximation or precision issues due to the mathematical nature of the models

and the inherent soundness of the theorem proving approach.

The thesis mainly targets the two most essential components for this task, i.e., the

higher-order-logic formalization of random variables and the ability to formally verify

the probabilistic and statistical properties of these random variables within a theorem

prover. We present a framework that can be used to formalize and verify any con-

tinuous random variable for which the inverse of the cumulative distribution function

can be expressed in a closed mathematical form. Similarly, we provide a formalization

infrastructure that allows us to formally reason about statistical properties, such as

mean, variance and tail distribution bounds, for discrete random variables. In order to
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illustrate the practical effectiveness of the proposed approach, we consider the proba-

bilistic analysis of three examples: the Coupon Collector’s problem, the roundoff error

in a digital processor and the Stop-and-Wait protocol. All the above mentioned work

is conducted using the HOL theorem prover.
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Chapter 1

Introduction

1.1 Motivation

“It is remarkable that this science, which originated in the consideration of

games of chance, should have become the most important object of human

knowledge · · · The most important questions of life are, for the most part,

really only problems of probability.”

Pierre-Simon, Marquis de Laplace (1749-1827)

This quote by the famous French mathematician and astronomer may appear

exaggerated, but it is a fact that probabilistic analysis has become a tool of funda-

mental importance in almost every area of science and engineering. Of particular

interest are modern hardware and software systems. These systems usually exhibit

some random or unpredictable elements. Examples include, failures due to environ-

mental conditions or aging phenomena in hardware components and the execution of

certain actions based on a probabilistic choice in randomized algorithms. Moreover,
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these systems act upon and within complex environments that themselves have cer-

tain elements of unpredictability, such as noise effects in hardware components and

the unpredictable traffic pattern in the case of telecommunication protocols. Due

to these random components, establishing the correctness of a system under all cir-

cumstances usually becomes impractically expensive. The engineering approach to

analyze a system with these kind of unavoidable elements of randomness and uncer-

tainty is to use probabilistic analysis. The main idea behind probabilistic analysis is

to mathematically model the random and unpredictable elements of the given system

and its environment by appropriate random variables. The probabilistic properties

of these random variables are then used to judge the system’s behavior regarding pa-

rameters of interest, such as, downtime, availability, number of failures, capacity, and

cost. Thus, instead of guaranteeing that the system meets some given specification

under all circumstances, the probability that the system meets this specification is

reported.

Even for hardware and software systems for which correctness may be uncondi-

tionally guaranteed, the study of system performance primarily relies on probabilistic

analysis. In fact, the term system performance commonly refers to the average time

required by a system to perform a given task, such as the average runtime of a com-

putational algorithm or the average message delay of a telecommunication protocol.

These averages can be computed, based on the probabilistic analysis approach, by

using appropriate random variables to model inputs for the system model.

Simulation is the state-of-the-art probabilistic analysis technique. It allows us

to conduct probabilistic analysis of analytically complex randomized models but most

of the time is found to be quite inefficient. In fact, simulation requires an enormous
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amount of numerical computations to generate meaningful results and can never guar-

antee exact answers. The precision and accuracy of the hardware and software system

analysis results has become imperative these days because of the extensive usage of

these systems in safety and financial critical areas, such as, medicine, transportation

and stock exchange markets. Therefore, simulation cannot be relied upon for the

analysis of such systems.

Formal methods [30] are capable of conducting precise system analysis and thus

allow us to overcome the above mentioned limitations of the simulation approach. The

main principle behind formal analysis of a system is to construct a computer based

mathematical model of the given system and formally verify, within a computer,

that this model meets rigorous specifications of intended behavior. Two of the most

commonly used formal verification methods are model checking [15] and higher-order-

logic theorem proving [26]. Model checking is an automatic verification approach for

systems that can be expressed as a finite-state machine. Higher-order-logic theorem

proving, on the other hand, is an interactive approach but is more flexible in terms of

tackling a variety of systems.

Both model checking and theorem proving have been successfully used for the

precise functional correctness of a broad range of hardware and software systems.

On the other hand, their usage for probabilistic analysis has been somewhat limited.

The main limitations being the restricted system expressibility and the inability to

precisely reason about statistical properties, such as average values, in the case of

model checking and the lack of mathematical foundations to conduct probabilistic

analysis related proofs in the case of theorem proving.

This thesis takes steps to fill this gap as it presents some mathematical founda-

tions that facilitate probabilistic analysis using the theorem-proving approach. What
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distinguishes this thesis from previous work in the area is the broader range of sys-

tems and properties covered. Besides achieving 100% precise results, another major

motivation behind using formal methods for probabilistic analysis is the ability to

tackle both probabilistic analysis and functional correctness of a system in a single

formal framework and thus allowing the usage of similar models for both tasks.

The ability to precisely conduct probabilistic analysis may prove to be a very

advantageous feature for the analysis of hardware and software systems that are used

in safety critical applications. The consequences of erroneous probabilistic analysis in

these critical domains could be very devastating, as is quite evident from the following

statement from Yale Patt’s invited talk at the ISPASS-2004 conference [64] regarding

the accuracy of performance analysis in the analysis of computer systems.

“Performance analysis can be one of the most important elements in the

design cycle of a computer system. It can also be very important after the

fact to influence future designs. But only if it is done right. If done wrong,

it can be more harmful than if not done at all.”

1.2 Probabilistic Analysis

In this section, we elaborate more upon probabilistic analysis and present some of

the fundamental components of a probabilistic analysis framework. This information

will be used in the next section to compare the capabilities of the available computer

based probabilistic analysis approaches.
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1.2.1 Random Variables and Probabilistic Properties

In probabilistic analysis, random variables are used to describe random or unpre-

dictable phenomenon in mathematical terms. For example, a random variable may

be used to mathematically describe the outcome of rolling a die. Formally speaking, a

random variable is defined as a measurable function from a probability space to some

measurable space [7].

Every random variable gives rise to a probability distribution, which contains

most of the important information about this random variable. The probability distri-

bution of a random variable X can be uniquely described by its cumulative distribution

function (CDF), which is defined as

FX(x) = Pr(X ≤ x) (1.1)

for any number x, where Pr represents the probability function. There are two types

of random variables - discrete and continuous.

Discrete Random Variables

A random variable is called discrete if its range, i.e., the set of values that it can attain,

is finite or at most countably infinite [87]. Examples of discrete random variables

include the outcome of rolling a dice and the number of children in a family. Discrete

random variables can be completely characterized by their probability mass function

(PMF). In probability theory, the PMF gives the probability that a random variable

X is exactly equal to some value x.

pX(x) = Pr(X = x) (1.2)

A distinguishing characteristic of every discrete random variable is that its CDFs

consists of a sequence of finite jumps. For example, the CDF and PMF for a discrete
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Uniform random variable, which models the roll of a fair 6-sided die, are given in

Figure 1.1.

Figure 1.1: PMF and CDF for a Discrete Uniform Random Variable

Discrete random variables are used quite frequently to model random phe-

nomenon while conducting probabilistic analysis of scientific and engineering appli-

cations. For example, the Bernoulli random variable is used to model channel noise

in analyzing digital communication protocols [49], the Geometric random variable is

widely used in the analysis of algorithms, such as QuickSort, median computation

or the Coupon Collector’s problem [61], and it is quite common to use the Binomial

random variable in the probabilistic analysis related to quality control problems [84].

Another major application domain for discrete random variables is the performance

analysis of cryptographic protocols [52].

Continuous Random Variables

A random variable is called continuous if it ranges over a continuous set of numbers

[87]. A continuous set of numbers, sometimes referred to as an interval, contains all

real numbers between two limits. An interval can be open (a,b) corresponding to

the set {x|a < x < b}, closed [a,b] corresponding to the set {x|a ≤ x ≤ b}, or half-

open (a,b], [a,b). Many experiments lead to random variables with a range that is a

6



continuous interval. Examples include measuring T, the arrival time of a data packet

at a web server (ST = {t|0 ≤ t < ∞}) and measuring V, the voltage across a resistor

(SV = {v| −∞ < v < ∞}), where T and V are both continuous random variables.

A distinguishing feature of all continuous random variables is that their PMF is

0. Whereas, the CDF of continuous random variables is always a continuous function.

Another useful probability distribution characteristic for continuous random variables

is the probability density function (PDF), which represents the slope of the CDF.

fX(x) =
dFX(x)

dx
(1.3)

Figure 1.2: PDF and CDF for a Continuous Uniform Random Variable

As an example, consider the CDF and PDF for a continuous uniform random variable

on the interval [a,b] given in Figure 1.2.

Like discrete random variables, continuous random variables are also widely used

to mathematically describe random phenomenon in engineering and scientific applica-

tions. For example, the Continuous Uniform distribution is used to model quantization

errors in computer arithmetic applications [86], the Exponential distribution occurs

in applications such as queuing theory to model interarrival and service times and

the Normal distribution is extensively used to model signals in data transmission and

digital signal processing systems [84].

7



1.2.2 Statistical Properties: Expectation, Moments and De-

viations

The concept of expectation, or the average, of a random variable is about as old as

that of probability itself. The first published text on probability by C. Huyghens in

1657 [38] based probability on expectation. Expected values summarize the behavior

of a random variable as a single number, rather than a distribution function, and

thus prove to be a very convenient decision making factor while choosing the best

option among the probabilistic analysis results of several possible candidates. The

expectation of a random variable X is defined by

Ex[X] =











∑

i xipX(xi), if X is discrete;
∫ ∞

−∞
xfX(x)dx, if X is continuous.

(1.4)

where
∑

i denotes the summation carried over all possible values of the random vari-

able X.

Besides the expectation, there are several other statistical quantities that we

can associate with a random variable. For example, we define the nth moment of the

random variable X as the expected value of the random variable Xn. With this termi-

nology, the first moment of X is just the expectation. Another useful decision making

characteristic of random variables is the measure of their dispersion. In performance

and reliability analysis while looking at the failure rates of a system, it is often the case

that we are quite interested in questions like, “How typical is the average?” or, “What

are the chances of observing an event far from the average?”. The most important

measures of dispersion are the standard deviation and the variance. The variance of

a random variable X describes the difference between X and its expected value.
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V ar[X] = σ2
X =











∑

i(xi − Ex[X])2pX(xi), if X is discrete;
∫ ∞

−∞
(x − Ex[X])2fX(x)dx, if X is continuous.

(1.5)

It is clear that σ2
X is always a nonnegative number. The square root of the variance

is known as the standard deviation σX ; which is a useful characteristic as it has the

same units as X and thus can be compared directly with the expected value.

Based on the expectation and variance characteristics of a random variable, we

can find bounds for the tail distribution, i.e., the probability that a random variable

assumes values that are far from its expectation. These bounds are usually calculated

using the Markov’s or the Chebyshev’s inequalities [7]. The Markov’s inequality gives

an upper bound for the probability that a non-negative random variable X is greater

than or equal to some positive constant

Pr(X ≥ a) ≤ Ex[X]

a
(1.6)

Markov’s inequality gives the best tail bound possible, for a nonnegative random

variable, using the expectation for the random variable only [61]. This bound can be

improved upon if more information about the distribution of the random variable is

taken into account. Chebyshev’s inequality is based on this principle and it presents

a significantly stronger tail bound in terms of variance of the random variable

Pr(|X − Ex[X]| ≥ a) ≤ V ar[X]

a2
(1.7)

where V ar denotes the variance function. Due to the widespread interest in failure

probabilities and the ease of calculation of tail distribution bounds using Equations

(1.6) and (1.7), Markov and Chebyshev’s inequalities have now become one of the

core techniques in modern probabilistic analysis.
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1.3 Probabilistic Analysis Approaches

Due to the vast application domain of probability, many researchers around the world

are trying to improve the quality of computer based probabilistic analysis. The ulti-

mate goal is to come up with a probabilistic analysis framework that includes robust

and accurate analysis methods, has the ability to perform analysis for large-scale

problems and is easy to use. In this section, we provide a brief account of the state-

of-the-art and some related work in this field.

1.3.1 Simulation

Since the development of the probability theory in the last century, paper-and-pencil

proof techniques have been used to perform probabilistic analysis for various engi-

neering and scientific applications. These traditional techniques cannot cope with

the complex systems and environments that are being worked on in this era. The

advent of fast and inexpensive computational power in the last two decades opened

up venues for using computers for probabilistic analysis. Today, simulation [72] is the

most commonly used computer based probabilistic analysis technique. Most simu-

lation software, e.g., Minitab [60], SAS [74], mathStatica [54], SPSS [77], Microsoft

Excel [22], MATLAB [78], NESSUS [70], etc. contain a large collection of discrete and

absolutely continuous univariate and multivariate distributions which in turn can be

used to model systems with random or unpredictable components. These models are

then analyzed using computer based techniques, such as the Monte Carlo method [51],

where the main idea is to approximately answer a query on a probability distribution

by analyzing a large number of samples. Statistical quantities, such as expectation,

variance and tail distribution bounds, may then be calculated, based on the data col-

lected during the sampling process, using their mathematical relations in a computer.
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The probabilistic and statistical analysis conducted using simulation techniques

is based on certain approximations and can be quite unreliable at times. It is a

common occurrence that different software packages come up with different solutions

to the same probabilistic analysis problem. The approximations that lead to this

unreliability can be classified into three main categories.

• The source of randomness in the simulation based software packages is usually

pseudorandom numbers; the numbers seem random but are actually the output

of a random number generator (RNG) which is basically a deterministic algo-

rithm [48]. The period of an RNG, i.e., the number of calls which can be made

to the RNG before it begins to repeat itself, severely affects the accuracy of the

result from a probabilistic or statistical software package [44].

• In most simulation based software packages, the CPU time required for gen-

erating nonuniform random numbers for arbitrary probability distributions is

a major issue. Therefore functions for evaluating probability distributions are

approximated using a variety of efficient algorithms [40]; some more accurate

than others. For example, several algorithms for the incomplete beta function

were assessed in [9] and only one of them was found to be reliable. Details of

numerically stable computation of statistical functions are explored in [42] and

[43].

• Like all other computer based computations, roundoff and truncation errors

also creep into the numerical computations in these simulation based software

packages [35]. These errors arise due to the finite precision representation of

numbers in the computers.

McCullough [55] proposed a collection of intermediate-level tests for assessing
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the numerical reliability of a statistical package in three areas: estimation, random

number generation, and calculation of statistical distributions. McCullough applied

his methodology to uncover flaws in most of the mainstream statistical packages, e.g.,

his analysis of the SAS and the SPSS packages are presented in [56], and of Microsoft

Excel 2003 in [58]. mathStatica is the statistical add-on package for Mathematica

[71], which provides an arbitrary-precision numeric engine, whereas most software

packages provide only finite-precision numerics. There are two ways to increase the

precision of calculation in Mathematica: (1) to increase the number of digits carried

through calculations, and (2) rationalize the input data by converting them from

reals to rationals. It is because of this arbitrary precision calculation of Mathematica

that mathStatica’s accuracy outperforms all of the competition in each of the three

benchmark areas in McCullough’s methodology [57]. Though there are exceptions,

the general rule of computing is that there is a tradeoff between speed and accuracy.

That is, more accurate computation tends to be slower. In his excellent article on

numerics in Mathematica, Sofroniou [76] maintains that, “if you are using machine

numbers you are primarily concerned with efficiency”, as opposed to using extended

precision numbers and being particularly concerned with accuracy.

Due to the above mentioned inaccuracies and the inherent nature of simulation,

the probabilistic analysis results attained via simulation can never be termed as 100%

accurate. Besides the inaccuracy of the results, another major limitation of simula-

tion based probabilistic analysis is the enormous amount of CPU time requirement for

attaining meaningful estimates. This approach generally requires hundreds of thou-

sands of simulations to calculate the probabilistic quantities and becomes impractical

when each simulation step involves extensive computations.
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1.3.2 Model Checking

Probabilistic model checking [4, 73] is a rapidly emerging formal technique that is

capable of providing exact solutions to probabilistic properties. Like traditional model

checking [30], it involves the construction of a precise state-based mathematical model

of the given probabilistic system, which is then subjected to exhaustive analysis to

verify if it satisfies a set of formally represented probabilistic properties. Numerous

probabilistic model checking algorithms and methodologies have been proposed in the

open literature, e.g., [18, 63], and based on these algorithms, a number of tools have

been developed, e.g., PRISM [67, 45], E⊢MC2 [34], Rapture [39] and VESTA [75].

Besides the accuracy of the results, the most promising feature of probabilistic

model checking is the ability to perform the analysis automatically. On the other

hand, it is limited to systems that can only be expressed as probabilistic finite state

machines. Another major limitation of the probabilistic model checking approach

is state space explosion [16]. The state space of a probabilistic system can be very

large, or sometimes even infinite. Thus, at the outset, it is impossible to explore the

entire state space with limited resources of time and memory. Thus, the probabilistic

model checking approach, even though is capable of providing exact solutions, is quite

limited in terms of handling a variety of probabilistic analysis problems.

Similarly, to the best of our knowledge, it has not been possible to precisely

reason about statistical quantities, such as expectation, variance and tail distribution

bounds, using probabilistic model checking so far. The most that has been reported in

this domain is the approximate evaluation of expectation. Some probabilistic model

checkers, such as PRISM and VESTA, offer the capability of verifying expected val-

ues in a semi-formal manner. For example, in the PRISM model checker, the basic

idea is to augment probabilistic models with cost or rewards: real values associated
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with certain states or transitions of the model, in order to analyze the expectation

properties related to these rewards. The meaning ascribed to expected properties is,

of course, dependent on the definitions of the rewards themselves and thus there is

always some risk of verifying false properties. Similarly, the computed expected values

are expressed in a computer based notation, such as fixed or floating point numbers,

which also introduces some degree of approximation in the results.

1.3.3 Theorem Proving

Theorem proving [26] is another widely used formal verification technique. The sys-

tem that needs to be analyzed is mathematically modeled in an appropriate logic and

the properties of interest are verified using computer based formal tools. The use of

formal logics as a modeling medium makes theorem proving a very flexible verification

technique as it is possible to formally verify any system that can be described math-

ematically. The core of theorem provers usually consists of some well-known axioms

and primitive inference rules. Soundness is assured as every new theorem must be

created from these basic axioms and primitive inference rules or any other already

proved theorems or inference rules.

The verification effort of a theorem in a theorem prover varies from trivial to

complex depending on the underlying logic [31]. For instance, first-order logic [24]

is restricted to propositional calculus and terms (constants, function names and free

variables) and is semi-decidable. A number of sound and complete first-order logic

automated reasoners are available that enable completely automated proofs. More

expressive logics, such as higher-order logic [10], can be used to model a wider range

of problems than first-order logic, but theorem proving for these logics cannot be fully

automated and thus involves user interaction to guide the proof tools. For probabilistic
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analysis, we need to formalize (mathematically model) random variables as functions

and formalize characteristics of random variables, such as CDF and expectation, etc.,

by quantifying over random variable functions. Henceforth, first-order logic does

not support such formalization and we need to use higher-order logic to formalize

probabilistic analysis.

Probabilistic analysis can be conducted in the environment of a higher-order-

logic theorem prover by first modeling the behavior of the system that needs to be

analyzed in higher-order logic, while expressing its random or unpredictable elements

in terms of formalized random variables. The second step is to use this formal model

to express the probabilistic and statistical properties, regarding the system, in higher-

order logic. For this purpose, we need to have access to higher-order-logic definitions

of probabilistic and statistical properties of random variables, such as, PMF, CDF, ex-

pectation and variance, etc. Finally, theorems corresponding to the probabilistic and

statistical properties of the system model can be mechanically checked for correctness

in a theorem prover.

The above mentioned theorem proving based probabilistic analysis approach

tends to overcome the limitations of the simulation and model checking based prob-

abilistic analysis approaches. Due to the formal nature of the models and properties

and the inherent soundness of the theorem proving approach, probabilistic analysis

carried out in this way will be free from any approximation and precision issues. Simi-

larly, the high expressibility of higher-order logic allows us to analyze a wider range of

systems without any modeling limitations, such as the state-space explosion problem

in the case of probabilistic model checking, and formally verify analytically complex

properties, such as expectation, variance and tail distribution bounds. Furthermore,

the use of mechanical theorem provers will increase the confidence in the proofs over
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the traditional paper-and-pencil approach.

Nȩdzusiak [62] and Bialas [6] were among the first ones to propose a formaliza-

tion of some probability theory in higher-order logic. Hurd [36] developed a frame-

work for the verification of probabilistic algorithms in the HOL (which stands for

Higher-Order-Logic) theorem prover [27]. Random variables are basically probabilis-

tic algorithms and thus can be formalized and verified, based on their probability

distribution properties, using the methodology proposed in [36]. In fact, [36] presents

the formalization of some discrete random variables along with their verification, based

on the corresponding PMF properties. These random variables can thus be used to

formally model discrete random components of a system in higher-order logic. This

system’s probabilistic properties can also be expressed in terms of the PMF relations

of the corresponding random variables and thus can be formally reasoned about in

the HOL theorem prover. Hurd demonstrated the practical effectiveness of his formal

framework by successfully verifying the Miller-Rabin primality test, a well-known and

commercially used probabilistic algorithm. This case study utilizes a formal model of

the discrete Uniform random variable. Hurd et. al [37] also formalized the probabilis-

tic guarded-command language (pGCL) in HOL. The pGCL contains both demonic

and probabilistic nondeterminism and thus makes it suitable for reasoning about dis-

tributed random algorithms. Celiku [13] built upon the formalization of the pGCL

to mechanize a quantitative temporal logic and demonstrated the ability to reason

about quantized aspects of randomized algorithms in HOL.

An alternative method for probabilistic verification in higher-order logic has been

presented by Audebaud et. al [3]. Instead of using the measure theoretic concepts

of probability space, as is the case in Hurd’s approach, Audebaud et. al based their

methodology on the monadic interpretation of randomized programs as probabilistic
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distribution. This approach only uses functional and algebraic properties of the unit

interval and has been successfully used to verify a sampling algorithm of the Bernoulli

distribution and the termination of various probabilistic programs in the Coq theorem

prover [17].

Richter [69] formalized a significant portion of the Lebesgue integration theory

in higher-order logic using Isabelle/Isar [65]. He also linked the Lebesgue integra-

tion theory to probabilistic algorithms, developing upon Hurd’s [36] framework, and

presented the formalization of the first moment method. Due to its strong mathe-

matical foundations, the Lebesgue integration theory may be used to formalize the

expectation of continuous random variables.

To the best of our knowledge, no higher-order logic formalization of continuous

random variables exists in the open literature so far. The algorithms for discrete

random variables, formalized by the above mentioned researchers, are either guaran-

teed to terminate or satisfy probabilistic termination, meaning that the probability

that the algorithm terminates is 1. On the other hand, the modeling of continuous

random variables requires non-terminating programs and hence calls for a different

approach. Thus, it is not possible to conduct the probabilistic analysis of systems

with continuous random components using the available formalization. Similarly, for-

mally reasoning about statistical characteristics of random variables is not possible

using the available research. Richter’s formalization of the Lebesgue integral may

be used for this purpose but it involves dense mathematical concepts and leads to

a complex verification task. It is not a straightforward task to formalize a random

variable and verify its expectation property using the formalized Lebesgue integration

theory. Likewise, the verification of variance and tail distribution properties and the

analysis of probabilistic systems that involve multiple random variables is even more
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challenging.

1.4 Proposed Methodology

The objective of this thesis is mainly targeted towards the development of a theorem

proving based probabilistic analysis framework that can handle the analysis of real-

world hardware and software systems. In particular, we have developed a framework

characterizing:

1. The ability to formally express both discrete and continuous random variables

in higher-order logic. These formalized random variables can be used to develop

formal models for systems with either discrete or continuous random compo-

nents.

2. The ability to formally express the probabilistic and statistical properties of both

discrete and continuous random variables in higher-order logic. These formalized

properties can be used to develop theorems representing the characteristics of

interest for the formal model of the given system.

3. The ability to formally reason about the theorems, formalized in Step 2, using

a theorem prover.

4. The ability to utilize the above mentioned capabilities to formally model and

reason about real-world probabilistic analysis problems.

Figure 1.3 depicts the above mentioned characteristics and presents a hypo-

thetical model of our intended probabilistic analysis framework. The discrete and

continuous random variable boxes denote frameworks for the formalization of the cor-

responding random variables. Probabilistic and statistical property boxes are used
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for both discrete and continuous random variables and they basically denote the

infrastructures to express and reason about the corresponding properties in a higher-

order-logic theorem prover.

Figure 1.3: Formal Probabilistic Analysis Framework

Hurd’s methodology for the verification of probabilistic algorithms [36] can be

utilized to formalize discrete random variables and verify their corresponding prob-

abilistic properties in a theorem prover. The boxes associated with these existing

capabilities, i.e., a framework for the formalization of discrete random variables and
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an infrastructure to formally express and reason about probabilistic properties regard-

ing discrete random variables, are highlighted in a light shade of grey in Figure 1.3.

Moving towards a successful theorem proving based probabilistic analysis framework,

we tackle three main characteristics. First of all, we propose an infrastructure that

allows us to formally express and reason about some statistical properties regarding

discrete random variables. Secondly, we propose a framework that facilitates both the

formalization of continuous random variables and the formalization and verification

of the corresponding CDF properties. These are the main contributions of this thesis

and are highlighted with stripes in Figure 1.3. The remaining characteristics of the in-

tended probabilistic analysis framework, i.e., formally expressing and reasoning about

PDF and statistical properties of continuous random variables, are still open issues.

These future research direction are highlighted in a dark shade of grey in Figure 1.3,

In the following, we briefly present our methodologies for developing the formal

probabilistic analysis characteristics that we have tackled in this thesis.

• Statistical Properties for Discrete Random Variables: We propose an

infrastructure that allows us to formally specify statistical properties like ex-

pectation, variance and tail distribution bounds, for discrete random variables

and formally verify them in the HOL theorem prover. The infrastructure is

primarily based on a formal definition of expectation of a function of a dis-

crete random variable in higher-order logic. Instead of formalizing a generalized

definition of expectation based on the mathematical concept of sample space,

we consider one of its variants that deals with discrete random variables that

take on values in the positive integers, i.e., {0, 1, 2, · · · }, only. This simplifi-

cation leads to a much faster formalization and verification and thus enables
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us to demonstrate the effectiveness of the proposed performance analysis ap-

proach by targeting real-world applications. Building upon our definition of

expectation of a function of a discrete random variable, we formalize the math-

ematical concept of variance and verify some classical properties of expectation

and variance. For illustration purposes, we present the formal verification of

expectation and variance relations for some of the widely used discrete random

variables, such as Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p).

The thesis also provides the formal verification of Markov’s and Chebyshev’s

inequalities for discrete random variables, which allows us to formally reason

about the respective tail distribution properties in a theorem prover. Finally,

in order to demonstrate the usefulness of the above mentioned formalization,

we utilize the HOL theorem prover for conducting probabilistic analysis of the

Coupon Collector’s problem [61], a well-known commercially used probabilistic

algorithm.

• Continuous Random Variables and their CDF Properties: We present

a generic framework for the formalization of continuous random variables, for

which the inverse of the CDF can be represented in a closed mathematical form,

and the verification of the corresponding CDF properties in the HOL theorem

prover. The proposed framework is primarily based on the Inverse Transform

Method (ITM) [20]. The ITM is a well known nonuniform random generation

technique for generating random variates with arbitrary distributions using a

Standard Uniform random number generator. The main advantage of this ap-

proach is that we only need to formalize one continuous random variable from

scratch, i.e., the Standard Uniform random variable. Other continuous ran-

dom variables can then be formalized and verified by using the formally verified
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ITM. The thesis includes the higher-order-logic formalization and verification

details of the Standard Uniform random variable and the ITM. For illustra-

tion purposes, we present the formalization and verification of Exponential(λ),

Uniform(a, b), Rayleigh(λ) and Triangular(0, a) random variables in HOL. We

also demonstrate the usefulness of formalized continuous random variables in the

formal probabilistic analysis approach by presenting the verification of a couple

of probabilistic properties regarding the roundoff error in a digital processor.

• Case Study: Stop-and-Wait Protocol: In order to demonstrate the feasi-

bility and usefulness of the proposed formalization, we present the functional

verification and probabilistic analysis of the Stop-and-Wait protocol. Like other

real-time systems, the Stop-and-Wait protocol involves a subtle interaction of

a number of distributed components and exhibits a high degree of parallelism,

which makes its performance analysis quite complex. Thus, traditional tech-

niques, such as simulation or the state-based formal methods, usually fail to

produce reasonable results. On the other hand, we are able to achieve pre-

cise results for this problem using the higher-order-logic theorem proving based

probabilistic analysis approach. We formalize the protocol as a logical conjunc-

tion of higher-order-logic predicates while the channel noise is modeled using the

Bernoulli(p) random variable. Based on this model, the average message delay

relation, which is the most essential performance related parameter for com-

munication protocols, is formally verified in HOL. Our results exactly match

the results obtained by paper-and-pencil proof techniques and are thus 100 %

precise. The Stop-and-Wait protocol is a classical example of a real-time system

and thus the approach followed in this case study can be essentially utilized for

the analysis of any other real-time system as well.
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It is important to note that the proposed higher-order-logic theorem proving ap-

proach has its own limitations. Even though theorem provers have been successfully

used for a variety of tasks, including some that have eluded human mathematicians

for a long time, but these successes are sporadic, and work on hard problems usually

requires a proficient user and a lot of formalization. On the other hand, simula-

tion based techniques are at least capable of offering approximate solutions to very

complex problems and probabilistic model checking can automatically provide pre-

cise answers to probabilistic analysis problems that can be expressed by a reasonable

sized state-machine. Therefore, we consider higher-order-logic theorem proving as

a complementary technique to simulation and probabilistic model checking, i.e., the

methods have to play together for a successful probabilistic analysis framework. For

example, theorem proving can be used for the safety critical parts of the analysis,

which cannot be handled by probabilistic model checking, and simulation and model

checking based approaches can handle the rest.

1.5 Thesis Contributions

In summary, the primary focus of this thesis is on the idea of using higher-order-logic

theorem proving for conducting probabilistic analysis. This approach allows us to

achieve precise probabilistic analysis results and thus proves to be quite useful for

the performance and reliability optimization of safety critical hardware and software

systems. In moving towards a successful higher-order-logic theorem proving based

probabilistic analysis framework, the thesis makes the following contributions.

1. It presents an infrastructure that allows us to formally specify and verify higher-

order-logic theorems related to the expectation, variance and tail distribution
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properties for discrete random random variables in a theorem prover [Bio-Jr-

2,Bio-Jr-3,Bio-Cf-2,Bio-Cf-3,Bio-Tr-1]1.

2. It presents a framework that can be used to formally specify higher-order-logic

models of any continuous random variable for which the inverse of the CDF can

be expressed in a closed mathematical form. This framework also allows us to

specify and verify higher-order-logic theorems related to the CDF properties for

these continuous random variables in a theorem prover [Bio-Jr-1,Bio-Cf-5,Bio-

Cf-6,Bio-Tr-1,Bio-Tr-2,Bio-Tr-3].

3. It presents the complete functional verification and performance analysis of the

Stop-and-Wait protocol in a higher-order-logic theorem prover. We believe that

this is the first time that a computer based formal method has been able to

tackle these problems in a unified framework with 100% precise results. The

analysis approach for this case study is quite general and can be utilized to

conduct the analysis of other real-time systems as well [Bio-Jr-4,Bio-Cf-1].

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief intro-

duction to the HOL theorem prover and an overview of Hurd’s methodology for the

verification of probabilistic algorithms in HOL to equip the reader with some notation

and concepts that are going to be used in the rest of this thesis. Chapter 3 describes

the formalization infrastructure that enables us to formally specify and verify expec-

tation, variance and tail distribution bounds for discrete random variables in HOL.

To demonstrate this infrastructure, the chapter also presents the formal verification of

1The references with prefix Bio are provided in the Biography Section.

24



mean and variance characteristics of some commonly used discrete random variables

and the probabilistic analysis of Coupon Collector’s problem as a case study. Chapter

4 presents the framework for the formalization of continuous random variables and the

verification of the corresponding CDF properties in HOL. To demonstrate this frame-

work, the chapter also presents the formalization and verification of some commonly

used continuous random variables and the simple probabilistic analysis example of

roundoff error in a digital processer. Next, in Chapter 5, we illustrate the practical

effectiveness of the proposed approach (and the above mentioned formalization) by

successfully applying it for the formal functional verification and performance analysis

of the Stop-and-Wait protocol. Finally, Chapter 6 concludes the thesis and outlines

some future research directions.
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Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the HOL theorem prover and present

an overview of Hurd’s methodology [36] for the verification of probabilistic algorithms.

The intent is to introduce the basic theories along with some notation that is going

to be used in the rest of the thesis.

2.1 HOL Theorem Prover

This thesis uses the HOL theorem prover to conduct all the probabilistic analysis

related formalization and verification. HOL is an interactive theorem prover developed

by Mike Gordon at the University of Cambridge for conducting proofs in higher-order

logic. It utilizes the simple type theory of Church [14] along with Hindley-Milner

polymorphism [59] to implement higher-order logic. HOL has been successfully used

as a verification framework for both software and hardware as well as a platform for

the formalization of pure mathematics.
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2.1.1 Secure Theorem Proving

In order to ensure secure theorem proving, the logic in the HOL system is represented

in the strongly-typed functional programming language ML [66]. An ML abstract data

type is used to represent higher-order-logic theorems and the only way to interact with

the theorem prover is by executing ML procedures that operate on values of these data

types. The HOL core consists of only 5 basic axioms and 8 primitive inference rules,

which are implemented as ML functions. Soundness is assured as every new theorem

must be verified by applying these basic axioms and primitive inference rules or any

other previously verified theorems/inference rules.

2.1.2 Terms

There are four types of HOL terms: constants, variables, function applications, and

lambda-terms (denoted function abstractions). Polymorphism, types containing type

variables, is a special feature of higher-order logic and is thus supported by HOL.

Semantically, types denote sets and terms denote members of these sets. Formulas,

sequences, axioms, and theorems are represented by using terms of Boolean types.

2.1.3 Theories

A HOL theory is a collection of valid HOL types, constants, axioms and theorems

and is usually stored as a file in computers. Users can reload a HOL theory in the

HOL system and utilize the corresponding definitions and theorems right away. The

concept of HOL theory allows us to build upon existing results in an efficient way

without going through the tedious process of regenerating these results using the

basic axioms and primitive inference rules.

HOL theories are organized in a hierarchical fashion. Any theory may inherit
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types, definitions and theorems from other available HOL theories. The HOL system

prevents loops in this hierarchy and no theory is allowed to be an ancestor and de-

scendant of a same theory. Various mathematical concepts have been formalized and

saved as HOL theories by the HOL users. These theories are available to a user when

he first starts a HOL session. We utilized the HOL theories of Booleans, lists, sets,

positive integers, real numbers, measure and probability in our work. In fact, one of

the primary motivations of selecting the HOL theorem prover for our work was to

benefit from these built-in mathematical theories.

2.1.4 Writing Proofs

HOL supports two types of interactive proof methods: forward and backward. In

forward proof, the user starts with previously proved theorems and applies inference

rules to reach the desired theorem. In most cases, the forward proof method is not the

easiest solution as it requires the exact details of a proof in advance. A backward or a

goal directed proof method is the reverse of the forward proof method. It is based on

the concept of a tactic; which is an ML function that breaks goals into simple subgoals.

In the backward proof method, the user starts with the desired theorem or the main

goal and specifies tactics to reduce it to simpler intermediate subgoals. Some of these

intermediate subgoals can be discharged by matching axioms or assumptions or by

applying built-in decision procedures. The above steps are repeated for the remaining

intermediate goals until we are left with no further subgoals and this concludes the

proof for the desired theorem.

The HOL theorem prover includes many proof assistants and automatic proof

procedures [31] to assist the user in directing the proof. The user interacts with a

proof editor and provides it with the necessary tactics to prove goals while some of
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the proof steps are solved automatically by the automatic proof procedures.

2.1.5 HOL Symbols

Table 2.1 provides the mathematical interpretations of some frequently used HOL

symbols and functions, which are inherited from existing HOL theories, in this thesis.

HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list

++ append Joins two lists together
hd L head Head element of list L
tl L tail Tail of list L
el n L element nth element of list L
mem a L member True if a is a member of list L
length L length Length of list L

(a, b) a x b A pair of two elements
fst fst (a, b) = a First component of a pair
snd snd (a, b) = b Second component of a pair
λx.t λx.t Function that maps x to t(x)

{x|P(x)} {λx.P (x)} Set of all x such that P (x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type
suc n n + 1 Successor of a num
sqrt x

√
x Square root function

abs x |x| Absolute function
lim(λn.f(n)) lim

n→∞
f(n) Limit of a real sequence f

convergent(λn.f(n)) ∃x. lim
n→∞

f(n) = x f is convergent

suminf(λn.f(n)) lim
k→∞

∑k

n=0 f(n) Infinite summation of f

summable(λn.f(n)) ∃x. lim
k→∞

∑k

n=0 f(n) = x Summation of f is convergent

Table 2.1: HOL Symbols and Functions
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2.2 Verifying Probabilistic Algorithms in HOL

The proposed formalization and verification methodologies, given in this thesis, build

upon Hurd’s methodology [36] for the verification of probabilistic algorithms. In this

section, we provide a brief description about this work whereas more details can be

found in the original dissertation [36].

2.2.1 Formalization of Probabilistic Algorithms

Probabilistic algorithms can be formalized in higher-order logic as deterministic func-

tions with access to an infinite Boolean sequence B
∞; source of an infinite random bits

modeled by num → bool. These deterministic functions make random choices based

on the result of popping the top most bit in the infinite Boolean sequence and may pop

as many random bits as they need for their computation. When the algorithms termi-

nate, they return the result along with the remaining portion of the infinite Boolean

sequence to be used by other programs. Thus, a probabilistic algorithm which takes

a parameter of type α and ranges over values of type β can be represented in HOL

by the function

F : α → B∞ → β × B∞

For example, a Bernoulli(1
2
) random variable that returns 1 or 0 with equal

probability 1
2

can be modeled as follows

⊢ bit = λs. (if shd s then 1 else 0, stl s)

where the variable s, in the above definition, represents the infinite Boolean sequence

and the functions shd and stl are the sequence equivalents of the list operation

’head’ and ’tail’. The function bit accepts the infinite Boolean sequence and returns
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a random number that is either 0 or 1 together with a sequence of unused Boolean

sequence, which in this case is the tail of the sequence.

One of the primary advantages of using an infinite Boolean sequence as the only

source of randomness for probabilistic algorithms is the fact that only one probability

space needs to be formalized in the logic.

2.2.2 Monadic Notation

Higher-order-logic functions for probabilistic algorithms can also be expressed in the

more general state-transforming monad, where the states are the infinite Boolean

sequences.

⊢ ∀ a s. unit a s = (a,s)

⊢ ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))

where the HOL functions fst and snd return the first and second components of a

pair, respectively. The unit operator is used to lift values to the monad, and the

bind is the monadic analogue of function application. All monad laws hold for this

definition, and the notation allows us to write functions without explicitly mentioning

the sequence that is passed around, e.g., function bit can be defined as

⊢ bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where the function sdest returns the head and tail of its argument sequence as a pair

sdest s = (shd s, stl s).

2.2.3 Formalized Probability Theory

Hurd [36] also formalized some mathematical measure theory in HOL in order to

define a probability function P from sets of infinite Boolean sequences to real numbers
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between 0 and 1. The domain of P is the set E of events of the probability. Both P

and E are defined using the Carathéodory’s Extension theorem, which ensures that

E is a σ-algebra: closed under complements and countable unions. The formalized P

and E can be used to verify the basic laws of probability in the HOL theorem prover.

For example, the additive law, which represents the probability of two disjoint events

as the sum of their probabilities, can be formally verified as follows:

⊢ ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅ ⇒ P(A ∪ B) = P(A) + P(B)

The formalized P and E can also be used to prove probabilistic properties for proba-

bilistic programs such as

⊢ P {s | fst (bit s) = 1} = 1
2

where the function fst returns the first component of a pair.

2.2.4 Measurability and Independence

The measurability and independence of a probabilistic function are important con-

cepts in probability theory. A property indep, called strong function independence,

is introduced in [36] such that if f ∈ indep, then all sets involving the function f

will be both measurable and independent. In this approach, a set of infinite Boolean

sequences, S, is said to be measurable if and only if it is in E , i.e., S ∈ E . Since

the probability measure P is only defined on sets in E , it is very important to prove

that sets that arise in verification are measurable. It has been shown in [36] that

a function is guaranteed to preserve strong function independence, if it accesses the

infinite Boolean sequence using only the unit, bind and sdest primitives. All rea-

sonable probabilistic programs preserve strong function independence, and these extra

properties are a great aid to verification.
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2.2.5 Probabilistic While Loop

The features of Hurd’s methodology described so far, allow us to formalize and verify

all probabilistic algorithms that compute a finite number of values equal to 2n and the

occurrence of each one of these values is equiprobable with a probability m
2n : where m

is a positive integer and is always less than 2n. These kind of random variables can

be modeled, using Hurd’s framework, by well-founded recursive functions. There are

many probabilistic algorithms that do not satisfy the above conditions. For example,

the Geometric(p) returns the index of the first success in an infinite sequence of

Bernoulli(p) trials [19] and thus ranges over a countably infinite number of positive

integers.

Hurd defined a probabilistic version of the while loop, i.e., the probabilistic while

loop, which allows us to formalize the probabilistic algorithms that do not satisfy

the above conditions but are sure to terminate. It has been verified in HOL that

the probabilistic while loop preserves useful program properties of measurability and

independence, provided the condition that “from every starting state, the while loop

will terminate with probability 1” is satisfied. For illustration purposes, [36] presents

the formalization and verification of two probabilistic algorithms using the probabilistic

while loop.
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Chapter 3

Statistical Properties for Discrete

Random Variables

Statistical properties play a vital role in the present age probabilistic analysis. In

this chapter, we present some formalization that allows us to reason about the ex-

pectation, variance and tail distribution properties of discrete random variables in

the HOL theorem prover. This infrastructure can be used to formally specify and

verify theorems for statistical properties regarding the discrete random components

of systems in HOL. To illustrate the practical effectiveness of the results presented in

this chapter, we utilize them to conduct formal probabilistic analysis of the Coupon

Collector’s problem.

3.1 Introduction

In probabilistic analysis, expectation and variance play a major role in decision mak-

ing as they tend to summarize the probability distribution characteristics of a random
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variable in a single number. For example, it is more convenient to find the most ef-

ficient algorithm for an NP-hard problem by comparing the expectations of runtime

for the available options rather than comparing their respective probability distribu-

tion functions. Similarly, in performance and reliability analysis while looking at the

failure rates of a system, it is often the case that we are interested in the probability

that a random variable assumes values that are far from its expectation value. In-

stead of characterizing this probability by a distribution function, we commonly rely

on its upper bounds. These bounds, usually termed as the tail distribution bounds,

can be computed using the Markov’s or the Chebyshev’s inequalities along with the

expectation and variance relations of the corresponding random variable [7].

Due to its widespread interest, the computation of statistical characteristics has

now become one of the core components of every modern probabilistic analysis frame-

work. In this chapter, we present a formalization infrastructure, given in Figure 3.1,

that allows us to reason about expectation, variance, and tail distribution proper-

ties regarding discrete random variables using a higher-order-logic theorem prover.

For this purpose, we mainly build upon the higher-order-logic formalization of the

probability theory, given in [36].

The first step in the proposed infrastructure, illustrated in Figure 3.1, is the

formalization of an expression for the expectation of a function of a discrete random

variable in higher-order logic. Building upon this definition, we formalize the math-

ematical concept of variance and verify some classical properties of expectation and

variance, including the linearity of expectation and variance properties for discrete

random variables. Both of these linearity properties are quite useful as they allow us

to formally reason about the expectation and variance properties of systems involv-

ing multiple random variables. The next step, as shown in Figure 3.1, is to utilize
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Figure 3.1: Formalization Infrastructure for Reasoning about Statistical Properties

the formal definitions of expectation and variance to verify the Markov’s and Cheby-

shev’s inequalities, given in Equations (1.6) and (1.7), for discrete random variables,

respectively. The above mentioned formalization and verification allows us to reason

about expectation, variance and tail distribution properties of any formalized discrete

random variable.

In order to demonstrate the proposed infrastructure, we present the verification

of expectation and variance relations for a few widely used discrete random variables:

Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p), in this chapter. These

formally verified expectation and variance relations can also be used along with the

formally verified Markov’s and Chebyshev’s inequalities to formally reason about the

tail distribution characteristics of their respective random variables.

Finally, in order to illustrate the practical effectiveness of the formalization

presented in this chapter, we utilize the propesed infrastructure to conduct the formal

performance analysis of the Coupon Collector’s problem [61], which is a well known
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commercially used algorithm in computer science. Coupon Collector’s problem is

motivated by “collect all n coupons and win” contests. The problem is to find the

number of trials that we need to find all the n coupons, assuming that a coupon is

drawn independently and uniformly at random from n possibilities. We first present

a formalization of the Coupon Collector’s problem using the Geometric(p) random

variable. Using this model along with the formalization infrastructure, presented

in this chapter, we then illustrate the process of formally reasoning about the tail

distribution properties of the Coupon Collector’s problem in HOL.

3.2 Expectation for Discrete Random Variables

In this section, we first present a higher-order-logic formalization of the expectation

of a function of a discrete random variable that is the first step in the proposed

formalization infrastructure for reasoning about statistical properties, given in Figure

3.1. We later utilize this definition to verify a few classical expectation properties in

HOL.

3.2.1 Formalization of Expectation

Expectation basically provides the average of a random variable, where each of the

possible outcomes of this random variable is weighted according to its probability [7]

Ex[X] =
∑

i

xipX(xi) (3.1)

where
∑

i denotes the summation carried over all the possible values of the random

variable X. The above definition only holds if the summation is convergent, i.e.,

∑

i xipX(xi) < ∞. Instead of formalizing this general definition of expectation based
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on the principles of probability space, we concentrate on one of its variants that deals

with discrete random variables that take on values only in the positive integers, i.e.,

{0, 1, 2, · · · }.

This choice has been made mainly because of two reasons. First of all, in most of

the engineering and scientific probabilistic analysis problems, we end up dealing with

discrete random variables that attain values in positive integers only. For example,

consider the cases of analyzing the performance of algorithms [61], cryptographic [52]

and communication protocols [49], etc. Secondly, this simplification allows us to utilize

the summation of a real sequence to model an expectation function and thus speed

up the associated formalization and verification process by a considerable extent.

The expectation for a function of a discrete random variable, which attains

values in the positive integers only, is defined as follows [50]

Ex[f(R)] =
∞

∑

n=0

f(n)Pr(R = n) (3.2)

where R is the discrete random variable and f represents a function of the random

variable R. The above definition only holds if the associated summation is convergent,

i.e.,
∑∞

n=0 f(n)Pr(R = n) < ∞.

Equation (3.2) can be formalized in HOL, for a discrete random variable R

that attains values in positive integers only and a function f that maps this random

variable to a real value, as follows

Definition 3.1: Expectation of Function of a Discrete Random Variable

⊢ ∀ f R. expec fn f R = suminf(λn. (f n)P{s | fst(R s) = n})

where the mathematical notions of the probability function P and random variable R

have been inherited from [36], as presented in Section 2.2. The HOL function suminf

represents the infinite summation of a real sequence [32]. The function expec fn
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accepts two parameters, the function f of type (num → real) and the positive integer

valued random variable R and returns a real number.

The expected value of a discrete random variable that attains values in positive

integers can now be defined in HOL as a special case of the above definition

Definition 3.2: Expectation of a Discrete Random Variable

⊢ ∀ R. expec R = expec fn (λn. n) R

where the lambda abstraction function (λn. n) implements the identity function.

The function expec accepts a positive integer valued random variable R and returns

its expectation as a real number.

3.2.2 Verification of Expectation Properties

In this section, we utilize the formal definitions of expectation, developed in the last

section, to prove some classical properties of the expectation [81]. These properties

not only verify the correctness of our definitions but also play a vital role in verifying

the expectation characteristic of discrete random components of probabilistic systems,

as will be seen in Section 3.6 for the case of the Coupon’s Collector’s problem.

Expectation of a Constant

Ex[c] = c (3.3)

where c is a positive integer. The random variable in this case is the degenerate

random variable R ≡ c, where R(s) = c for every s ∈ sample space. It can

be formally expressed as unit c, where the monadic operator unit is described in

Section 2.2. Using this representation and the definition of expectation, given in

Definition 3.2, the above property can be expressed in HOL as follows
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Theorem 3.1: Expectation of a Constant

⊢ ∀ c. expec (unit c) = c

Rewriting the proof goal of the above property with Definition 3.2, we get

lim
k→∞

(
k

∑

n=0

n P{s | fst(unit c s) = n}) = c (3.4)

Now, the probability term on the left-and-side (LHS) of the above subgoal can be

expressed as follows

∀ n c. P{s | fst(unit c s) = n} = (if (c = n) then 1 else 0) (3.5)

and the proof is based on the basic probability theory laws and the measurability

property of the random variable unit c. Using this property, the subgoal of Equation

(3.4) can be rewritten as follows

lim
k→∞

(
k

∑

n=0

n (if (c = n) then 1 else 0)) = c (3.6)

The summation on the right-hand-side (RHS) of the above subgoal can be proved to

be convergent since its value remains the same for all values of n that are greater than

c. Using this fact and the summation properties of a real sequence the above subgoal

can be verified in HOL, which concludes the proof of Theorem 3.1.

Linearity of Expectation for Discrete Random Variables

Ex[

n
∑

i=1

Ri] =

n
∑

i=1

Ex[Ri] (3.7)

where R represents a sequence of n discrete random variables. According to the

linearity of expectation property, the expectation of a sum of random variables equals

the sum of their individual expectations. It is one of the most important properties of
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expectation as it allows us to verify the expectation properties of random behaviors

involving multiple random variables without going into the complex verification of

their joint probability distribution properties. Thus, its verification is a significant

step towards using HOL as a successful probabilistic analysis framework.

We split the verification of linearity of expectation property in two major steps.

Firstly, we verify the property for two discrete random variables and then extend the

results by induction to prove the general case. The linearity of expectation property

can be defined for any two discrete random variables X and Y as follows.

Ex[X + Y ] = Ex[X] + Ex[Y ] (3.8)

To prove the above relationship in HOL, we proceed by first defining a function

that models the summation of two random variables.

Definition 3.3: Summation of Two Random Variables

⊢ ∀ X Y.

sum two rv X Y = bind X (λa. bind Y (λb. unit (a + b)))

The function, sum two rv, accepts two random variables and returns one random

variable that represents the sum of the two argument random variables. It is important

to note that the above definition implicitly ensures that the call of the random variable

Y is independent of the result of the random variable X. This is true because the

infinite Boolean sequence that is used for the computation of Y is the remaining

portion of the infinite Boolean sequence that has been used for the computation of

X. This characteristic led us to prove that the function sum two rv preserves strong

function independence, which is the most significant property in terms of verifying

properties on probabilistic functions.
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Lemma 3.1: sum two rv Preserves Strong Function Independence

⊢ ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn

⇒ ((sum two rv X Y) ∈ indep fn)

The above property can be verified in HOL using the fact that the function sum two rv

accesses the infinite Boolean sequence using the unit and bind operators.

Now, the linearity of expectation property for two discrete random variables,

which preserve strong function independence, with well-defined expectation values,

i.e., the summation in their expectation definition is convergent, can be stated in

HOL using the sum two rv function as follows.

Lemma 3.2: Linearity of Expectation for Two Discrete Random Variables

⊢ ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

summable(λn. n P{s | fst(X s) = n}) ∧

summable(λn. n P{s | fst(Y s) = n})

⇒ (expec (sum two rv X Y) = expec X + expec Y)

where summable accepts a real sequence and returns True if the infinite summation

of this sequence is convergent (i.e., summmable M = ∃x. lim
k→∞

(
∑k

n=0 M(n)) = x).

Rewriting the proof goal of Lemma 3.2 with the definitions of the functions

expec, sum two rv and summable, simplifying it with some infinite summation prop-

erties and removing the monad notation, we reach the following subgoal in HOL.

( lim
k→∞

(

k
∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(

k
∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞

(
k

∑

n=0

(n P{s | fst(X s) + fst(Y (snd (X s)) = n}))) = (p + q))

(3.9)
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The set in the conclusion of the above implication can be proved to be equal to the

countable union of a sequence of events as follows

∀ X Y n. X ∈ indep fn ∧ Y ∈ indep fn

⇒ {s | fst(X s) + fst(Y (snd(X s))) = n}

=
⋃

i≤n

{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)}

(3.10)

using the properties verified in the HOL theory of sets. All the events in the above

sequence of events are mutually exclusive. Thus, Equation (3.10) along with the

additive law of probability, given in the HOL theory of probability, can be used to

simplify the subgoal, given in Equation (3.9), as follows.

( lim
k→∞

(
k

∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(
k

∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ lim
k→∞

(
k

∑

n=0

(n
n+1
∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)})) = (p + q)

(3.11)

Next, we found a real sequence that is easier to handle and has the same limit value

as the real sequence given in the conclusion of the above implication.

( lim
k→∞

(

k
∑

n=0

n(

n+1
∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n− i)}))) =

( lim
k→∞

(

k
∑

a=0

k
∑

b=0

(a + b)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})))
(3.12)

Using this new real sequence and rearranging the terms based on summation proper-

ties given in the HOL theories of real numbers, we can rewrite the subgoal, given in

Equation (3.11), as follows.
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( lim
k→∞

(

k
∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(

k
∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞

(

k
∑

a=0

k
∑

b=0

a(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = p) ∧

( lim
k→∞

(
k

∑

a=0

k
∑

b=0

b(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = q)

(3.13)

The two limit expressions in the conclusion of the above implication can now be proved

to be True using some elementary properties in the HOL theories of probability, sets

and real numbers, which also concludes the proof for Lemma 3.2.

The next step is to generalize Lemma 3.2 to verify the linearity of expectation

property, given in Equation (3.7), using induction. For this purpose, we define a

function that models the summation of a list of discrete random variables.

Definition 3.4: Summation of n Random Variables

⊢ (sum rv lst [] = unit 0) ∧

∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t) (λb. unit (a + b))))

The function, sum rv lst, accepts a list of random variables and returns their

sum as a single random variable. Just like the function, sum two rv, the function

sum rv lst also preserves strong function independence, if all random variables in the

given list preserve it. This property can be verified using the fact that it accesses the

infinite Boolean sequence using the unit and bind primitives only.

Lemma 3.3: sum rv lst Preserves Strong Function Independence

⊢ ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn)

⇒ ((sum rv lst L) ∈ indep fn)
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where the predicate mem is defined in the HOL list theory and returns True if its first

argument is an element of the list that it accepts as the second argument.

Now, the linearity of expectation property for n discrete random variables, which

preserve strong function independence and for which the infinite summation in the

expectation definition converges, can be stated in HOL as follows

Theorem 3.2: Linearity of Expectation Property

⊢ ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧

(summable (λn. n P{s | fst(R s) = n}))))

⇒ (expec (sum rv lst L) =

∑length L

n=0 (expec (el (length L - (n+1)) L)))

where the function length, defined in the HOL list theory, returns the length of its

list argument and the function el, also defined in the list theory, accepts a positive

integer number, say n, and a list and returns the nth element of the given list. Thus,

the LHS of Theorem 3.2 represents the expectation of the summation of a list L of

random variables. Whereas, the RHS represents the summation of the expectations

of all elements in the same list L. Theorem 3.2 can be proved by applying induction

on the list argument of the function sum rv lst, and simplifying the subgoals using

Lemmas 3.2 and 3.3.

Expectation of a Discrete Random Variable Multiplied by a Constant

Ex[aR] = aEx[R] (3.14)

where R is a discrete random variable that attains values in the positive integers

only and a is a positive integer. This property can be expressed in HOL for a random

variable R that preserves strong function independence and has a well-defined expected

value as follows
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Theorem 3.3: Expectation of a Discrete Random Variable Multiplied by a

Constant

⊢ ∀ R a. R ∈ indep fn ∧

summable(λn. n P{s | fst(R s) = n})

⇒ expec (bind R (λm. unit (a m))) = a (expec R)

The HOL proof proceeds by first performing case analysis on the variable a.

For the case when a is 0, the RHS of the proof goal becomes 0. Whereas, using the

definition of expectation, the LHS reduces to the expression

lim
k→∞

(

k
∑

n=0

n P{s| 0 = n}) (3.15)

which is also equal to 0 as ∀n.n P{s | 0 = n} = 0, since ∀n. 0 < n ⇒ P {s |

0 = n}=0. On the other hand, when a is not equal to 0, i.e., (0 < a), the proof goal

may be simplified as follows

lim
k→∞

(
k

∑

n=0

n P{s| a fst(R s) = n}) = a lim
k→∞

(
k

∑

n=0

n P{s| a fst(R s) = a n}) (3.16)

using the definition of expectation and the multiplication cancelation property of

positive integers. Next, we proved in HOL that

∀k.(
k

∑

n=0

n P{s| a fst(R s) = n}) = a(

B(k)
∑

n=0

n P{s| a fst(R s) = a n}) (3.17)

where B(k) = if (k MOD a = 0) then (k DIV a) else ((k DIV a) + 1) and MOD and DIV

represent the modulo and division functions for positive integers in HOL. This allows

us to rewrite our proof goal as follows
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lim
k→∞

a (

B(k)
∑

n=0

n P{s| a fst(R s) = a n}) = a lim
k→∞

(
k

∑

n=0

n P{s| a fst(R s) = a n})

(3.18)

which can be proved using the properties of limit of a real sequence in HOL [32],

since both of the real sequences in the above equation converge to the same value as

the value of k becomes very very large. This concludes the proof of the expectation

property given in Theorem 3.3.

Expectation of a Discrete Random Variable Added and Multiplied by Con-

stants

Ex[a + bR] = a + bEx[R] (3.19)

This property allows us to express the expectation value of a positive integer valued

random variable R added and multiplied by two positive integers a and b, respectively,

in terms of the expectation of the random variable R. It can be expressed in HOL for a

random variable R that preserves strong function independence and has a well-defined

expected value as follows.

Theorem 3.4: Expectation of a Discrete Random Variable Added and

Multiplied by Constants

⊢ ∀ R a b. R ∈ indep fn ∧

summable(λn. n P{s | fst(R s) = n})

⇒ expec (bind R (λm. unit (a + b m))) =

a + b (expec R)

Theorem 3.4 can be proved in HOL using the expectation properties, given in

Theorems 3.1, 3.2 and 3.3.
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3.3 Variance for Discrete Random Variables

In this section, we utilize the formal definition of expectation of a function of a random

variable, developed in Section 3.2, to define a variance function for discrete random

variables that attain values in positive integers only. We later utilize this definition to

verify a couple of classical variance properties in HOL. This is the second step in the

proposed formalization infrastructure for reasoning about statistical properties, given

in Figure 3.1.

3.3.1 Formal Specification of Variance

In the field of probabilistic analysis, it is often desirable to summarize the essential

properties of distribution of a random variable by certain suitably defined measures.

In the previous section, we formalized one such measure, i.e., the expectation, which

yields the weighted average of the possible values of a random variable. Quite fre-

quently, along with the average value, we are also interested in finding how typical is

the average value or in other words the chances of observing an event far from the

average. One possible way to measure the variation, or spread, of these values is to

consider the quantity Ex[|R − Ex[R]|], where || denote the abs function. However,

it turns out to be mathematically inconvenient to deal with this quantity, so a more

tractable quantity called variance is usually considered, which returns the expectation

of the square of the difference between R and its expectation [7].

V ar[R] = Ex[(R − Ex[R])2] (3.20)

Now, we formalize this definition of variance in HOL for the case of discrete

random variables that can attain values in the positive integers only. For this purpose,

we utilize the definitions of expectation, given in Definitions 3.1 and 3.2.
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Definition 3.5: Variance of a Discrete Random Variable

⊢ ∀ R. variance R = expec fn (λn. (n - expec R)2) R

The function, variance, accepts a discrete random variable R that attains values in

the positive integers only and returns its variance as a real number.

3.3.2 Verification of Variance Properties

In this section, we prove two of the most significant and widely used properties of

the variance function [61]. These properties not only verify the correctness of our

definition but also play a vital role in verifying the variance properties of discrete

random variables as will be seen in Section 3.5.

Variance in Terms of Moments

V ar[R] = Ex[R2] − (Ex[R])2 (3.21)

where R is a discrete random variable that can attain values in the positive integers

only. This alternative definition of variance is much easier to work with than the

previous one and thus aids significantly in the process of verifying variance properties

for discrete random variables. This property can be stated in HOL using the formal

definition of variance and expectation as follows.

Theorem 3.5: Variance in Terms of Moments

⊢ ∀ R. R ∈ indep fn ∧

summable(λn. n P{s | fst(R s) = n}) ∧

summable(λn. n2 P{s | fst(R s) = n})

⇒ (variance R = expec fn (λn. n2) R - (expec R)2)
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The assumption in Theorem 3.5 ensures that the random variable R preserves

the strong function independence and its expectation and second moment are well-

defined. The theorem can be proved by using the function definitions of expec fn,

expec and variance along with some arithmetic reasoning and properties from the

HOL real number theories.

Linearity of Variance for Independent Discrete Random Variables

V ar[
n

∑

i=1

Ri] =
n

∑

i=1

V ar[Ri] (3.22)

where R represents a sequence of n independent discrete random variables. Like the

linearity of expectation property, the linearity of variance property also allows us to

verify the variance properties of probabilistic systems involving multiple random vari-

ables without going into the complex verification of their joint probability distribution

properties.

The proof steps for the linearity of variance property are quite similar to the

proof steps for the linearity of expectation property. We split the verification task

in two major steps. Firstly, we verify the property for two discrete random variables

and then extend the results by induction to prove the general case. The linearity of

variance property can be defined for any two independent discrete random variables

X and Y as follows

V ar[X + Y ] = V ar[X] + V ar[Y ] (3.23)

Using the function sum two rv, given in Definition 3.3, the linearity of variance

property for two independent discrete random variables, which attain values in the

positive integers only, preserve the strong function independence and have well-defined

expectation and second moment, can be stated in HOL as follows.

50



Lemma 3.4: Linearity of Variance for Two Discrete Random Variables

⊢ ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

(summable(λn. n P{s | fst(X s) = n})) ∧

(summable(λn. n P{s | fst(Y s) = n})) ∧

(summable(λn. n2 P{s | fst(X s) = n})) ∧

(summable(λn. n2 P{s | fst(Y s) = n}))

⇒ (variance (sum two rv X Y) = variance X + variance Y)

Rewriting the above theorem with the definitions of the functions variance, expec fn,

expec and summable, simplifying it with some infinite summation properties and

Theorem 3.2 and removing the monad notation, we reach the following subgoal.

( lim
k→∞

k
∑

n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k
∑

n=0

(n P {s | fst(Y s) = n}) = q) ∧

( lim
k→∞

k
∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k
∑

n=0

(n2 P {s | fst(Y s) = n}) = t) ∧

( lim
k→∞

(
k

∑

n=0

((n− expec X)2 P {s | fst(X s) = n})) = u) ∧

( lim
k→∞

(

k
∑

n=0

((n− expec Y)2 P {s | fst(Y s) = n})) = v)

⇒ lim
k→∞

k
∑

n=0

((n− (expec X + expec Y))2) P{s | fst(X s) + fst(Y (snd (X s))) = n}

= (u + v)

(3.24)

Using the uniqueness of the limit value of a real sequence, and some properties of

summation of real sequences, it can be proved in a straight forward manner that

u = r− p2 and v = t− q2 under the given assumptions in the above subgoal. This

allows us to rewrite the above subgoal as follows.
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( lim
k→∞

k
∑

n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k
∑

n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k
∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k
∑

n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k
∑

n=0

((n2 − 2(p + q)n + (p + q)2) P{s | fst(X s) + fst(Y (snd (X s))) = n})

= (r + t− (p2 + q2))

(3.25)

Next we split the real sequence of the conclusion, in the above subgoal, in a sum of

three real sequences, corresponding to the terms n2, −2(p + q)n and (p + q)2 found

on the LHS. Now, using the results of Theorem 3.2 along with some probability laws,

it can be shown that the second and third sequences out of these three converge to

(−2(p + q)(p + q)) and (p + q)2, respectively. This allows us to rewrite the subgoal

of Equation (3.25) as follows.

( lim
k→∞

(

k
∑

n=0

n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k
∑

n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k
∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k
∑

n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k
∑

n=0

((n2) P{s | fst(X s) + fst(Y (snd (X s))) = n}) = (r + t + 2pq)

(3.26)

Just like the proof of the linearity of expectation property, we replace the real sequence

in the conclusion of the above subgoal by a real sequence that is simpler to handle

and shares the same limit value as this one, under the given assumptions.
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( lim
k→∞

(

k
∑

n=0

n2(P{s | fst(X s) +fst(Y (snd(X s))) = n}))) =

( lim
k→∞

(

k
∑

a=0

k
∑

b=0

(a2 + ab)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)} +

P{s | (fst(X s) = b) ∧ (fst(Y (snd(X s))) = a)})))

(3.27)

The subgoal given in Equation (3.26) can now be proved using the above result and

some arithmetic reasoning in HOL, which concludes the proof of Lemma 3.4.

The next step is to generalize Lemma 3.4 to verify the linearity of variance

property for n discrete random variables (Equation (3.22)), which can be stated in

HOL as follows.

Theorem 3.6: Linearity of Variance Property

⊢ ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧

(summable (λn. n P{s | fst(R s) = n}))∧

(summable (λn. n2 P{s | fst(R s) = n}))))

⇒ (variance (sum rv lst L) =

∑length L

n=0 (variance (el (length L - (n+1)) L)))

Theorem 3.6 can be proved by applying induction on the list argument of the function

sum rv lst, and simplifying the subgoals using Lemmas 3.3 and 3.4.

3.4 Markov and Chebyshev’s Inequalities

In this section, we present the verification of Markov and Chebyshev’s inequalities in

HOL using the formal definitions of expectation and variance, given in the last two
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sections. The verification of Markov and Chebyshev’s inequalities form the third and

fourth steps, respectively, in the proposed formalization infrastructure for reasoning

about statistical properties, given in Figure 3.1.

3.4.1 Verification of Markov’s Inequality

Markov’s inequality utilizes the definition of expectation to obtain a weak tail bound.

Pr(X ≥ a) ≤ Ex[X]

a
(3.28)

It can be expressed in HOL for a discrete random variable that preserves strong

function independence, has a well-defined expected value and attains values in positive

integers only as follows.

Theorem 3.7: Markov’s Inequality

⊢ ∀ R a. (0 < a) ∧ (R ∈ indep fn) ∧

(summable(λn. n P{s | fst (R s) = n}))

⇒ P {s | fst (R s) ≥ a} ≤ (expec R)
a

where a represents a real number.

We proceed with the proof of Theorem 3.7 in HOL by rewriting its proof goal

with the definition of expectation, given in Definition 3.2,

P{s|fst(R s) ≥ a} ≤
lim
k→∞

(
∑k

n=0
(n P{s|fst(R s) = n}))

a
(3.29)

Now, the set on the LHS of the above inequality can be expressed as follows

{s|fst(R s) ≥ a} = {s|fst(R s) ≥ ⌈a⌉} (3.30)
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where ⌈x⌉ denotes the ceiling of x, which represents the closest integer for a real

number x that is greater than or equal to x. The above equation is True because

the random variable R acquires values in positive integers only. Thus, all possible

values of the random variable R that are greater than a are also greater than or equal

to ⌈a⌉ and vice-versa. Equation (3.30) can now be used, along with some arithmetic

reasoning in HOL, to rewrite our proof goal (Equation (3.29)) as follows

P{s|fst(R s) ≥ ⌈a⌉} ≤ lim
k→∞

(
k

∑

n=0

(
n

⌈a⌉ P{s|fst(R s) = n})) (3.31)

Next, we use the complement law of the probability function P (A) = 1 − P (A),

which is formally verified in [36], to rewrite the LHS of the above inequality as

1− P{s|fst(R s) < ⌈a⌉}. The expression P{s|fst(R s) < ⌈a⌉} can be further sim-

plified using the additive law of probability P (A∪B) = P (A)+P (B), also verified in

[36], as
∑⌈a⌉

n=0
P{s|fst(R s) = n}. This simplification allows us to rewrite the subgoal,

given in Equation (3.31), as follows

1−
⌈a⌉
∑

n=0

P{s|fst(R s) = n} ≤ lim
k→∞

(
k

∑

n=0

(
n

⌈a⌉ P{s|fst(R s) = n})) (3.32)

It can be proved in HOL that lim
k→∞

(
∑k

n=0
P{s|fst(R s) = n}) = 1, which allows us

to rewrite the LHS of the above inequality as the limit value of the real sequence

(λk.
∑k

n=⌈a⌉ P{s|fst(R s) = n}) as k approaches infinity. Similarly, the expression

lim
k→∞

(
∑k

n=⌈a⌉(
n

⌈a⌉
P{s|fst(R s) = n})) can be proved to be less than or equal to the

RHS of the above inequality, which allows us to rewrite the subgoal, given in Equation

(3.32), as follows

lim
k→∞

(
k

∑

n=⌈a⌉

P{s|fst(R s) = n}) ≤ lim
k→∞

(
k

∑

n=⌈a⌉

(
n

⌈a⌉ P{s|fst(R s) = n})) (3.33)
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Now, we verify in HOL that for all values of k, the expression (
∑k

n=⌈a⌉ P{s|fst(R s)

= n}), found on the LHS of the above inequality, is less than or equal to the expression

(
∑k

n=⌈a⌉(
n

⌈a⌉
P {s|fst(R s) = n})), found on its RHS. This reasoning allows us to prove

the limit relationship, given in Equation (3.33), between these expressions using the

properties of limit of a real sequence [32] and thus conclude the proof of Markov’s

inequality, given in Theorem 3.7.

3.4.2 Verification of Chebyshev’s Inequality

Chebyshev’s inequality utilizes the variance and the expectation characteristics to

derive a significantly stronger tail bound than the one obtained by Markov’s inequality.

Pr(|X − Ex[X]| ≥ a) ≤ V ar[X]

a2
(3.34)

We verify the Chebyshev’s inequality by first verifying one of its variants [7]

Pr(|X − Ex[X]| ≥ aσX) ≤ 1

a2
(3.35)

where σX denotes the standard deviation function, which returns the square root of

variance for a random variable X. This property can be expressed in HOL as follows

Lemma 3.5: Chebyshev’s Inequality in terms of Standard Deviation

⊢ ∀ R a. (0 < a) ∧ (0 < variance R) ∧ (R ∈ indep fn) ∧

(summable(λn. n P{s | fst (R s) = n})) ∧

(summable(λn. n2 P{s | fst (R s) = n}))

⇒ P {s | abs (fst (R s) - expec R) ≥ a std dev R} ≤ 1

a2

for a discrete random variable that preserves strong function independence, has a

well-defined expected value and attains values in positive integers only as follows.
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Whereas, the HOL function abs, defined in [32], returns the absolute value of a real

number. The HOL function std dev, defined as follows, returns the square root of

the variance for a discrete random variable, which attains values in positive integers

only

Definition 3.5: Standard Deviation of a Discrete Random Variable

⊢ ∀ R. std dev R = sqrt (variance R)

where the HOL function sqrt, defined in [32], returns the square root of a real number.

It is important to note that we have used the assumption 0 < variance R in Lemma

3.5 because variance is a positive quantity and there is no point in calculating the tail

distribution bound for random variables with variance equal to 0.

We proceed with the proof of Lemma 3.5 in HOL by splitting its proof goal,

using the transitivity property of ≤, i.e., (a ≤ b ∧ b ≤ c ⇒ a ≤ c), into two subgoals

as follows

P{s|abs(fst(R s) − µR) ≥ aσR} ≤

P{s|(fst(R s)) ≥ µR + aσR} + P{s|(fst(R s)) ≤ µR − aσR}
(3.36)

P{s|(fst(R s)) ≥ µR + aσR} + P{s|(fst(R s)) ≤ µR − aσR} ≤ 1

a2
(3.37)

where the symbols µR and σR denote the HOL functions for expectation and standard

deviation for a random variable R.

The sets {s|(fst(R s)) ≥ µR + aσR} and {s|(fst(R s)) ≤ µR − aσR}, found on

the RHS of Equation (3.36), can be proved to be disjoint because the term aσR is

greater than 0. Thus, using the additive law of probability, we can rewrite Equation

(3.36) as follows.
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P{s|abs(fst(R s) − µR) ≥ aσR} ≤

P{s|(fst(R s)) ≥ µR + aσR} ∪ {s|(fst(R s)) ≤ µR − aσR}
(3.38)

Now, using arithmetic reasoning, it can be proved in HOL that the set on the LHS

of the inequality in Equation (3.38) is a subset of the set that appears on the RHS.

This allows us to verify Equation (3.38) using the increasing probability law P (A ⊆

B) ⇒ P (A) ≤ P (B) and thus conclude the proof of Equation (3.36).

The next step in the verification of Lemma 3.5 is to prove the inequality given

in Equation (3.37). We proceed in this direction by replacing the terms on the LHS

of the inequality in Equation (3.37) as follows

P{s|fst(R s) ≥ ⌈µR + aσR⌉}+

P{s|fst(R s) < ⌈µR − aσR⌉} ∪ {s|fst(R s) = µR − aσR} ≤ 1

a2

(3.39)

The above step is valid due to the transitivity property of ≤, as the sum of the terms

on the LHS of the inequality in Equation (3.39) is greater than the sum of the terms

on the LHS of the inequality in Equation (3.37). This is the case because of the

increasing probability law and the fact that the set {s|(fst(R s)) ≥ µR + aσR} is a

subset of the set {s|(fst(R s)) ≥ ⌈µR + aσR⌉} and the set {s|(fst(R s)) ≤ µR − aσR}

is a subset of the set {s|(fst(R s)) < ⌈µR − aσR⌉} ∪ {s|(fst(R s)) = µR− aσR}. Next,

we can rewrite Equation (3.39), using arithmetic reasoning, as follows

σ2
Ra

2(P{s|fst(R s) ≥ ⌈µR + aσR⌉} +

P{s|fst(R s) < ⌈µR − aσR⌉} ∪ {s|fst(R s) = µR − aσR}) ≤ σ2
R

(3.40)

where the symbol σ2
R denotes the variance of random variable R. In order to prove the
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above inequality we try to verify the following relationship regarding its second term

on the LHS.

σ2
Ra

2(P{s|fst(R s) < ⌈µR − aσR⌉} ∪ {s|fst(R s) = µR − aσR}) ≤
⌈µR+aσR⌉

∑

n=0

(n− µR)
2
P{s|fst(R s) = n}

(3.41)

The two sets, in the union, on the LHS of the above inequality are disjoint, which

allows us to rewrite the expression on the LHS as a sum of two probabilities, using

the additive law of probability. The first probability term, out of these two terms,

can then be expressed as
∑⌈µR−aσR⌉

n=0
σ2
Ra

2
P{s|fst(R s) = n} using the additive law of

probability. Whereas, the expression on the RHS of the above inequality can be split

into the sum of two terms, using the definition of the summation function in HOL, as

follows

⌈µR−aσR⌉
∑

n=0

σ2
Ra

2
P{s|fst(R s) = n} + σ2

Ra
2
P{s|fst(R s) = µR − aσR}) ≤

⌈µR−aσR⌉
∑

n=0

(n− µR)
2
P{s|fst(R s) = n} +

⌈µR+aσR⌉−⌈µR−aσR⌉
∑

n=⌈µR−aσR⌉

(n− µR)
2
P{s|fst(R s) = n}

(3.42)

Now the above inequality can be proved in HOL, as both the terms on the LHS of the

above equation are less than or equal to the corresponding two terms on the RHS.

This result allows us to rewrite the inequality, given in Equation (3.40), as follows

σ2
Ra

2
P{s|fst(R s) ≥ ⌈µR + aσR⌉} +

⌈µR+aσR⌉
∑

n=0

(n− µR)
2
P{s|fst(R s) = n} ≤ σ2

R (3.43)

using the transitivity property of ≤. Using the definition of variance and rearranging
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the terms, based on arithmetic reasoning, the above equation can be rewritten as

follows

P{s|fst(R s) ≥ ⌈µR + aσR⌉} ≤

lim
k→∞

(

k
∑

n=0

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n}) −

⌈µR+aσR⌉
∑

n=0

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n}

(3.44)

The probability term on the LHS of the above inequality can be expressed in terms

of the limit of the real sequence (λk.
∑k

n=⌈µR+aσR⌉
P{s|fst(R s) = n}), using the same

reasoning as was used for the case of the proof of Markov’s inequality in Equations

(3.31) to (3.33). Similarly, the expression on the RHS of the above inequality can

also be expressed in terms of a limit of a real sequence, which allows us to rewrite

Equation (3.44) as follows

lim
k→∞

(

k
∑

n=⌈µR+aσR⌉

P{s|fst(R s) = n}) ≤ lim
k→∞

(

k
∑

n=⌈µR+aσR⌉

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n})

(3.45)

It can be verified in HOL that for all values of k, the expression
∑k

n=⌈µR+aσR⌉
P{s|

fst(R s) = n}, found on the LHS of the above inequality, is less than or equal to the

expression
∑k

n=⌈µR+aσR⌉
(n−µR)2

σ2
Ra

2 P{s|fst(R s) = n}, found on its RHS. This reasoning

allows us to prove the limit relationship, given in Equation (3.45), between these

expressions using the properties of limit of a real sequence, formalized in [32], which

completes the proof of the inequality given in Equation (3.37) and thus concludes the

proof of Lemma 3.5 as well.

Lemma 3.5 can now be used to verify the Chebyshev’s inequality, given in Equa-

tion (3.34), in HOL as a special case when the constant a is assigned the value a

std dev R
.
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The corresponding HOL theorem can be expressed for a discrete random variable that

preserves strong function independence, has well-defined first and second moments and

attains values in positive integers only, as follows

Theorem 3.8 Chebyshev’s Inequality

⊢ ∀ R a. (0 < a) ∧ (0 < variance R) ∧ (R ∈ indep fn) ∧

(summable(λn. n P{s | fst (R s) = n})) ∧

(summable(λn. n2
P{s | fst (R s) = n}))

⇒ P {s | abs (fst (R s) - expec R) ≥ a} ≤ variance R

a2

Theorems 3.7 and 3.8 represent the HOL theorems corresponding to Markov’s

and Chebyshev’s inequalities and the results are found to be in good agreement with

the existing theoretical paper-and-pencil counterparts given in Equations (3.28) and

(3.34), respectively. These formally verified theorems allow us to reason about tail

distribution bounds within the HOL theorem prover as will be demonstrated in Section

3.6.

3.5 Verification of Expectation and Variance for

Discrete Random Variables

In this section, we utilize the formal definitions of expectation and variance, given in

Definitions 3.2 and 3.5, respectively, to verify the expectation and variance proper-

ties of Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p) random variables

in HOL. The formally verified expectation and variance relations of these discrete

random variables can in turn be used, along with the formally verified Markov and

Chebyshev’s inequalities presented in the last section, to formally reason about the

tail distribution properties of their respective random variables.
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3.5.1 Uniform(m) Random Variable

The Uniform(m) random variable assigns equal probability to each element in the

set {0, 1, · · · , (m − 1)} and thus ranges over a finite number of positive integers. A

sampling algorithm for the Uniform(m) random variable has been formalized in [36]

and is verified to be correct by proving the corresponding PMF property in HOL

⊢ ∀ m x. x < m ⇒ P {s | fst (prob unif m s) = x} = 1

m

where prob unif represents the higher-order-logic function for the Uniform(m) ran-

dom variable.

Next, we formally verify the expectation characteristic for the Uniform(m) ran-

dom variable, which can be expressed in HOL as follows.

Theorem 3.9: Expectation of Uniform(m) Random Variable

⊢ ∀ m. expec (λs. prob unif (m+1) s) = m

2

We proceed with the proof of this theorem in HOL by rewriting it with the definition

of expectation

lim
k→∞

(

k
∑

n=0

n P{s | fst(prob unif (m + 1) s) = n}) =
m

2
(3.46)

Next, we verified in HOL that the Uniform(m) random variable can never acquire a

value greater than or equal to m using its PMF property.

⊢ ∀ m x. (m + 1) ≤ x ⇒ P {s | fst(prob unif (m + 1) s) = x} = 0 (3.47)

This property allows us to rewrite the infinite summation of Equation (3.46) in terms

of a finite summation over (m + 1) values using the properties verified in the HOL

theory of limit of a real sequence.
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m+1
∑

n=0

n P{s | fst(prob unif (m + 1) s) = n} =
m

2
(3.48)

The above equation can be verified using the PMF of the Uniform(m) random variable

along with some basic properties of the summation function in HOL.

Next, we formally verify the variance characteristic for the Uniform(m) random

variable, which can be expressed in HOL as follows.

Theorem 3.10: Variance of Uniform(m) Random Variable

⊢ ∀ m. variance (λs. prob unif (m+1) s) =
(m+1)2−1

12

The proof goal of Theorem 3.10 can be simplified using the variance relation given

in Theorem 3.5 and the definition of expectation of a function of a random variable

(Definition 3.1) as follows

∞
∑

n=0

n2P{s|fst(prob unif (m + 1) s) = n} − (expec (λs.prob unif (m + 1) s))2

=
(m + 1)2 − 1

12

(3.49)

Now, the second moment of the Uniform(m) random variable, i.e., the first term on

the LHS of the above equation, can be verified in HOL to be equal to m(2m+1)
2

, using the

same approach as was used for the verification of its expectation relation in Theorem

3.9. This result, along with Theorem 3.9, and some arithmetic reasoning, allows us

to verify Equation (3.49) and thus Theorem 3.10 in HOL.

3.5.2 Bernoulli(p) Random Variable

The Bernoulli(p) random variable models an experiment with two outcomes; success

and failure, whereas the parameter p represents the probability of success. A sampling
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algorithm of the Bernoulli(p) random variable has been formalized in [36] as the

function prob bern such that it returns True with probability p and False otherwise.

It has also been verified to be correct by proving the corresponding PMF property in

HOL.

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (prob bern p s)} = p

The Bernoulli(p) random variable ranges over 2 values of Boolean data type.

The expectation property of these kind of discrete random variables, which range over

a finite number of values of a different data type than positive integers, can be verified

using our approach by mapping all their values to distinct positive integers. In the

case of Bernoulli(p) random variable, we redefined the function prob bern such that

it returns positive integers 1 and 0 instead of the Boolean quantities True and False

with the same probability, respectively, i.e., the range of the random variable was

changed from Boolean data type to positive integers. It is important to note that this

redefinition does not change the distribution properties of the given random variable.

The expectation property for this alternate definition of Bernoulli(p) random variable,

prob bernN, can be expressed in HOL as follows

Theorem 3.11: Expectation of Bernoulli(p) Random Variable

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bernN p s) = p

Theorem 3.11 can now be verified using the same procedure used for the case

of random variables that range over a finite number of positive integers, such as

the Uniform(m) random variable. In the case of Bernoulli(p) random variable, we

were able to replace the infinite summation in the definition of expectation with the

summation of the first two values of the corresponding real sequence using the HOL

theory of limit of a real sequence. This substitution along with the PMF property of
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the Bernoulli(p) random variable and some arithmetic reasoning allowed us to verify

Theorem 3.11 in HOL.

We also verified the variance of the Bernoulli(p) random variable in HOL, using

a similar approach that we used for the verification of the variance relation for the

Unform(m) random variable and the HOL theorem is given below

Theorem 3.12: Variance of Bernoulli(p) Random Variable

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1

⇒ variance (λs. prob bernN p s) = p (1-p)

3.5.3 Geometric(p) Random Variable

The Geometric(p) random variable can be defined as the index of the first success

in an infinite sequence of Bernoulli(p) trials [19]. Therefore, the Geometric(p) dis-

tribution may be sampled by extracting random bits from the function prob bern,

explained in the previous section, and stopping as soon as the first False is encoun-

tered and returning the number of trials performed till this point. The Geometric(p)

random variable ranges over a countably infinite number of positive integers and is

thus different from the random variables that we have considered so far.

Based on the above sampling algorithm, we modeled the Geometric(p) random

variable using the probabilistic while loop [36] in HOL as follows

Definition 3.6: A Sampling Algorithm for Geometric(p) Distribution

⊢ ∀ p s. prob geom iter p s =

bind (prob bern (1-p)) (λb. unit (b, suc (snd s)))

⊢ ∀ p. prob geom loop p = prob while fst (prob geom iter p)

⊢ ∀ p. prob geom p = bind (bind (unit (T, 1))

(prob geom loop p)) (λs. unit (snd s - 1))
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It is important to note that p, which represents the probability of success for

the Geometric(p) or the probability of obtaining False from the Bernoulli(p) random

variable, cannot be assigned a value equal to 0 as this will lead to a non-terminating

while loop.

We verify the PMF property of the Geometric(p) random variable using the fact

that the function prob geom preserves strong function independence along with some

theorems from probability and set theories in HOL.

Theorem 3.13: PMF of Geometric(p) Random Variable

⊢ ∀ n p. 0 < p ∧ p ≤ 1 ⇒

P {s | fst (prob geom p s) = (n + 1)} = p (1 - p)n

The expectation theorem for the Geometric(p) random variable can now be

expressed in HOL as follows

Theorem 3.14: Expectation of Geometric(p) Random Variable

⊢ ∀ p. 0 < p ∧ p ≤ 1 ⇒ expec (λs. prob geom p s) = 1

p

Rewriting the above proof goal with the definition of expectation and simplifying using

the PMF relation for the Geometric(p) random variable along with some arithmetic

reasoning, we reach the following subgoal.

lim
k→∞

(
k

∑

n=0

((n + 1)p(1− p)n)) =
1

p
(3.50)

Substituting 1−q for p and after some rearrangement of the terms, based on arithmetic

reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(

k
∑

n=0

((n + 1)qn)) =
1

(1− q)2
(3.51)
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Now, using the properties of summation of a real sequence in HOL, we proved the

following relationship

∀q k.

k
∑

n=0

((n + 1)qn) =

k
∑

n=0

(

k
∑

i=0

qi −
n

∑

i=0

qi) (3.52)

which allows us to rewrite the subgoal under consideration, given in Equation (3.51)

as follows.

lim
k→∞

(
k

∑

n=0

(
k

∑

i=0

qi −
n

∑

i=0

qi)) =
1

(1− q)2
(3.53)

The above subgoal can now be proved using the summation of a finite geometric series

along with some properties of summation and limit of real sequences available in the

real number theories in HOL. This also concludes the proof of Theorem 3.14 in HOL.

The variance property of Geometric(p) random variable can be stated in HOL

as follows.

Theorem 3.15: Variance of Geometric(p) Random Variable

⊢ ∀ p. 0 < p ∧ p ≤ 1

⇒ (variance (λs. prob geom p s) =
1−p

p2
)

We utilize the variance property, given in Theorem 3.5, to verify Theorem 3.15.

The foremost step in this regard is to verify the second moment relationship for the

Geometric(p) random variable.

∀ p. 0 < p ∧ p ≤ 1 ⇒ (expec fn(λn. n2(λs. prob geom p s)) =
2

p2
− 1

p
) (3.54)

Rewriting the above proof goal with the definition of function expec fn and sim-

plifying using the PMF relation of the Geometric random variable along with some

properties from HOL real number theories, we reach the following subgoal.
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lim
k→∞

(
k

∑

n=0

((n + 1)2p(1− p)n)) =
2

p2
− 1

p
(3.55)

Now, substituting 1 − q for p and after some rearrangement of the terms, based on

arithmetic reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(
k

∑

n=0

((n + 1)2qn)) =
2

(1− q)3
− 1

(1− q)2
(3.56)

Using the properties of summation of a real sequence in HOL, we prove the following

∀q k.

k
∑

n=0

((n + 1)2qn) =

k
∑

n=0

((2n + 1)(

k
∑

i=0

qi −
n

∑

i=0

qi)) (3.57)

which allows us to rewrite the subgoal under consideration, given in Equation 3.56,

as follows.

lim
k→∞

(

k
∑

n=0

((2n + 1)(

k
∑

i=0

qi −
n

∑

i=0

qi))) =
2

(1− q)3
− 1

(1− q)2
(3.58)

The above subgoal can now be proved using the summation of a finite geometric series

along with some properties of summation and limit of real sequences available in the

real number theories in HOL. This concludes the proof of the second moment relation

for the Geometric(p) random variable, which can now be used along with Theorems

3.5 and 3.14 and some arithmetic reasoning to prove Theorem 3.15 in HOL.

3.5.4 Binomial(m, p) Random Variable

The Binomial(m, p) random variable models an experiment that counts the number of

successes in a finite number, m, of independent Bernoulli trials, with a success prob-

ability equal to p [19]. Therefore, the Binomial(m, p) distribution may be sampled by

an algorithm in HOL that sums m independent outcomes of the prob bernN random
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variable, which models the Bernoulli(p) random variable with outcomes 0 and 1, as

described in Section 3.5.2. We formalize it in HOL by first defining a function that

recursively returns a list of m Bernoulli(p) random variables.

Definition 3.7: List of m Bernoulli(p) Random Variables

⊢ ∀ p. bern lst 0 p = [] ∧

(∀ n p. bern lst (suc n) p =

prob bernN p :: (bern lst n p))

Now, the Binomial(m, p) random variable can be modeled as the sum of all elements

in the list modeled by the HOL function bern lst, such that the result of each one

of these random variables is independent of one another. This can be done using the

function sum rv lst, given in Definition 3.4, as follows

Definition 3.8: Binomial(m,p) Random Variable

⊢ ∀ m p. prob bino m p = sum rv lst (bern lst m p)

We verify the correctness of this definition by proving its PMF in HOL

Theorem 3.16: PMF of Binomial(m,p) Random Variable

⊢ ∀ m p n. 0 ≤ p ∧ p ≤ 1

⇒ P {s | fst (prob bino m p s) = n}

= (binomial m n) pn (1 - p)m−n

using the properties verified in the HOL libraries corresponding to the probability and

set theories. The HOL function (binomial m n), in the above theorem, represents

the term m!
n!(m−n)!

.

The expectation theorem for the Binomial(m, p) random variable can now be

expressed in HOL, as follows.
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Theorem 3.17: Expectation of Binomial(m,p) Random Variable

⊢ ∀ m p. 0 < p ∧ p ≤ 1

⇒ expec (λs. prob bino m p s) = m p

Instead of using the definition of expectation directly, we use the linearity of expec-

tation property, given in Theorem 3.2, to prove the above theorem. This way, we

do not need to deal with the summation involving the binomial function in HOL,

which saves a considerable amount of proof effort. Since, the Binomial(m, p) random

variable represents the sum of m Bernoulli(p) random variables, the linearity of ex-

pectation property allows us to rewrite the LHS of the proof goal in Theorem 3.17 as

the sum of m expectation values of the Bernoulli(p) random variable. Now, using the

fact that the expectation of the Bernoulli(p) random variable is equal to p, as given

in Theorem 3.11, Theorem 3.17 can be verified in HOL.

In a similar way, we can also verify the variance relation for the Binomial(m, p)

in HOL using the linearity of variance property, given in Theorem 3.6.

Theorem 3.18: Variance of Binomial(m,p) Random Variable

⊢ ∀ m p. 0 < p ∧ p ≤ 1

⇒ variance (λs. prob bino m p s) = m p (1 - p)

The formalization and verification of the Binomial(m, p), presented in this sec-

tion, illustrates one of the main strengths of mechanical theorem proving, i.e., the

reusability of existing definitions and theorems to develop and prove new and more

complex definitions and theorems. This approach greatly speeds up the formal verifi-

cation process and allows us to take the work further than would have been possible

starting from scratch, without compromising on the soundness of the results.
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3.6 Probabilistic Analysis of Coupon Collector’s

Problem

In this section, we utilize the HOL formalization presented so far in this chapter

to conduct the probabilistic analysis of the Coupon Collector’s problem [61] as a

case study. Firstly, we present a brief overview of the algorithm and present its

formalization in HOL. This is followed by the details about the verification steps.

3.6.1 Algorithm Description

The Coupon Collector’s problem refers to the problem of probabilistically evaluating

the number of trials required to acquire all unique, say n, coupons from a collection

of multiple copies of these coupons that are independently and uniformly distributed.

The problem is similar to the example when each box of cereal contains one of n

different coupons and once you obtain one of every type of coupon, you win a prize.

This simple problem arises in many different scenarios. For example, suppose

that packets are sent in a stream from source to destination host along a fixed path

of routers and the destination host needs to know all routers that the stream of data

has passed through. This may be done by appending the identification of each router

to the packet header but this is not a practical solution as usually we do not have this

much room available. An alternate way of meeting this requirement is to store the

identification of only one router, uniformly selected at random between all routers on

the path, in each packet header. Then, from the point of view of the destination host,

determining all routers on the path is like a Coupon Collector’s problem.

Our first goal is to verify, using HOL, that the expected value of acquiring all

n coupons is nH(n), where H(n) is the harmonic number (
∑n

i=1 1/i). Based on this
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expectation value, we then reason about the tail distribution properties of the Coupon

Collector’s problem using the formally verified Markov’s and Chebyshev’s inequalities.

3.6.2 Formal Specification in HOL

The Coupon Collector’s problem can be formalized by modeling the total number of

trials required to obtain all n unique coupons, say X, as a sum of the number of trials

required to obtain each distinct coupon, i.e., X =
∑n

i=1 Xi, where Xi represents the

number of trials to obtain the ith coupon, while i − 1 distinct coupons have already

been acquired. The advantage of breaking the random variable X into the sum of n

random variables X1, X2 · · · , Xn is that each Xi can be modeled as a Geometric(p)

random variable. Based on the above model, the expectation and variance relations for

the Coupon Collector’s problem can be verified using the linearity of expectation and

variance properties, given in Theorems 3.2 and 3.6, and the expectation and variance

of the Geometric(p) random variable, given in Theorems 3.14 and 3.15, respectively.

The Coupon Collector’s problem is modeled in HOL by identifying the coupons

with unique positive integers, such that the first coupon acquired by the coupon

collector is identified as number 0 and after that each different kind of a coupon

acquired with subsequent numbers in numerological order. The coupon collector saves

these coupons in a list of positive integers. The following function accepts the number

of distinct coupons acquired by the coupon collector and recursively generates the

corresponding coupon collector’s list.

Definition 3.9: Coupon Collector’s List

⊢ (coupon lst 0 = []) ∧

∀ n. (coupon lst (n + 1) = n :: (coupon lst n))

The next step is to define a list of Geometric random variables, such that each
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one of its elements represents an Xi, mentioned above. The probability of success

for each one of these Geometric random variables is different from one another and

depends on the number of different coupons acquired so far. Since, every coupon

is drawn independently and uniformly at random from the n possibilities and the

coupons are identified with positive integers, we can use the Uniform(n) random

variable to model each trial of acquiring a coupon. Now we can define the probability

of success for a particular Geometric random variable as the probability of the event

when the Uniform(n) random variable generates a new value, i.e., a value that is not

already present in the coupon collector’s list. Using this probability of success, the

following function generates the required list of Geometric random variables

Definition 3.10: Geometric Variable List for Coupon Collector’s Problem

⊢ ∀ n. (geom rv lst [] n = [prob geom 1]) ∧

∀ h t n. (geom rv lst (h::t) n =

(prob geom P{s | ¬(mem (fst(prob unif n s)) (h::t))}) ::

(geom rv lst t n))

where the functions prob geom and prob unif model the Geometric(p) and Uniform

(n) random variables, respectively, and are given in the last section. The geom rv lst,

accepts two arguments; a list of positive integers that represents the coupon collector’s

list and a positive integer number that represents the total number of coupons in the

Coupon Collector’s problem. It returns, a list of Geometric random variables that

can be added up to model the coupon collecting process of the already acquired

coupons in the given list. The base case in the above recursive definition corresponds

to the condition when the coupon collector does not have any coupon and thus the

probability of success, i.e., the probability of acquiring a new coupon, is 1.
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Using the above definitions along with the function sum rv lst, given in Defini-

tion 3.4, the Coupon Collector’s problem can be formally modeled in HOL as follows.

Definition 3.11: Probabilistic Algorithm for Coupon Collector’s Problem

⊢ ∀ n. (coupon collector (n + 1) =

(sum rv lst (geom rv lst (coupon lst n) (n + 1)))

The function, coupon collector, accepts a positive integer greater than 0, n + 1,

which represents the total number of different coupons that are required to be col-

lected. It returns the number of trials for acquiring these n + 1 distinct coupons.

3.6.3 Probabilistic Analysis in HOL

The first step towards the verification of statistical properties for the Coupon Collec-

tor’s problem is to verify the relation for the probability of acquiring a new coupon.

Lemma 3.6: Probability of Acquiring a New Coupon

⊢ ∀ L n. (dist lst L) ∧ (∀a. mem a L ⇒ (a < (n + 1)))

⇒ (P {s | ¬(mem (fst(prob unif (n + 1) s)) L)}

= 1− (length L)
(n+1)

)

where the predicate dist lst returns True if all elements in its argument list are

distinct. Thus, the assumption in the above theorem ensures that all elements in

the given list of positive integers are distinct and are less than (n + 1). The coupon

collector’s list, modeled by the function coupon lst, satisfies both assumptions in

Lemma 3.6 for any given argument. Therefore, the probability of success for the

Geometric random variable, which models the acquiring process of a new coupon when

the coupon collectors list is exactly equal to L, is 1− length L

(n+1)
. The expectation of such

a Geometric random variable can be easily verified to be equal to n+1
(n+1)−(length L)

, by

74



Theorem 3.14. This result along with the linearity of expectation property, given in

Theorem 3.2, can now be used to verify the expectation of the number of trials to

collect all distinct coupons.

Theorem 3.19: Expectation of Coupon Collector’s Problem

⊢ ∀ n. expec (coupon collector (n + 1)) = (n + 1) (
∑n+1

i=0
1

i+1
)

Next, we build upon the above results to formally reason about the tail distri-

bution properties of the number of trials required to acquire all coupons in HOL. For

this purpose, we utilize the formally verified Markov’s and Chebyshev’s inequalities,

which have been verified in Theorems 3.7 and 3.8, respectively. The first step in this

regard is to have access to formal proofs for the expectation and variance relations

for the events of interest. The expectation has already been verified (Theorem 3.19)

and thus we proceed by verifying a relationship for the variance first.

Instead of verifying the exact value of the variance for the number of trials

required to acquire all coupons, we verify an upper bound for this variance

Theorem 3.20: Variance Upper Bound of Coupon Collector’s Problem

⊢ ∀ n. variance (coupon collector (n + 1))

≤ ((n + 1)2) (
∑n+1

i=0 ( 1

(i+1)2
))

The formal proof for the above theorem is based on the definition of the function

coupon collector, the linearity of variance property, given in Theorem 3.6, the result

of Lemma 3.6, and the variance of Geometric random variable, verified in Theorem

3.15, along with some arithmetic reasoning.

Now, using the above mentioned results, we can formally verify the following

two tail distribution bounds for the Coupon Collector’s problem based on the formally

verified Markov’s and Chebyshev’s inequalities, respectively.
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Theorem 3.21: Weak Tail Distribution Bound for the Coupon

Collector’s Problem

⊢ ∀ n a. 0 < a

⇒ P {s | (fst (coupon collector (n + 1) s)) ≥ a}

≤ (
(n+1)

a
(
∑n+1

i=0
1

(i+1)
))

Theorem 3.22: Stronger Tail Distribution Bound for the Coupon

Collector’s Problem

⊢ ∀ n a. 0 < a

⇒ P {s | abs ((fst (coupon collector (n + 1) s)) -

expec (coupon collector (n + 1))) ≥ a}

≤ (
(n+1)2

a2
(
∑n+1

i=0
1

(i+1)2
))

The script corresponding to the formalization and verification of the Coupon

Collector’s problem translated to approximately 1000 lines of HOL code and we had

to spent about 100 man-hours on this project.

Thus, we have been able to formally verify the tail distribution bounds for the

number of trials required to acquire all distinct coupons in the Coupon Collector’s

problem. Our results exactly match the results of the analysis based on paper-and-

pencil proof techniques [61] and are thus 100 % precise, which is a novelty that

cannot be achieved, to the best of our knowledge, by any existing computer based

probabilistic analysis tool. It is also worth mentioning at this point that it is due to

the formally verified linearity of expectation and variance properties and the Markov’s

and Chebyshev’s inequalities that the complex task of reasoning about tail distribution

bounds of the Coupon Collector’s problem, which involves multiple random variables,

was simply proved in HOL using summation over the expectation or variance of a

single Geometric(p) random variable.
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3.7 Summary and Discussions

The formalization and verification, presented in this chapter, can be utilized to for-

mally reason about expectation, variance and tail distribution properties for positive

integer valued discrete random variables. Statistical properties play a vital role in

probabilistic analysis and thus the ability of their verification in a theorem-proving

environment can be regarded as a significant step towards a successful theorem-proving

based probabilistic analysis framework.

We started off by presenting a formal definition of expectation for a function of

a discrete random variable that can attain values in positive integers only. Building

upon this definition, we formalized the mathematical concept of variance and were

able to verify some classical properties of expectation and variance in HOL. The

chapter also includes the verification of Markov’s and Chebyshev’s inequalities and the

expectation and variance relations for some commonly used discrete random variables.

To the best of our knowledge, this is the first time that an automated reasoning

approach regarding the statistical properties of discrete random variables has been

presented in the open literature.

An alternative approach that can be used to formalize the expectation of a ran-

dom variable in higher-order logic is based on the mathematical concept of probability

space. Since every random variable can be expressed as a real-valued function defined

on the sample space, S, we can formalize expectation in terms of the probability space

(S, F, P ), where F is the sigma field of subsets of S, and P is the probability measure.

The main benefit of this approach is that it leads to the formalization of the general

definition of expectation, given in Equation (3.1), for discrete random variables. On

the other hand, in this approach we require the formal definition of a summation func-

tion for functions with domain in the sample space S. Such definition does not exist in
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the available HOL theories and thus needs to be formalized from scratch. It would be

an interesting future work to formalize this summation and define a higher-order-logic

definition of expectation based on the concept of probability space. A formal link may

then be established between this generalized definition and the formal definition of

expectation for discrete random variables with positive integers as their co-domain,

presented in this thesis. Such a relationship would further strengthen the soundness

of the definitions presented in this thesis.

Computer science is one of the key application areas of probabilistic analysis.

Therefore, we target this domain in the case study for the formalization and verifi-

cation given in this chapter, as we present the probabilistic analysis of the Coupon

Collector’s problem. We first formalize the Coupon Collector’s problem using the

summation of a list of Geometric(p) random variables. Using the formal definitions

of expectation and variance, presented in this chapter, we also develop higher-order-

logic theorems for the expectation, variance and tail distribution properties for the

number of trials to acquire all distinct coupons. These theorems are then verified in

HOL using the formally verified properties of expectation or variance, given in this

chapter, and the proof details have been provided. This example illustrates the flow

of a complete theorem proving based formal probabilistic analysis process.

The statistical property verification infrastructure presented in this thesis can

also be used to verify the expectation properties of a number of other positive integer

valued random variables, e.g., Binomial, Logarithmic and Poisson [41] and commercial

computation problems, such as the Quicksort [61], the Chinese Appetizer and the Hat-

Check problems [28].
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Chapter 4

Continuous Random Variables

This chapter presents a framework that can be used to formalize any continuous

random variable for which the inverse of the CDF can be expressed in a closed math-

ematical form. The framework also allows us to formally verify probability distri-

bution properties of these random variables. These capabilities can be used to for-

mally specify and verify theorems for probabilistic properties regarding continuous

random components of systems in HOL. To illustrate the practical effectiveness of the

proposed framework, we present the formalization of Exponential(λ), Uniform(a, b),

Rayleigh(λ) and Triangular(0, a) random variables. We also present a simple case

study of probabilistic analysis regarding roundoff error in a digital processor, which

utilizes the continuous Uniform(a, b) random variable.

4.1 Introduction

Hurd’s methodology [36] for the verification of probabilistic algorithms has been suc-

cessfully used for the formalization and verification of some discrete random variables

in HOL. The algorithms for these discrete random variables are either guaranteed to

79



terminate or satisfy probabilistic termination, meaning that the probability that the

algorithm terminates is 1. Thus, they can be expressed by either well formed recur-

sive functions or the probabilistic while loop [36]. On the other hand, the modeling of

continuous random variables requires non-terminating programs and hence calls for a

different approach.

In this chapter, we propose a methodology for the formalization of continu-

ous random variables in HOL. Our methodology utilizes the verification framework,

presented in [36], and is based on the concept of the nonuniform random number

generation [20], which is the process of obtaining random variates of arbitrary distri-

butions using a Standard Uniform random number generator. The main advantage

of this approach is that we only need to formalize one continuous random variable

from scratch, i.e., the Standard Uniform random variable, which can be used to model

other continuous random variables by formalizing the corresponding nonuniform ran-

dom number generation method.

Based on the above methodology, we now present a framework, illustrated in

Figure 4.1, for the formalization of continuous probability distributions for which the

inverse of the CDF can be represented in a closed mathematical form. Firstly, we

formally specify the Standard Uniform random variable and verify its correctness by

proving the corresponding CDF and measurability properties. The next step is the

formalization of the CDF and the verification of its classical properties. Then we

formally specify the mathematical concept of the inverse function of a CDF. This

formal specification, along with the formalization of the Standard Uniform random

variable and the CDF properties, can be used to formally verify the correctness of

the Inverse Transform Method (ITM) [20], which is a well known nonuniform random
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generation technique for generating nonuniform random variates for continuous prob-

ability distributions for which the inverse of the CDF can be represented in a closed

mathematical form. At this point, the formalized Standard Uniform random variable

can be used to formally specify any such continuous random variable. Whereas, the

CDF of the formally specified continuous random variables can be verified, based on

simple arithmetic reasoning, using the formal proof of the ITM.

Figure 4.1: Formalization Framework for Continuous Random Variables

The next three sections of this chapter present the HOL formalization of the

three major steps, given in Figure 4.1, i.e., the Standard Uniform random variable, the

CDF and the ITM. Then, for illustration purposes, we utilize this formalization to for-

malize and verify the Exponential(λ), Uniform(a, b), Rayleigh(λ) and Triangular(0, a)

random variables based on the framework of Figure 4.1.
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4.2 Standard Uniform Random Variable

In this section, we present the formalization and verification of the Standard Uniform

distribution that is the first step in the proposed framework for the formalization

of continuous probability distributions as shown in Figure 4.1. Standard Uniform

random variable is a continuous random variable for which the probability that it will

belong to a subinterval of [0,1] is proportional to the length of that subinterval. It

can be characterized by the CDF as follows:

Pr(X ≤ x) =























0 if x < 0;

x if 0 ≤ x < 1;

1 if 1 ≤ x.

(4.1)

4.2.1 Formal Specification

Standard Uniform random variable can be formalized in a number of different ways

using the various formal semantics of probabilistic programs available in the literature

of theoretical computer science. In order to minimize the effort and speed up the

formalization process, our intent is to find a solution that enables us to build upon

the existing work of Hurd [36].

It is a well known mathematical fact, see [23] for example, that a Standard

Uniform random variate can be modeled by an infinite sequence of random bits (in-

formally coin flips) as follows

∞
∑

k=0

(
1

2
)k+1Xk (4.2)

where Xk denotes the outcome of the kth random bit; True or False represented as

1 or 0 respectively. The mathematical relation of Equation (4.2) presents a sampling
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algorithm for the Standard Uniform random variable which is quite consistent with

Hurd’s formalization methodology, i.e, it allows us to model the Standard Uniform

random variable by a deterministic function with access to the infinite Boolean se-

quence. The specification of this sampling algorithm in higher-order logic is not very

straight forward though. Due to the infinite sampling, it cannot be modeled by either

of the approaches proposed in [36], i.e., a recursive function or the probabilistic while

loop. We approach this problem by splitting the corresponding mathematical relation

into two steps. The first step is to mathematically represent a discrete version of the

Standard Uniform random variable

(λn.
n−1
∑

k=0

(
1

2
)k+1Xk) (4.3)

This lambda abstraction function accepts a positive integer n and generates an n-

bit Standard Uniform random variable using the computation principle of Equation

(4.2). The continuous Standard Uniform random variable can now be represented as

a special case of Equation (4.3) when n tends to infinity

lim
n→∞

(λn.
n−1
∑

k=0

(
1

2
)k+1Xk) (4.4)

The advantage of expressing the sampling algorithm of Equation (4.2) in these

two steps is that now it can be specified in HOL. The mathematical relationship of

Equation (4.3) can be specified in HOL by a recursive function using Hurd’s method-

ology as it consumes a finite number of random bits, i.e., n. Then, the formalization

of the mathematical concept of limit of a real sequence [32] in HOL can be used to

specify the mathematical relation of Equation (4.4).

Next, we present the HOL formalization of the above steps. We first formalize

a discrete Standard Uniform random variable that produces any one of the equally
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spaced 2n dyadic rationals in the interval [0, 1− (1
2
)n] with the same probability (1

2
)n.

It can be formally specified in HOL as a recursive function as follows.

Definition 4.1: Discrete Standard Uniform Random Variable

⊢ (std unif disc 0 = unit 0) ∧

∀ n. (std unif disc (suc n) = bind (std unif disc n)

(λm. bind

sdest (λb. unit (if b then ((1
2
)n+1 + m) else m))))

The function, std unif disc, models an n-bit discrete Standard Uniform random

variable based on the principle of Equation (4.2) by simply converting the first n

random bits B0, B1, B2, . . .Bn−1 of the infinite Boolean sequence to their equivalent

real number with the binary representation 0.B0B1B2 . . . Bn−1. It returns a pair such

that the first component is the n-bit discrete Standard Uniform random variable and

the second component is the unused portion of the infinite Boolean sequence. The

following properties for the discrete Standard Uniform random variable may be proved

by induction on its argument n.

Lemma 4.1: Range of Discrete Standard Uniform Random Variable

⊢ ∀ n s. 0 ≤ fst (std unif disc n s) ≤ 1 - (1
2
)n

Lemma 4.2: CDF of Discrete Standard Uniform Random Variable

⊢ ∀ m n x. P {s | fst (std unif disc n s) ≤ x} =

if (x < 0) then 0 else

if (x ≥ 1) then 1 else

if (x = m

2n
) then sucm

2n

else 0
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Figure 4.2: Distribution Characteristics for the Function std unif disc

Lemma 4.3: PMF of Discrete Standard Uniform Random Variable

⊢ ∀ m n x. P {s | fst (std unif disc n s) = x} =

if (x < 0) then 0 else

if (x ≥ 1) then 0 else

if (x = m

2n
) then 1

2n

else 0

The term m
2n in Lemmas 4.2 and 4.3 represents all the dyadic rationals in the interval

[0, 1−(1
2
)n] since the variable m belongs to the HOL datatype num for positive integers

{0, 1, 2, · · · }. Collectively Lemmas 4.1, 4.2 and 4.3, illustrated in Figure 4.2, formally

prove that the first component of the function std unif disc is a discrete uniform

random variable.

The function std unif disc can now be used to model the real sequence of

Equation (4.3). We proved in HOL that this sequence is convergent, i.e., it approaches

a unique value when n tends to infinity.

Lemma 4.4: Discrete Standard Uniform Random Variable Convergence

⊢ ∀ s. convergent (λn. fst (std unif disc n s))
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where convergent represents the HOL predicate that returns True if its argument is

a convergent real sequence [32]. Based on Lemma 4.4, we are able to formally specify

the Standard Uniform random variable in HOL according to Equation (4.4).

Definition 4.2: Standard Uniform Random Variable

⊢ ∀ s. std unif cont s = lim (λn. fst (std unif disc n s))

where lim M represents the HOL formalization of the limit of a real sequence M (i.e.,

lim M = lim
n→∞

M(n)) [32]. The following properties may be proved using the real

analysis theorems [32] and the function definition for std unif disc.

Lemma 4.5: Range of Standard Uniform Random Variable

⊢ ∀ s. 0 ≤ std unif cont s ≤ 1

Lemma 4.6: Relationship Between Discrete and Continuous Standard

Uniform Random Variables

⊢ ∀ s n. fst (std unif disc n s) ≤ std unif cont s

≤ fst(std unif disc n s)+(1
2
)n

Lemma 4.5 formally shows that the value for the function std unif cont always

lies in the real interval [0,1]. The minimum and maximum values of 0 and 1 correspond

to the cases when all elements of the infinite Boolean sequence s are False or True,

respectively. Lemma 4.6 highlights the relationship between the values of the first

component of the function std unif disc and the function std unif cont, i.e., if the

value for the former is a, then the value of the later lies in the interval [a, a + (1
2
)n].

(fst (std unif disc n s) = a) ⇒ (a ≤ (std unif cont s) ≤ a + (
1

2
)n) (4.5)
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4.2.2 Formal Verification

The formalized Standard Uniform random variable, std unif cont, can be formally

verified in HOL by proving its CDF to be equal to the theoretical value given in

Equation (4.1) and its PMF to be equal to 0, which is an intrinsic characteristic of

all continuous random variables.

We begin with the CDF verification and the corresponding theorem can be

expressed in HOL as follows

Theorem 4.1: CDF of the Standard Uniform Random Variable

⊢ ∀ x.

P {s | std unif cont s ≤ x} =

if (x < 0) then 0 else (if (x < 1) then x else 1)

The proof for the cases (x<0) and (1≤x) is a straightforward implication of

Lemma 4.5, which states that for all infinite Boolean sequences the value of the

function std unif cont lies in the interval [0,1]. The probability that the func-

tion std unif cont acquires a value less than 0 is 0 as there is no infinite Boolean

sequence that satisfies this condition. Similarly, the probability that the function

std unif cont acquires a value less than or equal to 1 is 1 since all infinite Boolean

sequences fulfill this condition.

∀x. (x < 0) ⇒ P {s | fst (std unif cont s) ≤ x} = 0

∀x. (1 ≤ x) ⇒ P {s | fst (std unif cont s) ≤ x} = 1

(4.6)

Evaluating the probability of Theorem 4.1 for the interval [0,1) is a surprisingly

difficult problem in the HOL theorem prover. However, given that we have evaluated

the CDF for the first component of the function std unif disc, which represents
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a discrete Standard Uniform random variable, a reasonable approach is to find a

discrete approximation to the CDF of the function std unif cont, which represents

the Standard Uniform random variable. The key to this approach is to be able to

express the CDF of the function std unif cont in terms of the CDF of the first

component of the function std unif disc. In order to do this, we need to identify the

closest values of the first component of (std unif disc n s) corresponding to any

given value of (std unif cont s). We known from Lemmas 4.1, 4.2 and 4.3 that the

first component of (std unif disc n s) is always a dyadic rational with denominator

2n, in the interval [0, 1 − (1
2
)n]. On the other hand, the function std unif cont can

attain any real value in the interval [0,1]. Therefore, the two values of the first

component of (std unif disc n s) that are closest to any given value, say y, of the

function std unif cont are the two consecutive dyadic rationals (with denominators

2n) such that the smaller dyadic rational is less than y and the greater dyadic rational

is greater than or equal to y. The mathematical concept of ceiling, that represents

the smallest integer number greater than or equal to a real number, can be used

in identifying these dyadic rationals. We verified in HOL that the above mentioned

dyadic rationals are ⌈2ny⌉−1
2n and ⌈2ny⌉

2n

Lemma 4.7: Closest Dyadic Rationals (Denominator 2n) to a Real Number

⊢ ∀ n y. (0 ≤ y) ⇒ ⌈2ny⌉−1

2n
< y ≤ ⌈2ny⌉

2n

for any positive real number y. Here ⌈z⌉ denotes the HOL definition for the ceiling

function that returns the smallest num value greater than or equal to its real argument

z.

Now we will show how to express the CDF of the function std unif cont in

terms of the CDF of the first component of the function std unif disc using the

above dyadic rationals. It is important to note that the set {s |fst(std unif disc n
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s) ≤ m

2n
} contains all the infinite Boolean sequences for which the value of the first

n bits based on the algorithm implemented by the function std unif disc is less

than or equal to the dyadic rational m

2n
. Using Equation (4.5), we can say that the

value produced by the algorithm implemented by the function std unif cont, for any

infinite Boolean sequence that is present in the set {s | std unif disc n s ≤ m

2n
},

must be less than or equal to m+1

2n
. We used this useful reasoning along with Lemma

4.7 to prove the following result in HOL.

∀x n.(0 ≤ x) ⇒ {s | fst(std unif disc n s) ≤ ⌈2nx⌉ − 2

2n
} ⊆

{s | std unif cont s ≤ x} ⊆

{s | fst(std unif disc n s) ≤ ⌈2nx⌉
2n

}

(4.7)

The first set {s | fst(std unif disc n s) ≤ ⌈2nx⌉−2

2n
}, based on the above rea-

soning, contains all the infinite Boolean sequences for which the value produced by the

algorithm implemented by the function std unif cont lies in the interval [0, ⌈2nx⌉−1

2n
].

This set is a subset of the set {s | std unif cont s ≤ x}, which contains all the in-

finite Boolean sequences for which the value produced by the algorithm implemented

by the function std unif cont lies in the interval [0, x], as ⌈2nx⌉−1

2n
is always less than

x according to Lemma 4.7. Similarly, the set {s | std unif cont s ≤ x} is a sub-

set of the set {s | fst(std unif disc n s) ≤ ⌈2nx⌉
2n

}, which contains all the infinite

Boolean sequences for which the value produced by the algorithm implemented by

the function std unif cont lies in the interval [0, ⌈2nx⌉+1

2n
], as x is always less than or

equal to ⌈2nx⌉+1

2n
according to Lemma 4.7.

Equation (4.7) and the monotonic property of the probability function P, for-

malized in [36], which states that the probability of a measurable set is always less

than or equal to the probability of its measurable superset A ⊆ B ⇒ P(A) ≤ P(B),
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can be used to obtain the required relationship between the CDFs of std unif cont

and the first component of the function std unif disc. But, in order to use the

monotonic property in HOL, we must prove all the sets in Equation (4.7) to be mea-

surable, i.e., they are in E . It has been shown in [36], that if a function accesses

the infinite Boolean sequence using only the unit, bind and sdest primitives then

the function is guaranteed to preserve strong function independence and thus leads to

measurable sets. The function std unif disc satisfies this condition and thus Hurd’s

formalization framework can be used to prove

∀ x n. measurable {s | fst (std unif disc n s) ≤ x} (4.8)

On the other hand, the definition of the function std unif cont involves the

lim function and thus the corresponding sets cannot be proved to be measurable in

a very straightforward manner. Therefore, in order to prove this, we leveraged the

fact that each set in the sequence of sets (λn.{s | fst(std unif disc n s) ≤ x}) is

a subset of the set before it, in other words, this sequence of sets is a monotonically

decreasing sequence. Thus, the countable intersection of all sets in this sequence can

be proved to be equal to the set {s | std unif cont s ≤ x}

∀ x. {s | fst (std unif cont s) ≤ x} =
⋂

n

(λn.{s | fst (std unif disc n s) ≤ x})

(4.9)

Now the set {s | std unif cont s ≤ x} can be proved to be measurable since

measurable sets are closed under countable intersections [36] and all sets in the se-

quence (λn.{s | fst(std unif disc n s) ≤ x}) are measurable according to Equa-

tion (4.8).
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∀ x. measurable {s | (std unif cont s) ≤ x} (4.10)

Equations (4.7), (4.8) and (4.10) can now be used along with the monotonic law

of probability to obtain the desired relationship between the CDFs. The result can be

further simplified by using the CDF relation for the first component of the function

std unif disc given in Lemma 4.2.

∀x n. (0 ≤ x) ∧ (x < 1) ⇒ ⌈2nx⌉ − 1

2n
≤ P {s | std unif cont s ≤ x} ≤ ⌈2nx⌉ + 1

2n

(4.11)

As n approaches infinity both the fractions in Equation (4.11) approach x. This

fact led us to prove the CDF relation of Theorem 4.1 for the interval [0,1) in HOL.

Theorem 4.1 proves that the CDF of the function std unif cont is the same as

the theoretical value of the CDF for a Standard Uniform random variable given in

Equation (4.1) and thus is a formal argument to support the correctness of the fact

that the function std unif cont models a Standard Uniform random variable.

Using similar reasoning as above, we also proved that the PMF of the function

std unif cont is equal to 0.

Theorem 4.2: PMF of the Standard Uniform Random Variable

⊢ ∀ x. P{s | std unif cont s = x} = 0

It follows from Theorem 4.2 that every outcome of the function std unif cont

has a probability 0; which is a unique characteristic of all continuous random variables.

Thus, Theorem 4.2 can be used to formally regard the function std unif cont as a

continuous random variable.
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4.3 Cumulative Distribution Function

In this section, we present the formal specification of the CDF and the verification of

CDF properties in the HOL theorem prover. The definitions and theorems given in

this section are applicable to both discrete and continuous random variables. CDF

and its properties have been an integral part of the classical probability theory since

its early development in the 1930s. The properties are mentioned in most of the

probability theory texts, e.g,, [41], and have been used successfully in performing

probabilistic analysis of random systems using paper-and-pencil proofs. Our main

contribution is the formalization of these properties in a mechanical theorem prover.

Besides being the second step in the proposed methodology for the formalization of

continuous probability distributions, as shown in Figure 4.1, this formalization plays

a vital role in reasoning about probabilistic properties of random variables within the

framework of a sound theorem-prover environment.

4.3.1 Formal Specification of CDF

It follows from Equation (1.1) that the CDF can be formally specified in HOL by

a higher-order-logic function that accepts a real-valued random variable and a real

number argument and returns the probability of the event when the given random

variable is less than or equal to the value of the given real number. Hurd’s formaliza-

tion of the probability function P, which maps sets of infinite Boolean sequences to

real numbers between 0 and 1, can be used to formally specify the CDF as follows:

Definition 4.3: Cumulative Distribution Function

⊢ ∀ R x. cdf R x = P {s | R s ≤ x}
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where R represents the random variable that accepts an infinite Boolean sequence

and returns a real number. The set {s | R s ≤ x} is the set of all infinite Boolean

sequences, s, that satisfy the condition (R s ≤ x).

4.3.2 Formal Verification of CDF Properties

Using the formal specification of the CDF, we are able to verify the classical CDF

properties [41] within the HOL theorem prover. The properties are verified under the

assumption that the set {s | R s ≤ x}, where R represents the random variable under

consideration, is measurable for all values of x. The formal proofs for these properties

not only ensure the correctness of our CDF specification but also play a vital role in

proving the correctness of the ITM as will be discussed in Section 4.4.

CDF Bounds

For any real number x,

0 ≤ FR(x) ≤ 1 (4.12)

This property states that if we plot the CDF against its real argument x, then

the graph of the CDF, FR, is between the two horizontal lines y = 0 and y = 1. In

other words, the lines y = 0 and y = 1 are the bounds for the CDF FR.

The above characteristic can be verified in HOL using the fact that the CDF

is basically a probabilistic quantity along with the basic probability law, verified in

[36], that states that the probability of an event is always less than or equal to 1 and

greater than or equal to 0 (0 ≤ P(A) ≤ 1).

Theorem 4.3: CDF Bounds

⊢ ∀ R x. (measurable {s | R s ≤ x}) ⇒ (0 ≤ cdf R x ≤ 1)
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CDF is Monotonically Increasing

For any two real numbers a and b,

if a < b, then FR(a) ≤ FR(b) (4.13)

In mathematics, functions between ordered sets are monotonic if they preserve

the given order. Monotonicity is an inherent characteristic of CDFs and the CDF

value for a real number argument a can never exceed the CDF value of a real number

argument b if a is less than b.

Using the set theory in HOL, it can be proved that for any two real numbers

a and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ a} is a subset

of the set {s | R s ≤ b}. Then, using the monotone law of the probability function

(A ⊆ B ⇒ P(A) ≤ P(B)), verified in [36], we proved the monotonically increasing

property of the CDF in HOL.

Theorem 4.4: CDF is Monotonically Increasing

⊢ ∀ R a b. a < b ∧ (measurable {s | R s ≤ x})

⇒ (cdf R a ≤ cdf R b)

Interval Probability

For any two real numbers a and b,

if a < b, then Pr(a < R ≤ b) = FR(b) − FR(a) (4.14)

This property is very useful for evaluating the probability of a random variable,

R, lying in any given interval (a,b] in terms of its CDF.

Using the set theory in HOL, it can be proved that for any two real numbers

a and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ b} is equal to
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the union of the disjoint sets {s | R s ≤ a} and {s | (a < R s) ∧ (R s ≤ b)}. Now, the

above CDF property can be proved in HOL using the additive law of the probability

function (A ∩ B = ∅ ⇒ (P(A ∪ B) = P(A) + P(B)), verified in [36], along with the

closed under complements and countable unions property of E .

Theorem 4.5: Interval Probability in terms of CDF

⊢ ∀ R a b. a < b ∧ (measurable {s | R s ≤ x})

⇒ (P {s | (a < R s) ∧ (R s ≤ b) } = cdf R b - cdf R a)

CDF at Negative Infinity

lim
x→−∞

FR(x) = 0; that is, FR(−∞) = 0 (4.15)

This property states that the value of the CDF tends to 0 as its real argument

approaches negative infinity or in other words the graph of CDF must eventually

approach the line y = 0 at the left end of the real axis.

We used the formalization of limit of a real sequence [32] along with the for-

malization of the mathematical measure theory [36] in HOL to prove this property.

The first step is to prove a relationship between the limit value of the probability of a

monotonically decreasing sequence of events An (i.e., An+1 ⊆ An for every n) and the

probability of the countable intersection of all events that can be represented as An.

∀An. lim
n→∞

Pr(An) = Pr(
⋂

n

An) (4.16)

This relationship, sometimes called the Continuity Property of Probabilities, can

be used to prove the above CDF property by instantiating it with a decreasing se-

quence of events represented in Lambda calculus as (λn.{s | R s ≤ −n}); where n

has the HOL data type nat: {0, 1, 2, . . .}. The LHS of Equation (4.16), with this

sequence, represents the CDF for the random variable R when its real number ar-

gument approaches negative infinity and thus is equal to the LHS of our proof goal
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in Equation 4.15. Using the monotonically decreasing nature of the events in the se-

quence (λn.{s | R s ≤ −n}), the RHS of Equation (4.16), with this sequence, can be

proved to be equal to the probability of an empty set. The CDF at negative infinity

property can now be proved using the basic probability law (P({}) = 0), verified in

[36], which states that the probability of an empty set is 0.

Theorem 4.6: CDF at Negative Infinity

⊢ ∀ R. (measurable {s | R s ≤ x}) ⇒ lim (λ n. cdf R (-n)) = 0

where lim is the HOL function for the limit of a real sequence [32].

CDF at Positive Infinity

lim
x→∞

FR(x) = 1; that is, FR(∞) = 1 (4.17)

This property, quite similar to the last one, states that the value of the CDF

tends to 1 as its real number argument approaches positive infinity or in other words

the graph of CDF must eventually approach the line y = 1 at the right end of the real

axis.

The HOL proof steps for this property are also quite similar to the last one

and this time we use the Continuity Property of Probabilities which specifies the

relationship between the limit value of the probability of a monotonically increasing

sequence of events An (i.e., An ⊆ An+1 for every n) and the probability of the countable

union of all events that can be represented as An.

∀An. lim
n→∞

Pr(An) = Pr(
⋃

n

An) (4.18)

In this case, we instantiate Equation 4.18 with an increasing sequence of events

represented in Lambda calculus as (λn.{s | R s ≤ n}). The countable union of all
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events in this sequence is the universal set. The CDF at positive infinity prop-

erty can now be proved in the HOL theorem prover using the basic probability law

(P(UNIV ) = 1), verified in [36], which states that the probability of the universal set

is 1.

Theorem 4.7: CDF at Positive Infinity

⊢ ∀ R. (measurable {s | R s ≤ x}) ⇒ lim (λ n. cdf R n) = 1

CDF is Continuous from the Right

For every real number a,

lim
x→a+

FR(x) = FR(a) (4.19)

where lim
x→a+

FR(x) is defined as the limit of FR(x) as x tends to a through values

greater than a. Since FR is monotone and bounded, this limit always exists.

In order to prove this property in HOL, we used a decreasing sequence of events

represented in Lambda calculus as (λn.{s | R s ≤ a + 1

(n+1)
}). This sequence of events

has been selected in such a way that if the Continuity Property of Probabilities, given

in Equation 4.16, is instantiated with this sequence then its LHS represents the CDF

for a random variable, R, when its real number argument approaches a through values

greater than a. Therefore, with this sequence, the LHS of the Continuity Property of

Probabilities is equal to the LHS of our proof goal in Equation 4.19. Using the mono-

tonically decreasing nature of the events in the sequence (λn.{s | R s ≤ a + 1

(n+1)
}),

it can also be proved that the countable intersection of all events in this sequence is

the set {s | R s ≤ a}. The CDF can now be proved to be continuous from the right

as the RHS of the Continuity Property given in Equation 4.16, with the sequence

(λn.{s | R s ≤ a + 1

(n+1)
}), represents the CDF of random variable at real argument

a.
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Theorem 4.8: CDF is Continuous from the Right

⊢ ∀ R a. (measurable {s | R s ≤ x})

⇒ lim (λ n. cdf R (a + 1
(n+1)

)) = cdf R a

CDF Limit from the Left

For every real number a,

lim
x→a−

FR(x) = Pr(R < a) (4.20)

where lim
x→a−

FR(x) is defined as the limit of FR(x) as x tends to a through values less

than a.

This property is quite similar to the previous one and can be proved by in-

stantiating the Continuity Property of Probabilities, given in Equation 4.18, with an

increasing sequence of events represented in Lambda calculus as (λn.{s | R s ≤ a−
1

(n+1)
}). The LHS of Equation 4.18, with this sequence, represents the CDF for the ran-

dom variable R when its real number argument approaches a through values less than

a and is thus equal to the LHS of our proof goal in Equation 4.20. Using the mono-

tonically increasing nature of the events in the sequence (λn.{s | R s ≤ a− 1

(n+1)
}),

it can be proved that the countable union of all the events in this sequence is the set

{s | R s < a} which led us to prove the theorem stating the CDF limit from the left.

Theorem 4.9: CDF Limit from the Left

⊢ ∀ R a. (measurable {s | R s ≤ x})

⇒ lim (λ n. cdf R (a - 1
(n+1)

)) = P {s | (R s < a})
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4.4 Inverse Transform Method

In this section, we present the formal specification of the inverse function for a CDF

and the verification of the ITM in HOL. It is the third step in the proposed framework

for the formalization of continuous probability distributions as shown in Figure 4.1.

The ITM is based on the following proposition [72].

Let U be a Standard Uniform random variable. For any continuous CDF

F, the random variable X defined by X = F−1(U) has CDF F, where

F−1(U) is defined to be the value of x such that F (x) = U .

Mathematically,

Pr(F−1(U) ≤ x) = F (x) (4.21)

4.4.1 Formal Specification of Inverse of the CDF

We define the inverse function for a CDF in HOL as a predicate inv cdf fn, which

accepts two functions, f and g, of type (real → real) and returns True if and only if

the function f is the inverse of the CDF g according to the above proposition.

Definition 4.4: Inverse Functions Predicate

⊢ ∀ f g. inv cdf fn f g =

(∀x. (0 < g x ∧ g x < 1) ⇒ (f (g x) = x) ∧

(∀x. 0 < x ∧ x < 1 ⇒ (g (f x) = x))) ∧

(∀x. (g x = 0) ⇒ (x ≤ f (0))) ∧

(∀x. (g x = 1) ⇒ (f (1) ≤ x))

The predicate inv cdf fn considers three separate cases, the first one corre-

sponds to the strictly monotonic region of the CDF, i.e., when the value of the CDF
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g is between 0 and 1. The next two correspond to the flat regions of the CDF, i.e.,

when the value of the CDF g is either equal to 0 or 1, respectively. These three cases

cover all possible values of a CDF since according to Theorem 4.3 the value of CDF

can never be less than 0 or greater than 1.

The inverse of a function f , f−1(u), is defined to be the value of x such that

f(x) = u. More formally, if f is a one-to-one function with domain X and range Y,

its inverse function f−1 has domain Y and range X and is defined by f−1(y) = x ⇔

f(x) = y, for any y in Y. The composition of inverse functions yields the following

result.

f−1(f(x)) = x for all x ∈ X, f(f−1(x)) = x for all x ∈ Y (4.22)

We use the above characteristic of inverse functions in the predicate inv cdf fn

for the strictly monotonic region of the CDF as the CDF in this region is a one-to-one

function. On the other hand, the CDF is not injective when its value is either equal

to 0 or 1. Consider the example of some CDF, F , which returns 0 for a real argument

a. From Theorems 4.3 and 4.4, we know that the CDF F will also return 0 for all

real arguments that are less than a as well, i.e., ∀x. x ≤ a ⇒ F (x) = 0. Therefore,

no inverse function satisfies the conditions of Equation (4.22) for the CDF in these

flat regions. When using the paper-and-pencil proof approach, this issue is usually

resolved by defining the inverse function of a CDF in such a way that it returns the

infimum (inf) of all possible values of the real argument for which the CDF is equal

to a given value, i.e., f−1(u) = inf{x|f(x) = u} [20], where f represents the CDF.

Even though this approach has been shown to analytically verify the correctness of

the ITM [20], it was not found to be sufficient enough for a formal definition in our

case. This is due to the fact that in order to simplify the formalization task, Hurd
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[36] used the standard real numbers R, formalized in HOL by Harrison [32], rather

than the extended real numbers R = R
⋃{−∞, +∞} to formalize the mathematical

measure theory. Thus, if the inf function is used to define the inverse function, then

the problem arises for the case when the value of the CDF is equal to 0. For this

case, the set {x|f(x) = 0} becomes unbounded at the lower end because of the CDF

property given in Theorem 4.6 and thus the value of the inverse function becomes

undefined. In order to overcome this problem, we use two separate cases for the

two flat regions in the predicate inv cdf fn. According to this definition the inverse

function of a CDF is a function that returns the maximum value of all arguments for

which the CDF is equal to 0 and the minimum value of all arguments for which the

CDF is equal to 1.

4.4.2 Formal Verification of the ITM

The correctness theorem for the ITM can now be expressed in HOL as follows:

Theorem 4.10: Inverse Transform Method

⊢ ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g)

⇒ (P {s | f (std unif cont s) ≤ x} = g x)

The antecedent of the above implication checks if f is a valid inverse function

of a continuous CDF g. The predicate inv cdf fn has been described in the last

section and ensures that the function f is a valid inverse of the CDF g. The pred-

icate is cont cdf fn accepts a real-valued function, g, of type (real → real) and

returns True if and only if it represents a continuous CDF. A real-valued function

can be characterized as a continuous CDF if it is a continuous function and satisfies

the CDF properties given in Theorems 4.4, 4.6 and 4.7. Therefore, the predicate

is cont cdf fn is defined in HOL as follows:
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Definition 4.5: Continuous CDF Predicate

⊢ ∀ g. is cont cdf fn g =

(∀ x. g contl x) ∧

(∀ a b. a < b ⇒ g a ≤ g b) ∧

(lim (λ n. g (-n)) = 0) ∧

(lim (λ n. g (n)) = 1)

where (∀ x.g contl x) represents the HOL predicate that returns True if g is a con-

tinuous function [32] for all x.

The conclusion of the implication in Theorem 4.10 represents the correctness

proof of the ITM given in Equation (4.21). The function std unif cont in this

theorem is the formal definition of the Standard Uniform random variable, described

in Section 4.2. Theorem 4.1 can be used to reduce the proof goal of Theorem 4.10 to

the following subgoal:

(P {s | f(std unif cont s) ≤ x} = P {s | std unif cont s ≤ g x}) (4.23)

Next, we use the theorems of Section 4.2 and 4.3 along with the formalized

measure and probability theories in HOL [36] to prove the measurability of the sets

that arise in this verification, i.e., they are in E .

Lemma 4.8: Measurability of Sets in ITM

⊢ ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g)

⇒ (measurable {s | f(std unif cont s) ≤ x}) ∧

(measurable {s | (std unif cont s) ≤ g x}) ∧

(measurable {s | f(std unif cont s) = x})
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Equation (4.23) can now be proved using Lemma 4.8, the theorems from Sec-

tion 4.2 and 4.3 and Hurd’s formalization of probability theory in HOL. The main

advantage of the formally verified ITM (i.e., Theorem 4.10) is the simplification of the

verification task of proving the CDF property of a random variable that is expressed

in terms of the Standard Uniform random variable. Originally such verification in-

volves reasoning based on the measure, probability and real number theories and the

theorems related to the Standard Uniform random variable. Using the formally ver-

ified ITM, the CDF verification goal can be broken down to two simpler sub-goals,

i.e., (1) verifying that a function g, of type (real → real), represents a valid CDF and

(2) verifying that another function f , of type (real → real), is a valid inverse of the

CDF g. The verification of these subgoals only involves some arithmetic reasoning.

4.5 Continuous Random Variables in HOL

In order to demonstrate the framework for the formalization of continuous random

variables, given in Figure 4.1, we now present the formal specification of four continu-

ous random variables; Exponential(λ), Uniform(a, b), Rayleigh(λ) and Triangular(0, a).

The framework is then used to verify the correctness of these random variables by

proving their corresponding CDF properties in the HOL theorem prover.

4.5.1 Formal Specification of Continuous Random Variables

All continuous random variables for which the inverse of the CDF exists in a closed

mathematical form can be expressed in terms of the Standard Uniform random vari-

able according to the ITM proposition given in Section 4.4. We selected four such

commonly used random variables: Exponential(λ), Uniform(a, b), Rayleigh(λ) and

Triangular(0, a), which are formally expressed in terms of the formalized Standard
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Uniform random variable std unif cont in Table 4.1 as HOL functions exp rv,

uniform rv, rayleigh rv and triangular rv, respectively. Table 4.1 lists the CDF

relations of these random variables as well in the last column. The functions ln, exp

and sqrt in Table 4.1 are the HOL functions for logarithm, exponential and square

root, respectively [32].

Distribution Formalized Random Variable CDF

Exponential(l)
⊢ ∀s l. exp rv l s =

−1
l
ln(1 − std unif cont s)

0 if x ≤ 0;
1 − exp−lx if 0 < x.

Uniform(a, b)
⊢ ∀s a b. uniform rv a b s =

(b − a)(std unif cont s) + a

0 if x ≤ a;
x−a
b−a

if a < x < b;

1 if b ≤ x.

Rayleigh(l)
⊢ ∀s l. rayleigh rv l s =

l sqrt(−2ln(1 − std unif cont s))

0 if x ≤ 0;

1 − exp
−x

2

2l2 if 0 < x.

Triangular(0, a)
⊢ ∀s a . triangular rv a s =

a(1 − sqrt(1 − std unif cont s))

0 if x ≤ 0;

( 2
a
(x − x2

2a
)) if x < a;

1 if a ≤ x.

Table 4.1: Continuous Random Variables (for which CDF−1 exists)

4.5.2 Formal Verification of Continuous Random Variables

The first step in verifying the CDF property of a continuous random variable, using

the correctness theorem of the ITM, is to express the given continuous random vari-

able as F−1(U s), where F−1 is a function of type (real → real) and U represents

the formalized Standard Uniform random variable. For example, the Exponential(λ)

random variable given in Table 4.1 can be expressed as (λx. − 1

l
ln(1− x))(std unif

cont s). Similarly, we can express the CDF of the given random variable as F (x),

where F is a function of type (real → real) and x is a real data type variable.

For example, the CDF of the Exponential(λ) random variable can be expressed as

(λx. if x ≤ 0 then 0 else 1− exp(−lx)) x.
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The next step is to prove that the function F defined above represents a valid

continuous CDF and the function F−1 is a valid inverse function of the CDF F . The

predicates is cont cdf fn and inv cdf fn, defined in Section 4.4, can be used for this

verification and the corresponding theorems for the Exponential(λ) random variable

are given below

∀l. is cont cdf fn (λx. if x ≤ 0 then 0 else (1− exp (−lx))) (4.24)

∀l. inv cdf fn (λx. − 1

l
ln(1− x)) (λx. if x ≤ 0 then 0 else(1− exp(−lx)))

(4.25)

The above Equations along with Theorem 4.10 and Lemma 4.8 can be used to

verify the CDF and the measurability of the sets corresponding to the given continuous

random variable. These theorems for the Exponential(λ) random variable are given

below

Theorem 4.11: CDF for the Exponential Random Variable

⊢ ∀ l x. (0 < l)

⇒ cdf (λs. exp rv l s) x =

if x ≤ 0 then 0 else (1 - exp (-l x))

Theorem 4.12: Measurability for the Exponential Random Variable

⊢ ∀ l x. (0 < l)

⇒ (measurable {s | exp rv r s ≤ x}) ∧

(measurable {s | exp rv r s = x})

The above results allow us to formally reason about interesting probabilistic

properties of continuous random variables within a higher-order-logic theorem prover.
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The measurability of the sets {s| F−1(U s) ≤ x} and {s| F−1(U s) = x} can be used

to prove that any set that involves a relational property with the random variable

F−1(U s), e.g., {s | F−1(U s) < x} and {s | F−1(U s) ≥ x}, is measurable because

of the closed under complements and countable unions property of E . The CDF

properties proved in Section 4.3 can then be used to determine probabilistic quantities

associated with these sets.

The CDF and measurability properties of the rest of the continuous random

variables, given in Table 4.1, can also be proved in a similar way. For illustration

purposes the corresponding CDF theorems are given below

Theorem 4.13: CDF for the Uniform Random Variable

⊢ ∀ a b x. (a < b)

⇒ cdf (λs. uniform rv a b s) x =

if x ≤ a then 0 else (if x < b then x−a
b−a

else 1)

Theorem 4.14: CDF for the Rayleigh Random Variable

⊢ ∀ x l. (0 < l)

⇒ cdf (λs. rayleigh rv l s) x =

if x ≤ 0 then 0 else (1 -
exp(x2)
(2l2)

)

Theorem 4.15: CDF for the Triangular Random Variable

⊢ ∀ a x. (0 < a)

⇒ cdf (λs. triangular rv a s) x =

if (x ≤ 0) then 0 else

(if (x < a) then (2
a
(x - x2

2a
)) else 1)
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4.6 Probabilistic Analysis of Roundoff Error in a

Digital Processor

The formalized continuous random variables can be utilized in the proposed prob-

abilistic analysis approach to formally model and reason about continuous random

phenomenon. In this section, we illustrate this statement by considering the verifica-

tion of quantitative probabilistic properties related to a simple system that utilizes a

continuous random variable.

Consider the roundoff error for a particular digital processor to be uniformly

distributed over the interval [-5x10−12, 5x10−12]. An engineering team is interested

in verifying that the probability of the event when the roundoff error in this digital

processor is greater than 2x10−12 is less than 0.33 and the probability that the final

result fluctuates by ±1x10−12 with respect to the actual value is precisely equal to 0.2.

This section illustrates the process of tackling the verification of these probabilistic

properties in HOL.

Our approach for the verification of probabilistic properties in HOL revolves

around the fact that any probabilistic property related to a random variable can

be expressed in terms of its CDF. Consider the case of interval probabilities, i.e.,

properties that associate probabilities to the event that a random variable falls in a

particular interval of the real line, like the ones mentioned above for the case of the

digital processor. We now show how the CDF can be used to express any interval

property by splitting the real line in three disjoint intervals; (−∞, a], (a, b], (b,∞).

Determining the probability for the first interval is quite straightforward since the

CDF for a random variable, R, with a real argument, a, can be used directly to find

the probability that R lies in the interval (−∞, a]. Whereas, the probability that
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a random variable, R, will lie in the interval (a, b] can be determined by its CDF

values for the real arguments a and b as has been proved in Theorem 4.5. For the

third interval, we first use the set theory in HOL to prove that for any real value

b, the set of infinite Boolean sequences {s | b < R s} is the complement of the set

{s | R s ≤ b}. The probability that a random variable, R, lies in the interval (b,∞)

can now be represented in terms of its CDF by using the complement law of the

probability function (P(S) = 1 − P(S̄)).

Theorem 4.16: Interval Probability (b,∞) in terms of CDF

⊢ ∀ R b. (measurable {s | R s ≤ b})

⇒ P {s | b < R s} = 1 - (cdf R b)

We are now in the position of formally verifying the given probabilistic prop-

erties by modeling the roundoff error as a continuous Uniform(a, b) random variable,

formalized in Section 4.5, in the interval [-5x10−12, 5x10−12].

We proceed to verify the first probabilistic property, which checks if the prob-

ability of the event when the roundoff error in this digital processor is greater than

2x10−12 is less than 0.33, by instantiating Theorem 4.16 with the random variable

(λs. uniform rv− 5x10−12 5x 10−12 s) and the real value 2x10−12. Now the prop-

erty can be verified by simplifying the result using the formally verified CDF relation

for the Uniform(a, b) random variable, given in Theorem 4.13, and some arithmetic

reasoning in HOL.

Theorem 4.17: Probability (roundoff error > 2x10−12) < 0.33

⊢ P {s | 2x10−12 < uniform rv -5x10−12 5x10−12 s } < 0.33

Similarly the second property can be verified by checking if the probability of

the continuous Uniform[-5x10−12, 5x10−12] random variable falling in the interval [-

1x10−12, 1x10−12] is equal to 0.2. We proceed in this direction by instantiating the
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CDF property, verified in Theorem 4.5, with the real values -1x10−12, 1x10−12 for

variables a, b and the random variable (λs. uniform rv − 5x10−12 5x10−12 s) for

random variable R. Now the property can be verified by simplifying the result using

the formally verified CDF relation for the Uniform(a, b) random variable, given in

Theorem 4.13, and some arithmetic reasoning in HOL.

Theorem 4.18: Probability (roundoff error lies in [-1x10−12, 1x10−12]) = 0.2

⊢ P {s | (-1x10−12 < uniform rv -5x10−12 5x10−12 s) ∧

(uniform rv -5x10−12 5x10−12 s ≤ 1x10−12)} = 0.2

The above example illustrates the usefulness of formalized continuous random

variables in verifying probabilistic quantities with 100% precision. It is a novelty that

is not available in the existing computer-based probabilistic analysis approaches.

4.7 Summary and Discussions

In this chapter, we described the construction details of a framework for the for-

malization and verification of all continuous probability distributions for which the

inverse of the CDF can be expressed in a closed mathematical form. We demonstrated

the practical effectiveness of our framework by formalizing four continuous probabil-

ity distributions; Exponential(λ), Uniform(a, b), Rayleigh(λ) and Triangular(0, a) and

formally verifying the corresponding CDF relations. The framework is generic and can

be used to model other continuous random variables as well, such as, Cauchy, Pareto

and Raised Cosine. To the best of our knowledge, this is the first time that a higher-

order-logic formalization and formal verification of continuous random variables has

been presented.
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The continuous random variables are extensively used to model random behav-

iors in the probabilistic analysis of many engineering and scientific applications [84].

The formalized continuous random variables and the ability to precisely reason about

their probability distribution properties pave the path to precisely tackle the analysis

of such applications within the sound core of the HOL theorem prover. For illustration

purposes, we utilized the formalized Uniform(a, b) random variable to reason about a

couple of probabilistic properties regarding the roundoff error in a digital processor.

So far in this thesis, we have described some of the pre-requisites for conduct-

ing formal probabilistic analysis using a theorem prover, i.e., the formalization and

verification of statistical properties regarding discrete random variables in Chapter 3

and the formalization and verification of probabilistic properties regarding continuous

random variables in this chapter. In the next chapter, we build upon these founda-

tions to demonstrate the feasibility of the proposed probabilistic analysis approach by

presenting the analysis of a real-world system, i.e., the Stop-and-Wait protocol.
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Chapter 5

Case Study: Stop-and-Wait

Protocol

Real-time systems usually involve a subtle interaction of a number of distributed

components and have a high degree of parallelism, which makes their analysis quite

complex. Thus, traditional techniques, such as simulation, or the state-based formal

methods usually fail to produce reasonable results. In this chapter, we demonstrate

the usefulness and feasibility of the proposed probabilistic analysis approach by uti-

lizing it for the performance analysis of real-time systems. For illustration purposes,

we present the analysis of the Stop-and-Wait protocol, which is a classical example

of real-time systems. The functional correctness of the protocol is verified by proving

that the protocol ensures reliable data transfers. Whereas, the average message delay

relation is verified in HOL for the sake of performance analysis.
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5.1 Introduction

Real-time systems can be characterized as systems for which the correctness of an

operation is dependant not only on its logical correctness but also on the time taken.

Some commonly used real-time system applications include embedded systems, digital

circuits with uncertain delays and communication protocols. Due to the increased

usage of real-time systems in safety critical and extremely sensitive applications such

as medicine, transportation and space travel, their correctness and performance has

become imperative. The functional verification and performance evaluation tasks

in this domain are quite challenging as the present age real-time systems usually

involve a subtle interaction of a number of distributed components and have a high

degree of parallelism. Thus, traditional techniques, such as simulation, fail to produce

reasonable results. On the other hand, formal methods offer a promising solution.

A number of elegant approaches for the formal functional verification of real-

time systems can be found in the open literature using state-based or theorem-proving

techniques (e.g. [1, 12, 2, 5]). However, most of these existing formal verification tools

are only capable of specifying and verifying hard deadlines, i.e., properties where a late

response is considered to be incorrect. Recently, several state-based formal approaches

have been proposed for the verification of soft deadlines, which lead to probabilistic

analysis, for real-time systems (e.g. [46, 11, 47]). However, all these approaches share

the same inherent limitation that is the reduced expressive power of their automata

based or Petri net based specification formalism. On top of that, either there is no

mechanism to verify statistical properties in these techniques or even if it does exist

then the underlying infrastructure cannot be regarded as completely formal, as has

already been pointed out earlier. For example, Duflot et al. [21] used the PRISM

model checker to conduct the performance analysis of a CSMA/CD protocol, which
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is a real-time communication protocol, based on expectations. The results obtained

are approximate as has been clearly stated in [21].

Due to the immaturity of formal methods in verifying soft deadlines and using

them for performance evaluation of real-time systems, the current state-of-the-art is

based on constructing abstract models that are analyzed by simulation or by applying

stochastic process theory for this purpose. Besides the inaccuracy of the results by

simulation based methods and the drawbacks associated with paper-and-pencil proof

methods, a major limitation of this approach is that the model used for performance

analysis is usually quite far in abstraction level from the one used for functional

verification. This fact makes the equivalence verification between these two models

very difficult, if not impossible, and thus leaves a major hole in the soundness of the

functional verification and performance analysis tasks.

The proposed theorem proving based probabilistic analysis approach allows us

to overcome the above mentioned limitations. The idea is to formally specify the

given real-time system as a logical conjunction of higher-order-logic predicates [12],

where each one of these predicates define an autonomous component or process of

the given real-time system, while representing the unpredictable or random elements

in the system as formalized random variables. The functional correctness and the

performance related probabilistic and statistical properties for various parameters for

this formal model can then be verified using an interactive theorem prover with the

help of the formalization and verification support presented in this thesis so far. Since

the analysis is conducted within the core of a mechanical theorem prover, there would

be no question about the soundness or the precision of the results. Also, there is no

equivalence verification required between the models used for functional verification

and performance evaluation as the same formal model is used for both of these analysis
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in this approach.

In order to support the above mentioned claims, we present the functional veri-

fication and performance analysis of the Stop-and-Wait protocol, which is a real-time

system, in this chapter. The Stop-and-Wait protocol utilizes the principles of error

detection and retransmission and is a fundamental mechanism for reliable commu-

nication between computers. Indeed, it is one of the most important parts of the

Internet’s Transmission Control Protocol (TCP). The main motivation behind select-

ing the Stop-and-Wait protocol as a case study for our approach is its widespread

popularity in the literature regarding real-time system analysis methodologies. Stop-

and-Wait protocol and some of its closely related variants have been checked formally

for functional verification using both theorem proving and state-based formal ap-

proaches (e.g. [82, 12, 33, 8, 25]) and their performance has been analyzed using a

number of innovative formal or semi-formal techniques (e.g. [53, 79, 85, 29]). But

like other real-time systems, to the best of our knowledge, there is no mechanized

approach reported in the literature that utilizes a single model of the Stop-and-Wait

protocol and could verify its functional correctness and precisely analyze its perfor-

mance. We fill this gap in this chapter as we present the functional verification and

the performance analysis, based on the precise average (expectation) delay for a single

message transmission, for the Stop-and-Wait protocol using the HOL theorem prover.

The Stop-and-Wait protocol is a classical example of a real-time system and therefore

we believe that the probabilistic analysis approach followed in this case study can be

essentially utilized for the probabilistic analysis of any other real-time system as well.

This chapter is organized as follows. We begin by presenting an informal de-

scription of the Stop-and-Wait protocol along with its average delay characteristic.
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Then, in Section 5.3, we provide a higher-order-logic specification of the Stop-and-

Wait protocol. We verify the functional correctness of this specification using the

HOL theorem prover in Section 5.4. Then, in Section 5.5, we conduct the performance

analysis of the Stop-and-Wait protocol based on its formal specification in HOL. We

mainly verify the message delay characteristic of the Stop-and-Wait protocol, which is

the most widely used performance measuring parameter for communication protocols,

first under noise-free conditions and then with the consideration of the channel noise.

Finally, the chapter is concluded in Section 5.6 with some discussions.

5.2 Protocol Description

Stop-and-Wait [49] is a basic Automatic Repeat Request (ARQ) protocol that ensures

reliable data transfers across noisy channels. In a Stop-and-Wait system, both sending

and receiving stations have error detection capabilities. The operation is illustrated

in Figure 5.1 using the following notation.

• tf : Data message transmission time

• ta: Acknowledgement (ACK) message transmission time

• tprop: One-way signal propagation delay between transmitter and receiver

• tproc: Processing time required for error detection in the received message at

both transmitter and receiver

• tout: Timeout period

The transmitter sends a data message to the receiver and spends tf time units

in doing so. It then stops and waits to receive an ACK of reception of that message
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Figure 5.1: Stop-and-Wait Operation

from the receiver. If no ACK is received within a given time out period, tout, the data

message is resent by the transmitter and once again it stops and starts waiting for

the ACK (Figure 5.1.a). If an ACK is received within the given tout period then the

transmitter checks the received message for errors during the next tproc time units.

If errors are detected then the ACK is ignored and the data message is resent by

the transmitter after tout expires and once again the transmitter stops and waits

for the ACK (Figure 5.1.b). Thus, the main idea is that the transmitter keeps on

retransmitting the same data message, after a pre-defined time-out period, tout, until

and unless it receives a corresponding error-free ACK message from the receiver.
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When an error-free ACK message is finally received then the transmitter transmits

the next data message in its queue (Figure 5.1.c).

The receiver is always waiting to receive data messages. When a new message

arrives, the receiver checks it for errors during the next tproc time units. If errors are

detected then the data message is ignored and the receiver continues to be in the wait

state (Figure 5.1.a), otherwise it initiates the transmission of an ACK message, which

takes ta time units (Figure 5.1.b,c).

Under the above mentioned conditions, the ACK message cannot be received

before tprop + tproc + ta + tprop + tproc units of time after sending out a data message.

It is, therefore, necessary to set tout ≥ 2(tprop + tproc) + ta, i.e., the retransmission

must not be allowed to start before the expected arrival time of the ACK is lapsed,

for reliable communication between transmitter and receiver.

ARQ allows the transmitting station to transmit a specific number, usually

termed as sending window, of messages before receiving an ACK frame and the re-

ceiving station to receive and store a specific number, usually termed as receiving

window, of error-free messages even if they arrive out-of-sequence. Generally, both

the sending window and the receiving window are assigned the same value, which is

termed as the window size of the ARQ protocol [80]. The window size for the Stop-

and-Wait protocol is 1, as can be observed from its transmitter and receiver behavior

descriptions given above.

In order to distinguish between new messages and duplicates of previous mes-

sages at the receiver or transmitter, a sequence number is included in the header of

both data and ACK messages [49]. It has been shown that, for correct ARQ oper-

ation, the number of distinct sequence numbers must be at least equal to twice the

window size [83]. Thus, the simplest and the most commonly used version of the
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Stop-and-Wait protocol uses two distinct sequence numbers (0 and 1) and is known

as the Alternating Bit Protocol (ABP). The transmitter keeps track of the sequence

number of the last data message it had sent, its associated timer and the message

itself in case a retransmission is required. Whereas, the receiver keeps track of the

sequence number of the next data message that it is expecting to receive and discards

out-of-sequence data messages. On the other hand, when an in-sequence data mes-

sage arrives at the receiver, it updates its sequence number by performing a modulo-2

addition with the number 1, i.e., 0 is updated to 1 and 1 is updated to 0, and responds

with the corresponding ACK message. Similarly, if an out-of-sequence ACK message

appears at the transmitter, it ignores it and retains the sequence number of the last

data message it had sent. Whereas, in the case of the reception of an in-sequence

ACK message, the sequence number at the transmitter is also updated by performing

a modulo-2 addition by 1, which becomes the sequence number of the next data mes-

sage as well. More details about sequence numbering in the Stop-and-Wait protocol

can be found in [49].

The most widely used performance metric for Stop-and-Wait protocol is the time

required for the transmitter to send a single data message and know that it has been

successfully received at the receiver. In the case of error-free or noiseless channels,

which do not reorder or loose messages (Figure 5.1.c), the message transmission delay

is given by

tf + tprop + tproc + ta + tprop + tproc (5.1)

On the other hand, in the presence of noise, every damaged or lost message (data

or ACK) will cause a retransmission from the transmitter and thus wastes tf + tout

units of time (Figure 5.1.a,b). Whereas, the final successful transmission will take the

118



amount of time given in Equation (5.1). In order to obtain more concise information

about this delay, we consider the probability, p, of a message transmission being in

error. This allows us to model the number of retransmissions in the Stop-and-Wait

protocol in terms of a Geometric random variable, which returns the number of trials

required to achieve the first success, with success probability 1 − p. Therefore, the

delay of the Stop-and-Wait protocol can be mathematically expressed as

(tf + tout)(G(1−p) − 1) + tf + tprop + tproc + ta + tprop + tproc (5.2)

where Gx denotes a Geometric random variable with success probability x. The above

representation allows us to express the average delay of a single data message in a

Stop-and-Wait protocol using the expectation or average value of a Geometric random

variables as follows

(tf + tout)p

1 − p
+ tf + tprop + tproc + ta + tprop + tproc (5.3)

5.3 Formal Specification in HOL

A real-time system and its environment may be viewed as a bunch of concurrent,

communicating processes that are autonomous, i.e., they can communicate asyn-

chronously. The behavior of these processes over time may be specified by higher-

order-logic predicates on positive integers [12]. Whereas, these positive integers repre-

sent the ticks of a clock counting physical time in any appropriate units, e.g., nanosec-

onds. The granularity of the clock’s tick is believed to be chosen in such a way that it

is sufficiently fine to detect properties of interest. The behavior of a real-time system

can now be formally specified by combining the corresponding process specifications

(higher-order-logic predicates) using logical conjunction. In a similar way, additional
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Figure 5.2: Logical Structure of an ARQ Protocol

constraints for the real-time system such as initial conditions or any assumptions, if

required to ensure the correct behavior of the model, can also be defined as predicates

and combined with its formal specification using logical conjunctions.

Based on the above mentioned approach, we formally specify the Stop-and-Wait

protocol as a combination of six processes, as shown in Figure 5.2. The protocol mainly

consists of three major modules, i.e., the sender or the transmitter, the receiver and

the communication channel. Each one of these modules can be subdivided into two

processes as both the sender and the receiver transmit messages and receive them

and the channel between the sender and receiver consists of two logical channels:

one carrying data messages from the sender to the receiver and one carrying ACK

messages in the opposite direction.

In the following, we present the data type definitions, the six higher-order-logic

predicates, corresponding to each one of the processes in Figure 5.2, and finally the

formal specification of the Stop-and-Wait protocol, which also includes the predicates

for assumptions and initial conditions. We include the timing information associated

with every action in these predicates so that the corresponding model can be utilized
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to reason about the message delay characteristic of the Stop-and-Wait protocol.

5.3.1 Type Definitions

The input to the Stop-and-Wait protocol, source, is basically a list of data messages

that can be modeled in HOL by a list of α elements

source: α list

where α represents any concrete HOL data type such as a record, a character, an

integer or an n-bit word. The output of the protocol, sink, is also a list of data

messages that grows with time as new data messages are delivered to the receiver. It

can be modeled in HOL as follows:

sink: time -> α list

where time is assigned the HOL data-type for positive integers, num, and represents

physical time in this case. This kind of variable, which is time dependent, is termed

as a history in this chapter.

The arrows in Figure 5.2 between processes represent information that is shared

between the sender, channel and receiver. Data messages are transmitted from the

sender to the receiver (dataS, dataR) and ACK messages are transmitted in the

opposite direction (ackR, ackS). These messages are transmitted across the Stop-

and-Wait protocol in a form of a packet, which can be modeled in HOL as a pair

containing a sequence number and a message element

packet: num x α

where num is used here for the sequence number and the α represents the message.

Since we are dealing with an unreliable channel, the output of a channel may or may
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not be a packet. In order to model the no-packet case in HOL, a data-type non packet

is defined, which has only one value, i.e., one. Every message can either be of type

packet or of type non packet.

message: packet + non packet

5.3.2 Data Transmission

The process DATA TRANS in Figure 5.2 characterizes the data transmission behavior of

the Stop-and-Wait protocol and the corresponding predicate is defined as follows.

Definition 5.1: Data Transmission Behavior for Stop-and-Wait Protocol

⊢ ∀ ws sn dataS s rem i ackS tout tf dtout dtf.

DATA TRANS STOP WAIT ws sn dataS s rem i ackS

tout tf dtout dtf =

∀ t.

(if ¬NULL (tli (i t) (rem t)) ∧ i t < ws then

(if dtf t = 0 then

(i (t + 1) = i t + 1) ∧

(dtout (t + 1) = tout - 1) ∧

(dtf (t + 1) = tf) ∧

(dataS t = new packet (mod n add (s t) (i t) sn)

(hdi (i t) (rem t)))

else

(i (t + 1) = i t) ∧

(dtout (t + 1) = tout) ∧

(dtf (t + 1) = dtf t - 1) ∧
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(dataS t = set non packet))

else

(dtf (t + 1) = tf) ∧ (dataS t = set non packet)) ∧

(if

(dtout t = 1) ∨

good packet (ackS t) ∧

mod n sub (label (ackS t)) (s t) sn < ws

then

(i (t + 1) = i t - 1) ∧ (dtout (t + 1) = tout)

else

(i (t + 1) = i t) ∧ (dtout (t + 1) = dtout t - 1))

The variables ws and sn represent the window size and the number of distinct sequence

numbers available for the protocol, respectively. By using these variables in our

definitions, instead of their corresponding fixed values of 1 and 2 for the case of

the Stop-and-Wait protocol, we attain two benefits. Firstly, it makes our definitions

more generic as they can now be used, with minor updates, to formally model the

corresponding processes of other ARQ protocols, such as Go-Back-N and Selective-

Repeat [49], as well. Secondly, this allows us to establish a logical implication between

our definitions for the six processes (Figure 5.2) to the corresponding definitions for

the Sliding Window protocol, given in [12]. This relationship can be used to inherit the

functional correctness theorem, verified for the Sliding Window protocol in [12], for our

Stop-and-Wait protocol model and thus saves us a considerable amount of verification

time and effort. More details on this are given in Section 5.4. It is important to note

that in order to model the correct behavior for the Stop-and-Wait protocol, we will

assign the values of 1 and 2 to the variables ws and sn, respectively, in an assumption
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that is used in all of the theorems that we verify for the Stop-and-Wait protocol.

The history dataS represents the data messages transmitted by the sender at

any particular time. The history s represents, modulo sn, the sequence number of

the first unacknowledged data message. Data remaining to be sent at any time is

represented by the history rem that has type time → α. Whereas, the history i:

time → num is used to identify the number of data messages, at any particular

time, that have been transmitted by the sender but are still unacknowledged by the

receiver. The history ackS represents the ACK messages received by the sender at

any particular time. The variables tout and tf hold the values for the tout and tf

delays and histories dtout and dtf keep track of the timers associated with these

delays.

The HOL functions tli and hdi, in the above definition, accept two arguments,

i.e., a list l and a positive integer n, and return the tail of the list l starting from

its nth element and the nth element of the list l, respectively. Whereas, the functions

new packet and set non packet declare a message of type packet (using its two

arguments) and non packet, respectively. The function label returns the sequence

number of a packet and the predicate good packet checks the message type of its

argument and returns False if it is non packet and True otherwise. The functions

mod n add and mod n sub return the modulo-n, where n is their third argument,

addition or subtraction results of their first two arguments, respectively.

The definition of DATA TRANS STOP WAIT should be read as follows. At all times

t, check for the transmission conditions, i.e., there is data available to be transmit-

ted (¬NULL (tli (i t) (rem t))) and the number of unacknowledged messages is

less than the window size (i t < ws). If the transmission conditions are satisfied,

then wait for the next tf time units, i.e., decrement the timer dtf by one at every
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increment of the time until it reaches 0 and during this time maintain the values of

histories i and dtout while holding the transmission of a new packet to the channel.

Once tf time units have elapsed, i.e., the contents of dtf timer become 0, then in-

stantly transmit the (i t)th message in the window (hdi (i t) (rem t)) using the

sequence number (mod n add (s t) (i t) sn). Whereas, in the next increment of

time t increment the value of the history i by 1, activate the timer dtout, associated

with the tout delay, by decrementing its value by 1 and initialize the timer dtf, associ-

ated with the tf delay, to its default value of tf. On the other hand, for all times t for

which one of the transmission conditions is not satisfied, no message is transmitted

(set non packet) and the initial value of the dtf timer is maintained. The values

of i and dtout, under the no transmission conditions, depend on the event if the

timer dtout reaches 1 or an ACK message (good packet (ackS t)) is received for

a data message that has been sent and not yet acknowledged, i.e., if the difference

between the label of (ackS t) and the sender’s sequence number is less than ws, i.e,

(mod n sub (label (ackS t)) (s t) sn < ws). If this event happens, then the

timer dtout is initialized to its default value tout and the value of i is decremented

by 1 in the next increment of time t. Otherwise, we remain in the wait state until

the timer dtout expires or a valid ACK is received, while maintaining the value of i

and decrementing the timer dtout by one at every increment of the time t.

5.3.3 Data Reception

The process DATA RECV in Figure 5.2 characterizes the data reception behavior, at

the receiver end, of the Stop-and-Wait protocol and the corresponding predicate is

defined as follows
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Definition 5.2: Data Reception Behavior for Stop-and-Wait Protocol

⊢ ∀ sn dataR sink r.

DATA RECV STOP WAIT sn dataR sink r =

∀ t.

(if good packet (dataR t) ∧ (label (dataR t) = r t) then

(sink (t + 1) = sink t ++ [data (dataR t)]) ∧

(r (t + 1) = mod n add (r t) 1 sn)

(else

(sink (t + 1) = sink t) ∧ (r (t + 1) = r t))

where the history dataR represents the data messages received by the receiver at any

particular time. The history r represents, modulo sn, the sequence number of the

data message that the receiver is expecting to receive. The function data returns the

data portion of a packet and ++ is the symbol for the list append function in HOL.

The definition of DATA RECV STOP WAIT should be read as follows. At all times t,

if (dataR t) is not a non packet, i.e., (good packet (dataR t)), and the sequence

field of the packet (dataR t) is equal to the next number to be output to the sink,

i.e., (label (dataR t) = r t), then the data part of the packet is appended to the

sink list and r is updated to the sequence number of the next message expected,

i.e., (r (t + 1) = mod n add (r t) 1 sn). Otherwise if a valid data packet is not

received then the output list sink and r retain their old values.

We have assigned a fixed value of 1 to the processing delay (tp) in order to

simplify the understandability of the proofs presented in the next two sections. If

required, the processing delay can be made a variable quantity by using a similar

approach that we used for tout and tf delays in the predicate DATA TRANS STOP WAIT.
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5.3.4 ACK Transmission

The process ACK TRANS in Figure 5.2 characterizes the ACK transmission behavior of

the Stop-and-Wait protocol and the corresponding predicate is defined as follows

Definition 5.3: ACK Transmission Behavior for Stop-and-Wait Protocol

⊢ ∀ sn ackR r ackty ack msg ta dta rec flag.

ACK TRANS STOP WAIT sn ackR r ackty ack msg ta dta rec flag =

∀ t. (ackty t = ack msg) ∧

(if ¬(r t = r (t - 1)) then

(if dta t = 0 then

ackR t = new packet (mod n sub (r t) 1 sn) (ackty t) ∧

(dta (t + 1) = ta) ∧ (rec flag (t + 1) = F)

else

(ackR t = set non packet) ∧ (dta (t + 1) = dta t - 1)∧

(rec flag (t + 1) = T))

else

(if rec flag t then

(if dta t = 0 then

ackR t = new packet(mod n sub (r t) 1 sn)(ackty t)∧

(dta (t + 1) = ta) ∧ (rec flag (t + 1) = F)

else

(ackR t = set non packet) ∧

(dta (t + 1) = dta t - 1) ∧ (rec flag (t + 1) = T))

else

(ackR t = set non packet) ∧ (dta (t + 1) = ta) ∧

(rec flag (t + 1) = F)))
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where the history ackR represents the ACK messages transmitted by the sender at any

particular time. The history ackty represents the data part of the ACK message that

could be used to specify properties of protocols, such as negative acknowledgements:

a type of acknowledgement message which enables the sender to retransmit messages

efficiently. The variable ack msg represents a constant data field that is sent along

with every ACK message by the receiving station, as in the Stop-and-Wait protocol

the ACK messages do not convey any other information except the reception of a data

message. The variable ta holds the value for the ta delay and the history dta keeps

track of the timer associated with this delay. Whereas, the history rec flag keeps

track of the reception of a data message at the receiver until a corresponding ACK

message is sent.

The definition of ACK TRANS STOP WAIT should be read as follows. At all times

t, the history ackty is assigned the value of the default ACK message for the Stop-

and-Wait protocol, i.e., ack msg. For all times t, if an in-sequence data message

arrives at the receiver ¬(r t = r (t - 1)), then instantly transmit an ACK message

if the contents of the timer dta are 0, otherwise do not issue an ACK and retain

the information of receiving a valid data in the rec flag while activating the timer

associated with ta by decrementing its value by 1. On the other hand, for all times

t for which no in-sequence data message arrives at the receiver, check if there exists

a valid data message that has successfully arrived at the receiver but has not been

acknowledged so far (rec flag t). If that is the case, then if the timer associated

with the delay ta has expired (dta t = 0) then instantly issue the respective ACK

message while initializing histories dta and rec flag to their default values of ta

and False, respectively. Otherwise wait for the dta timer to expire while holding the

ACK transmission and the value of history rec flag and decrementing the value of
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the timer dta by 1. On the other hand, if there is no valid data arrival or no pending

ACK transmission, then the receiver is not allowed to transmit an ACK message and

it assigns the histories dta and rec flag to their default values of ta and False,

respectively.

5.3.5 ACK Reception

The process ACK RECV in Figure 5.2 characterizes the ACK reception behavior, at the

sending station, of the Stop-and-Wait protocol and the corresponding predicate is

defined as follows

Definition 5.4: ACK Reception Behavior for Stop-and-Wait Protocol

⊢ ∀ ws sn ackS rem s.

ACK RECV STOP WAIT ws sn ackS rem s =

∀ t.

(if

good packet (ackS t) ∧

mod n sub (label (ackS t)) (s t) sn < ws

then

(s (t + 1) = mod n add (label (ackS t)) 1 sn) ∧

(rem (t + 1) =

tli (mod n sub (s (t + 1)) (s t) sn) (rem t))

else

(s (t + 1) = s t) ∧ (rem (t + 1) = rem t))

The sender checks the label of every ACK message it receives to find out if it is one

of the messages that has been sent and not yet acknowledged, i.e., if the modulo-sn

difference between the sequence number of (ackS t) and sender’s sequence number
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is less than ws, i.e., (mod n sub (label (ackS t)) (s t) sn < ws). If this is the

case, then the sender slides the window up by updating the sender’s history (s t)

to be the first message not known to be accepted: (mod n add (label (ackS t)) 1

sn) and by updating (rem t), the list of data remaining to be sent. Otherwise, both

histories s and rem retain their previous values. As in the case of the receiver, we

again assigned a fixed value of 1 to the processing delay (tp).

5.3.6 Communication Channel

The processes DATA CHAN and ACK CHAN in Figure 5.2 characterize the communication

channel connecting the sender and receiver in the Stop-and-Wait. For the analysis,

we require a channel with fixed propagation delay (tprop). We present two definitions

for the communication channel for the Stop-and-Wait protocol; the first one models

the channel that is noiseless and the second one models a noisy channel, which may

loose packets. The noiseless channel predicate is defined as follows

Definition 5.5: Noiseless Communication Channel

⊢ ∀ in out d tprop.

NOISELESS CHANNEL STOP WAIT in out d tprop =

∀ t.

(if t < tprop then

out t = set non packet

else

out t = in (t - d t)) ∧

(0 < tprop) ∧ (d t = tprop)

where the histories in, out and d represent the input message, output message and

the propagation delay for the channel at a particular time, respectively. The variable
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tprop represents the fixed value of channel delay (d t) for all t. According to the

above definition, the output from a channel at time t is a copy of the channel’s input

at time (t - tprop).

Next, we define a predicate that models a noisy channel that looses a message

with probability p.

Definition 5.6: Noisy Communication Channel

⊢ ∀ in out d tprop p bseqt.

NOISY CHANNEL STOP WAIT in out d tprop p bseqt =

∀ t.

(if t < tprop then

(out t = set non packet) ∧ (bseqt (t + 1) = bseqt t)

else

(if good packet (in (t - d t)) then

(if ¬fst (prob bern p (bseqt t)) then

(out t = in (t - d t))∧

(bseqt (t + 1) = snd (prob bern p (bseqt t)))

else

(out t = set non packet) ∧

(bseqt (t + 1) = snd (prob bern p (bseqt t))))

else

(out t = set non packet) ∧

(bseqt (t + 1) = bseqt t))) ∧

(0 < tprop) ∧ (d t = tprop)

In the above definition, we utilized the formal definition of the Bernoulli(p) random

variable to model the noise effect. The variable p represents the probability of channel
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error or getting a True from the Bernoulli random variable and the history bseqt

keeps track of the remaining portion of the infinite Boolean sequence after every call

of the Bernoulli random variable. According to the above definition, a valid packet,

that arrives at input of the channel, appears at the output of the channel after tprop

time units with probability 1 − p.

5.3.7 Stop-and-Wait Protocol

We first define some constraints that are required to ensure the correct behavior of

our Stop-and-Wait protocol specification, before giving the actual formalization of the

protocol.

Initial Conditions

Initial conditions are usually required for ensuring correct behavior of formal models.

In case of the formal specification of real-time systems in HOL, we need to assign

appropriate values to the history variables as initial conditions. We used the following

initial conditions for the Stop-and-Wait protocol.

Definition 5.7: Initial Conditions for Stop-and-Wait Protocol

⊢ ∀ source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq.

INIT STOP WAIT source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq =

(rem 0 = source) ∧ (s 0 = 0) ∧ (sink 0 = []) ∧

(r 0 = 0) ∧ (i 0 = 0) ∧ (dtout 0 = tout) ∧

(rec flag 0 = F) ∧ (ackR 0 = set non packet) ∧

(dtf 0 = tf) ∧ (dta 0 = ta) ∧ (bseqt 0 = bseq)
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Assumptions

Liveness or Timeliness: While verifying a system, which allows nondeterministic

or probabilistic choice between actions, we often need to include additional constraints

to make sure that events of interest do occur. This has been done by including a

timeliness constraint in the specification of the Stop-and-Wait protocol: if the sender’s

state has not changed over an interval of maxP time units, then the sender assumes

that the receiver or the channel has crashed and aborts the protocol. A predicate

ABORT is defined that is True only when the protocol aborts and False otherwise.

Now, the predicate ABORT characterizes which abort histories satisfy this constraint.

Definition 5.8: Timeliness Assumption for Stop-and-Wait Protocol

⊢ ∀ abort maxP rem.

ABORT abort maxP rem =

∀ t. abort t =

(rem t = rem (t - maxP)) ∧ maxP ≤ t ∧ ¬NULL (rem t)

A protocol is said to be live if it is never aborted. This kind of liveness is assumed

using the following constraint

LIVE ASSUMPTION abort = ∀ t. ¬(abort t)

Window Size and Sequence Numbers: As has been mentioned before, instead

of using their exact values of 1 and 2, we used variables ws and sn to represent

the window size and distinct sequence numbers for the Stop-and-Wait protocol in

the above predicates. This has been done, in order to be able to establish logical

implication between the predicates defined in this chapter and the corresponding

predicates for the Sliding Window protocol, defined in [12]. Now, we assign the exact

values to these variables in an assumption predicate as follows
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Definition 5.9: Window Size and Sequence Number for Stop-and-Wait

Protocol

⊢ ∀ ws sn. WSSN ASSUM STOP WAIT ws sn = (ws = 1) ∧ (sn = 2)

The Stop-and-Wait protocol can now be formalized as the logical conjunction of

the predicates defined above. We present two specifications corresponding to noiseless

or ideal and noisy channel conditions.

Definition 5.10: Stop-and-Wait Protocol - Noiseless Channel

⊢ ∀ source sink rem s i r ws sn ackty maxP abort

dataS dataR ackS ackR d tprop dtout dtf dta tf

ack msg ta tout rec flag.

STOP WAIT NOISELESS source sink rem s i r ws sn ackty maxP

abort dataS dataR ackS ackR d tprop dtout dtf dta tf

ack msg ta tout rec flag =

INIT STOP WAIT source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag ∧

DATA TRANS STOP WAIT ws sn dataS s rem i ackS

tout tf dtout dtf ∧

NOISELESS CHANNEL STOP WAIT dataS dataR d tprop ∧

DATA RECV STOP WAIT sn dataR sink r ∧

ACK TRANS STOP WAIT sn ackR r ackty ack msg ta dta rec flag ∧

NOISELESS CHANNEL STOP WAIT ackR ackS d tprop ∧

ACK RECV STOP WAIT ws sn ackS rem s ∧

ABORT abort maxP rem ∧ WSSN ASSUM STOP WAIT ws sn
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The higher-order-logic predicate STOP WAIT NOISELESS formally specifies the

behavior of the Stop-and-Wait protocol under ideal or noiseless conditions as the cor-

responding predicate for the channel has been used for both data and ACK channels.

It is also important to note here that we do not initialize the history bseqt in the

predicate INIT STOP WAIT as there is no need to use the infinite Boolean sequence

in this case. Next, we utilize the noisy channel predicate to formally specify the

Stop-and-Wait protocol with a noisy channel as follows

Definition 5.11: Stop-and-Wait Protocol - Noisy Channel

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg ta tout rec flag

bseqt bseq p.

STOP WAIT NOISY source sink rem s i r ws sn ackty maxP abort

dataS dataR ackS ackR d tprop dtout dtf dta tf ack msg

ta tout rec flag bseqt bseq =

INIT STOP WAIT source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq ∧

DATA TRANS STOP WAIT ws sn dataS s rem i ackS

tout tf dtout dtf ∧

NOISY CHANNEL STOP WAIT dataS dataR d tprop p bseqt ∧

DATA RECV STOP WAIT sn dataR sink r ∧

ACK TRANS STOP WAIT sn ackR r ackty ack msg ta dta rec flag ∧

NOISELESS CHANNEL STOP WAIT ackR ackS d tprop ∧

ACK RECV STOP WAIT ws sn ackS rem s ∧

ABORT abort maxP rem ∧

WSSN ASSUM STOP WAIT ws sn
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In the above definition, the data channel has been made noisy while a noiseless

channel is used for the ACK messages. This has been done on purpose in order to

reduce the length of the performance analysis proof by avoiding some redundancy.

On the other hand, this decision does not affect the illustration of the idea behind

the performance analysis of the Stop-and-Wait protocol under noisy conditions as we

present the complete handling of a noisy channel in one direction. The analysis can

be extended to both noisy channels by choosing noisy channel predicates for both

channels and then handling the ACK channel in a similar way as the noisy data

channel is handled in Section 5.5.2 of this chapter.

5.4 Functional Verification in HOL

The job of an ARQ protocol is to ensure reliable transfer of a stream of data from the

sender to the receiver. This requirement can be formally specified as follows [12]

Definition 5.12: Functional Correctness Requirement for ARQ Protocols

⊢ ∀ source sink.

REQ source sink =

(∃ t. sink t = source) ∧

∀ t n. is prefix (sink t) (sink (t + n))

where the predicate is prefix is True if its first list argument is a prefix of its second

list argument. According to the predicate REQ, an ARQ protocol satisfies its functional

requirements only if there exists a time at which the sink list becomes equal to the

original source list, i.e., a time when all the data at the sender is transferred, as is,

to the receiver, and the history sink is prefix closed.
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A generic formal specification of a Sliding Window protocol, which covers all

the ARQ protocol variants, has been presented in [12]. The specification is based

on the model illustrated in Figure 5.2 and has been shown to satisfy the functional

correctness requirement given in the REQ predicate. In order to verify the functional

correctness of our specification of the Stop-and-Wait protocol, we benefit from this

work instead of conducting the verification from scratch. For this purpose, we defined

the predicates for the Stop-and-Wait protocol in such a way that they logically imply

the corresponding predicates used for the formal specification of the Sliding Window

protocol presented in [12]. This relationship allows us to inherit the functional cor-

rectness theorem verified for the specification of the Sliding Window protocol for our

Stop-and-Wait protocol specification.

For illustration purposes, consider the example of the data transmission predi-

cate. It has been defined in [12] for the Sliding Window protocol as follows

Definition 5.13: Data Transmission Behavior for Sliding Window Protocol

⊢ ∀ ws sn dataS s rem i.

DATA TRANS SW ws sn dataS s rem i =

∀ t.

(if ¬NULL (tli (i t) (rem t)) ∧ i t < ws then

(dataS t = new packet

(mod n add (s t) (i t) sn) (hdi (i t) (rem t))) ∨

(dataS t = set non packet)

else

dataS t = set non packet)

It can be easily verified in HOL, using Boolean algebra properties, that the predicate

DATA TRANS STOP WAIT, given in Section 5.3.2, logically implies the above predicate
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⊢ ∀ ws ns dataS s rem i ackS tout tf dtout dtf.

DATA TRANS STOP WAIT ws ns dataS s rem i ackS

tout tf dtout dtf ⇒ DATA TRANS SW ws ns dataS s rem i

In a similar way, we were able to prove logical implications between all the

predicates used in the formal specification of the Sliding Window protocol and the

corresponding predicates used for the formal specification of the Stop-and-Wait pro-

tocol. These relationships allowed us to formally verify the functional correctness of

both of the formal specifications of the Stop-and-Wait protocol in HOL.

Theorem 5.1: Functional Correctness of STOP WAIT NOISELESS

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg ta tout rec flag.

STOP WAIT NOISELESS source sink rem s i r ws sn ackty maxP

abort dataS dataR ackS ackR d tprop dtout dtf dta tf

ack msg ta tout rec flag ∧

LIVE ASSUMPTION abort ⇒ REQ source sink

Theorem 5.2: Functional Correctness of STOP WAIT NOISY

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg ta tout

rec flag bseqt bseq p.

STOP WAIT NOISY source sink rem s i r ws sn ackty maxP abort

dataS dataR ackS ackR d tprop dtout dtf dta tf ack msg

ta tout rec flag bseqt bseq ∧

LIVE ASSUMPTION abort ⇒ REQ source sink

It is important to note that the generic specification of the Sliding Window

Protocol in [12] is quite general and does not include many details, such as the precise

138



conditions under which the messages are transmitted or acknowledged and the delays

(tout, tf , ta, etc.) associated with different operations. Therefore, it cannot be used for

reasoning about message delays and thus performance related properties, as such. On

the other hand, our formal specification of the Stop-and-Wait protocol is more specific

and provides a detailed description of the protocol including the timing behavior

associated with different operations.

Another major point that we would like to mention here is that in order to

establish the logical implication between the two protocol models, we had to introduce

some additional generality in our formal definitions, such as the usage of variables ws

and sn instead of their exact values of 1 and 2 , respectively. Even though, such

generalizations are not required for the functional description of the Stop-and-Wait

protocol, they do not harm us in any way. They lead to a much faster functional

verification, as has been illustrated in this section. On the other hand, they do not

affect the formal reasoning related to the performance issues, since the exact values

for these variables are assigned in an assumption (WSSN ASSUM STOP WAIT) that is a

part of our Stop-and-Wait protocol specification.

5.5 Performance Analysis in HOL

Now, we present the verification of the message delay relations for the Stop-and-

Wait protocol, given in Equations (5.1) and (5.3), for noiseless and noisy channels,

respectively. The verification is based on the two formal specifications of the Stop-

and-Wait protocol, STOP WAIT NOISELESS and STOP WAIT NOISY, given in the previous

section.
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5.5.1 Noiseless Channel Conditions

The first and the foremost step in verifying the message delay characteristic for the

Stop-and-Wait protocol is to formally specify it. Informally speaking, the message

delay refers to the time required for the transmitter to send a single data message

and know that it has been successfully received at the receiver. We specify this in

higher-order logic as follows

Definition 5.14: Stop-and-Wait Protocol Delay - Noiseless Channel

⊢ ∀ rem source. DELAY STOP WAIT NOISELESS rem source =

@t. (rem t = TL source) ∧ (rem (t - 1) = source)

The above specification returns the time t at which the rem list is reduced by one

element from its initially assigned value of the source list. It is indeed precisely equal

to the message delay of the first data element in the source list.

Based on the above definition of the message delay and the delays associated

with the formal specification of the Stop-and-Wait protocol (STOP WAIT NOISELESS),

Equation (5.1) can be formally expressed in HOL as follows

Theorem 5.3: Stop-and-Wait Protocol Delay Relation - Noiseless Channel

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg ta tout rec flag.

STOP WAIT NOISLESS source sink rem s i r ws sn ackty maxP

abort dataS dataR ackS ackR d tprop dtout dtf

dta tf ack msg ta tout rec flag ∧ ¬(NULL source) ∧

tprop + 1 + ta + tprop + 1 ≤ tout

⇒ (DELAY STOP WAIT NOISELESS rem source =

tf + tprop + 1 + ta + tprop + 1)
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It is important to note here that the processing delay, tp, has been assigned a value

of 1 in our model, as explained in the previous section. The two assumptions that

we have added to Theorem 5.3 ensure that the source list is not an empty list, i.e.,

¬(NULL source), otherwise no data transfer takes place, and the time out period

tout is always greater than or equal to its lower bound specified in Section 5.2.

Rewriting the proof goal of Theorem 5.3 with the definition of the Stop-and-

Wait protocol delay and removing the Hilbert Choice operator we get the following

expression

(∃ x.(rem x = TL source) ∧ (rem (x − 1) = source)) ∧

(∀ x. (rem x = TL source) ∧ (rem (x − 1) = source)

⇒ (x = tf + tprop + 1 + ta + tprop + 1))

(5.4)

The above subgoal is a logical conjunction of two Boolean expressions and it can be

proved to be True only if there exists a time x for which the conditions (rem x = TL

source) and (rem (x - 1) = source) are True and the value of any variable x that

satisfies these conditions is unique and is equal to tf + tprop + 1 + ta + tprop +

1.

We proceed with the proof of the subgoal, given in Equation (5.4), by assuming

the following expression

(rem (tf + tprop + 1 + ta + tprop + 1) = TL source) ∧

(rem ((tf + tprop + 1 + ta + tprop + 1) − 1) = source)

(5.5)

to be True, which we will prove later, under the given constraints for the Stop-and-

Wait protocol. Equation (5.5) leads us to prove the first Boolean expression in our

subgoal as now we know an x = (tf + tprop + 1 + ta + tprop + 1) for which the
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given conditions are True. We verified the second Boolean expression in the subgoal

by first proving the monotonically decreasing characteristic of the history rem under

the given constraints of the Stop-and-Wait protocol, i.e.,

∀ a b. a < b. ⇒ ∃ c. c + + rem b = rem a (5.6)

where ++ represents the list append function in HOL. Now, if there exists an x, that

satisfies the conditions (rem x = TL source) and (rem (x - 1) = source), then

it may be equal to, less than or greater than (tf + tprop + 1 + ta + tprop + 1).

For the later two cases, we reach a contradiction in the assumption list, based on the

monotonically decreasing characteristic of the history rem, whereas, the case when

x = (tf + tprop + 1 + ta + tprop + 1) verifies our subgoal of interest, which

concludes the proof of Theorem 5.3 under the assumption of Equation (5.5).

Equation (5.5) can now be proved in HOL using the definitions of the predicates

in the formal specification of the Stop-and-Wait protocol under noiseless channels.

The corresponding HOL proof step sequence is summarized in Table 5.1.

5.5.2 Noisy Channel Conditions

Just like the case of the analysis under noiseless conditions, the message delay, un-

der noisy channel conditions, refers to the time required for the transmitter to send

a single data message and know that it has been successfully received at the re-

ceiver. Though the delay, in this case, is a random quantity since its value is non-

deterministic and depends on the outcomes of a sequence of Bernoulli trials, which

are used to model the channel noise as can be seen in the definition of the predi-

cate NOISY CHANNEL STOP WAIT. Therefore, the message delay for the Stop-and-Wait

protocol under noisy channel needs to be formally specified as a random variable
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Number Formally Verified Statements

1 ∀t.t ≤ tf ⇒ (i(t) = 0)

2 ∀t.t < tf ⇒ (dataS t = set non packet)

3 ∀t.t < tf + tprop ⇒ (dataR t = set non packet)

4 ∀t.t < tf + tprop + 1 ⇒ (sink t = []) ∧ (r t = 0)

5 ∀t.t ≤ tf + tprop + 1 ⇒ (rec flag t = F) ∧ (dta t = ta)

6 ∀t.t < tf + tprop + 1 + ta ⇒ (ackR t = set non packet)

7 ∀t.t < tf + tprop + 1 + ta + tprop ⇒ (ackS t = set non packet)

8 ∀t.t < tf + tprop + 1 + ta + tprop + 1

⇒ (s t = 0) ∧ (rem t = source)

9 (dataS tf = new packet 0 (HD source)) ∧ (i(tf + 1) = 1)

10 ∀t.tf < t ∧ t < tf + tprop + 1 + ta + tprop + 1

⇒ (tout + tf− t ≤ dtout t)

11 ∀t.tf < t ∧ t < tf + tprop + 1 + ta + tprop + 1

⇒ (i t = 1) ∧ (dataS t = set non packet)

12 dataR(tf + tprop) = new packet 0 (HD source)

13 ∀t.tf + tprop < t ∧ t < tf + tprop + 1 + ta + tprop + 1

⇒ (dataR t = set non packet)

14 ∀t.tf + tprop + 1 ≤ t ∧ t < tf + tprop + 1 + ta + tprop + 1

⇒ (r t = 1)

15 ∀t.tf + tprop + 1 ≤ t ∧ t < tf + tprop + 1 + ta

⇒ (rec flag(t + 1)) ∧ (dta(t + 1) = ta− (t− (tf + tprop)))

16 ackR(tf + tprop + 1 + ta) = new packet 0 ack msg

17 rem(tf + tprop + 1 + ta + tprop + 1) = TL source

Table 5.1: HOL Proof Sequence for Equation (5.5)
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Definition 5.15: Stop-and-Wait Protocol Delay - Noisy Channel

⊢ ∀ rem source bseqt.

DELAY STOP WAIT NOISY rem source bseqt =

((@t. (rem t = TL source) ∧ (rem (t - 1) = source)),

bseqt @t.

(rem t = TL source) ∧ (rem (t - 1) = source))

where history bseqt t represents the unused portion of the infinite Boolean sequence

after performing the required number of Bernoulli trials at any given time t. The

above specification returns a pair with the first element equal to the time t that sat-

isfies the two conditions (rem t = TL source) and (rem (t - 1) = source), and

thus represents the random message delay of the first data element in the source list,

and the second element is equal to the unused portion of the infinite Boolean sequence

at this time instant t.

As a first step towards the verification of the average value of the random delay

specified in DELAY STOP WAIT NOISY, we establish its relationship with the infamous

Geometric random variable, which basically returns the number of trials to attain the

first success in an infinite sequence of Bernoulli trials [19]. This way, we can benefit

from the existing HOL theorems related to the average characteristic of Geometric(p)

random variable, such as Theorem 2.14, for the verification of the average value of

the message delay of a Stop-and-Wait protocol. This relationship, given in Equation

(5.2), can be expressed in HOL using the formal specification of the Stop-and-Wait

protocol STOP WAIT NOISY and the Geometric random variable prob geom as follows
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Theorem 5.4: Stop-and-Wait Protocol Delay in terms of Geometric

Random Variable

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg ta tout

rec flag bseqt bseq p.

STOP WAIT NOISY source sink rem s i r ws sn ackty maxP abort

dataS dataR ackS ackR d tprop dtout dtf dta tf ack msg

ta tout rec flag bseqt bseq ∧ ¬(NULL source) ∧

tprop + 1 + ta + tprop + 1 ≤ tout ∧

LIVE ASSUMPTION abort ∧ 0 ≤ p ∧ p < 1

⇒ (DELAY STOP WAIT NOISY rem source bseqt =

((tf + tout) (fst (prob geom (1 - p) bseq) - 1) + tf +

tprop + 1 + ta + tprop + 1,

snd (prob geom (1 - p) bseq)))

where p represents the probability of channel error, i.e., getting a True from the

Bernoulli random variable. The first argument of the function prob geom represents

the probability of success for the corresponding sequence of the Bernoulli trials, which

in the case of our definition of the noisy channel, is equal to the probability of getting

a False from a Bernoulli trial. The above theorem is proved under the assumption

that the value of the probability p always falls in the interval [0, 1). It is not allowed to

attain the value 1, in order to avoid the case when the channel always rejects incom-

ing packets and thus leads to no data transfers. The assumption, LIVE ASSUMPTION

abort ensures liveness as has been explained in Section 5.3. The other assumptions

used in the above theorem are similar to the ones used in Theorem 5.3.
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We proceed with the verification of Theorem 5.4 in HOL by first defining the

following two recursive functions. The first function, returns True if and only if its

first argument, say n, represents the positive integer index of a trial, in a sequence of

independent Bernoulli trials, that returns a False while all Bernoulli trials with lower

index values than n have returned a True.

Definition 5.16: Nth Bernoulli Trial returns the first False

⊢ ∀ p bseq.

BERNOULLI TRIAL F IND 0 p bseq = ¬fst (prob bern p bseq)) ∧

∀ n p bseq. BERNOULLI TRIAL F IND (suc n) p bseq =

fst (prob bern p bseq) ∧

BERNOULLI TRIAL F IND n p (snd (prob bern p bseq))

The second function returns the value of the snd element of the nth Bernoulli trial in

a sequence of independent Bernoulli trials, where n represents its first argument. In

other words, it basically returns the unused infinite Boolean sequence after n indepen-

dent Bernoulli trials have been performed using the given infinite Boolean sequence.

Definition 5.17: Second Component of the Nth Bernoulli Trial

⊢ ∀ p bseq. NTH BERNOULLI TRIAL SND 0 p bseq = bseq) ∧

∀ n p bseq. NTH BERNOULLI TRIAL SND (suc n) p bseq =

snd (prob bern p (NTH BERNOULLI TRIAL SND n p bseq))

Under the assumptions of Theorem 5.4, it can be shown that a data message

available at the source list does finally make through the noisy channel at some time.

This can be verified in HOL, for the top element of the source list, by proving that

there exists some n for which the function BERNOULLI TRIAL F IND returns a True
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∃ n. BERNOULLI TRIAL F IND n p bseq (5.7)

for the given values of p and bseq. If a positive integer n exists that satisfies the above

condition, then it can be verified in HOL that the Geometric random variable, which

returns the number of trials to attain the first success in an independent sequence

of Bernoulli(p) trials, with success probability equal to (1 - p) can be formally ex-

pressed as follows

∀ n p s. 0 ≤ p ∧ p < 1 ∧ BERNOULLI TRIAL F IND n p s

⇒ (prob geom (1− p) s = (n + 1, NTH BERNOULLI TRIAL SND (n + 1) p s))

(5.8)

The HOL proof is based on the formal definition of the function prob geom and the

underlying probability theory principles, presented in [36].

Based on the above results, the proof goal of Theorem 5.4 can be simplified using

the definition of DELAY STOP WAIT NOISY and removing the Hilbert Choice operator

as follows

(∃ x.(rem x = TL source) ∧ (rem (x − 1) = source)) ∧

(∀ x. (rem x = TL source) ∧ (rem (x − 1) = source)

⇒ (x = (tf + tout)n + tf + tprop + 1 + ta + tprop + 1)) ∧

(bseqt x = NTH BERNOULLI TRIAL SND (n + 1) p bseq)

(5.9)

The above subgoal is quite similar to the one that we got after simplifying the proof

goal of Theorem 5.3. Therefore, we follow the same proof approach and assume the

following expression

147



rem ((tf + tout)n + tf + tprop + 1 + ta + tprop + 1 − 1) = source ∧

rem ((tf + tout)n + tf + tprop + 1 + ta + tprop + 1) = TL source ∧

(bseqt ((tf + tout)n + tf + tprop + 1 + ta + tprop + 1) =

NTH BERNOULLI TRIAL SND (n + 1) p bseq)

(5.10)

to be True, which we will prove later, under the given assumptions of Theorem

5.4. Equation (5.10) leads us to prove the first Boolean expression in the subgoal

as now we know an x = ((tf + tout) n + tf + tprop + 1 + ta + tprop + 1)

for which the given conditions (rem x = TL source) and (rem (x - 1) = source)

are True. The second Boolean expression in the subgoal can now be proved using

Equation (5.10) along with the monotonically decreasing characteristic of the history

rem in a similar way as we handled the counterpart while verifying Theorem 5.3.

The next step is to prove Equation (5.10) under the assumptions given in the

assumption list of Theorem 5.4. We proceed in this direction by verifying

Lemma 5.1: Stop-and-Wait Protocol Delay with Generic Initialization

⊢ ∀ bseq v. INIT STOP WAIT GEN source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq v ∧

BERNOULLI TRIAL F IND n p bseq

⇒ (rem (v + (tf + tout) n +

tf + tprop + 1 + ta + tprop + 1 - 1) = source) ∧

(rem (v + (tf + tout) n +

tf + tprop + 1 + ta + tprop + 1) = TL source) ∧

(bseqt (v + (tf + tout) n + tf + tprop + 1 + ta + tprop + 1)

= NTH BERNOULLI TRIAL SND (n + 1) p bseq)
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under the assumptions of Theorem 5.4. Equation (5.10) is a special case of Lemma 5.1

when v = 0. The first assumption in Lemma 5.1, i.e., INIT STOP WAIT GEN, provides

the status of the histories used in the predicate STOP WAIT NOISY at time v as follows

Definition 5.18: Generic Initialization Constraint

⊢ ∀ source rem s sink r i ackR dtout dtf dta tout tf ta

rec flag bseqt bseq v.

INIT STOP WAIT GEN source rem s sink r i ackR dtout dtf dta

tout tf ta rec flag bseqt bseq v =

(i v = 0) ∧ (dtout v = tout) ∧ (dtf v = tf) ∧

(dta v = ta) ∧ (bseqt v = bseq) ∧

(∀ t. t ≤ v ⇒ (rem t = source) ∧

(s t = 0) ∧ (sink t = []) ∧ (r t = 0) ∧

(rec flag t = F) ∧ (ackR t = set non packet)) ∧

∀ t. v - (tout - 1) ≤ t ∧ t < v ⇒ (i t = 1)

It can be proved to be a logical implication of the predicate INIT STOP WAIT, which is

included in the definition of STOP WAIT NOISY and is thus present in the assumption

list of Theorem 5.4, for the case when v = 0. Whereas, the second assumption in the

assumption list of Lemma 5.1, i.e., BERNOULLI TRIAL F IND n p bseq, has already

been shown to be a consequence of the assumptions of Theorem 5.4. Thus, Equation

(5.10) can be proved as a special case of Lemma 5.1 when the positive integer variable

v is assigned a value of 0.

Now, in order to complete the formal proof of Theorem 5.4 in HOL, we need

to verify Lemma 5.1. We proceed with this proof by applying induction on the pos-

itive integer variable n. For the base case, i.e., n = 0, we get the following sub-

goal after some basic arithmetic simplification and using the function definitions of
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BERNOULLI TRIAL F IND and NTH BERNOULLI TRIAL SND.

INIT STOP WAIT GEN source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq v ∧

¬(fst (prob bern p bseq))

⇒ (rem (v + tf + tprop + 1 + ta + tprop + 1 − 1) = source) ∧

(rem (v + tf + tprop + 1 + ta + tprop + 1) = TL source) ∧

bseqt (v + tf + tprop + 1 + ta + tprop + 1) = snd(prob bern p bseq)

(5.11)

The assumption ¬fst (prob bern p bseq) ensures that the noisy data channel al-

lows reliable transmission of the first data message in the first trial. Thus, the base

case of Lemma 5.1 becomes similar to the case of a noiseless data channel, as far

as the transmission of the first data element of the source list is concerned. There-

fore, its proof can be handled in a similar way as the proof of Equation (5.5) as the

only difference between the two is the fact that now the initial conditions are defined

for an arbitrary positive integer v instead of 0. The corresponding HOL proof step

sequence is summarized in Table 5.2. These proofs are based on the definitions of

INIT STOP WAIT GEN and the predicates corresponding to the six processes, given in

Figure 5.2, for the Stop-and-Wait protocol under a noisy data channel.

In the step case for Lemma 5.1, we get the following subgoal after simplifying

with the definitions of BERNOULLI TRIAL F IND and NTH BERNOULLI TRIAL SND
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Number Formally Verified Statements

1 ∀t.v ≤ t ∧ t ≤ v + tf ⇒ (i(t) = 0)

2 ∀t.v− (tout− 1) ≤ t ∧ t < v + tf ⇒ (dataS t = set non packet)

3 ∀t.v ≤ t ∧ t < v + tf + tprop ⇒ (dataR t = set non packet)

4 ∀t.v ≤ t ∧ t ≤ v + tf + tprop ⇒ (bseqt t = bs)

5 ∀t.v ≤ t ∧ t < v + tf + tprop + 1 ⇒ (sink t = []) ∧ (r t = 0)

6 ∀t.v ≤ t ∧ t ≤ v + tf + tprop + 1 ⇒ (rec flag t = F) ∧ (dta t = ta)

7 ∀t.t < v + tf + tprop + 1 + ta ⇒ (ackR t = set non packet)

8 ∀t.v ≤ t ∧ t < v + tf + tprop + 1 + ta + tprop

⇒ (ackS t = set non packet)

9 ∀t.v ≤ t ∧ t < v + tf + tprop + 1 + ta + tprop + 1

⇒ (s t = 0) ∧ (rem t = source)

10 (i(v + tf + 1) = 1) ∧ (dataS(v + tf) = new packet 0 (HD source))

11 ∀t.v ≤ t ∧ t ≤ v + tf ⇒ (dtout t = tout)

12 ∀t.v + tf < t ∧ t < v + tf + tprop + 1 + ta + tprop + 1

⇒ v + tf + tout− t ≤ dtout t

13 ∀t.v + tf + 1 ≤ t ∧ t ≤ v + tf + tprop + 1 + ta + tprop

⇒ (i t = 1) ∧ (dataS t = set non packet)

14 dataR(v + tf + tprop) = new packet 0 (HD source)

15 ∀t.v + tf + tprop < t ∧ t < v + tf + tprop + 1 + ta + tprop

⇒ (dataR t = set non packet)

16 (r(v + tf + tprop + 1) = 1) ∧ (dta(v + tf + tprop + 1) = ta)

17 ∀t.v + tf + tprop + 1 < t ∧ t < v + tf + tprop + 1 + ta + tprop

⇒ (r t = 1)

18 ∀t.v + tf + tprop + 1 ≤ t ∧ t < v + tf + tprop + 1 + ta

⇒ (rec flag(t + 1)) ∧ (dta(t + 1) = v + ta− (t− (tf + tprop)))

19 ackR(v + tf + tprop + 1 + ta) = new packet 0 ack msg

20 ackS(v + tf + tprop + 1 + ta + tprop) = new packet0ack msg

21 rem(v + tf + tprop + 1 + ta + tprop + 1) = TL source

22 ∀t.v + tf + tprop < t∧
t < v + tf + tprop + 1 + ta + tprop + 1 + tprop

⇒ (bseqt t = snd(prob bern p bseq))

Table 5.2: HOL Proof Sequence for the Base Case of Lemma 5.1
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INIT STOP WAIT GEN source rem s sink r i

ackR dtout dtf dta tout tf ta rec flag bseqt bseq v ∧

(fst (prob bern p bseq)) ∧ NTH BERNOULLI TRIAL F n p (snd (prob bern p bseq))

⇒ (rem(v + (tf + tout)(n + 1) + tf + tprop + 1 + ta + tprop + 1− 1) = source)∧

(rem(v + (tf + tout)(n + 1) + tf + tprop + 1 + ta + tprop + 1) = TL source) ∧

(bseqt (v + (tf + tout)(n + 1) + tf + tprop + 1 + ta + tprop + 1) =

(NTH BERNOULLI TRIAL SND (n + 1) p (snd (prob bern p bseq))))

(5.12)

which needs to be proved under the assumption list of Theorem 5.4 along with the

statement of Lemma 5.1. The above subgoal can be proved by specializing Lemma 5.1

for the case when bseq and v are equal to snd (prob bern p bseq) and (v + tf +

tout), respectively, if the given initial conditions in the predicate INIT STOP WAIT GEN

hold for snd (prob bern p bseq) and (v + tf + tout), i.e.,

INIT STOP WAIT GEN source rem s sink r i ackR dtout dtf dta tout tf ta

rec flag bseqt (snd (prob bern p bseq)) (v + tf + tout)

(5.13)

under the assumptions of Theorem 5.4 and the step case of Lemma 5.1. In order to

prove Equation (5.13) we need to formally verify the behavior of the histories, used

in the predicate INIT STOP WAIT GEN, at various points in the interval [0, v + tf +

tout]. Therefore, we again use the same approach that we used to prove Equation

(5.5) and the base case of Lemma 5.1, i.e., to verify the value of these histories using the

initial conditions and the definitions of the predicates used for the formal specification
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of the Stop-and-Wait protocol. In fact, the first 11 proof lines, given in Table 5.2, for

the base case of Lemma 5.1 can be used, as is, for the proof of Equation (5.13) as well,

since a message transmission cannot complete before v + tf + tprop + 1 + ta + tprop + 1

time units are lapsed and the first data message is issued at time v + tf in both cases.

Thereafter, contrary to the base case of Lemma 5.1, where one of the assumptions

assured the reliable transmission of the first data message, in the case of Equation

(5.13) we have the assumption fst (prob bern p bseq) that forces the channel to

loose the first data message. Thus, the sender keeps on waiting for a valid ACK until

the timer associated with the tout delay expires and this is how the initial state at

time v is maintained until the time v + tf + tout. We were able to verify this result,

and thus Equation (5.13), using the first 11 proof lines, given in Table 5.2, followed

by the proof sequence given in Table 5.3. This concludes the proof of Lemma 5.1,

which in turn leads to the proof of Theorem 5.4 as well.

Now, we can express the average message delay relation in HOL as follows

Theorem 5.5: Average Stop-and-Wait Protocol Delay

⊢ ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR

ackS ackR d tprop dtout dtf dta tf ack msg

ta tout rec flag bseqt bseq p.

STOP WAIT NOISY source sink rem s i r ws sn ackty maxP

abort dataS dataR ackS ackR d tprop dtout dtf dta tf

ack msg ta tout rec flag bseqt bseq ∧ ¬(NULL source) ∧

tprop + 1 + ta + tprop + 1 ≤ tout ∧

LIVE ASSUMPTION abort ∧ 0 ≤ p ∧ p < 1

⇒ expec (DELAY STOP WAIT NOISY rem source bseqt) =

(tf + tout) p

1−p
+ (tf + tprop + 1 + ta + tprop + 1)
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Number Formally Verified Statements

1 ∀t.v + tf < t ∧ t < v + tf + tout ⇒ v + tf + tout − t ≤ dtout t

2 ∀t.v + tf < t ∧ t < v + tf + tout ⇒ (i t = 1)

3 ∀t.v + tf < t ∧ t < v + tf + tout ⇒ (dataS t = set non packet)

4 ∀t.v ≤ t ∧ t < v + tf + tout + tprop

⇒ (dataR t = set non packet)

5 ∀t.t < v + tf + tout + tprop + 1 ⇒ (sink t = []) ∧ (r t = 0)

6 ∀t.v ≤ t ∧ t < v + tf + tout + tprop + 1

⇒ (rec flag t = F) ∧ (dta t = ta)

7 ∀t.t < v + tf + tout + tprop + 1 ⇒ (rec flag t = F)

8 ∀t.t < v + tf + tout + tprop + 1 ⇒ (ackR t = set non packet)

9 ∀t.v ≤ t ∧ t < v + tf + tout + tprop + 1

⇒ (ackS t = set non packet)

10 ∀t.t < v + tf + tout + tprop + 1 ⇒ (s t = 0) ∧ (rem t = source)

11 ∀t.v + tf < t ∧ t ≤ v + tf + tout ⇒ (dtf t = tf)

12 ∀t.v + tf + tprop < t ∧ t < v + tf + tout + tprop ⇒
(bseqt t = snd(prob bern p bseq))

13 ∀t.v + tf < t ∧ t < v + tf + tout

⇒ (dtout t = v + tf + tout− t)

14 dtout(v + tf + tout) = tout

15 i(v + tf + tout) = 0

Table 5.3: HOL Proof Sequence for Equation (5.13)
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The above proof goal can be reduced to the following subgoal using Theorems

2.4 and 5.4 and some arithmetic simplification

∀ p. 0 < p ∧ p ≤ 1

⇒ expec (λs.(fst (prob geom p s) − 1, snd(prob geom p s))) =
1− p

p

(5.14)

which we were able to verify in HOL, using the Geometric random variable prob geom

and the formalization infrastructure, given in Chapter 3, and the probability theory

principles, formalized in [36].

Theorem 5.5 specifies the average message delay relation of a Stop-and-Wait pro-

tocol in terms of individual delays of the various autonomous processes, which are the

basic building blocks of the protocol. Thus, it allows us to tweak various parameters

of the protocol to optimize its performance for any given conditions. It is important

to note here that the result of Theorem 5.5 is not new and the performance analy-

sis of Stop-and-Wait protocols, based on Equation (5.3), existed since the early days

of their introduction, however, using theoretical paper-and-pencil proof techniques.

On the other hand, to the best of our knowledge, this is the first time that such a

relation has been mechanically verified without any loss in accuracy or precision of

the results. It therefore provides a superior approach to both paper-and-pencil proofs

and simulation based performance analysis techniques. The successful handling of

the performance analysis of the Stop-and-Wait protocol in the HOL theorem prover

clearly demonstrates the practicability and effectiveness of the proposed probabilistic

analysis approach.
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5.6 Summary and Discussions

The main objective of this chapter was to demonstrate the feasibility and usefulness

of the proposed formal probabilistic analysis approach. For this purpose, we utilized

the proposed infrastructure regarding the formalization and verification of statistical

properties, given in Chapter 3, to conduct the performance analysis of the Stop-and-

Wait protocol, which is a classical example of a real-time system.

A higher-order-logic specification for the Stop-and-Wait protocol is presented,

with the noise effect modeled as a Bernoulli random variable. The performance related

properties are then formally verified, using this model along with the formalization

presented in Chapter 3, in HOL. The accuracy of the results has been one of the

primary motivations of the proposed approach. The Stop-and-Wait protocol case

study clearly demonstrates this aspect as the results match the ones obtained using

traditional paper-and-pencil proof methods and are thus 100% accurate. The next

main feature of the proposed approach is the ability to precisely reason about sta-

tistical properties, which is something that, to the best of our knowledge, has not

been achieved by any existing formal probabilistic analysis technique. Our case study

also demonstrates this feature as we presented the formal verification of the classical

average message delay relation for the Stop-and-Wait protocol.

The formal functional verification and performance analysis of real-time systems

has been an open problem for quite some time. Though, there are computer based

tools that can be used to conduct these two tasks individually but this leaves a gap in

the completeness of the analysis as two different models at different abstraction levels

are used for these tasks and the equivalence verification between these models is not a

very straightforward task. This issue can be resolved using the proposed probabilistic

analysis methodology as has been observed in the case of the Stop-and-Wait protocol.
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We used the same formal model of the Stop-and-Wait protocol for the verification of

both functional and performance related properties.

It is also worth mentioning here that due to the fact that the Stop-and-Wait pro-

tocol bears most of the essential characteristics of the present day real-time systems,

other real-time systems may also be analyzed using the analysis approach presented

for the Stop-and-Wait protocol in this chapter. The existing library of formalized dis-

crete and continuous random variables, presented in Chapters 3 and 4 of this thesis,

can be utilized for this purpose.

As has been pointed out earlier, one of the major limitations of the proposed

probabilistic analysis approach is the associated user interaction, i.e., the user needs

to guide the proof tools manually since we are dealing with higher-order logic. The

Stop-and-Wait protocol is a real-time system and thus involves a subtle interaction

of a number of autonomous components. This fact makes its formalization and verifi-

cation even more complicated. We had to undertake a couple of steps to combat the

complexity of the analysis. First of all, we built upon existing HOL theories whenever

it was possible. Secondly, we chose the discrete time domain instead of continuous

time for the analysis, which allows us to use the powerful induction technique for ver-

ification and thus minimizes the proof effort considerably. The functional verification

and performance analysis tasks translated to approximately 6000 lines of HOL code

and we had to spend about 300 man-hours on the analysis, presented in this chapter.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed to use higher-order-logic theorem proving for proba-

bilistic analysis as a complementary approach to the state-of-the-art simulation and

probabilistic model checking based techniques. The main idea is to use random vari-

ables formalized in higher-order logic to model systems, which need to be analyzed,

and to verify the corresponding probabilistic and statistical properties in a theorem

prover. We believe that because of the formal nature of the models, the analysis will

be free of approximation and precision errors and due to the high expressive nature

of higher-order logic a wider range of systems can be analyzed. Thus, the proposed

approach can prove to very useful for the performance and reliability optimization of

safety critical and highly sensitive engineering and scientific applications.

Towards the development of a successful higher-order-logic theorem proving

based probabilistic analysis infrastructure, the thesis mainly contributes in two di-

rections. Firstly, it presents a formalization infrastructure that can be utilized to for-

mally express and reason about statistical properties, such as expectation, variance
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and tail distribution bounds, for probabilistic systems that involve discrete random

variables. Secondly, it describes the construction details of a framework for the for-

malization and CDF verification of all continuous probability distributions for which

the inverse of the CDF can be expressed in a closed mathematical form. These for-

malized continuous random variables can in turn be used to formally model systems

with continuous random components and formally reason about their corresponding

probability distribution properties. The work is conducted using the HOL theorem

prover and the main reason behind this choice is to be able to utilize the available

higher-order-logic formalization of measure and probability theories, presented in [36].

It is important to note that the proposed approach is not specific to the HOL theorem

prover, though, and can be adapted to any other higher-order-logic theorem prover,

such as Isabelle [65], Coq [17] or PVS [68].

We utilized the above mentioned mathematical foundations to present the formal

probabilistic analysis of three examples, i.e., the Coupon Collector’s Algorithm, the

Roundoff error in a digital processor and the Stop-and-Wait protocol. The analysis

results exactly matched the results obtained by paper-and-pencil proof techniques and

are thus 100 % precise. The successful handling of these diverse probabilistic analysis

problems by the proposed approach clearly demonstrates its feasibility for real-world

probabilistic analysis issues.

The main limitation of the proposed approach is the associated significant user

interaction, i.e., the user needs to guide the proof tools manually since we are dealing

with higher-order logic, which is known to be non-decidable. Because of this, the pro-

posed approach should not be viewed as an alternative to methods such as simulation

and model-checking for the performance analysis of real-time systems but rather as

a complementary technique, which can prove to be very useful when precision of the
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results is of prime importance.

For our verification, we utilized the HOL theories of Boolean algebra, sets, lists,

positive integers, real numbers, measure and probability. Our results can therefore

be regarded as a useful indicator of the state-of-the-art in theorem proving. Based on

this experience, we can say that formalizing mathematics in a mechanical system is

a tedious work that requires deep understanding of both mathematical concepts and

theorem-proving. We often came across proving lemmas that are commonly known

to be true but their formal proofs could not be found even after browsing quite a

few mathematical texts on that specific topic and thus we had to first develop a

formal paper-and-pencil proof of these lemmas before translating them to HOL. The

automated reasoners aid somewhat in the proof process by automatically verifying

some of the first-order-logic goals but most of the times we had to guide the tool

by providing the appropriate rewriting and simplification rules. Thus, the HOL code

for the formalization presented in this thesis consists of approximately 16,000 lines.

On the other hand, we found theorem-proving very efficient in book keeping. For

example, it is very common to get confused with different variables and mathematical

notations and make human errors when working with large paper-and-pencil proofs,

which leads to the loss of a lot of effort. Whereas in the case of mechanical theorem

provers such problems do not exist. Another major advantage of theorem proving is

that once the proof of a theorem is established, due to the inherent soundness of the

approach, it is guaranteed to be valid and the proof can be readily accessed, contrary

to the case of paper-and-pencil proofs where we have to explore the enormous amount

of mathematical literature to find proofs. Thus, it can be concluded that theorem-

proving is a tedious but promising field, which can help mathematicians to cope with

the explosion in mathematical knowledge and to save mathematical concepts from
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corruption. Also, there are areas, such as security critical software, in military, space

travel or medicine applications for example, where theorem-proving will soon become

a dire need.

6.2 Future Work

The formalization and verification results, presented in this thesis, open new avenues

in using theorem proving for the precise analysis of probabilistic systems as a com-

plement to the probabilistic model checking and simulation techniques. Building on

our results, more features can be added to strengthen the capabilities of the theorem

proving based probabilistic analysis framework. Some of the future extensions are

outlined below.

• The formal verification of Chernoff bounds [61], which are extremely powerful

and give exponentially decreasing bounds on the tail distribution, would also

be of great benefit. The formally verified Markov’s inequality and the formal

definition of expectation of a function of a random variable, presented in this

thesis, can be utilized for this purpose.

• Formally, a Poisson distribution represents the limit value of a Binomial(m, p)

random variable, when m approaches infinity. A higher-order-logic formalization

of the Binomial random variable is presented in this thesis, which may be utilized

to formalize the Poisson random variable and verify its expectation relation.

This result can be in turn used to formalize the mathematical concept of the

Poisson process in higher-order logic, which is one of the most frequently used

stochastic process [87].

• We mainly targeted the formalization of the continuous random variables for
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which the inverse of the CDF can be expressed in a closed mathematical form

in this thesis. A potential future direction would be to utilize the formalized

Standard Uniform random variable, presented in this thesis, to formalize other

continuous probability distributions, for which the inverse CDF is not available

in a closed mathematical form, such as, the Normal distribution. This can be

done by exploring the formalization of nonuniform random number generation

techniques such as Box-Muller and acceptance/rejection [20]. Similarly, the

ability to formally reason about multiple continuous random variables would be

a very useful extension to the formal probabilistic analysis domain.

• The formalization and verification of statistical properties regarding Continu-

ous random variables needs to be tackled as well. For this purpose, an expec-

tation function may be formalized using the higher-order-logic formalization of

Lebesgue integration theory [69]. Building upon this definition, we can formal-

ize the mathematical concept of variance and verify Markov and Chebyshev’s

inequalities for continuous random variables as has been done for the case of

discrete random variables in this thesis.

• The approach presented in this thesis for the analysis of the Stop-and-Wait

protocol is quite general and can be extended with various new features and

used for other kinds of real-time systems as well. The extension to other ARQ

protocols, such as Go-back-N and Selective-Repeat [49], is quite straightforward

as they can also be formalized using the process structure, given in Figure 5.2,

with modifications in the behavior of some of the histories.

• Based on our results, a number of safety critical probabilistic analysis problems

can be analyzed in a formal way. Some of the interesting application areas
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include statistical analysis of Digital Signal Processing systems, probabilistic

analysis of digital hardware circuits and performance analysis of protocols used

for security, cache coherence, and telecommunication systems.
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