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Abstract. The spectacular advancement in microelectronics resulted
in the creation of new system level design languages, such as SystemC,
which put fourth new design and verification challenges. In this paper,
we present an approach verifying SystemC designs using model check-
ing and assertion based verification. Such verification is enabled through
two transformations from SystemC to AsmL (the Abstract State Ma-
chines Language) and vice-versa. The soundness of these transforma-
tions, proved using abstract interpretation, guarantees the correctness of
the model checking results and the validity of the generated assertion
monitors (to be checked by simulation). We illustrate our approach on
the SystemC/AsmL modeling and verification of the widely used Accel-
erated Graphics Port (AGP) standard. The verified AGP model can be
either refined to implement an AGP core or used to validate existent
compatible device.

1 Introduction

SystemC [18] is an object-oriented system level language for embedded systems
design and verification. It is expected to make a stronger effect in the area of
architecture, co-design and integration of hardware and software. The SystemC
library is composed of a set of classes and a simulation kernel extending C++
to enable the modeling of complex systems at a higher level of abstraction than
state-of-the-art HDLs. Nevertheless, except for small models, the verification of
SystemC designs is a serious bottleneck in the system design flow. While simu-
lation is the mostly widely used verification technique, it is unable to guarantee
the correctness of the design with respect to its specification. On the other hand,
model checking is considered as a relevant technique to cover for simulation in-
sufficiencies. Nevertheless, direct model checking of SystemC is not feasible due
to the complexity of this library. Besides, the state explosion problem led, for
complex systems, to the use of assertion based verification (ABV) where the
property under verification is turned into a monitor, checked by simulation and
evaluated using coverage metrics. The soundness of ABV relies, in particular, on
the correctness of the generation of the SystemC monitor from the property.

In order to enable the model checking of a SystemC design, we translate it
to an intermediate representation in AsmL [16]. This latter is an object-oriented
abstract state machines (ASM) [2] description language providing features to
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capture the behavioral semantics of programming and modeling languages where
systems are modeled at a high level of abstraction allowing easier validation and
verification operations.

The AsmL language is integrated with Microsoft’s software development en-
vironment and integrated with the Asmlt tool [16] offering a reachability algo-
rithm, able to generate an FSM of the model that can be adapted to perform
model checking. When a state explosion happens the design properties are trans-
lated to SystemC assertion monitors and verified by simulation. This is made
possible through the embedding of the property specification language (PSL [1])
in the same formalism.

The soundness of our approach is established using abstract interpretation by
proving the correctness of both transformations: (1) from the original SystemC
design to its AsmL representation; and (2) from the PSL property, in AsmL, to
the generated monitor, in SystemC.

To illustrate our approach, we considered the AGP bus [14] that was, as far
as we know, only verified by simulation due to its complexity and very large state
space. We will show that our technique combined with the abstraction features of
AsmL allows, using an inductive proof, the model checking of a set of properties
on the bus. These properties are also translated to a SystemC monitor that can
be used as a separate Intellectual Property (IP) to validate AGP compatible
devices.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 presents our verification approach. Section 4 contains the proofs of the
transformation from SystemC to AsmL. Section 5 describes the application of
the proposed methodology for the case of an AGP bus modeled in SystemC.
Finally, Section 6 concludes the paper.

2 Related Work

Related work to ours concerns both finite-state verification and assertion based
verification. Concerning the first issue, we cite in particular the Bandera [5]
project that aims at interfacing Java code to model checking tools like SMV
[3] and SPIN [13] by applying program analysis, abstraction, and transforma-
tion techniques. In its actual status, Bandera cannot handle SystemC designs
because any analysis of a SystemC code must go through the whole simulation
environment as well as SystemC defined data-types and classes. Besides, using
SMV as an internal model checking tool is a big handicap for Bandera to handle
large state space systems. We are not aware of any related work using a sound
syntactical transformation from SystemC to AsmL and vice-versa to perform
either model checking or ABV.

In [7] an approach is presented to add assertion checkers to SystemC. This
previous work is different from our methodology mainly in two aspects: (1) The
properties in [7] are restricted to the notation of property checker from Infineon
Technologies AG then translated to synthesizable SystemC instructions while we
consider any PSL property; and (2) SystemC is considered in [7] as a low level
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HDL language while in this paper we do not put any restriction on any subset
of SystemC.

In [19], [12] and [10] several approaches were proposed to verify, respectively, a
PCI bus monitor in Verilog, a PCI bus model and Look-aside interface [17] (both
in SystemC). In [19], the bus was implemented in Verilog with all the properties
embedded as part of the code which makes its modification or upgrade a very
complex task. Besides, the verified Verilog model includes only two agents (one
master and one slave), which does not allow the verification of the properties
related to the bus arbitration, for example, and radically reduces the designs
state space.

In both [12] and [10] a top-down approach was used where the verification
was integrated as part of the design process and AsmL models were first designed
and verified then translated to SystemC. In this paper, we consider a bottom-
up approach where starting from an existent AGP IP in SystemC we generate
internally the AsmL model and verify the system property at the ASM level.
Besides, the designs in [19], [10] and [17] were relatively small in comparison to
AGP, with a width of 256 for data read, data write and command queues has a
minimum of 2256×32 states. Furthermore, AGP includes a number of additional
features making its verification a non-trivial task, such as pipelining. Hence,
direct model checking of AGP properties is with no doubt impossible due to the
state-explosion problem. The verification technique proposed in this paper takes
advantage of the high level of abstraction offered by AsmL which enables both
data abstraction and proofs by induction.

3 Verification Methodology

AsmL [9] is one of the very latest languages developed for Abstract State Ma-
chines (ASM) [8]. It is supported by a tester (Asmlt) that can be used to gen-
erate FSMs and test cases. It supports object-oriented modeling at higher level
of abstraction in comparison to C++ and Java. In our verification methodology
(Figure 1) we perform the model checking of SystemC by translating the original
design to an intermediate representation that omits all the details of the Sys-
temC simulator. The target (or transformed) program is modeled in AsmL to be
cross-produced with the system properties that will be verified over the whole
system’s state space. To model the properties, we used the PSL [1] standard.
PSL properties are embedded in the design as external monitors; hence, they can
be used as stand-alone IP block(s) to validate other devices, either at the AsmL
level by model checking or at the SystemC level by assertion based verification.

3.1 Model Checking

To enable the integration of both the model and the properties at the ASM level,
we embedded the PSL semantics in AsmL. At this level, it is possible to verify
these properties using model checking. For instance, we encode the properties
evaluation in every state, which enables checking its correctness on-the-fly while
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Fig. 1. Verification Methodology

executing the FSM generation algorithm (part of the AsmL tool). An incorrect
property detection stops the reachability algorithms and outputs a sub-portion
from the complete FSM, which represents a scenario for a counter-example.

PSL properties are defined in a hierarchical way inspired from the hardware
design modular concept. For this reason we defined the embedding in a similar
structure, where all the components are defined as objects and every PSL layer
extends its lower layer using the inheritance feature of AsmL. The main layers
include the Boolean layer, the temporal layer and the verification layer [1].

We encapsulate sequences in the verification unit as an assertion, which
is embedded in the design. Given a set of Boolean items x1, x2, . . . , xn, and
y1, y2, . . . , ym belonging to the Boolean layer, and the sequences, S1 and S2

belonging to the temporal layer, we can define: S1 = {x1, x2, . . . , xn}, and
S2 = {y1, y2, . . . , ym} and then use assertions to check any PSL operation be-
tween S1 and S2 such as S1 OP S2, where OP is a PSL operator (e.g., implication
(:), or equivalence (⇔)). The assertion is built as follows:

1. Add all the Boolean items to the sequences:
∀ i in 1 to n : S1.AddElement(xi)
∀ j in 1 to m : S2.AddElement(yj)

2. Create the property: P := S1 OP S2

3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P )

Each property is embedded in every state in the FSM generated by the AsmL
tool and is represented by two Boolean state variables Peval and Pvalue (stat-
ing, respectively, if the property can be evaluated and the value of the property
in the current state). A violated property is detected once Peval = true and
Pvalue = false. The previous condition is a filter for the FSM generation algo-
rithm stopping the generation when an error is detected. In this case, the gener-
ated portion of the state machine can be used to identify the problem through
a scenario of a counter-example. For multiple properties, the filter is set as the
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conjunction of all the conditions for the separate properties. This technique min-
imizes radically the number of state variables (the FSM size and its generation
time). A successful verification process results in the generation of the system’s
FSM (according to the configuration file constraints). This approach may seem
to be based on an ad-hoc model checking algorithm while more advanced tech-
niques and approaches have been used in tools like SMV and VIS. We believe
there are many reasons that make our approach more efficient, in particular:
(1) It is impossible to use these tools with AsmL considering the OO nature
of the language. Therefore, a translation to the language supported by the tool
(mostly a very low HDL) is mandatory. This operation will prohibit using some
advanced features AsmL offers (e.g., data abstraction, etc.)
(2) Generating the counter-example as an FSM provides a complete path of the
error starting from the entry point to the state where the error took place [6].
(3) The configuration of the FSM generation algorithm can be set by the user
in order to stress the verification only in some particular portions of the state
space (through restricting some variables to have certain range for example) [6].

3.2 Assertion Based Verification

The proposed methodology to integrate and verify PSL assertions for SystemC
designs is given in Figure 2. It consists of the following three main steps:

(1) Updating the SystemC design in order to interface it with the assertion
monitor.
(2) Generating the assertion as a C# code from its ASM description.
(3) Integrating the C# assertion in the SystemC design.

The assertion under verification is a PSL property embedded in AsmL as a
read-only separate module. In order to guarantee that we are verifying the same
property specified in AsmL as the corresponding SystemC model, we need to:
(1) prove the correctness of the transformation from AsmL to SystemC; and
(2) connect the assertion monitor correctly to the original SystemC design. The
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Fig. 2. Assertion Based Verification Approach
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second step requires updating the SystemC design to interface to the assertion
and integrating the assertion in the design. For instance, we validate the assertion
syntactically by generating the list of the variables involved. Then, we perform
a type check to make sure the variables are well instantiated in the SystemC
design. For instance, the signals (variables) that are used in the assertion must
be seen as external signals so that they can be input to the assertion monitor.
Hence, we modify the SystemC design to make the required variables visible to
the monitor. Once the design is updated, we add the required instantiation of
the assertion to bind it to the existing SystemC design modules. The assertion
monitor, acting as part of the design, can do the following: (1) stop the simulation
when the assertion is fired; (2) write a report about the assertion status and all
its variables; and (3) send a warning signal to other modules (if required).

4 Correctness of the SystemC/AsmL and AsmL/SystemC
Transformations

The work of Patrick and Radhia Cousot in [4] is the essence for any program
transformation using abstract interpretation. The tactical choice of using seman-
tics to link the subject program to the transformed program is very smart in the
sense that it enables proving the soundness proof of the transformation, related
to an observational semantics. The transformation from SystemC to AsmL, and
vice-versa, represents an online program transformation which corresponds to
the approach described in Section 3.9 of [4]. Figure 3 displays a projection of
that generic methodology on a SystemC subject program and an AsmL trans-
formed program. The same figure can be used to perform the soundness of a
transformation and also to construct it. In both cases, we need to define the
syntax, semantics and observation functions for both AsmL and SystemC.

Subject

Program PSC

Transformed

Program t[PA]

Syntactic

Transformation t

Subject Program 

Semantics SSC[PSC]

Transformed Program 

Semantics SA[t[PA]]

Semantic

Transformation t

(SSC[PSC])                  (SA[t[PA]])

SSC SA

Fig. 3. Online Program Transformation

4.1 SystemC Fixpoint Semantics

Syntactical Domains. SystemC has a large number of syntactical domains.
However, they are all based on the single SC Module domain. Hence, the mini-
mum representation for a general SystemC program is as a set of modules.



An Approach for the Verification of SystemC Designs Using AsmL 75

Definition 1. (SystemC Module: SC Module)
A SystemC Module is a set 〈DMem, Ports, Chan, Mth, SC Ctr〉, where DMem is a set
of the module data members, Ports is a set of ports, Chan a set of SystemC Chan,
Mth is a set of methods (function) definition and SC Ctr the module constructor.

Definition 2. (SystemC Port: SC Port)
A SystemC Port is a set 〈IF, N, SC In, SC Out, SC InOut〉, where IF is a set
of the virtual methods declarations, N is the number of interfaces that may be
connected to the port, SC In is an input port (provides only a Read method),
SC Out is an output port (provides only a Write method) and SC InOut is an
input/output port (provides Read and Write methods).

In contrast to default class constructors for OO languages, the SystemC
module constructor SC Ctr contains the information about the processes and
threads that will be executed during simulation.

Definition 3. (SystemC Constructor: SC Ctr)
A SystemC Constructor is a set 〈Name, Init, SC Pr, SC SSt〉, where Name is a
string specifying the module name, Init is a default class constructor, SC Pr a
set of processes and SC SSt is a set of sensitivity statements (to set the process
sensitivity list SC SL).

Definition 4. (SystemC Process: SC Pr)
A SystemC process is a set 〈PMth, PTh, PCTh〉, where PMth is a method process
(defined as a set 〈Mth, SC SL〉 including the method and its sensitivity list), PTh is
a thread process (accepts a wait statement in comparison to the method process),
PCTh is a clocked thread process (sensitive to the clock event).

Definition 5. (SystemC Program: SC Pg)
A SystemC program is a set 〈LSC Mod, SC main〉, where LSC Mod is a set of
SystemC modules and SC main is the main function in the program that performs
the simulator initialization and contains the modules declarations.

Fixpoint Semantics. In this section, we define the semantics of the whole
SystemC program, W �SC Pg�, and the SystemC module, MSC�m sc�. Then,
present the proofs (or proof sketches) of the soundness and completeness of
MSC�m sc�.

Definition 6. (Delta Delay: δd)
The SystemC simulator considers two phases evaluate and update. The separa-
tion between these two phases is called delta delay.

Definition 7. (SystemC Environment: SC Env)
The SystemC environment is the summation of the default C++ environment
(Env) as defined in [15] and the signal environment (Sig Store) specific to Sys-
temC: SC Store = Env + Sig Env = [Var → Addr]+ [SC Sig → (Addr,Addr)],
where Var is a set of variables, SC Sig is a set of SystemC signals and Addr
⊆ N is a set of addresses.
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Definition 8. (SystemC Store: SC Store)
The SystemC store is the summation of the default C++ store (Store) as defined
in [15] and the signal store (Sig Store): SC Store = Store + Sig Store =
[Addr → Val]+ [(Addr, Addr) → (Val,Val)], where Val is a set of values such
that SC Env ⊆ Val.

Let R0 ∈ P(SC Env×SC Store) be a set of initial states, pcin be the entry point
of the main function and →⊆: (SC Env×SC Store)×(SC Env×SC Store) be a
transition relation.

Definition 9. (Whole SystemC Program Semantics: W SC Pg)
Let SC Pg = 〈LSC Mod, SC main〉 be a SystemC program. Then, the semantics
of SC Pg, W SC Pg ∈ P(SC Env×SC Store) → P(T (SC Env× SC Store)) is:
WSC Pg(R0) = lfp ⊆

∅ λX. (R0) ∪ {ρ0 → . . . ρn → ρn+1| ρn+1 ∈
(SC Env× SC Store) ∧ {ρ0 → . . . ρn}
∈ X ∧ ρn → ρn+1}

Both definitions of the semantics of process declaration (PR �SC Pr�) and
SystemC module constructor (PCtr �SC Ctr�) are given in [11]. In contrast to
the semantics definition of an OO object in [15], a SystemC method can be
activated either by the default context or by the SystemC simulator through
the sensitivity list of the process. A complete definition of the semantics of
a SystemC module object (OSC�o sc�) through the definition of a transition
function nextsc(σ)=next(σ)

⋃
nextsig(σ), including both parts C++ related

and SystemC specific functions, can be found in [11].

Definition 10. (SystemC Module Semantics: MSCm sc))
Let m sc = 〈DMem, Ports, Chan, Mth, SC Ctr〉 be a SystemC module, then its
semantics MSCm sc) ∈ P(T (Σ)) is:
MSCm sc= {OSCo sc(vsc, ssc) | o sc is an instance of m sc, v sc ∈ D in,

s sc ∈ SC Store}

Theorem 1. (SystemC Module semantics in fixpoint) 1 Let

Gsc〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0

l0→ . . .
ln−1→ σn

l′→ σ′|
σ0

l0→ . . .
ln−1→ σn ∈ T , nextsc(σn) 
 〈σ′, l′〉}

Then MSCm sc(vsc, ssc) = lfp ⊆
∅ Gsc〈 Din×Store〉

The last step in the SystemC fixpoint semantics is to relate the module
semantics to the whole SystemC program semantics. Hence, we consider an up-
dated version of the function abstract ( α◦) as defined in [15]. The new function is
upgraded to support the SystemC simulation semantics, environment and store.
The complete definitions of α SC◦ can be found in [11].

Theorem 2. (Soundness of MSCm sc) Let MSC be a whole SystemC program
and let mSC ∈ MSC. Then:
∀ R0 ∈ SC Env× SC Store. ∀ τ ∈ T (SC Env× SC Store). τ ∈ WSC Pg(R0) : ∃τ ′

∈ MSCmSC . α SC◦({τ}) = {τ ′}
1 The proofs of the theorems presented in this paper are available in [11].
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Theorem 3. (Completeness of MSC) Let mSC be a SystemC module. Then
∀τ ∈ T (Σ).τ ∈ MSCmSC :

∃ SC P ∈ 〈LSC Pg〉. ∃ρ0 ∈ SC Env× SC Store. ∃ oSC instance of mSC.
∃ τ ′ ∈ T (SC Env× SC Store). τ ′ ∈ Wρ0∧ α SC◦({τ ′}) = {τ}

4.2 AsmL Fixpoint Semantics

Syntactical Domains.

Definition 11. (AsmL Class: AS C)
An AsmL class is a set 〈AS DMem, AS Mth, AS Ctr〉, where AS DMem is a set of
the module data members, AS Mth a set of methods (functions) definition and
AS Ctr is the module constructor.

One of the important features that we are going to use in AsmL corresponds
to the methods pre-conditions (Boolean proposition verified before the execution
of the method).

Definition 12. (AsmL Method: AS Mth)
An AsmL method is a set 〈AS M, AS Pre, AS Pos, AS Cst〉, where AS M is the
method’s core, AS Pre is a set of pre-conditions, AS Pos is a set of post-conditions
and AS Cst is a set of constraints.

Note that AS Pre, AS Pos and AS Cst share the same structure. They are
differentiated in the methods by using a specific keyword for each of them (e.g.,
require for pre-conditions).

Definition 13. (AsmL Program: AS Pg)
An AsmL Program is a set 〈LAS C, INIT〉, where LAS C is a set of AsmL classes
and INIT is the main function in the program.

Fixpoint Semantics. Similar to the notion of delta delay (δd) of SystemC,
AsmL considers two phases: evaluate and update. The program will be always
running in the evaluate mode except if an update is requested. There are two
types of updates, total and partial.

Definition 14. (AsmL Environment: AS Env)
The AsmL Environment is a modified OO environment AS Env = [Var → Addr,
Addr], where Var is a set of variables and Addr ⊆ N is as set of addresses (two
addresses store the current and new values of v ∈ Var).

Definition 15. (AsmL Store: AS Store)
The AsmL store is AS Store = [(Addr, Addr) → (Val,Val)], where Val is a set
of values such that AS Env ⊆ Val.

The whole AsmL program semantics (WAS �AS Pg�), method semantics
(MAS �. �) and object semantics (OAS�o AS�) through the definition of a tran-
sition function nextas(σ) can be found in [11]. The AsmL class constructor can
be defined according to the Definition 3.8 in [15].
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Definition 16. (AsmL Class Semantics: CASc as)
Let c as = 〈as dmem, as mth, as ctr〉 be an AsmL class, then its semantics
CASc as) ∈ P(T (Σ)) is: Casc as= {OASo as(v as,s as) | o as is an instance
of c as, v as ∈ D in, s as ∈ SC Store}

Theorem 4. (AsmL Class semantics in fixpoint) Let

Has〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0

l0→ . . .
ln−1→ σn

l′→ σ′|
σ0

l0→ . . .
ln−1→ σn ∈ T , nextas(σn) 
 〈σ′, l′〉}

Then CASc as(vas, sas) = lfp ⊆
∅ Has〈 Din×Store〉

The function α AS◦ is an updated version of the function abstract (α◦) defined
in [15]. The complete definition of α AS◦ is given in [11].

Theorem 5. (Soundness of CASc as) Let PAS be a whole AsmL program and
let cAS ∈ CAS. Then ∀ R0 ∈ AS Env× AS Store. ∀ τ ∈ T (AS Env× AS Store).
τ ∈ WAS Pg(R0) : ∃τ ′ ∈ CAScAS . α AS◦({τ}) = {τ ′}

Theorem 6. (Completeness of CAS) Let cAS be a AsmL class. Then
∀τ ∈ T (Σ). τ ∈ CSCcSC : ∃ AS P ∈ 〈LAS Pg〉. ∃ρ0 ∈ AS Env× AS Store. ∃

oAS instance of cAS. ∃ τ ′ ∈ T (AS Env× AS Store). τ ′ ∈ Wρ0

∧ α AS◦({τ ′}) = {τ}

4.3 Program Transformation

The equivalence in behavior, with respect to an observation αo, between the
source SystemC program and the target AsmL program is required to ensure
the soundness of any verification result at the AsmL level. Our objective is to
define a relation between the SystemC processes active for certain delta cycle
and the set of methods allowed to be executed in the AsmL model. Hence, we will
map every thread (method, sensitivity list) in the SystemC design to a method
(method core, pre-conditions) in the AsmL model.

The SystemC observation function needs to see all the active processes at
the beginning of a delta-cycle by checking for the end of the update phase.

Definition 17. (SystemC observation function: αSC
o )

Let SC Pg= 〈LSC Mod, SC main〉 be a SystemC program, the observation function
αSC

o ∈ P(SC Env× SC Store) → P(T (SC Env× SC Store)) is
αSC

o SC Pg(R0) = lfp ⊆
∅ λX. R0 ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×

SC Store) ∃ {ρi
0

→ . . . ρi
m} ∈ X ∧

ρi
m → ρ̃i ∧ { m sc in MSC | ∃o sc ∈

MSC . o sc(ρi
m()) �= {ε} } = ∅}

In the previous definition, αSC
o is only tracing the initial states of a simulation

cycle. For instance, the third condition ensures that the list of process ready to
run is empty. Similarly, we define an observation function αAS

o for an AsmL
program.
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Definition 18. (AsmL observation function: αAS
o )

Let AS Pg= 〈LAS C, INIT〉 be an AsmL program, the observation function αAS
o

∈ P(AS Env×AS Store) → P(T (AS Env× AS Store)) is
αAS

o AS Pg(R0) = lfp ⊆
∅ λX. (R0) ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×

AS Store) ∃ {ρi
0

→ . . . ρi
m} ∈ X ∧

ρi
m → ρ̃i ∧ { m as in CAS | ∃o as ∈

CAS . o as(ρi
m()) �= {ε} } = ∅ }

Next, we define the notion of equivalence between the two observations. Al-
though, SystemC and AsmL have different environment and store structures, it
is possible to ensure that they contain the same information.

Definition 19. (Equivalence w.r.t. αo: ≡αo)
Let SC Pg be a SystemC program, V sc a set of its variables, AS Pg be an AsmL
program and Dout as a set of its output variables.
prog sc ≡αo prog as if

∀RSC
0

set of initial states of SC Pg. ∀RAS
0

set of initial states of AS Pg.
∀ρ̃ ∈ {ρ̃0 → . . . → ρ̃n} ∈ αSC

o SC Pg(RSC
0

).
∃ρ̂ ∈ {ρ̂0 → . . . → ρ̂n} ∈ αAS

o AS Pg(RAS
0

) | ∀ vsc ∈ V sc. ∃ vas ∈ V as |
if vsc ∈ SC Sig then ρ̃(vsc) = (vl1,vl2) ∧ ρ̂(vas) = (vl1,vl2)
if vsc ∈ AS DMem then ρ̃(vsc) = vl1 ∧ ρ̂(vas) =(vl1,vl1)

The observation function ensures that the AsmL program is mimicking the
evaluate and update phases (same length n of the ρ sets). The first if condition
takes care of the SystemC signals while the second one concerns basic C++
variables.

Theorem 7. (Existence of transformed AsmL program w.r.t. αSC
o ) Let SC Pg be

a whole SystemC program, SC Din a set of inputs and SC Dout a set of outputs.
Then ∃ AS Pg, an AsmL program, such that SC Pg ≡αo AS Pg

Theorem 8. (Existence of transformed SystemC program w.r.t. αA
o ) Let AS Pg

be a whole AsmL program, AS Din a set of inputs and AS Dout a set of outputs.
Then ∃ SC Pg, a SystemC program, such that AS Pg ≡αo SC Pg

Theorem 9. (Soundness of the transformations) Let SC Pg be a whole SystemC
program and let AS Pg be a whole AsmL program. Then

SC Pg ≡αo AS Pg :
∀ Prop(V sc,ρ̃) | ρ̃ ∈ αSC

o SC Pg.
SC Pg � Prop(V sc,ρ̃)
: AS Pg � Prop(V as,ρ̂) | ρ̂ ∈ αAS

o AS Pg.
where: Prop is a program’s property, V sc is a set of variables of the SystemC
program, V as are their corresponding variables in the AsmL program.

5 Application: AGP Bus Verification

5.1 Bus Description

AGP (Accelerated Graphics Port) [14] was introduced to meet consumer demand
for high-resolution 3D graphics in home computers. New software programs (es-
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pecially games) require more and more video bandwidth for fancy textures, high
frame rate animations, etc. It has the advantage of allowing large amounts of
graphics data to be transferred directly between the computer’s main memory
and the AGP video card. The AGP bus is designed strictly for video processing
and does not have to share available bandwidth with other connected devices.
Both AGP bus transactions and PCI bus transactions may be run over the AGP
interface. An AGP master (graphics) device may transfer data to the system
memory using either AGP transactions or PCI transactions. The corelogic can
access the AGP master device only with PCI transactions. Traffic on the AGP
interface may consist of a mixture of interleaved AGP and PCI transactions. In
addition to the PCI features, AGP includes:
(1) Direct Memory Execute (DME) that gives AGP chips the capability to access
the main memory directly for complex operations of texture mapping.
(2) Pipelining and sideband addressing of directly accessing texture maps in
system memory.
(3) Multiple requests for data during a bus or memory access.
(4) A dedicated non-shared bandwidth with other devices.

5.2 Model Checking

In order to verify the bus properties, we first used a direct model checking
approach by considering a set of properties to verify all the possible transactions
scenarios. These cover two main classes: (1) PCI transactions and (2) AGP
transactions including both modes DMA and execute. We succeeded to prove
the first class of properties with a direct approach while we failed to prove the
second set due to state explosion. Therefore, we introduce a proof by induction.
Performing the verification of the whole model failed to complete due to a state
explosion problem. The main reason for that is the huge size of the read, write
and commands queues (each of width 256) present in both the AGP device and
the corelogic. By reducing the queues width to three, however, we succeeded to
verify all the properties. For more general verification, we defined an induction
based approach taking advantage from the abstract data types of AsmL.

We define DRQ: Device Read Queue, DWQ: Device Write Queue, DReQ:
Device Request Queue, CRQ: Controller Read Queue, CWQ: Controller Write
Queue and CReQ: Controller Request Queue. The maximum width of the queues
is Q.Wd. The number of packets in each queue is XXQ.Np (where XX ∈
{DR, DW, DReq, CR, CW, CReq}). P is the list of properties under
verification.

– Step 1: Verify P = true, ∀ DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np,
CWQ.Np, CReQ.Np ∈ [0, 1].

– Step 2:
• Hypothesis: Consider N ∈ N / 0 < N < Q.Wd

∀x ∈ {DRQ.Np,DWQ.Np,DReQ.Np, CRQ.Np, CWQ.Np, CReQ.Np},
x < N : P is true.

• Prove: ∀x ∈ {DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np, CWQ.Np,
CReQ.Np}, x < N + 1 : P is true.
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5.3 Experimental Results2

Model Checking. The CPU time used for the generation of the model checking
for queues widths in {1,2,3,6} is given in Table 1. The first three rows are required
to ensure the correctness of the initialization conditions. The fourth row, queue
width equal to six, is given to illustrate the effect of the numbers of states
and transitions increase exponentially as function of the queue size. This clearly
illustrates the impossibility of generating the complete FSM for a width of 256. In
Table 2.(a) every row corresponds to the proof of a particular queue. Generally,
the CPU time, Nodes and number of transitions is close to the case when the
queue width is equal to three (see Table 1). Table 2.(b) presents the verification
information for the PCI mode which is optional for AGP. A direct proof for this
case was possible thanks to the relative simplicity of the PCI, which does not
include any queue structure.

Table 1. Validity of Initialization Conditions

Queue CPU Number of FSM
width Time (s) Nodes Transitions

1 5.78 34 37
2 30.89 173 193
3 105.20 504 563
6 1758.78 4325 5223

Table 2. Model Checking Results

(a) AGP Mode (b) PCI Mode
Proof for CPU Number of FSM
the Queue Time (s) Nodes Trans.

DRQ 341.01 1156 1304
DWQ 345.25 1294 1325
DReQ 347.78 1302 1346
CRQ 457.89 1503 1425
CWQ 462.07 1653 1433
CReQ 487.01 1859 1481

Number of CPU Number of FSM
Masters Slaves Time (s) Nodes Transitions

1 1 2.31 20 25
1 2 2.94 39 53
3 1 26.01 236 341
2 2 26.84 293 449
2 3 101.38 658 1117
3 2 574.18 1881 3153

Assertion Based Verification. We have been able to verify all the AGP
bus structure by model checking. However, when the model checking fails, it
is possible to use the properties as assertion monitors that can be checked by
simulation on the original SystemC model. Using the syntactical transformation
defined in [11], we generate the SystemC modules corresponding to the PSL
properties. Then, we update the design and integrate the properties as read-only
monitors to the global system. We illustrate in Table 3 the simulation statistics
2 All experiments presented in this section were conducted on a platform consisting

of a 2.4 GHz Pentium IV and 512 MB of RAM (PC2700).
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Table 3. Simulation Results

Number of Average Execution
Masters Slaves Time per Clock Cycle (10−9s)

1 1 29.321
3 1 32.221
2 2 33.889
2 3 36.568
3 2 38.005
3 3 41.287

of running the new model (combining the original design and the integrated PSL
properties) with a random input. The AGP controller can be seen as a slave or
a master according to the transaction. The other masters and slaves are just
PCI compatible devices. The CPU time confirms the high speed of the SystemC
model simulation, which is a direct result from the C++ implementation of the
library. Note that the set of assertion monitors including all the properties can
be considered as a stand-alone verification IP that can be used to validate other
AGP compatible devices either modeled in SystemC or even in Verilog or VHDL.

6 Conclusions

In previous work [10] we introduced a top-down approach similar to the pre-
sented in this paper where the verification was integrated as part of the design
process and AsmL models were first designed and verified then translated to
SystemC. In this paper, we consider a bottom-up approach where starting from
an existent SystemC design we generate internally a model in AsmL, an Object-
Oriented language used to model systems, and verify the system property at the
ASM level. We defined a sound syntactical transformation between SystemC
and AsmL to enable model checking at the ASM level. Both the model and its
PSL properties were defined in AsmL and checked using a reachability algorithm
available in the AsmL tool. We proposed also to translate the same properties
used for model checking back to SystemC in order to serve for assertion based
verification of the original SystemC design or to serve as a stand-alone verifica-
tion IP block. We illustrated our approach on the verification of an AGP bus,
where we performed a proof by induction to tackle the state explosion problem.
Finally, we believe that our approach is an important step towards enabling
an efficient formal and semi-formal verification of SystemC. Our future work
concerns enhancing the ABV coverage using the FSM generated AsmL models.
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