
On the Design and Verification Methodology of the Look-Aside Interface

Ali Habibi, Asif Iqbal Ahmed, Otmane Ait Mohamed and Sofiène Tahar
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve, West

Montreal, Québec, H3G 1M8, Canada
Email: {habibi,a ahmed,ait,tahar}@ece.concordia.ca

Abstract

In this paper, we present a technique to design and verify the
Look-Aside (LA-1) Interface standard used in network processors.
Our design flow includes several refinements starting from an in-
formal UML specification until getting to an RTL modeled in Ver-
ilog.We integrate the verification of the LA-Interface in the design
flow by considering two intermediate levels: (1) Abstract State
Machines (ASM); and (2) SystemC. The first one serves the ver-
ification by model checking of a set of PSL properties, while the
second includes a set of assertions to be verified by simulation.
To evaluate the performance of our approach, we used the Rule-
Base model checker to verify the same properties; and the OVL
library to verify the same assertions.

1. Introduction

New IPv6 systems and carriers increasingly demanding de-
tailed lookupsonpacketsandflows, the interfacebetweennetwork
processors and other components, such as external co-processors
and memory devices, is taking the spot light in the networking
sector. Currently, the Look-Aside 1 (LA-1) interface [7] is the de-
facto standard for linking these components [3]. It is being the key
to several networking-specific applications, including packet for-
warding, packet classification, admission control, and security.

Designing LA-1 directly at the RTL level is possible, how-
ever, it is time and effort consuming and certainly an error-prone
process. In thispaper,weproposeanapproachtodesignandverify
the LA-1 interface in a hierarchical flow using an object-oriented
(OO) methodology and several refinements levels. We aim to de-
sign an IP (Intellectual Property) module that can be used as a
Look-Aside Interface or as a validation unit for LA-1 compati-
ble devices. For this reason, we propose to use a top-down design
and verification approach.

In our model, UML presents the top level to capture a pre-
cise specification of the design and its properties. Then, comes
Abstract State Machines (ASM) [6], a high level language provid-
ing a variety of features that allow the description of the relevant
state of a system in a high level of abstraction, to represent a for-
mal and precise model of the design. At this level, we introduce
the first step of the verification process which is model checking.

The properties of the under verification model are in PSL (Prop-
erty Specification Language) [2], a standard language for proper-
ties specification. PSL language supports specifying a large class
of real design properties that range from simple to complex ones
in a hierarchical yet very well organized structure consisting of
four layers: Boolean, temporal, verification and modeling layers.

Once the model verified at the ASM level we translate it to
SystemC [8], a relatively new system level language for embed-
ded system design and verification. The PSL properties modeled
in ASM are also translated to C# and combined to the SystemC
model in order to performassertion based verification using simu-
lation. Finally, we derive the synthesizable RTL implementation
in Verilog from the SystemC design.

In order to prove the correctness of the refinement process,
with respect to the verified properties, we re-verify the same PSL
properties for the RTL Verilog code using the RuleBase [4] model
checker. For instance, such a proof will set that both the high
level model in ASM and the low RTL level satisfy the same set
of properties. In addition to that, comparing our model checking
methodology to RuleBase represents a good evaluation of the in-
tegration of the verification at the early design stages (ASM level
for our case). We also used the Open Verification Library (OVL)
to verify the same assertions as those integrated in the SystemC
model in order to compare the simulation performance of Sys-
temC against the Verilog/OVL based approach.

As related work to ours, we cite the approach proposed by
Kanna et al. [10] to implement a PCI bus as a Verilog monitor
and to verify its properties using SMV [5]. In [10], the bus was im-
plemented in Verilog with all the properties embedded as part
of the code. This makes its modification or upgrade a very com-
plex task. Besides, the Verilog model they verified includes only
2 agents (one master and one slave), which considers a relatively
small design in comparison to LA-Interface with four banks.

The rest of this paper is organized as follows: Section II in-
troduces the SystemC, PSL and ASM. Section III presents the
LA-1 Interface. Section IV describes the proposed LA-1 Design
Methodology. Section V details the verification approach. Sec-
tion VI contains the experimental results. Finally, Section VII
concludes the paper.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2. SystemC, PSL and ASM

2.1. SystemC

SystemC is a set of C++ class definitions and a methodol-
ogy for using these classes [9]. SystemC introduces channels, in-
terfaces, and events to enable communication and synchroniza-
tion between modules or processes. The core language consists of
an event-driven simulator as the base. It works with events and
processes. The other core language consists of modules and ports
for representing structures. Interfacesandchannelsareusedtode-
scribe communications. The primitive channels are built-in chan-
nels such as signals, semaphores and FIFOs. SystemC provides
data types for hardware modeling and certain types of software
programming as well.

2.2. PSL

PSL is an implementation independent language to define
properties. It does not replace, but complements existing veri-
fication methodologies like VHDL and Verilog test benches. The
syntax of PSL is very declarative and structural which leads to
sustainable verification environments. PSL consists of four lay-
ers based on the functionality of interest [2]:

The modeling layer is used to model behavior of design inputs
for formal verification tools, and to model auxiliary parts of the
design that are needed for verification.

The verification layer is used to tell the verification tool what
to do with the properties described by the temporal layer.

The temporal layer is used to describe properties of the de-
sign, as well as simple general properties. This layer can describe
properties that involve complex temporal relations.Temporal ex-
pressions are evaluated over a series of evaluation cycles.

The Boolean layer is used tobuild expressions for theother lay-
ers, specifically the temporal layer. Boolean expressions are eval-
uated in a single evaluation cycle.

PSL is a hierarchical language,where every layer is built on top
of the layerbelow.This approachallows the expressingof complex
properties from simple primitives. A property (also called asser-
tion) is built from three types of building blocks: Boolean expres-
sions, sequences,which are themselves built fromBoolean expres-
sions, and finally subordinate properties. Sequences, referred to
as SEREs (Sequential Extended Regular Expressions), are used
to describe a single– or multi–cycle behavior built from Boolean
expressions.

2.3. ASM

An ASM model by definition encodes only those aspects of the
system’s structure that affect the behavior being modeled. ASM
provides a variety of features that allow the description of the rel-
evant state of a system in a very economical, high-level way. Each
abstract state machine represents a particular view of the dis-
tinct operational steps that occur in the real system being mod-
eled. AsmL [6] is a language used to model systems in ASM. It
is not, however, restricted to ASM but offers a rich programming
language. It is integrated with Microsoft’s software development
environment including Visual Studio, MS Word, and Component

Object Model (COM), where it can be compiled and connected
to C# or to the .NET framework [6].

3. Look-Aside Interface

The LA-1 standard is the look-aside interface to network-
processing elements (NPEs). It targets look-up-tables and
memory-based coprocessors and emphasizes as much as possi-
ble on the use of the existing technology. It is based on QDR and
Sigma RAM technologies. Although modeled on an SRAM inter-
face, the LA-1 specification aims to accommodate other devices
as well, such as classifiers and encryption co-processors.

The LA-1 interface major features include:

• Concurrent read and write operation

• Unidirectional read and write interfaces

• Single address bus

• 18 pin DDR data output path transfers 32 + 4 bits of even
byte parity per read.

• 18 pin DDR data input path transfers 32 + 4 bits of even
byte parity per write

• Byte write control for writes

Figure 1. Look-Aside Interface (4 Banks) [7].

The LA-1 interface requires a master-clock pair. The master
clocks (K and K#) are ideally 180 degrees out of phase with each
other, and they are outputs for the host device and inputs for the
slave device. A write cycle is initiated by asserting WRITE SEL
(W#) low at rising edge of K (K clock). The address of the Write
cycle is provided at the following edge of K (K# clock which 180
degrees out phase from clock K). A read cycle is initiated by as-
serting READ SEL (R#) low at rising edge of K (K clock) and
the read address is presented on the same rising edge.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

4. LA-1 Design

Our approach is shown in Figure 2, where we start with an in-
formal specification for the intended design developed in UML.
This step provides a better view of the design components and
their interactions. Based on the UML model (class diagram, se-
quence diagram, etc.), we develop an ASM model, which will en-
able the verification of thedesignusing formal tools (model check-
ers for our case). When the verification terminates with an error,
we update UML specification and re-capture them to ASM. Fi-
nally,when the verificationpasseswithout errors,wemap the ver-
ifiedASMmodel toaSystemCimplementation.This latter is then
refined andverified using assertion based verifications (ABV).Fi-
nally,wemaptheSystemCmodel toa lowlevel syntehsizableHDL
implementation (Verilog for our case).

UML Level
Use Case

Class Diagram

Sequence Diagram

ASM Level
LA-1 Modeled in ASM

AsmL Tool

LA-1 implemented in

SystemC

SystemC Level

P
ro

p
e

rt
ie

s
 F

a
ils

Translation

LA-1 Properties in

PSL

PSL Semantics

Refinement

PSL Properties

in C#

C# Level

Compilation

LA-1 Implemented in

Verilog

HDL Level
Assertions Encoded

in OVL

HDL Level

RuleBase Model Checker

Property Succeeds/Fails
or

State Explosion

Refinement

LA-1 Properties in

PSL

Comparison?

Simulation performance

Comparison

ABV results

ABV results

Figure 2. Look-Aside Interface Design and Verification
Methodology.

We combined both the verification and design processes in the
same path. We applied model checking at higher level of abstrac-
tion (ASM) to avoid state explosion problems.On the other hand,
we used RuleBase at the lowest level (HDL) for comparison pur-
pose against using ASM. ABV is applied to both SystemC and
Verilog models in order to: (1) compare the simulation perfor-
mances of the SystemC simulator against the commercial verilog
simulators; and (2) to evaluate our ABV technique in compari-
son to the OVL/Verilog methodology [1].

4.1. UML LA-1 Specification

We designed the LA-Interface considering a structure based
on four principle classes: Write Port, Reading Port, SRAM Mem-
ory and a Light Simulator (optional classes include properties).

Such an architecture guarantees that the final design can be used
in two different ways:

• A stand-alone IP: to integrate larger SoC.

• A Verification Unit: to validate other LA-1 Interface com-
patible devices.

In addition to the classes involved in the design, we embed-
ded a light semantics of a light synchronous Verilog like simula-
tor. As first impression we may consider that such an addition
module in the system presents an overhead to the ASM model;
nevertheless, its size is relatively small compared to the complete
ASM design. Besides, such a module offers a higher level of pro-
gramming and instantiation flexibility. For example, it allows to
upgrade the design from 1 bank to 4 banks (actually, for any num-
ber N of banks) by just a matter of object instantiation. Basically,
this is one of the main objectives to use a purely object-oriented
approach to design the LA-1 Interface at the ASM level. On the
other hand, in order to verify precise clocked properties at ear-
lier stages of the design, it is mandatory to embed certain seman-
tics of the simulation cycles.

In order to enable a better representation of the properties at
the UML level, we propose to use a modified sequence diagram
where new notation are included to enable specifying informa-
tion principally to the methods activation clocks, execution cy-
cles and duration of execution. An illustration of the modified se-
quence diagram, for the read mode scenario, is displayed in Fig-
ure 3. Such a diagram says that a read scenario starts by putting
a read request at the clock K which causes the ReadPort to re-
quest the data from the SRAM in the next cycle at the same clock
K. After formatting the data, the ReadPort releases it in two con-
secutive steps at the next rising edges of K and K#.

Network Processor SRAM_MemoryReadPort

OnReadRequest[0]()@K

LA-1-SRAM-OnReadRequest[1]()@K

FormatData[1]()

OnReadRequest[2]()@K

OnReadRequest[2]()@K#

Figure 3. Sequence Diagram for the Reading Mode.

4.2. ASM Model

The ASM model includes both the design and the properties.
All the design classes are mapped from the UML model. How-
ever, a number of updates is required to guarantee a correct gen-
eration by the AsmL tool of the model’s FSM. For instance, the
firstly explored action by the reachability analysis algorithm em-
bedded in the tool must initialize all the model’s objects. An exe-
cution with non-initialized objects may results to an exception or
a misbehavior of the exploration algorithm. We also need to add

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

at the entry of every method a pre-condition defining the rules fil-
tering the states where the method can be executed. This is one
of the most critical issues in defining the ASM model because a
wrong definition of the pre-condition may totally change the be-
havior of the system and consequently modify the verification re-
sults. The pre-condition rules define also a way of communication
between the embedded light simulator and theothermodules.Ac-
tually, one of the basic rules relates the method to the clocks.

Figure 4 illustrates the ASM semantics of the light Verilog
simulator. It includes in particular an initialization function that
is executed after pre-condition ”all the all the system modules
have been initialized” (condition: SystemFlag = STARTED).
The same method includes a second pre-condition setting that
the method is only executed at the initialization phase (condi-
tion: SimStatus = INIT). This illustrates how the pre-condition
constructor is used tomanage the exploration algorithmperform-
ing the reachability analysis.

class SimManager

public var m_K as ClockEvent = CLK_UP // Main system clock

public var m_Ks as ClockEvent = CLK_DOWN // Negation of the main clock

public var m_E as BANK_ID = BANK_0

public SimManager()

public SimManager_Init()

require SystemFlag = STARTED and SimStatus = INIT

me.m_K := CLK_UP //set first clock to high

me.m_Ks := CLK_DOWN //set second clock to down

forall w in WPORTS

if(w.m_E = m_E) then

w.LA1_WP_OnReceiveData_Depth := any rec | rec in {true,false}

else

w.LA1_WP_OnReceiveData_Depth := false

forall r in RPORTS where r.m_E = m_E

if(r.m_E = m_E) then

r.LA1_RP_OnReadData_Depth := any rea | rea in {true,false}

else

r.LA1_RP_OnReadData_Depth := false

forall s in SRAMS

s.LA1_SRAM_OnWriteData_Depth := false

SimStatus := CHECKING_PROP

public SimManager_Restart()

require SystemFlag = STARTED and SimStatus = STOPPED

SimStatus := INIT

Figure 4. Light Verilog Simulator in ASM

The LA-1 Interface properties are extracted from both the se-
quence diagrams and the class diagram. Once mapped to ASM
classes, assertions need to be instantiated correctly. Actually,
some properties are referring to certain objects (Bank 2 for e.g.)
which requires a particular instantiation of certain modules. Be-
sides, some methods may require additional variables to enable
recording certain system’s variables. For example, in a read sce-
nario, the assertion needs to record the number of clock cycles
since the initial request has been issued.

In this work, we used the PSL to specify the design’s proper-
ties. Actually, in addition to the fact that PSL is the standard
for properties specification, our choice was guided by our previ-
ous work where we defined a deep embedding of PSL in ASM.
PSL properties were implemented in a hierarchical way: (1) with
all the components defined as objects; and (2) every PSL layer ex-
tends its lower layer using the inheritance feature of AsmL. This

OO embedding of PSL promotes re-using the verification classes
in other designs.

4.3. SystemC

The SystemC design is directly obtained from the ASM model
using a syntax transformation. For instance basic types (includ-
ing Boolean, integer, byte, etc.) are one-to-one mapped between
C++ and AsmL with exactly the same operations and semantics.
Every class from the ASM model is translated to SystemC mod-
ule. The pre-conditions in the ASM methods are included in the
SystemCConstructor section as triggering conditions for the Sys-
temC methods.

The object instantiation in the ASM model is translated to a
naming mapping in the SystemC design and is integrated in the
design’s main procedure sc main. We will discuss in Section 5 a
technique to make sure both the ASM and systemC models be-
haves exactly the same way for the same inputs.

4.4. Verilog

A synthesizable Verilog implementation is derived from the
SystemC design. For the case of the LA-1 Interface, we map each
class to a Verilog module. The transformation is straight thanks
to thebasic typesused in theLA-1SystemCdesign (whichonly in-
cludes enumerated types, Boolean and integer). Multiple banks
model is obtained from the single one by instantiating the Read,
Write and Memory modules. The connection between the con-
trol signals is performed using tristate buffers.

5. Verification Approach

5.1. Using AsmL for Model Checking

TheAsmLtool is not amodel checker forPSLproperties.How-
ever, it includes a general algorithm implementing reachability
analysis (also called state space exploration [6]). The AsmL tool
generates the model’s FSM by executing the model program in a
special execution environment, keeping track of the actions it per-
forms and recording the states it visits. This process is called ex-
ploration. Usually a model program implies so many states and
transitions that it is not feasible to include them all in the FSM,
so you must limit the number of states and transitions that the
tool explores. The FSM that the tool builds is usually only a por-
tion – an under-approximation – of the huge FSM that would re-
sult if the model program could be explored completely. As a re-
sult, the test suite generated from the FSM usually does not cover
all possible states and transitions of the model program.

By adapting the exploration algorithm we’ve been able to im-
plement a model checking procedure for PSL properties. For in-
stance, we encode a PSL property (modelled in ASM) as two
state variables Pstatus and Pvalue meaning respectively that the
property is under verification or already verified and giving the
current value of the property. In other terms, a property is: (1)
correct if Pstatus = true and Pvalue = true; (2) incorrect if
Pstatus = true and Pvalue = false; and (3) having an unde-
fined value if Pstatus = status (this is the case when a tempo-
ral property over several cycles is being verified in an intermedi-
ate state).

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Verifying PSL properties by covering for all the system state
space is not always feasible due to state explosion problem. Defin-
ing a smart configuration to guide the state exploration is a very
important step towards enablingmodel checkingusingAsmL.For
instance, defining the domains, which are defined as finite collec-
tions of values from which method arguments are taken, are the
most important issues to consider. For instance, for an integer in-
put that can only take a value in the range from 5 to 23, consider-
ing all possible integer values for the typeAsmL.Integer is awaste
of time; besides, this may get the verification to output wrong re-
sults.

In order to provide counter-examples when the verification
fails we define for every property a filter stopping condition de-
finedby the conjunction: ”Pstatus = true&Pvalue = false”.The
generated portion of the state machine from the initial state un-
til getting to the stop error point forms a complete path for a
counter-example, an information very useful in order to debug
and correct the design’s errors.

In order to guarantee that the translated SystemC model is
conform to the original ASM model we perform a conformity
check using AsmL. In fact, AsmL tool performs a conformance
test by executing the program under test, called the implementa-
tion (SystemC model for our case), together with the model pro-
gram in ASM. The tool executes the exploration algorithm in the
same time on both the ASM model and a binary executable gen-
erated from the SystemC design. It then verifies if for all the pos-
sible inputs, both models behave the same. For instance, this is
phase is sometimes time consuming, however, it is quite impor-
tant to make sure the ASM to SystemC mapping preserves the
system’s properties.

5.2. Using RuleBase For Model checking

RuleBase is oneof thefirstmodel checkers supportingPSL(ac-
tually it supports even its ancestor Sugar). We find it quite com-
plicated to verify PSL properties using this model checker due to
the important effort that we spent defining the environment and
writing the behavioral model including all the design levels of hi-
erarchy. We used the same properties that we verified at the ASM
level with PSL. The main objective is to compare the efficiency of
performing model checking at earlier stages of the design flow.

5.3. ABV using SystemC and C#

As itwas shown inFigure 2,we propose to integratePSLasser-
tion toSystemCdesignsas externalmonitors implemented inC#.
These latter are directly compiled from the PSL properties mod-
eled in ASM. They are then integrated with the SystemC model.
The integration requires, in particular, updating the SystemCde-
sign to interface to the assertion monitor. For instance, the sig-
nals (variables) that are used in the assertion must be seen as ex-
ternal signals in the model so that they can be input to the as-
sertion monitor. So, the list of variables involved in the assertion
is required in order to make them visible to the assertion moni-
tor. This transformation does not affect the behavior of the code
as it will only be accessed in a read–only mode.

Once the code is updated and the assertion is generated, an in-
stance of the assertion is bound to the existing SystemC design
modules. The assertion monitor, acting as part of the design, can

do the following: (1) stop the simulation when the assertion is
fired; (2) write a report about the assertion status and all its vari-
ables; and (3) sendawarning signal to othermodules (if required).
We note that the internal code of the assertion is C# so the de-
signer can update it or do any other functionalities that can be
coded in C#.

5.4. ABV using OVL

The Accellera Open Verification Library (OVL) provides de-
signers, integrators and verification engineers with a single,
vendor-independent interface for design verification using sim-
ulation, semi-formal and formal verification techniques [1]. As-
sertion monitors are instances of modules whose purpose is to
verify that certain conditions hold true. An assertion moni-
tor is composed of an event, a message, and a severity. Event is a
property that is being verified by a monitor. An event can be clas-
sified as a temporal or static property. A static property is a
property that must be valid at all times, whereas a tempo-
ral property is a property that is valid only during certain times.
Message is the string that will be displayed in case of an asser-
tion failure. Severity represents whether the error captured by
the monitor is a major or a minor problem.

UsingOVLassertions is promoting for small sizeHDLdesigns.
Nevertheless, when the complexity of the design becomes impor-
tant, writing OVL itself is not an easy task. Writing the asser-
tion for the reading mode, for example, requires encoding all the
atomic operations in separate modules which gets to complex fi-
nal design in the simulation since every call to an OVL will load
the correspondent module as part of the simulated design.

6. Experimental Results

In following, we describe our results on the verification of the
LA-1 Interface using the proposed methodology. The ASM and
SystemC experiments were performed on a 2.4 GHz Pentium IV
and 512 MB of RAM (PC 2700) while the RuleBase and OVL
experiments were performed on 2 X UltraSPARC-III+ machine
with 2 900Mhz processors and 4096M of RAM.

6.1. Model Checking

Table 1 shows the CPU time required to verify all the interface
properties combined together. The number of states and transi-
tions refers to generated FSM. This illustrates the efficiency of
our approach to handle model checking of relatively complex case
study thanks to raising the abstraction level. We note that the
number of nodes and transitions is not the total number present
in the global system FSM. It represents the FSM that’s gener-
ated according the AsmL configuration parameters including the
domains, methods, variables and actions.

Table 2 gives a summary of the model checking results us-
ing RuleBase for the Read Mode operation. We notice that even
though the tool succeeds to verify the property for up to 3 banks
the required time is relatively big. So, considering more complex
designs is out of the scope of the tool which is confirmed by the
raise of the state explosion problem when considering 4 banks. It
is not adequate to compare both levelsASMandVerilog consider-
ing the gap of abstraction between the twomodels, however, these

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Number of CPU Number of FSM

Banks Time (s) Nodes Transitions

1 8.093750 93 106

2 18.093750 212 185

3 28.078125 277 318

4 40.734375 369 424

Table 1. Model Checing Using AsmL.

Number of CPU Memory Number of

Banks Time (s) (in MB) BDDs

1 675.13 58 812785

2 2530.75 226 9.2 x 107

3 15264.21 590 52.4 x 107

4 State Explosion

Table 2. Model Checking Using RuleBase: Read Mode.

results confirm that applying model checking cannot be reused
the classical way for low level HDL models but needs to be ap-
plied at the early stages of the design’s flow.

6.2. Simulation

Table 3 compares the average of execution time per cycle for
the assertion based verification of SystemC design with asser-
tions in C# and the Verilog design with assertions in OVL. For
bothcasesweconsidered the sameassertionsdescribing theRead-
ing Mode. We notice that the SystemC simulation runs always at
least 20 times faster the Verilog design. In other terms, 1 day sim-
ulating SystemC is equivalent to more than 20 days simulating
Verilog (and OVL) for LA-1 Interface. Besides, we notice that the
larger is the system, the faster is the SystemC simulation in com-
parison to Verilog. This clearly confirms the adequation of using
SystemC for the design and also for the verification by simula-
tion of designs at the system level.

Number Average of execution Ratio =

of Time/cycle (δ in s) δOV L/

Banks SystemC (δSC) OVL (δOV L) δSC

1 21.22 x 10−9 0.44 x 10−6 20.73

2 26.25 x 10−9 1.90 x 10−6 72.38

3 30.07 x 10−9 2.91 x 10−6 96.77

4 38.73 x 10−9 3.68 x 10−6 95.01

Table 3. Simulation Results

7. Conclusion

In this paper, we presented a design and verification approach
using UML, ASM and SystemC to create a Verilog IP for the
Look-Aside Interface de-facto standard for interfacing network
processors to other components. We first defined the interface’s
model in UML, then, we translated it to ASM in order to ver-
ify, using model checking, a set of PSL properties. After verify-
ing all the PSL properties, we mapped the ASM code to Sys-
temC and the PSL properties to C# assertions (modules) in or-
der to enable ABV at the SystemC level. Finally, we implemented
the SystemC model in a synthesizable Verilog RTL. By proving
the writing and reading modes properties using RuleBase for the
RTL implementation, we also proved the correctness of our re-
finement from ASM to RTL (for one, two and three banks). Be-
sides, experimental results showed some limitations of the tool
and hinted that using model checking is more efficient when in-
tegrated at the early design phases. We also, inserted the same
assertions, used at the SystemC level, to the Verilog implemen-
tation using the OVL library. Simulation results displayed a su-
perior performance of SystemC over the OVL based approach.
Finally, we believe that the proposed approach improves the de-
sign and verification of IP blocks.

As future work, we consider proving the soundness of the com-
plete refinement process from ASM to RTL. This will allow re-
using the verification results that can be proved at any level for
the other lower levels; thus, reduce the complexity of verifying
RTL.

References

[1] Accellera Organization. Open Verification Library, Asser-
tion Monitor Reference Manual, v 03.06.06., 2003.

[2] Accellerab Organization. Accellera Property Specification
Language reference manual, Version 1.01., 2004.

[3] H. Bhugra. La-1b: Moving the look-aside interface forward.
CommsDesign, August 2002.

[4] IBM Haifa Research Laboratories. RuleBase Formal Verifi-
cation Tool (Version 1.5). Users Guide. May 2003.

[5] K. L. McMillan. Symbolic Model Checking. Kluwer Acad-
emic Publishers, 1993.

[6] Microsoft Corporation. AsmL for Microsoft .NET Frame-
work, Microsoft., 2004.

[7] Network Processing Forum. Look-Aside (LA-1) Interface,
ImplementationAgreement, Revision 1.1. KluwerAcademic
Publishers, April 15, 2004.

[8] Open SystemC Initiative. www.systemc.org, 2004.

[9] OSI. SystemC 2.0.1 language reference manual. 2004.

[10] K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based formal
specification of PCI. In Formal Methods in Computer-Aided
Design, pages 335–353, Austin, Texas, November 2000.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

