
AsmL Semantics in Fixpoint

Ali Habibi and Sofìene Tahar

Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada

Email: {habibi, tahar}@ece.concordia.ca

Technical Report

December 2004

Abstract

AsmL is a novel executable specification language based on the theory of
Abstract State Machines (ASMs). It represents one of the most powerful
practical engines to write and execute ASMs. In this report, we present a
proven complete small-step trace-based operational semantics of the main
parts of AsmL. Such a semantics provides precise and non ambiguous def-
initions of AsmL. It is very useful to guarantee a unique implementation of
the language and interpretation of its behavior. Furthermore, they can be
used in conducting formal proofs for sound abstractions or even to construct
syntactical transformers to other languages.

1

Contents

1 Introduction 3

2 Syntactical and Semantical Domains 4
2.1 Syntactical Domains . 4
2.2 Semantical Domains . 5

3 Fixpoint Semantics 6
3.1 Whole AsmL Program Semantics 6
3.2 AsmL Class Semantics . 7

4 Soundness and Correctness of the Class Semantics 11

5 Application 15

6 Conclusion 17

2

1 Introduction

AsmL (the Abstract State Machine Language) [5] is a novel executable specifi-
cation language based on the theory of Abstract State Machines (ASMs). It is
fully object-oriented (OO) and has a strong mathematical component. In particu-
lar, sets, sequences, maps and tuples are available as well as set comprehension,
sequence comprehension and map comprehension. ASMs steps are transactions,
and in that sense AsmL programming is transaction based. AsmL is fully inte-
grated into the .NET framework and Microsoft development tools providing inter-
operability with many languages and tools.

Although the language features of AsmL were chosen to give the user a fa-
miliar programming paradigm (supporting classes and interfaces in the same way
as C# or Java do), the crucial features of AsmL, intrinsic to ASMs, are massive
synchronous parallelism and finite choice. These features give rise to a cleaner
programming style than is possible with standard imperative programming lan-
guages. Synchronous parallelism and inherently AsmL provide a clean separation
between the generation of new values and the committal of those values into the
persistent state.

An operational semantics of AsmL, in ASMs, was defined in [5] for a sub-
set of AsmL called AsmL-S (a core of AsmL). However, the use ofASM as a
concrete semantics has two main drawbacks. First, the ASM notation has the
tendency to hide low-level details, by making wide use of macros. While this
may be an advantage to the casual reader, it is a drawback for the design of pre-
cise yet sound static analyses. Second, the program computation is hidden in the
ASM transition relation, and the fixpoint computation is notexplicitly stated. As a
consequence, this formalism is inadequate to express, for example, program-wide
invariant properties.

Denotational semantics is well-suited for modeling object-oriented languages,
where both object’s self application and inheritance can besmartly expressed as
fixpoints on suitable domains [8]. Moreover, it is straightforward to consider a
domain composed by an environment (a map from variables to addresses) and a
store (a map from addresses to values). Hence, object aliasing can be naturally
expressed. It was shown in [2] that generally denotational semantics is an ab-
straction of a trace-based operational semantics in the sense that it abstracts away
the history of computations, by considering input-output functions. As a conse-
quence, in this report, we provide a formalization of the AsmL small-step oper-
ational semantics. For instance, we will first enumerate thesyntactical domains.
Then, we will provide the semantics of whole program and the semantics of AsmL

3

classes. Finally, we will provide the proofs for the completeness and soundness
of the whole semantics. Our approach updates on the generic semantics provided
by Logozzo in [9] by: (1) modifying the syntactical domains to support AsmL
specific domains; (2) upgrading the default environment andstore to include the
values of the variables in the update and evaluate phases; and (3) re-establishing
the soundness and completeness proofs considering the updates and modifications
of points (1) and (2).

The rest of the report is organized as follows: Section 2 describes the main
AsmL syntactical and semantical domains. Section 3 presents the AsmL seman-
tics in fixpoint. Section 4 shows the proofs of correctness and completeness of
the proposed AsmL semantics. Section 5 gives an applicationof the proposed
semantics. Finally, Section 6 concludes the report.

2 Syntactical and Semantical Domains

2.1 Syntactical Domains

We will present the basic syntactical domains that are required for the semantics
section. These include: classes, methods, constraints andprograms.

A class is a description for a set of objects. The programmer specifies the class
constructor, methods and fields (data members). Hence, we define an AsmL class
as:

Definition 2.1 (AsmL Class:AS C)
An AsmL class is a set〈AS DMem, AS Mth, AS Ctr〉, whereAS DMem is a set
of the class data members,AS Mth a set of methods (functions) definition and
AS Ctr is the class constructor.

One of the important AsmL features corresponds to the methods pre-conditions
(Boolean proposition verified before the execution of the method). These condi-
tions distinguish AsmL methods from default OO methods (e.g., Java methods).

Definition 2.2 (AsmL Method:AS Mth)
An AsmL method is a set〈AS M, AS Pre, AS Pos, AS Cst〉, whereAS M is a
the core of the method,AS Pre is a set of pre-conditions,AS Pos is a set of post-
conditions andAS Cst is a set of constraints.

4

Note thatAS Pre, AS Pos andAS Cst share the same structure. They are
differentiated in the methods by using a specific keyword foreach of them (e.g.,
requirefor pre-conditions).

Definition 2.3 (AsmL Method Precondition:AS Pre)
An AsmL method pre-condition is a set〈AS B〉, whereAS B is a Boolean propo-
sition.

An AsmL program can be seen as a set of classes. In particular,it can be made
up by a main class and a library of classes according to:

Definition 2.4 (AsmL Program:AS Pg)
An AsmL Program is a set〈LAS C, INIT〉, whereLAS C is a set of AsmL classes
andINIT is the main function in the program.

2.2 Semantical Domains

The first step in the specification of the AsmL semantics is thedefinition of the
semantical domains. For instance, we need to define a unique identity and en-
vironment for every object. The general way to fulfill such a requirement is to
consider a domain of<environment, store> pairs; where, an environment maps
a variable name to a memory address and a store maps a memory address to a
memory element.

AsmL is deferent from general OO languages in the sense that it considers two
phases:evaluateandupdate. The program will be always running in theevaluate
mode except if an update is requested. There are two types of updates, total and
partial.

Definition 2.5 (Total Update:Step)
A total update is performed using theStep instruction and affects all the pro-
grams variables.

Considering the update notion of AsmL, we formalize its environment as:

Definition 2.6 (AsmL Environment:AS Env)
The AsmL Environment is a modified OO environmentAS Env = [Var→
Addr,Addr], whereVar is a set of variables andAddr ⊆ N is a set of ad-
dresses.

5

For every variable correspond two addresses storing its current and the new
values.

Definition 2.7 (AsmL Store:AS Store)
The AsmL store isAS Store = [(Addr, Addr) → (Val,Val)], whereVal is a
set of values such thatAS Env ⊆ Val.

Let R0 ∈ P(AS Env×AS Store) be a set of initial states,pcin be the entry
point of the main functionMain and→⊆: (AS Env× AS Store) × (AS Env×
AS Store) be a transition relation.

3 Fixpoint Semantics

3.1 Whole AsmL Program Semantics

The whole AsmL program semantics can be defined as the traces of the executions
of the program starting from a set of initial statesR0. It can be expressed in fixpoint
semantics as follows:

Definition 3.1 (Whole AsmL Program Semantics:WAS [[AS Pg]])
LetAS Pg = 〈LAS C, Main〉 be an AsmL program. Then, the semantics ofAS Pg,
WAS [[AS Pg]] ∈ P(AS Env×AS Store) →P(T (AS Env× AS Store)) is:

WAS[[AS Pg]] (R0) = lfp ⊆
∅ λX.

(R0) ∪ { ρ0 → . . . ρn → ρn+1|
ρn+1 ∈ (AS Env× AS Store)
∧ {ρ0 → . . . ρn} ∈ X ∧ ρn → ρn+1}

The trace semantics of an AsmL method states that at the maximal trace: (1)
all pre−, post− andpct− are evaluated totrue; (2) the program counter refers
to the end point of the method; and (3) the height of the stack is the same at the
entry of the method.

Definition 3.2 (Method Semantics:MAS [[.]]))
Let AS Mth = 〈AS M, AS Pre, AS Pos, AS Cst〉 be an AsmL method. Then,
the semantics ofAS Mth, MAS [[AS m]]) ∈ P(AS Env×AS Store) →
P(T (AS Env× AS Store)) is

MAS [[AS m]] (R0,M,Pre,Pos,Cst) =

6

lfp ⊆
∅ λX, m, spre, spos, scst.

(R0) ∪ { ρ0 → . . . ρn → ρn+1| ρn+1 ∈
(AS Env× AS Store) ∧
{ρ0 → . . . ρn} ∈ X ∧
ρn → ρn+1 ∧
ρn+1(X) = (m, spre, spos, scst)
∧ spre = spos = scst = true}

3.2 AsmL Class Semantics

The semantics of an AsmL class can be seen as the set of all the semantics of its
instances. The semantics of an object is the set of traces that correspond to the
evolution of the object internal state. The AsmL class constructor is a default OO
constructor. It can be defined according to the Definition 3.8in [9].

In a general OO context, such as Java, an object can be defined as a set of
states including a first (initial) state representing the object just after its creation
and a set of states resulting from the interaction of the object with its context [9].
In this case, the interaction can happen in two ways: (1) the context invokes an
object’s method, or (2) the context modifies a memory location reachable from
the object’s environment. In [9], this interaction was verywell defined using two
functionsnextd, for direct interactions, andnextind for indirect interactions
and the object semantics,O [[o]], was defined as:

O[[o]](v,s) = lfp ⊆
∅ λT . S0〈v, s〉 ∪ {σ0

l0→ . . .
ln−1

→ σn

ln→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , next(σn) ∋ 〈σ′, l′〉}
where next(σ) = nextd(σ) ∪ nextind(σ), l is a transition label andS0〈v, s〉 is a
set of initial states.

In addition to the semantics definition of an OO object in [9],an AsmL method
can be activated by an update instruction. This interactionis a hybrid direct/indirect
interaction because concerned methods will be invoked according to the state of
the program events (that maybe external to the object). In following, we will de-
fine the interaction states, then, we will provide the complete definition for the
direct, indirect and AsnL specific interaction functions.

Definition 3.3 (Interaction States)
The set of interaction states is

∑

= AS Env × AS Store × Dout × P(Addr)

After the creation of the object, the reached states represent the initial states
defined as follows:

7

Definition 3.4 (Initial StatesS0〈vas, sas〉)
Letvas ∈ Din be an AsmL object input value,sas ∈ AS Store a store at object
creation time andAS Obj an AsmL object. The set of initial states ofAS Obj is:

S0〈vas, sas〉 = {〈e′
as

, s′
as

, φ, ∅〉 | PCtr[[AS Ctr]] (LM) ∋ 〈e′
as

, s′
as
〉}

where:LM = {m1, . . . ,mi, . . . ,mn} is a list of the the methods.

In Definition 3.4φ is a void value (∈ Dout) meaning that the constructor does
not return any value and therefore does not expose any address to the context.

For every state we tag to transitions to its successors by a label. This latter
can consist of the name of the invoked method (and its input values) or a term to
denote an action from the context according to the followingdefinition:

Definition 3.5 (Transition Labels:Label AS)
The set of transition labels isLabel AS = (Mth × Din) ∪ {k}.

In Definition 3.5 we distinguish two types of interactions corresponding re-
spectively to: (1) invoking a method (direct interaction);and (2) modifying the
memory location that is reachable from the the object environment (indirect inter-
action). The transition functionnext AS is made up of two functions:next ASdir
andnext ASind.

Definition 3.6 (Direct interactions:next ASdir)
Let 〈eas, sas, vas,Esc〉 ∈

∑

an interaction state. Then, the direct interaction
functionnext ASdir ∈ [

∑

→ P(
∑

×Label AS)] is defined as:

next ASdir(〈eas, sas, vas,Esc〉) = {

〈〈e′
as

, s′
as

, v′
as

,Esc’〉, 〈mth, vin〉〉
| mth ∈ Mth, vin ∈ Din,
C[[mth]](vin, eas, sas) ∋ (v′

as
, e′

as
, s′

as
),

Esc’ = Esc ∪ reachable(v′
as

, e′
as

)}.

where C[[mth]]is the se-

mantics of generic OO method as defined in [9].

The functionreachableis an extension of the helper function defined in [9].
For instance, given an addressvas and a storesas, reachabledetermines all the
addresses that are reachable fromvas. In the AsmL context, this function acts only
on the data members of the class according to the following recursive definition:

8

Definition 3.7 (The functionreachable)
The functionreachable∈ [Dout × AS Store] →P(Addr) is defined as follows:

reachable(vas,sas) =
if vas ∈ Addr then

{Addr} ∪ {reachable(e′
as

(dmem),s′
as

) | ∃ as class =
〈AS DMem, AS Mth, AS Ctr〉,
dmem ∈ AS DMem, sas(vas)
is an instance ofas class, sas(sas(vas)) = e′

as
}

else∅.

The second possible interaction corresponds to indirect interaction, which may
happen when an address escapes from an object. In that case, the context can
modify the content of this address with any value. The function next ASind
defines this type of interaction:

Definition 3.8 (Indirect interactions:next ASind)
Let 〈eas, sas, vas,Esc〉 ∈

∑

an interaction state. Then, the indirect interaction
functionnext ASind ∈ [

∑

→ P(
∑

×Label AS)] is defined as:

next ASind(〈eas, sas, vas,Esc〉) = {

〈〈eas, s
′
as

, φ,Esc〉, k〉 |
∃ α ∈ Esc. s′

as
∈ updateas(α, s′

as
)}

Theupdateasfunction is an extension of theupdatefunction defined in [9] in
the sense that it considers AsmL updates in addition to variables. It is defined as
follows:

Definition 3.9 (The functionupdateas)
The functionupdateas∈ [Addr × AS Store → P(AS Store)] is defined as
follows:

updateas(α,sas) = {s′
as
| ∃ v ∈ Val. s′

as
= sas[α 7→ v] }.

updateas returns all the possible stores, wheresas(α) takes all the possible
values in the values domainVal.

Using the definitions ofnext ASdir andnext ASind, we define the global
transition functionnext AS as:

9

Definition 3.10 (Transition function:next AS)
Let st = 〈eas, sas, vas,Esc〉 ∈

∑

be an interaction state. Then, the transition
functionnext AS ∈ [

∑

→ P(
∑

×Label AS)] is defined as:

next AS(st) = next ASdir(st) ∪ next ASind(st)

the semantics of an object is the set of the traces encoding all the interactions
between the object and any possible contexts it can be instantiated in. Using the
transition function, this semantics is defined as follows:

Definition 3.11 (AsmL Object:OAS[[o AS]])
Let vas ∈ Val be an AsmL object input value andsas ∈ AS Store a
store at object creation time. Then the AsmL object semantics, OAS[[o as]] ∈
[Din×AS Store] → P(T (Σ)) is defined as:

OAS[[o as]]) (vas, sas) = lfp ⊆
∅ λT . S0〈vas, sas〉 ∪ {σ0

l0→ . . .
ln−1

→ σn

ln→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextAS(σn) ∋ 〈σ′, l′〉}

whereDin and Dout is the semantic domain for the input and output values,
∑

= AS Env × AS Store × Dout × P(Addr) is a set of interaction states,
nextas(σ).

Using Definition 3.11, the partial traces semantics of an object can be ex-
pressed as a fixpoint:

Theorem 3.1 Let
Has = λT . S0〈vas, sas〉 ∪ {σ0

l0→ . . .
ln−1

→ σn

ln→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextas(σn) ∋ 〈σ′, l′〉}

ThenOAS[[o as]] (vas, sas) = ∪ω
n=0Has

n(∅)

Proof 1 The proof is immediate from the fixpoint theorem in [3].

As a class is a description of a set of objects, it is natural todefine the seman-
tics of a class C as the set that contains the semantics of all the objects that are
instances of C. This is expressed by the next definition:

A class is defined as a description of a set of objects. Therefore, its semantics
is no more than the semantics of its objects instances according to the following
definition:

10

Definition 3.12 (AsmL Class Semantics:CAS[[c as]])
Let c as = 〈as dmem, as mth, as ctr〉 be an AsmL class. The semantics of
CAS[[c as]] ∈ P(T (Σ)) is:

Cas[[c as]]= { OAS[[o as]] (vas, sas) | o as is an instance ofc as,
v as ∈ D in, s as ∈ AS Store}

Using the class semantics in fixpoint in Definition 3.12, the semantics of each
instance takes into account, among others, the interactionwith other objects.
Therefore, it is possible to merge together all the semantics of the different in-
stances while preserving the program behavior.

Theorem 3.2 (AsmL Class semantics in fixpoint) Let

Has〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0

l0→ . . .
ln−1

→ σn

l′

→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextas(σn) ∋ 〈σ′, l′〉}

ThenCAS[[c as]] (vas, sas) = lfp ⊆
∅ Has〈 Din×Store〉

Proof 2 Although the AsmL model presents some additional functionalities on
top of generic OO languages, the proof of this theorem is similar to the proof of
Theorem 3.2 in [9]. For instance, considering the definitionof CAS and applying
in order Definition 3.11, Theorem 3.1 and the fixpoint theoremin [3], the proof is
straightforward.

4 Soundness and Correctness of the Class Seman-
tics

The last step in the AsmL fixpoint semantics is to relate the classes semantics
to the whole AsmL program semantics. For this purpose, we consider updated
versions of the functionssplit (α◦

q), project (α◦
↑) andabstract(α◦) as defined in

[9]. The new functions do support the AsmL update semantics,environment and
store.

The basic concept behind defining the object semantics is to cut all the in-
stances not involving the object. For this purpose, two helper functions are re-
quired: (1)α AS◦

q that cuts all the traces involving the object instances; and(2)
α AS◦

↑ that maps all the cut instances to interaction states.

11

Let us first define the helper functionsplit AS, which given a traceτ and an
objecto as, it returns a pair consisting of the last state of the prefix ofτ made up
of the last state of the execution of a method or process ofo as and the remaining
suffix of prefix ofτ .

Definition 4.1 (The split helper functionsplit AS)
Let o as be an AsmL object,τ ∈ T (AS Env× AS Store), CurMethod ∈
Mth and pcexit be the exit point ofτ(0)(CurMethod). Thensplit AS ∈
[(T (AS Env× AS Store) → (AS Env× AS Store) × T (AS Env
× AS Store)] is defined as:

split AS(τ)= let n = min{i ∈ N | τ(i)=〈CurMethod〉
∧ τ(i)(SL)=true ∧ τ(i)(pc)=pcexit ∧
τ(i)(this)= o as ∧ τ(i)(StackHeight)=
τ(0)(StackHeight)}

in 〈τ(n), τ(n + 1) → . . . → τ(Len(τ) − 1)〉

The cut function,α AS◦
q, cuts all the sub-traces of that do not involve a specific

object. It considers four different cases:

1. For an empty trace,ǫ, it returns an empty trace.

2. If trace is part of the object trace, then we split it recursively keeping only
the last state of the execution of a method or process. The rest of the trace
is removed.

3. If the trace belongs to an object different from the current object and the
store is not changed, then we continue with the rest of the trace.

4. If the trace belongs to an object different from the current object and the
store is changed, then we keep the current trace and we continue with the
rest of the traces.

Definition 4.2 (Cut function:α AS◦
q)

Let o as be an AsmL object,τ ∈ T (AS Env× AS Store). Thenα AS◦
q ∈

[(T (AS Env× AS Store) × AS Store) → T (AS Env× AS Store)] is de-
fined as:

12

α AS◦
q = λ(τ,Slast).























































































ǫ if τ = ǫ

let 〈ρ′, τ ′〉 = split AS(τ)
in let 〈e′

as
, s′

as
〉 = ρ′ if τ = 〈eas, sas〉 → τ ′′, eas(this) = o as

in ρ′ → α AS◦
q(τ

′, s′
as

)

if τ = 〈eas, sas〉 → τ ′′,

α AS◦
q(τ

′′,Slast) eas(this) 6= o as,

S/S(o as) = Slast/S(o as)

if τ = 〈eas, sas〉 → τ ′′,

〈eas, sas〉 → α AS◦
q(τ

′′,S) eas(this) 6= o as,

S/S(o as) 6= Slast/S(o as)

The second part of the abstraction includes theα AS◦
↑ function which maps

the states of a trace to interaction states. It considers three different cases:

1. For empty trace,ǫ, it returns an empty trace.

2. If the trace is part of the object trace, it returns the set of direct interaction
states.

3. If the trace belongs to an object different from the current object, it returns
the indirect interaction states..

Definition 4.3 (Map function:α AS◦
↑)

Let o as be an AsmL object,τ ∈ T (AS Env× AS Store). Thenα AS◦
↑ ∈

[(T (AS Env× AS Store) × P(Addr)) → T (
∑

)] is defined as:

13

α AS◦
↑ = λ(τ,Esc).



















































































ǫ if τ = ǫ

let 〈eas, sas〉 = ρ

in let Esc′ = Esc∪
reachable AS(ρ(retVal), sas) if τ = ρ → τ ′, eas(this) = o as

in 〈〈eas, sas, ρ(retVal),Esc〉,
〈ρ(curMethod), ρ(inVal)〉〉
→ α AS◦

↑(τ
′,Esc′)

let 〈eas, sas〉 = ρ

in 〈〈eas, sas, φ,Esc〉, k〉 if τ = ρ → τ ′, eas(this) 6= o as
→ α AS◦

↑(τ
′,Esc)

The abstraction functionα AS◦ projects from the traces of an execution of the
set of relevant states to a specific object.

Definition 4.4 (Abstract function:α AS◦)
Let o as be an AsmL object,T ⊆ T (AS Env× AS Store) a set of execution
traces ands∅ the empty store. The abstraction functionα AS◦ ∈ [(T (AS Env×
AS Store) →P(T (

∑

)] is defined as:

α AS◦(T) = {α AS◦
↑(α AS◦

q (τ ,s∅),∅) | τ ∈ T }

We can now state the relation between the whole AsmL program semantics
W[[AS Pg]]and the AsmL class semanticsCAS[[c as]]. The following theorem
states that all interactions that a programAS Pg performs on an objecto AS an
instance of a classC AS are captured byCAS[[c as]].

Theorem 4.1 (Soundness ofCAS[[c as]]) Let PAS be a whole AsmL program and
let cAS ∈ CAS. Then

∀ R0 ∈ AS Env× AS Store. ∀ τ ∈ T (AS Env× AS Store).
τ ∈ W[[AS Pg]] (R0) : ∃τ ′ ∈ CAS[[cAS]]. α AS◦({τ}) = {τ ′}

Proof 3 (Sketch) We have to consider both cases whenτ contains an objectoAS,
instantiation ofmAS, and when it does not include anyoAS. For the second situa-
tion, the proof of the theorem is trivial considering thatτ will be an empty trace.

14

In the first case, the trace is not empty (let it beτ ′′). Since AsmL classes are initial-
ized in the main programMain before the execution starts, there exist an initial
environment, store and set of variables that define the initial traceσ0 ∈ τ ′′. The
rest of the traces inτ ′′ are interaction states ofoAS because they are obtained by
applyingα AS◦ on τ . Therefore,τ ′′ ∈ CAS[[mAS]].

The following theorem states that all the behaviors considered byCAS[[c as]]
are feasible. In other terms, for any AsmL class, there exists an AsmL program
that will contain all the possible behaviors of this class.

Theorem 4.2 (Completeness ofCAS[[]]) Let cAS be an AsmL class. Then

∀τ ∈ T (Σ). τ ∈ CAS[[cAS]] : ∃ AS P ∈ 〈LAS Pg〉. ∃ρ0 ∈ AS Env×
AS Store. ∃ oAS instance ofcAS. exists τ ′ ∈ T (AS Env×
AS Store). τ ′ ∈ W[[ρ0]] ∧ α AS◦({τ ′}) = {τ}

Proof 4 An AsmL program satisfying the previous theorem can be constructed by
creating and instance ofcAS in theMain function, the initial state corresponds to
the state when the class constructor,AS Ctr, was executed. It is always possible
to construct bothAS P and ρ0. For instance, there exist many other possible
constructions involving AsmL methods pre-conditions and post-conditions.

5 Application

In this Section, we provide a direct application of the proposed AsmL semantics,
namely to prove the soundness of the transformation of AsmL to SystemC [10]
and vice-versa. The SystemC language is composed from a set of classes and a
simulation kernel extending C++ to enable the modeling of complex systems at a
higher level of abstraction than state-of-the-art HDL (Hardware Description Lan-
guages). However, except for small models, the verificationof SystemC designs
is a serious bottleneck in the system design flow. Direct model checking of Sys-
temC designs is not feasible due to the complexity of the SystemC library and its
simulator. To solve this problem, we proposed in [6] to translate SystemC models
to an intermediate representation in AsmL more suitable forformal verification.
This approach reduced radically the complexity of the design at the point that we
were able to verify a complete PCI architecture using the SMV model checker
[11].

15

In our verification methodology of Figure 1, we perform the model checking
of SystemC by translating the original design to an abstractrepresentation omit-
ting completely the details of the SystemC simulator. The target (or transformed)
program is modeled in AsmL to be cross-produced with the system property and
checked over the whole system’s state space. We embed the PSL(Property Spec-
ification Language) [1] properties in the design as externalmonitors; hence, these
monitors can be used as stand-alone blocks to validate otherdevices, either at the
AsmL level by model checking or at the SystemC level by ABV. To ensure the
correctness of the model checking results at the AsmL level on the original Sys-
temC program, we defined a set of rules that translate the codefrom SystemC to
AsmL. These rules represented an informal representation of the soundness of the
approach.

Design Model in AsmL

AsmL Level

PSL Properties modeled
in AsmL

Syntactical

Transformation

AsmL Tool

SystemC (C++) Level

Assertion Integrator

Original SystemC

Design

Assertion Monitor in
SystemC

SystemC Design including

the Assertion Monitor

Model Checking
Result

Model Checking
Configuration File

System’s FSM
or Partial FSM

Output

input

Syntactical

Transformation

Figure 1: Verification Methodology.

By providing a formalization of the SystemC and AsmL semantics in fixpoint
based on the OO general case given in [9], we proved in [7] that, for every Sys-
temC program, there exists an AsmL program preserving the same properties,
w.r.t. an observation functionα. The basic concept of this proof of soundness
is based on the systematic design of program transformationframeworks defined
in [4]. Such a result will enable using a variety of formal tools (for e.g., SMV
for model checking [11]) or to use AsmL tool (Asmlt) to generate a finite state

16

machine of the design.

6 Conclusion

In this report, we presented the fixpoint semantics of the abstract state machines
language (AsmL). Then, we proved the soundness and the correctness of the the
semantics of the AsmL class ASClass w.r.t. to a trace semantics of a the whole
AsmL program. Such a result presents a first step towards applying formal meth-
ods to AsmL. For instance, we used these semantics to prove the soundness of a
transformation from AsmL to SystemC, which enabled verifying SystemC trans-
actional models. Furthermore, the concrete semantics, we defined, can be used to
construct sound abstract semantics allowing static code analysis or model chcking
of AsmL programs.

References

[1] Accellera Organization. Accellera property specification language reference
manual, version 1.01. www.accellera.org, 2004.

[2] P. Cousot. Constructive design of a hierarchy of semanticsof a transition
system by abstract interpretation.Theor. Comput. Sci., 277(1-2):47–103,
2002.

[3] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. InProc. Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, USA, 1979.

[4] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. InProc. Symposium on Principles of
Programming Languages, pages 178–190, Portland, Oregon, January 2002.

[5] Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence ofAsmL.
Technical report, Microsoft Research Tech. Report MSR-TR-2004-27,
March 2004.

[6] A. Habibi and S. Tahar. Design for verification of SystemCtransaction level
models. InProc. Design Automation and Test in Europe, Munich, Germany,
March 2005.

17

[7] A. Habibi and S. Tahar. On the transformation of SystemC to AsmL using
abstract interpretation.Electr. Notes Theor. Comput. Sci., 2005 (to appear).

[8] S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented
languages. pages 463–495, 1994.

[9] F. Logozzo.Anhalyse Statique Modulaire de Langages a Objets. PhD thesis,
Ecole Polytechnique, Paris, France, June 2004.

[10] Open SystemC Initiative. www.systemc.org, 2004.

[11] K. Oumalou, A. Habibi, and S. Tahar. Design for verification of a PCI bus
in SystemC. InProc. Symposium on System-on-Chip, pages 201–204, Tam-
pere, Finland, November 2004.

18

