AsmL Semantics in Fixpoint
Ali Habibi and Sofene Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

Email: {habibi, tahaf@ece.concordia.ca

Technical Report

December 2004

Abstract

AsmL is a novel executable specification language based on the theory of
Abstract State Machines (ASMs). It represents one of the most palwerf
practical engines to write and execute ASMs. In this report, we present a
proven complete small-step trace-based operational semantics of the main
parts of AsmL. Such a semantics provides precise and hon ambiguous def-
initions of AsmL. It is very useful to guarantee a unique implementation of
the language and interpretation of its behavior. Furthermore, they can be
used in conducting formal proofs for sound abstractions or even tremh
syntactical transformers to other languages.

Contents
1 Introduction 3

2 Syntactical and Semantical Domains
2.1 SyntacticalDomains 0o
2.2 SemanticalDomains o0

3 Fixpoint Semantics 6
3.1 Whole AsmL Program Semantics
3.2 AsmLClassSemantics,

4 Soundness and Correctness of the Class Semantics
5 Application 15

6 Conclusion 17

1 Introduction

AsmL (the Abstract State Machine Language) [5] is a novetetable specifi-
cation language based on the theory of Abstract State MasH{iASMs). It is
fully object-oriented (OO) and has a strong mathematicalmanent. In particu-
lar, sets, sequences, maps and tuples are available assveelt aomprehension,
sequence comprehension and map comprehension. ASMs stefparesactions,
and in that sense AsmL programming is transaction based.LAsrully inte-
grated into the .NET framework and Microsoft developmentd@roviding inter-
operability with many languages and tools.

Although the language features of AsmL were chosen to gigeutder a fa-
miliar programming paradigm (supporting classes andfates in the same way
as C# or Java do), the crucial features of AsmL, intrinsic tdM&Sare massive
synchronous parallelism and finite choice. These featukesrgge to a cleaner
programming style than is possible with standard impeggbikogramming lan-
guages. Synchronous parallelism and inherently AsmL peogiclean separation
between the generation of new values and the committal setkalues into the
persistent state.

An operational semantics of AsmL, in ASMs, was defined in [&] & sub-
set of AsmL called AsmL-S (a core of AsmL). However, the useA8M as a
concrete semantics has two main drawbacks. First, the ASfdltion has the
tendency to hide low-level details, by making wide use of maac While this
may be an advantage to the casual reader, it is a drawbadkefatessign of pre-
cise yet sound static analyses. Second, the program congouhidden in the
ASM transition relation, and the fixpoint computation is egplicitly stated. As a
consequence, this formalism is inadequate to expressxéonge, program-wide
invariant properties.

Denotational semantics is well-suited for modeling ob@i¢nted languages,
where both object’s self application and inheritance casrbartly expressed as
fixpoints on suitable domains [8]. Moreover, it is straigintfard to consider a
domain composed by an environment (a map from variablesdceades) and a
store (a map from addresses to values). Hence, objectrajiaain be naturally
expressed. It was shown in [2] that generally denotatioaaiamtics is an ab-
straction of a trace-based operational semantics in theedat it abstracts away
the history of computations, by considering input-outputdtions. As a conse-
guence, in this report, we provide a formalization of the Assmall-step oper-
ational semantics. For instance, we will first enumeratesfmgactical domains.
Then, we will provide the semantics of whole program and émeantics of AsmL

3

classes. Finally, we will provide the proofs for the cometetss and soundness
of the whole semantics. Our approach updates on the gemeniargics provided
by Logozzo in [9] by: (1) modifying the syntactical domairmsgupport AsmL
specific domains; (2) upgrading the default environmentstock to include the
values of the variables in the update and evaluate phasg¢3ane-establishing
the soundness and completeness proofs considering theeaohal modifications
of points (1) and (2).

The rest of the report is organized as follows: Section 2 riless the main
AsmL syntactical and semantical domains. Section 3 pregbetAsmL seman-
tics in fixpoint. Section 4 shows the proofs of correctness @mpleteness of
the proposed AsmL semantics. Section 5 gives an applicafigdhe proposed
semantics. Finally, Section 6 concludes the report.

2 Syntactical and Semantical Domains

2.1 Syntactical Domains

We will present the basic syntactical domains that are reduor the semantics
section. These include: classes, methods, constraingsragcams.

A class is a description for a set of objects. The programimexifes the class
constructor, methods and fields (data members). Hence, fiveedan AsmL class
as:

Definition 2.1 (AsmL ClassAS_C)

An AsmL class is a séAS_ DMem AS M h, AS Ct r), whereAS_DVemis a set
of the class data memberAS_M h a set of methods (functions) definition and
AS_Ctr is the class constructor.

One of the important AsmL features corresponds to the mstpetconditions
(Boolean proposition verified before the execution of thehod). These condi-
tions distinguish AsmL methods from default OO methods.(daya methods).

Definition 2.2 (AsmL MethodAS_M h)

An AsmL method is a SéAS_M AS_Pr e, AS_Pos, AS_Cst), whereAS_Mis a
the core of the metho@dS _Pr e is a set of pre-condition®S_Pos is a set of post-
conditions andAS_Cst is a set of constraints.

Note thatAS_Pr e, AS_Pos andAS_Cst share the same structure. They are
differentiated in the methods by using a specific keywordetaeh of them (e.g.,
requirefor pre-conditions).

Definition 2.3 (AsmL Method PreconditiomAS_Pr e)
An AsmL method pre-condition is a $&S B), whereAS B is a Boolean propo-
sition.

An AsmL program can be seen as a set of classes. In partitwan be made
up by a main class and a library of classes according to:

Definition 2.4 (AsmL Program:AS_Pg)
An AsmL Program is a sét.asc, | NI T), whereLasc is a set of AsmL classes
and| NI T is the main function in the program.

2.2 Semantical Domains

The first step in the specification of the AsmL semantics isdinition of the
semantical domains. For instance, we need to define a unigumity and en-
vironment for every object. The general way to fulfill sucheguirement is to
consider a domain of.environment, store pairs; where, an environment maps
a variable name to a memory address and a store maps a mengoegato a
memory element.

AsmL is deferent from general OO languages in the sensetit@tsiders two
phasesevaluateandupdate The program will be always running in tlewaluate
mode except if an update is requested. There are two typgsdattes, total and
partial.

Definition 2.5 (Total Update:St ep)
A total update is performed using ti8¢ ep instruction and affects all the pro-
grams variables.

Considering the update notion of AsmL, we formalize its emwment as:

Definition 2.6 (AsmL EnvironmentAS_Env)

The AsmL Environment is a modified OO environn#hEnv = [Var —

Addr ,Addr], where Var is a set of variables andddr C N is a set of ad-
dresses.

For every variable correspond two addresses storing iteicuand the new
values.

Definition 2.7 (AsmL Store AS_St or e)
The AsmL store i8S_St or e = [(Addr , Addr) — (Val ,val)], whereVal is a
set of values such th&S_Env C Val .

Let Ry € P(AS_Env xAS_St or e) be a set of initial statepc;, be the entry
point of the main functioai n and—C: (AS_Env x AS_St or e) x (AS_Env x
AS_St or e) be a transition relation.

3 Fixpoint Semantics

3.1 Whole AsmL Program Semantics

The whole AsmL program semantics can be defined as the tratresexecutions
of the program starting from a set of initial stais It can be expressed in fixpoint
semantics as follows:

Definition 3.1 (Whole AsmL Program Semantic&! 45 [AS_Pg])
LetAS Pg = (Las.c, Mai n) be an AsmL program. Then, the semanticA®fPg,
Was [AS_Pg] € P(AS_Env xAS_ St or e) — P(7 (AS_Env x AS_St or e)) is:

W4s[ASPg] (Ry) = Ifp FAX.

(RO>U{ Po — ”'pn_>pn+1|
i1 € (AS_LEnv x AS_St or e)

ANpo— - pn} € X A pn— ppyr}

The trace semantics of an AsmL method states that at the rahiiace: (1)
all pre—, post— andpct— are evaluated torue; (2) the program counter refers
to the end point of the method; and (3) the height of the stathe same at the
entry of the method.

Definition 3.2 (Method SemanticfVl 45 [. 1))

LetAS. M h = (AS.M AS Pr e, AS_Pos, AS Cst) be an AsmL method. Then,
the semantics AS_M h, M4, [AS.m]) € P(AS_Env xAS_St or e) —
P(T(AS_Env x AS_St or e)) is

Mg [AS.M (Ry, MPre,Pos,Cst) =

6

pr% AX, m, spre, spos, scst.
(F\)O)U{pﬂ_> pn_>pn+1‘pn+1 €
(AS_Env x AS_St ore) A
{po— - put EX A
Pn = Pnt1 N\
Pni1(X) = (m, spre, spos, scst)
A spre = spos = scst = true}

3.2 AsmL Class Semantics

The semantics of an AsmL class can be seen as the set of aéitfensics of its
instances. The semantics of an object is the set of tracesdh@spond to the
evolution of the object internal state. The AsmL class annasor is a default OO
constructor. It can be defined according to the Definitioni3[8].

In a general OO context, such as Java, an object can be deBnedet of
states including a first (initial) state representing thgedljust after its creation
and a set of states resulting from the interaction of theabhygh its context [9].
In this case, the interaction can happen in two ways: (1) tmext invokes an
object’s method, or (2) the context modifies a memory locatEachable from
the object’s environment. In [9], this interaction was vemll defined using two
functionsnext 4, for direct interactions, andext ; ,q for indirect interactions
and the object semantic®,[0], was defined as:

O[o] (v, 8)=Mp & AT. So(v,8) U {op > ... "5 0, 1 /|
{00 b, | fng o, €T,next(o,) > (.1}
where nextf) = next 4(c) U next ,q(0), [is a transition label an8q (v, s) is a
set of initial states.

In addition to the semantics definition of an OO object in §8] AsmL method
can be activated by an update instruction. This interacsiarhybrid direct/indirect
interaction because concerned methods will be invokedrdowpto the state of
the program events (that maybe external to the object). llowing, we will de-
fine the interaction states, then, we will provide the congpbtiefinition for the
direct, indirect and AsnL specific interaction functions.

Definition 3.3 (Interaction States)
The set of interaction states}s = AS_Env x AS_St or e x Dy x P(Addr)

After the creation of the object, the reached states reptéke initial states
defined as follows:

Definition 3.4 (Initial StatesSy (v, Sas))
Letv,s € D, bean AsmL objectinput valug,;, € AS_St or e a store at object
creation time andAS_Obj an AsmL object. The set of initial statesA8_bj is:

So<1)a5, Sa5> = {<€£157 52157 (b? ®> |]P)CtT[AS—Ct r] (LM) > <6;57 8:15>}
where:Ly, = {my,...,m;,...,m,} is alist of the the methods.

In Definition 3.4¢ is a void value € D,,;) meaning that the constructor does
not return any value and therefore does not expose any addrédse context.

For every state we tag to transitions to its successors biel. [his latter
can consist of the name of the invoked method (and its inguega or a term to
denote an action from the context according to the follovdegnition:

Definition 3.5 (Transition LabelsLabel _AS)
The set of transition labels Isabel AS=(M h x D ;) U {k}.

In Definition 3.5 we distinguish two types of interactiongresponding re-
spectively to: (1) invoking a method (direct interactioapyd (2) modifying the
memory location that is reachable from the the object enwrent (indirect inter-
action). The transition functiomext _ASis made up of two functionsiext _ASy;
andnext _AS; q.

Definition 3.6 (Direct interactions:next _ASg; ()
Let (eqs, Sas, Vas, ESC) € > an interaction state. Then, the direct interaction
functionnext _ASy;, € [>_ — P(>_ xLabel _AS)| is defined as:

next _ASyi ({€as, Sas» Vas, ESC)) = {
(e ESCT . (mth,)

as’ ~as’ -as?

| mth € M h, v;,, € Di n,
(C[nt h](Uin, €as) Sas) > (Ut/lsa 6&57 3;5 3

Esc’ = Esc Ureachable@) e/ .)}.

as’ -as

where C[nt h]is the se-

mantics of generic OO method as defined in [9].

The functionreachableis an extension of the helper function defined in [9].
For instance, given an address and a stores,,, reachabledetermines all the
addresses that are reachable frgm In the AsmL context, this function acts only
on the data members of the class according to the followiogrséve definition:

Definition 3.7 (The functiorreachable
The functiorreachables [D,,; x AS_St or e] — P(Addr) is defined as follows:

reachabl@,;,sqs) =
if v,, € Addr then
{Addr } U {reachabl&’ (dem),s,s) | 3as_cl ass =
(AS_.DMem AS_M h, AS_Ct r),
dmem € AS—DNEm Sas(vas)
is an instance 0&s _cl ass, Sus(Sas(Vas)) = €.s}

as

elsel).

The second possible interaction corresponds to indiréstantion, which may
happen when an address escapes from an object. In that kbassgritext can
modify the content of this address with any value. The furctiext _AS; g
defines this type of interaction:

Definition 3.8 (Indirect interactions:next _AS; q)
Let (eqs, Sas, Vas, ESC) € > an interaction state. Then, the indirect interaction
functionnext _AS;nq € > — P(>_ xLabel _AS)] is defined as:

next _AS; nd(<6as> Sass Vas, ESC>) = {

({€as, 05, 9, ESC), k) |
Jda € Esc. s}, € updateag«, s/,.) }

Theupdateasfunction is an extension of thgdatefunction defined in [9] in
the sense that it considers AsmL updates in addition to bfmsa It is defined as
follows:

Definition 3.9 (The functiorupdateas
The functionupdatease [Addr x AS_St ore — P(AS_St or e)] is defined as
follows:

updateaqa,s,s) = {s,s | Jv e Val . s, = sus[a — 1] }.

updateasreturns all the possible stores, wheg(a) takes all the possible
values in the values domaval .

Using the definitions ohext _ASyi, andnext _AS; g, we define the global
transition functiomext _AS as:

Definition 3.10 (Transition function:next _AS)
Letst = (eas, Sas, Vas, ESC) € > be an interaction state. Then, the transition
functionnext AS € [>_ — P(>_ xLabel _AS)| is defined as:

next AS(st) = next _ASgy(St) U next _AS; nq(st)

the semantics of an object is the set of the traces encodittgeahteractions
between the object and any possible contexts it can be tretzohin. Using the
transition function, this semantics is defined as follows:

Definition 3.11 (AsmL Object0 45[0_AS))
Letv,, € Val be an AsmL object input value ang, € AS.Store a
store at object creation time. Then the AsmL object semgrligs[0_as] €
D nxAS_St ore] — P(7 (X)) is defined as:

ln—l ln /‘

O4s[0-aS]) (vas, Sas) = Ifp (% AT So(Vas, Sas) U {00 by e g

lo ln—l

{oo = ... = o, €T, nextas(0,) > (.1}
where D, , and D,,; is the semantic domain for the input and output values,

> = ASEnv x AS Store x Dy x P(Addr) is a set of interaction states,
next ,s(o).

Using Definition 3.11, the partial traces semantics of arecbgan be ex-
pressed as a fixpoint:

Theorem 3.1 Let l
Hos = AT, So(vas, Sas) U {00 Lo, g On LN o’|

ln—l

{00 b, .. = oy €T, next 45(0y,) 3 (o, 1') }
Then@AS[O_aS] (Uasa Sas) = U%:UHasn(®)

Proof 1 The proof is immediate from the fixpoint theorem in [3].

As a class is a description of a set of objects, it is naturdkfine the seman-
tics of a class C as the set that contains the semantics dfeablijects that are
instances of C. This is expressed by the next definition:

A class is defined as a description of a set of objects. Thexgeits semantics
is no more than the semantics of its objects instances aogotal the following
definition:

10

Definition 3.12 (AsmL Class Semantic§€ 5[¢_as])
Letc_as = (as_.dnmem as_nt h, as_ctr) be an AsmL class. The semantics of
Caslc_as] e P(T (%)) is:

Cus[cas]= { Ous[0.as] (vas, sas) | 0-as is an instance o€ _as,
v,as € Din,s.as € ASStore}

Using the class semantics in fixpoint in Definition 3.12, tamantics of each
instance takes into account, among others, the interagtitin other objects.
Therefore, it is possible to merge together all the semsitiche different in-
stances while preserving the program behavior.

Theorem 3.2 (AsmL Class semantics in fixpoint) Let

ln—l U

Hos ()= AT. {So(v,s) | (v,s) € S}U{o0 2 ... 5 g, 5 o

lo ln—l

{og = ... = o, € T,next 4(0,) > (¢/,1')}

ThenC s[¢-as] (vas, Sas) = Ifp § Has(Din xSt or €)

Proof 2 Although the AsmL model presents some additional fundit@son
top of generic OO languages, the proof of this theorem islaimm the proof of
Theorem 3.2 in [9]. For instance, considering the definitadrC , 5 and applying
in order Definition 3.11, Theorem 3.1 and the fixpoint theonep3], the proof is
straightforward.

4 Soundness and Correctness of the Class Seman-
tics

The last step in the AsmL fixpoint semantics is to relate tlassgs semantics
to the whole AsmL program semantics. For this purpose, weiden updated
versions of the functionsplit (o), project (a7) andabstract(a°) as defined in
[9]. The new functions do support the AsmL update semargicgronment and
store.

The basic concept behind defining the object semantics isitt@alcthe in-
stances not involving the object. For this purpose, two drefpnctions are re-
quired: (1)a_AS? that cuts all the traces involving the object instances; (@)d
a_AS] that maps all the cut instances to interaction states.

11

Let us first define the helper functiepl i t _AS, which given a trace and an
objecto_as, it returns a pair consisting of the last state of the prefix nfade up
of the last state of the execution of a method or processad and the remaining
suffix of prefix of .

Definition 4.1 (The split helper functiospl i t _AS)

Let o_.as be an AsmL objectr € T(AS_Env x AS_St or e), Cur Met hod €
M h and pc..;; be the exit point of-(0)(Cur Met hod). Thensplit _AS €
[(7(AS_Env x AS_St or e) — (AS_Env x AS_St or e) x 7 (AS_Env

x AS_St or e)] is defined as:

split_AS(r)= letn= min{i € N|7(i)=(Cur Met hod)
A T(1)(SL)=t rue A 7(i)(pC)=PCexit A

7(7)(t hi s)= 0_as A 7(i)(St ackHei ght)=
7(0)(St ackHei ght)}
in (tr(n), 7(n+1) — ... = 7(Len(r) — 1))

The cut functionp_AS?, cuts all the sub-traces of that do not involve a specific
object. It considers four different cases:

1. For an empty trace, it returns an empty trace.

2. If trace is part of the object trace, then we split it recugly keeping only
the last state of the execution of a method or process. Thefrése trace
is removed.

3. If the trace belongs to an object different from the cur@rject and the
store is not changed, then we continue with the rest of thetra

4. If the trace belongs to an object different from the cur@rject and the
store is changed, then we keep the current trace and we aentiith the
rest of the traces.

Definition 4.2 (Cut function:a_ASY))

Let 0_.as be an AsmL objectr € 7(AS_LEnvx AS St ore). Thena AS. €
[(7(AS_LEnv x AS_St ore) x AS_St ore) — 7(AS_Env x AS_St or e)] is de-
fined as:

12

a AS? = (T, S ast)-
€ if 7=¢

let (o,7") =split _AS(r)
inlet (e,s.)=p i f 7= (eass Sas) — 7", €0s(thi s) =0_aS

in g —aAS(T,s,)

if 7= (eus, Sas) — 7",
a AS. (17", S) ast) eqs(this)#o0.as,
S/ S(o.as) — SI ast/ S(o.as)

if 7= <€a87 3a5> - 7_,/7
<ea57 5as> - OLAS;(T”, S) eas(t hi S) 7£ 0._as,
\ S/ S(o.as) 7£ SI ast/ S(o.as)

The second part of the abstraction includes ¢haS; function which maps
the states of a trace to interaction states. It considees tthfferent cases:

1. For empty traces, it returns an empty trace.

2. If the trace is part of the object trace, it returns the $elirect interaction
states.

3. If the trace belongs to an object different from the curaject, it returns
the indirect interaction states..

Definition 4.3 (Map function:aASY)
Let o_.as be an AsmL objectyr € 7(AS.Envx AS Store). Thena AS] €
[(7(AS_Env x AS St or e) x P(Addr)) — 7(>))] is defined as:

13

a AS] = \(1,Esc).

. .
€ if 7=¢

let (eus, Sas) = p
in let Esc'=Escu
reachabl e AS(p(retVal),s,s) if 7=p— 7 e,(this)=o0_as
in {({eqs, Sqs, p(retVal), Esc),
(p(cur Met hod), p(i nVal)))
— o AS{(7',Esc’)

let (eus,Sas) =p
in {({eus, Sas, P, ESC), k) if 7=p— 7 ei(this)+#o0.as
— o AS{(7',Esc)

The abstraction function_AS° projects from the traces of an execution of the
set of relevant states to a specific object.

Definition 4.4 (Abstract functionia_AS°)

Leto_as be an AsmL objecil C 7(AS_Env x AS_St or e) a set of execution
traces ands the empty store. The abstraction functiemAS® € [(7 (AS_Env x
AS St ore) — P(7(>))] is defined as:

@ AS(T) = {a AS(a AS: (7,5¢),0) | T € T}

We can now state the relation between the whole AsmL progemastics
W[AS_Pg]and the AsmL class semanti€s,s[c_as]. The following theorem
states that all interactions that a progra® Pg performs on an objeai_AS an
instance of a clasS_AS are captured b 4s[c_as].

Theorem 4.1 (Soundness @ 45[c _as]) Let P45 be a whole AsmL program and
letc 5 € Cyg. Then

V Ry € ASEnvx AS Store.V T e T(ASEnvx AS St ore).
7€ W[ASPG] (Ry) : 37" € Cas[Cas] aAS°({7}) = {7}

Proof 3 (Sketch) We have to consider both cases wheontains an objeab 4,
instantiation ofm,s, and when it does not include any,s. For the second situa-
tion, the proof of the theorem is trivial considering thawill be an empty trace.

14

In the first case, the trace is not empty (let it#¥@. Since AsmL classes are initial-
ized in the main progranvhi n before the execution starts, there exist an initial
environment, store and set of variables that define theairtithce o, € 7. The
rest of the traces in” are interaction states aj 45 because they are obtained by
applyinga_AS° onr. Thereforer” € Cag[mys].

The following theorem states that all the behaviors comsitleyC 4s[c _as]
are feasible. In other terms, for any AsmL class, there &x@atAsmL program
that will contain all the possible behaviors of this class.

Theorem 4.2 (Completeness @t 45[]) Let ¢ 45 be an AsmL class. Then

VreT(X). 7€Cus[cas]:TASP e (Laspg). Ipo € AS_ENV X
AS_St or e. 30,45 instance ot 4. exists 7" € T(AS_Env x
AS Store). 7' € W[po] AN e AS°({7'}) = {7}

Proof 4 An AsmL program satisfying the previous theorem can be nariet! by
creating and instance @f 45 in theMai n function, the initial state corresponds to
the state when the class constructd®_Ct r , was executed. It is always possible
to construct bothAS_P and p,. For instance, there exist many other possible
constructions involving AsmL methods pre-conditions avat-gonditions.

5 Application

In this Section, we provide a direct application of the praguab AsmL semantics,
namely to prove the soundness of the transformation of AsigyistemC [10]
and vice-versa. The SystemC language is composed from 4 skisses and a
simulation kernel extending C++ to enable the modeling of glemsystems at a
higher level of abstraction than state-of-the-art HDL (tHeare Description Lan-
guages). However, except for small models, the verificatioBystemC designs
is a serious bottleneck in the system design flow. Direct molglecking of Sys-
temC designs is not feasible due to the complexity of thee®y€t library and its
simulator. To solve this problem, we proposed in [6] to tfatesSystemC models
to an intermediate representation in AsmL more suitabléddonal verification.
This approach reduced radically the complexity of the deaigthe point that we
were able to verify a complete PCI architecture using the SMddeh checker
[11].

15

In our verification methodology of Figure 1, we perform thedabchecking
of SystemC by translating the original design to an abstegmtesentation omit-
ting completely the details of the SystemC simulator. Theeg(or transformed)
program is modeled in AsmL to be cross-produced with theesygiroperty and
checked over the whole system'’s state space. We embed théPR§lerty Spec-
ification Language) [1] properties in the design as extemmahitors; hence, these
monitors can be used as stand-alone blocks to validate dévases, either at the
AsmL level by model checking or at the SystemC level by ABV. Tewe the
correctness of the model checking results at the AsmL lewehe original Sys-
temC program, we defined a set of rules that translate the fconeSystemC to
AsmL. These rules represented an informal representatitre soundness of the
approach.

SystemC (C++) Level — —
SystemC Design including

the Assertion Monitor

,_> Assertion Integrator 4—\
‘ Original SystemC Assertion Monitor in
Design SystemC
________ Syntactical ___________________________4p Syntactical
AsmL Level Transformation Transformation

Design Model in AsmL PSL Pro.pemes modeled
in AsmL
v Model Checki
odel Checking
AsmL Tool Configuration File]
v v

i |
i Output
L

Model Checking
Result

System’s FSM
or Partial FSM

Figure 1: Verification Methodology.

By providing a formalization of the SystemC and AsmL semaniicfixpoint
based on the OO general case given in [9], we proved in [7] tbhaevery Sys-
temC program, there exists an AsmL program preserving thee garoperties,
w.r.t. an observation function. The basic concept of this proof of soundness
is based on the systematic design of program transformftaomeworks defined
in [4]. Such a result will enable using a variety of formal lo{for e.g., SMV
for model checking [11]) or to use AsmL tool (Asmit) to gertera finite state

16

machine of the design.

6 Conclusion

In this report, we presented the fixpoint semantics of thératisstate machines
language (AsmL). Then, we proved the soundness and thectoess of the the
semantics of the AsmL class ASlass w.r.t. to a trace semantics of a the whole
AsmL program. Such a result presents a first step towardyiagdbrmal meth-
ods to AsmL. For instance, we used these semantics to prev&tmdness of a
transformation from AsmL to SystemC, which enabled verigyBystemC trans-
actional models. Furthermore, the concrete semanticsgefieed!, can be used to
construct sound abstract semantics allowing static codlysis or model chcking

of AsmL programs.

References

[1] Accellera Organization. Accellera property specificatanguage reference
manual, version 1.01. www.accellera.org, 2004.

[2] P. Cousot. Constructive design of a hierarchy of semaiatics transition
system by abstract interpretatiortheor. Comput. S¢i277(1-2):47-103,
2002.

[3] P. Cousot and R. Cousot. Systematic design of program asdhgne-
works. InProc. Symposium on Principles of Programming Languagages
269-282, San Antonio, Texas, USA, 1979.

[4] P. Cousot and R. Cousot. Systematic design of program tramsation
frameworks by abstract interpretation. Pnoc. Symposium on Principles of
Programming Languagegpages 178-190, Portland, Oregon, January 2002.

[5] Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essenéesioil.
Technical report, Microsoft Research Tech. Report MSR-TR-2Z004
March 2004.

[6] A.Habibi and S. Tahar. Design for verification of Systetn&hsaction level
models. InProc. Design Automation and Test in Eurgpéunich, Germany,
March 2005.

17

[7] A. Habibi and S. Tahar. On the transformation of System@s$mL using
abstract interpretatiorklectr. Notes Theor. Comput. S@005 (to appear).

[8] S. N. Kamin and U. S. Reddy. Two semantic models of objeetrbed
languages. pages 463—-495, 1994.

[9] F.Logozzo.Anhalyse Statique Modulaire de Langages a Objeh thesis,
Ecole Polytechnique, Paris, France, June 2004.

[10] Open SystemC Initiative. www.systemc.org, 2004.

[11] K. Oumalou, A. Habibi, and S. Tahar. Design for verifioatof a PCI bus
in SystemC. IrProc. Symposium on System-on-Cluages 201-204, Tam-
pere, Finland, November 2004.

18

