
SystemC Semantics in Fixpoint

Ali Habibi and Sofìene Tahar

Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada

Email: {habibi, tahar}@ece.concordia.ca

Technical Report

December 2004

Abstract

SystemC is among a group of system level design languages proposed to
raise the abstraction level for embedded system design and verification.
Defining the formal semantics of SystemC is an important and mandatory
step towards enabling the formal verification of SystemC. In this techni-
cal report, we present a sound and complete semantics of the main parts of
SystemC in fixpoint. Such a semantics are a precise and non ambiguous def-
initions of the SystemC library. They are very useful to guarantee a unique
implementation of the library and interpretation of its behaviour. Besides,
they can used in conducting formal proofs for sound abstractions or even to
construct syntactical transformers to other languages.

1

Contents

1 Introduction 3

2 Syntactical Domains 4

3 Fixpoint Semantics 5
3.1 Semantic Domains . 5
3.2 Whole SystemC Program Semantics 6
3.3 Module Semantics . 6

3.3.1 Module Constructor Semantics 7
3.3.2 Module Object Semantics 7

3.4 Soundness and Correctness of the Module Semantics 11

4 Conclusion 14

2

1 Introduction

SystemC [5] is an object-oriented system level language forembedded systems
design and verification. It is expected to make a stronger effect in the area of
architecture, co-design and integration of hardware and software. The SystemC
library is composed from a set of classes and a simulation kernel extending C++
to enable the modeling of complex systems at a higher level ofabstraction than
state-of-the-art HDL (Hardware Description Languages). However, except for
small models, the verification of SystemC designs is a serious bottleneck in the
system design flow. Direct model checking of SystemC designsis not feasible due
to the complexity of the SystemC library and its simulator.

In this report, we provide a formalization of the SystemC semantics in fix-
point. For instace, we will first enumerate the syntactical domains. Then, we
will provide the semantics of whole program and the semantics of SystemC mod-
ules. Finally, we will provide the proofs for the completeness and soundness of
the whole semantics. Our approach updates on the generic semantics provided
by Logozzo in [2] by: (1) modifying the syntactical domains to support SystemC
specific domains such as Modules and Signals; (2) upgrading the default environ-
ment and store to include the values of the signals in the previous, current and
next simulation cycles; (3) adding to the generic class semantics (in particular
to the class constructor) the information related to initializing the processes and
threads involved in the simulation; and (4) re-establishing the soundness and com-
pleteness proofs considering the updates and modificationsof points (1), (2) and
(3).

Related work to ours concerns mainly writing SystemC semantics. For in-
stance, several approaches have been used to write the SystemC semantics (e.g.,
using ASM is [3]). Denotational semantics [4] is found to be most effective since
objects can be expressed as fixpoints on suitable domains. Salem in [6] proposed
a denotational semantics for SystemC. However, the proposalin [6] was very
shallow and does not relate the semantics of the whole SystemC program to the
semantics of its classes. Besides, in all the previous works there was no proofs of
soundness of the presented semantics.

The rest of this report is organized as follows: Section 2 presents the main Sys-
temC syntactical domains. Section 3 presents the SystemC semantics in fixpoint.
Finally, Section 4 concludes the report.

3

2 Syntactical Domains

SystemC have a large number of syntactical domains. However, they are all based
on the singleSC Module domain. Hence, the minimum representation for a
general SystemC program is as a set of modules.

Definition 2.1 (SystemC Module:SC Module)
A SystemC Module is a set〈DMem, Ports, Chan, Mth, SC Ctr〉, whereDMem
is a set of the module data members,Ports is a set of ports,Chan a set of
SystemC Chan,Mth is a set of methods (functions) definition andSC Ctr the
module constructor.

Definition 2.2 (SystemC Port:SC Port)
A SystemC Port is a set〈IF, N, SC In, SC Out, SC InOut〉, whereIF is a
set of the virtual methods declarations,N is the number of interfaces that may be
connected to the port,SC In is an input port (provides only aRead method),
SC Out is an output port (provides only aWrite method) andSC InOut is an
input/output port (providesRead andWrite functions).

Definition 2.3 (SystemC Channel:SC Chan)
A SystemC Channel is a set〈SigMeth, CurrVal, PrevVal, NewVal,
SC Mutex, SC Semaph〉, whereSigMeth is a set of basic channel virtual
methods (including in particular theUpdate method),CurrVal the current
value of the signal,PrevVal its previous value,NewVal its value in the next
simulation cycle,Mutex is a mutex channel (including additional methods such
asLock andUnLock) andSC Semaph is a semaphore interface (including in
particular the number of concurrent accesses to the interface).

In contrast to default class constructors for OO languages,the SystemC mod-
ule constructorSC Ctr contains the information about the processes and threads
that will be executed during simulation, and their sensitivity lists, SC SL, speci-
fying which events can affect their states.

Definition 2.4 (SystemC Constructor:SC Ctr)
A SystemC Constructor is a set〈Name, Init, SC Pr, SC SSt〉, whereName is
a string specifying the module name,Init is a default class constructor,SC Pr
a set of processes andSC SSt is a set of sensitivity statements (to set the process
sensitivity listSC SL).

4

Definition 2.5 (SystemC Process:SC Pr)
A SystemC process is a set〈PMth, PTh, PCTh〉, wherePMth is a method pro-
cess (defined as a set〈Mth, SC SL〉 including the method and its sensitivity list),
PTh is a thread process (accepts a wait statement in comparison tothe method
process),PTh is a clocked thread process (sensitive to the clock event).

Definition 2.6 (SystemC Process Sensitivity List:SC SL)
A SystemC sensitivity list is a set〈SLS, SLD〉, whereSLS is a static sensitivity
list andSLD is a dynamic list. Both lists contain a set of eventsSC Event but
are different in the sense that one can be updated during the simulation while the
other is not changeable.

Definition 2.7 (SystemC Event:SC Event)
A SystemC event is a set〈t, notify, cancel〉, wheret specifies (in simulation
cycles) when the notification is supposed to be sent,notify the method used to
notify the owner module andcancel is the method used to cancel an event.

Definition 2.8 (SystemC Program:SC Pg)
A SystemC program is a set〈LSC Mod, SC main〉, whereLSC Mod is a set of SystemC
modules andSC main is the main function in the program that performs the
simulator initialization and contains the modules declarations.

Note that restricting our model to modules does not affect the validity of the
results since modules are the default syntactical domain for SystemC. All other
domains are built on top of it.

3 Fixpoint Semantics

3.1 Semantic Domains

In this section, we define the semantics of the whole SystemC program,W [[SC Pg]],
and the SystemC module,MSC [[m sc]]. Then, present the proofs (or proof sketches)
of the soundness and completeness ofMSC [[m sc]].

Definition 3.1 (Delta Delay:δd)
The SystemC simulator considers two phasesevaluateandupdate. The separation
between these two phases is calleddelta delay.

5

Definition 3.2 (SystemC Environment:SC Env)
The SystemC environment is the summation of the default C++ environment (Env)
as defined in [2] and the signal environment (Sig Store) specific to SystemC:
SC Env = Env + Sig Env = [Var → Addr]+ [SC Sig → Addr,Addr],
whereVar is a set of variables,SC Sig is a set of SystemC signals andAddr
⊆ N is a set of addresses.

Definition 3.3 (SystemC Store:SC Store)
The SystemC store is the summation of the default C++ store (Store) as defined
in [2] and the signal store (Sig Store): SC Store = Store + Sig Store
= [Addr→ Val]+ [(Addr, Addr) → (Val,Val)], whereVal is a set of values
such thatSC Env ⊆ Val.

Let R0 ∈ P(SC Env×SC Store) be a set of initial states,pcin be the en-
try point of the main functionsc main and→⊆: (SC Env × SC Store) ×
(SC Env×SC Store) be a transition relation.

3.2 Whole SystemC Program Semantics

The whole SystemC program semantics can be defined as the traces of the execu-
tions of the program starting from a set of initial statesR0. It can be expressed in
fixpoint semantics as follows:

Definition 3.4 (Whole SystemC Program Semantics:W [[SC Pg]])
LetSC Pg = 〈LSC Mod, SC main〉 be a SystemC program. Then, the semantics of
SC Pg, W [[SC Pg]] ∈P(SC Env×SC Store)→P(T (SC Env× SC Store))
is
W[[SC Pg]] (R0) = lfp ⊆

∅ λX. (R0) ∪ {ρ0 → . . . ρn → ρn+1| ρn+1 ∈ (SC Env×
SC Store) ∧ {ρ0 → . . . ρn} ∈ X ∧ ρn → ρn+1}

3.3 Module Semantics

A SystemC module is a particular C++ class where the constructor declares a set
of processes and thread that will executed during simulation according to a set of
events (timed or non-timed). The module semantics can be defined as the set of
all its instances. While and object module semantics reflectsthe evolution of the
object internal state.

6

3.3.1 Module Constructor Semantics

Definition 3.5 (Process Declaration:PR [[SC Pr]]))
LetSC Pr = 〈PMth,PTh, PCTh〉 be a SystemC process. Then, the semantics of
PR [[SC Pr]]) ∈ P(SC Env×SC Store) → P(T (SC Env× SC Store)) is
PR [[SC Pr]] (R0,M, SL) =

lfp ⊆
∅ λX, m, sl. (R0) ∪ {ρ0 → . . . ρn → ρn+1| ρn+1 ∈ (SC Env×

SC Store) ∧ {ρ0 → . . . ρn} ∈ X ∧ ρn → ρn+1 ∧ ρn+1(X) = (m, sl)}

Definition 3.6 (SystemC Module Constructor:PCtr [[SC Ctr]]))
Let SC Ctr = 〈Name, Init, SC Pr, SC SSt〉 be a constructor of a SystemC
module. Then, the semantics ofPCtr [[SC Ctr]] ∈ P(SC Env × SC Store) →
P(T (SC Env×SC Store)) is
PCtr[[SC Ctr]] (LP,M,SL) = lfp ⊆

∅ λ {(p1,m1, sl1), . . . , (pi,mi, sli), . . . ,
(pn,mn, sln)}.
∪(pi,mi,sli)∈Lp,m,sl

PR [[SC Pr]] (R0,M, SL)}

3.3.2 Module Object Semantics

In a general OO context, such as C++, an object can be defined a set of states
including a first (initial) state representing the object just after its creation and
a set of states resulting from the interaction of the object with its context [2].
In this case, the interaction can happen in two ways: (1) the context invokes an
object’s method, or (2) the context modifies a memory location reachable from
the object’s environment. In [2], this interaction was verywell defined using two
functionsnextd, for direct interactions, andnextind for indirect interactions
and the object semantics,O [[o]], was defined as:

O[[o]](v,s) = lfp ⊆
∅ λT . S0〈v, s〉 ∪ {σ0

l0→ . . .
ln−1

→ σn
ln→ σ′|

{σ0
l0→ . . .

ln−1

→ σn ∈ T , next(σn) ∋ 〈σ′, l′〉}
where next(σ) = nextd(σ) ∪ nextind(σ), l is a transition label andS0〈v, s〉 is a
set of initial states.

In addition to the semantics definition of an OO object in [2],a SystemC
method can be activated by the SystemC simulator through thesensitivity list of
the process. This interaction is a hybrid direct/inderect interaction because the
SystemC simulator will, according the state of the program events (that maybe
external to the module), invoke directly the concerned methods. First, we will
define the interaction states, then, we will provide the complete definition for the
direct, indirect and SystemC simulator based interaction functions.

7

Definition 3.7 (Interaction States)
The set of interaction states is

∑

= SC Env × SC Store × Dout × P(Addr)

After the creation of the module object, the reached states represent the initial
states defined as follows:

Definition 3.8 (Initial StatesS0〈vsc, ssc〉)
Let vsc ∈ Din be a SystemC object input value,ssc ∈ SC Store a store at
object creation time andSC Obj a SystemC module object. The set of initial
states ofSC Obj is:

S0〈vsc, ssc〉 = {〈e′sc, s
′
sc, φ, ∅〉 | PCtr[[SC Ctr]] (LP,M,SL) ∋ 〈e′sc, s

′
sc〉}

where: LP,M,SL = {(p1,m1, sl1), . . . , (pi,mi, sli), . . . , (pn,mn, sln)} is a list of
the all the module processes, methods, and sensitivity lists.

In the previous definitionφ is a void value (∈ Dout) meaning that the con-
structor does not return any value and therefore does not expose any address to
the context.

Definition 3.9 (Transition Labels:Label SC)
The set of transition labels isLabel SC = (Mth× Din) ∪ (SC Pr× Din) ∪ {k}.

In previous definition we distinguish three type of interactions corresponding
respectively to: (1) invoking a C++ method (direct interaction); (2) invoking a
SystemC process (interaction through the SystemC simulator); and (3) modifying
the memory location that is reachable from the the object environment (indirect
interaction). The transition functionnext SC is made up of three functions:
next SCdir, next SCpr andnext SCind.

Definition 3.10 (Direct interactions:next SCdir)
Let〈esc, ssc, vsc,Esc〉 ∈

∑

an interaction state. Then, the direct interaction func-
tion next SCdir ∈ [

∑

→ P(
∑

×Label SC)] is defined as:
next SCdir(〈esc, ssc, vsc,Esc〉) =

{〈〈e′sc, s
′
sc, v

′
sc,Esc’〉, 〈mth, vin〉〉 | mth ∈ Mth, vin ∈ Din,

M[[mth]](vin, esc, ssc) ∋ (v′
sc, e

′
sc, s

′
sc), Esc’ = Esc ∪ reachable(v′

sc, e
′
sc)}.

whereM[[mth]]is the semantics of generic OO method as defined in [2].

The functionreachableis updated helper function of the one defined in [2].
For instance, given an addressvsc and a storessc, reachabledetermines all the
addresses that are reachable fromvsc. In the SystemC context, this function acts
only on the data members of the module according to the following recursive
definition:

8

Definition 3.11 (The functionreachable)
The functionreachable∈ [Dout × SC Store] →P(Addr) is defined as follows:
reachable(vsc,ssc) =

if vsc ∈ Addr then
{Addr} ∪ {reachable(e′sc(dmem),s′sc) |
∃ sc module =
〈DMem, Ports, Chan, Mth, SC Ctr〉,
dmem ∈ DMem, ssc(vsc)
is an instance ofsc module, ssc(ssc(vsc)) = e′sc}

else∅.

In the case of interactions related to changing the sensitivity list of a processor,
the functionnext SCpr considers the method that was affected to the process in
the module constructor. Then, the invocation of the method is similar to the direct
interaction.

Definition 3.12 (Process interactions:next SCpr)
Let 〈esc, ssc, vsc,Esc〉 ∈

∑

an interaction state. Then, the process interaction
functionnext SCpr ∈ [

∑

→ P(
∑

×Label SC)] is defined as:
next SCpr(〈esc, ssc, vsc,Esc〉) =

{〈〈e′′sc, s
′′
sc, v

′′
sc,Esc

′′〉, 〈pr,m, sl, vin〉〉 | pr ∈ SC Pr, vin ∈ Din,
PCtr[[SC Ctr]](pr,m, sl) ∋ (v′

sc, e
′
sc, s

′
sc),

M[[m]](vin, e
′
sc, s

′
sc) ∋ (v′′

sc, e
′′
sc, s

′′
sc),

Esc′′ = Esc ∪ reachable(v′′
sc, e

′′
sc)}.

The third possible interaction corresponds to indirect interaction which may
happen when an address escapes from an object. In that case, the context can
modify the content of this address with any value. The function next SCind
defines this type of interaction:

Definition 3.13 (Indirect interactions:next SCind)
Let 〈esc, ssc, vsc,Esc〉 ∈

∑

an interaction state. Then, the indirect interaction
functionnext SCind ∈ [

∑

→ P(
∑

×Label SC)] is defined as:
next SCind(〈esc, ssc, vsc,Esc〉) =

{〈〈esc, s
′
sc, φ,Esc〉, k〉 | ∃ α ∈ Esc. s′sc ∈ updatesc(α, s′sc)}.

The updatesc function is an extension of theupdatefunction defined in [2]
in the sense that it considers SystemC signals in addition toC++ variables. It is
defined as follows:

9

Definition 3.14 (The functionupdatesc)
The functionupdatesc∈ [Addr × SC Store → P(SC Store)] is defined as
follows:

updatesc(α,ssc) = {s′sc | ∃ v ∈ Val. s′sc = ssc[α 7→ v] }.

updatesc returns all the possible stores wheressc(α) takes all the possible
values in values domainVal.

Using the definitions ofnext SCdir, next SCpr andnext SCind, we de-
fine the global transition functionnext SC as:

Definition 3.15 (Transition function:next SC)
Let st = 〈esc, ssc, vsc,Esc〉 ∈

∑

be an interaction state. Then, the transition
functionnext SC ∈ [

∑

→ P(
∑

×Label SC)] is defined as:
next SC(st) = next SCdir(st) ∪ next SCpr(st) ∪ next SCind(st)

Using the transition function, a SystemC module object semantics is defined
as follows:

Definition 3.16 (SystemC Module Object:OSC [[o sc]])
Let vsc ∈ Val be a SystemC object input value andssc ∈ SC Store a
store at object creation time. Then the SystemC object semantics, OSC [[o sc]] ∈
[Din×Store] →P(T (Σ)) is defined as:

OSC [[o sc]]) (vsc, ssc) = lfp ⊆
∅ λT . S0〈v, s〉 ∪ {σ0

l0→ . . .
ln−1

→ σn
ln→ σ′|

{σ0
l0→ . . .

ln−1

→ σn ∈ T , next SC(σn) ∋ 〈σ′, l′〉}}
where

∑

= SC Env × SC Store × Dout × P(Addr) is a set of interaction
states,Din andDout are respectively the semantic domains for the input and output
values.

Theorem 3.1 Let
Fsc = λT . S0〈v, s〉 ∪ {σ0

l0→ . . .
ln−1

→ σn
ln→ σ′|

{σ0
l0→ . . .

ln−1

→ σn ∈ T , next SC(σn) ∋ 〈σ′, l′〉}
ThenOSC [[o sc]]) (vsc, ssc) = ∪ω

n=0Fsc
n(∅)

Proof 1 The proof is immediate from the fixpoint theorem in [1].

Definition 3.17 (SystemC Module Semantics:MSC [[m sc]]))
Let m sc = 〈DMem, Ports, Chan, Mth, SC Ctr〉 be a SystemC module, then
its semanticsMSC [[m sc]]) ∈ P(T (Σ)) is:
MSC [[m sc]]= {OSC [[o sc]] (vsc, ssc) | o sc is an instance ofm sc,

v sc ∈ D in, s sc ∈ SC Store}

10

Theorem 3.2 (SystemC Module semantics in fixpoint) Let

Gsc〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0
l0→ . . .

ln−1

→ σn
l′

→ σ′|

{σ0
l0→ . . .

ln−1

→ σn ∈ T , nextsc(σn) ∋ 〈σ′, l′〉}

ThenMSC [[m sc]] (vsc, ssc) = lfp ⊆
∅ Gsc〈 Din×Store〉

Proof 2 Although the SystemC model presents some additional functionalities on
top of C++, the proof of this theorem is similar to the proof of Theorem 3.2 in [2].
For instance, considering the definition ofMSC and applying in order Definition
3.16, Theorem 3.1 and the fixpoint theorem in [1], the proof isstraightforward.

3.4 Soundness and Correctness of the Module Semantics

The last step in the SystemC fixpoint semantics is to relate the module semantics
to the whole SystemC program semantics. For this purpose, weconsider updated
versions of the functionssplit (α◦

q), project (α◦
↑) andabstract(α◦) as defined in

[2]. The new functions are upgraded to support the SystemC simulation semantics,
environment and store. For example,split SC (α SC◦

q) can drop the memory
reached by the environment for a method that was previously executed in the
current simulation cycle because a method cannot be executed again until the next
cycle starts.

The basic concept behind defining the Module object semantics is to cut all
the instances not involving the object. For this purpose, two helper functions are
required: (1)α SC◦

q cuts all the traces involving the object instances; and (2)
α SC◦

↑ maps all the cut instances to interaction states.
Lets first define the helper functionsplit SC that given a traceτ and an

objecto sc returns a pair consisting of the last state of the prefix ofτ made up of
the last state of the execution of a method or process ofo sc and the remaining
suffix of prefix of τ . In contrast to the general case of OO programs, for Sys-
temC, we consider both parts defaults C++ methods and processes according to
the following definition:

Definition 3.18 (The split helper functionsplit SC)
Leto sc be a SystemC module object,τ ∈ T (SC Env× SC Store),
CurProcess ∈ SC Pr, CurMethod ∈ Mth and pcexit be the exit point of
τ(0)(CurMethod). Thensplit SC∈ [(T (SC Env× SC Store)→ (SC Env×
SC Store) × T (SC Env × SC Store)] is defined as:

11

split SC(τ)= let n = min{i ∈ N | τ(i)(CurProcess)=
〈CurMethod,SL〉 ∧
τ(i)(SL)=true ∧ τ(i)(pc)=pcexit ∧
τ(i)(this)= o sc ∧ τ(i)(StackHeight)=
τ(0)(StackHeight)}

in 〈τ(n), τ(n + 1) → . . . → τ(Len(τ) − 1)〉

The cut functionα SC◦
q considers 4 different cases:

1. for empty trace,ǫ, it returns an empty trace.

2. if trace is part of the object trace then we split it recursively keeping only
the last state of the execution of a method or process. The rest of the trace
is are removed.

3. If this is not the current object and the store is not changed, then, we con-
tinue with the rest of the trace.

4. If this is not the current object and the store is changed, then, we keep the
current trace and we continue with the rest of the traces.

Definition 3.19 (Cut function:α SC◦
q)

Let o sc be a SystemC module object,τ ∈ T (SC Env× SC Store). Then
α SC◦

q ∈ [(T (SC Env× SC Store)× SC Store)→T (SC Env× SC Store)]
is defined as:

α SC◦
q = λ(τ,Slast).







































































ǫ if τ = ǫ

let 〈ρ′, τ ′〉 = split SC(τ)
in let 〈e′sc, s

′
sc〉 = ρ′ if τ = 〈esc, ssc〉 → τ ′′, esc(this) = o sc

in ρ′ → α SC◦
q(τ

′, s′sc)
if τ = 〈esc, ssc〉 → τ ′′,

α SC◦
q(τ

′′,Slast) esc(this) 6= o sc,

S/S(o sc) = Slast/S(o sc)

if τ = 〈esc, ssc〉 → τ ′′,

〈esc, ssc〉 → α SC◦
q(τ

′′,S) esc(this) 6= o sc,

S/S(o sc) 6= Slast/S(o sc)

The second part of the abstraction includes theα SC◦
↑ function which maps

the states of a trace to interaction states.

12

Definition 3.20 (Map function:α SC◦
↑)

Let o sc be a SystemC module object,τ ∈ T (SC Env× SC Store). Then
α SC◦

↑ ∈ [(T (SC Env× SC Store) × P(Addr)) → T (
∑

)] is defined as:
α SC◦

↑ = λ(τ,Esc).







































































ǫ if τ = ǫ

let 〈esc, ssc〉 = ρ

in let Esc′ = Esc∪
reachable SC(ρ(retVal), ssc) if τ = ρ → τ ′, esc(this) = o sc

in 〈〈esc, ssc, ρ(retVal),Esc〉,
〈ρ(curMethod), ρ(inVal)〉〉
→ α SC◦

↑(τ
′,Esc′)

let 〈esc, ssc〉 = ρ

in 〈〈esc, ssc, φ,Esc〉, k〉 if τ = ρ → τ ′, esc(this) 6= o sc
→ α SC◦

↑(τ
′,Esc)

The abstraction functionα SC◦ projects from the traces of an execution the
set of relevant states to a specific object.

Definition 3.21 (Abstract function:α SC◦)
Let o sc be a SystemC module object,T ⊆ T (SC Env× SC Store) a set of
execution traces ands∅ the empty store. The the abstraction functionα SC◦ ∈
[(T (SC Env× SC Store) →P(T (

∑

)] is defined as:
α SC◦(T) = {α SC◦

↑(α SC◦
q (τ ,s∅),∅) | τ ∈ T }

Theorem 3.3 (Soundness ofMSC [[m sc]]) Let MSC be a whole SystemC program
and letmSC ∈ MSC . Then
∀ R0 ∈ SC Env× SC Store. ∀ τ ∈ T (SC Env× SC Store).

τ ∈ W[[SC Pg]] (R0) : ∃τ ′ ∈ MSC [[mSC]]. α SC◦({τ}) = {τ ′}

Proof 3 (Sketch) We have to consider both cases whenτ contains an objectoSC ,
instantiation ofmSC , and when it does not include anyoSC . For the second situa-
tion, the proof of the theorem is trivial considering thatτ will be an empty trace.
In the first case, the trace is not empty (let it beτ ′′). Since SystemC modules are
initialized in the main programsc main before the simulation starts, there ex-
ist an initial environment, store and set of variables that define the initial trace
σ0 ∈ τ ′′. The rest of the traces inτ ′′ are interaction states ofoSC because they
are obtained by applyingα SC◦ on τ . Therefore,τ ′′ ∈ MSC [[mSC]].

13

Theorem 3.4 (Completeness ofMSC [[]]) Let mSC be a SystemC module. Then
∀τ ∈ T (Σ). τ ∈ MSC [[mSC]] : ∃ SC P ∈ 〈LSC Pg〉. ∃ρ0 ∈ SC Env×

SC Store. ∃ oSC instance ofmSC . exists τ ′ ∈ T (SC Env×
SC Store). τ ′ ∈ W[[ρ0]] ∧ α SC◦({τ ′}) = {τ}

Proof 4 (Sketch) A SystemC program satisfying the previous theoremcan be con-
structed by creating and instance ofmSC in the sc main function, the initial
state corresponds to the state when the module’s constructor, SC Ctr, was exe-
cuted. An execution of a method ofmSC corresponds to executing a method thread
(setting of the events in its sensitivity list toActive) and a change of a port cor-
responds to updating its internal signal by the new values. Hence, it is always
possible to construct bothSC P andρ0. For instance, there exist many other pos-
sible constructions involving SystemC threads, clocked threads, etc.

4 Conclusion

In this report, we presented the fixpoint semantics of the SystemC library. Then,
we proved the soundness and the correctness of the the semantics of the Sys-
temC basic class SCModule w.r.t. to a trace semantics of a the whole SystemC
program. Such a result presents a first step towards applyingformal methods to
SystemC. In particular, the concrete semantics, we defined, can be used to con-
struct sound abstract semantics allowing static code analysis or model checking
of SystemC programs.

References

[1] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proc. Symposium on Principles of Programming Languages, pages 269–
282, San Antonio, TX, USA, 1979.

[2] F. Logozzo.Anhalyse Statique Modulaire de Langages a Objets. PhD thesis,
Ecole Polytechnique, Paris, France, June 2004.

[3] W. Müller, J. Ruf, and W. Rosenstiel.SystemC Methodologies and Applica-
tions. Kluwer Academic Pub., 2003.

[4] P. D. Mosses.Denotational semantics, volume B ofHandbook of Theoretical
Computer Science, chapter 11, pages 575–631. Elsevier Science B.V., 1990.

14

[5] Open SystemC Initiative. http://www.systemc.org, 2004.

[6] A. Salem. Formal semantics of synchronous SystemC. InProc. Design, Au-
tomation and Test in Europe Conference, pages 376–381, Munich, Germany,
March 2003.

15

