SystemC Semantics in Fixpoint
Ali Habibi and Sofene Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

Email: {habibi, tahaf@ece.concordia.ca

Technical Report

December 2004

Abstract

SystemC is among a group of system level design languages proposed to
raise the abstraction level for embedded system design and verification.
Defining the formal semantics of SystemC is an important and mandatory
step towards enabling the formal verification of SystemC. In this techni-
cal report, we present a sound and complete semantics of the main parts of
SystemC in fixpoint. Such a semantics are a precise and hon ambiguous def-
initions of the SystemC library. They are very useful to guarantee a unique
implementation of the library and interpretation of its behaviour. Besides,
they can used in conducting formal proofs for sound abstractionseortev
construct syntactical transformers to other languages.

Contents

1 Introduction 3
2 Syntactical Domains 4
3 Fixpoint Semantics 5

3.1 SemanticDomains
3.2 Whole SystemC Program Semantics
3.3 Module Semantics
3.3.1 Module Constructor Semantics
3.3.2 Module Object Semantics
3.4 Soundness and Correctness of the Module Semantics 11

4 Conclusion 14

1 Introduction

SystemC [5] is an object-oriented system level languagemobedded systems
design and verification. It is expected to make a strongercefh the area of

architecture, co-design and integration of hardware aftsdvace. The SystemC
library is composed from a set of classes and a simulatiomekextending C++

to enable the modeling of complex systems at a higher levabsfraction than

state-of-the-art HDL (Hardware Description Languagespwelver, except for

small models, the verification of SystemC designs is a sermitleneck in the

system design flow. Direct model checking of SystemC desgnast feasible due

to the complexity of the SystemC library and its simulator.

In this report, we provide a formalization of the SystemC aetits in fix-
point. For instace, we will first enumerate the syntacticaindins. Then, we
will provide the semantics of whole program and the semamiSystemC mod-
ules. Finally, we will provide the proofs for the completea@and soundness of
the whole semantics. Our approach updates on the generensemprovided
by Logozzo in [2] by: (1) modifying the syntactical domaimssupport SystemC
specific domains such as Modules and Signals; (2) upgradendefault environ-
ment and store to include the values of the signals in theiquey current and
next simulation cycles; (3) adding to the generic class sgicsg (in particular
to the class constructor) the information related to ihdiag the processes and
threads involved in the simulation; and (4) re-establighire soundness and com-
pleteness proofs considering the updates and modificatiopgints (1), (2) and
(3).

Related work to ours concerns mainly writing SystemC seroantFor in-
stance, several approaches have been used to write then&ystamantics (e.qg.,
using ASM is [3]). Denotational semantics [4] is found to besteffective since
objects can be expressed as fixpoints on suitable domailesn$a[6] proposed
a denotational semantics for SystemC. However, the propodél was very
shallow and does not relate the semantics of the whole Sgsfegram to the
semantics of its classes. Besides, in all the previous wbekgtwas no proofs of
soundness of the presented semantics.

The rest of this report is organized as follows: Section 2@nés the main Sys-
temC syntactical domains. Section 3 presents the System@rgies in fixpoint.
Finally, Section 4 concludes the report.

2 Syntactical Domains

SystemC have a large number of syntactical domains. Hoywiagrare all based
on the singleSC_Mbdul e domain. Hence, the minimum representation for a
general SystemC program is as a set of modules.

Definition 2.1 (SystemC ModuleSC_Modul e)

A SystemC Module is a s@Mem Por t s, Chan, M h, SC Ct r), whereDivVem
is a set of the module data membelPart s is a set of portsChan a set of
SystemC Charivt h is a set of methods (functions) definition a8@.Ct r the
module constructor.

Definition 2.2 (SystemC PortSC_Port)

A SystemC Port is a s€t F, N, SC.I n, SC Qut, SC| nCut), wherel F is a
set of the virtual methods declaratiori¢js the number of interfaces that may be
connected to the por§C.I n is an input port (provides only & ad method),
SC_Qut is an output port (provides only @ i t e method) and5C_I nQut is an
input/output port (provideRead andW i t e functions).

Definition 2.3 (SystemC Channe8C Chan)

A SystemC Channel is a & gMet h, Curr Val , PrevVal , Newval ,

SC Mut ex, SC Senmaph), whereSi gMet h is a set of basic channel virtual
methods (including in particular th&pdat e method),Cur r Val the current
value of the signalPr evVal its previous valueNewVal its value in the next
simulation cycleMut ex is a mutex channel (including additional methods such
asLock andUnLock) and SC_Senaph is a semaphore interface (including in
particular the number of concurrent accesses to the intefa

In contrast to default class constructors for OO languatesSystemC mod-
ule constructoSC Ct r contains the information about the processes and threads
that will be executed during simulation, and their sengjtilists, SC_SL, speci-
fying which events can affect their states.

Definition 2.4 (SystemC ConstructoSC Ct r)

A SystemC Constructor is a s@ane, | ni t, SC Pr, SC SSt), whereNane is

a string specifying the module namai t is a default class constructdgC_Pr

a set of processes ai®C_SSt is a set of sensitivity statements (to set the process
sensitivity listSC_SL).

Definition 2.5 (SystemC ProcesSC Pr)

A SystemC process is a §8M h, PTh, PCTh), wherePM h is a method pro-
cess (defined as a s@it h, SC_SL) including the method and its sensitivity list),
PTh is a thread process (accepts a wait statement in comparisanetonethod
process)PTh is a clocked thread process (sensitive to the clock event).

Definition 2.6 (SystemC Process Sensitivity LISC SL)

A SystemC sensitivity list is a sE8Ls, SLp), whereSLs is a static sensitivity
list and SLp, is a dynamic list. Both lists contain a set of eveB&Event but
are different in the sense that one can be updated duringithelation while the
other is not changeable.

Definition 2.7 (SystemC EvenSC_Event)

A SystemC eventis a g¢t not i fy,cancel), wheret specifies (in simulation
cycles) when the notification is supposed to be sesit} f y the method used to
notify the owner module artncel is the method used to cancel an event.

Definition 2.8 (SystemC ProgramSC_Pg)

A SystemC program is a Sgitsc wg, SC_mai n), wherel sc wq iS @ set of SystemC
modules andSC_mai n is the main function in the program that performs the
simulator initialization and contains the modules declaoas.

Note that restricting our model to modules does not affeetvdidity of the
results since modules are the default syntactical domaisystemC. All other
domains are built on top of it.

3 Fixpoint Semantics

3.1 Semantic Domains

In this section, we define the semantics of the whole Systero@am,W [SC_Pg],
and the SystemC modul]s-[msc]. Then, present the proofs (or proof sketches)
of the soundness and completenesblgf.[msc].

Definition 3.1 (Delta Delay:d,)
The SystemC simulator considers two phasesuateandupdate The separation
between these two phases is caltkgita delay

Definition 3.2 (SystemC Environmen8C _Env)

The SystemC environment is the summation of the default Cwito@ment Env)
as defined in [2] and the signal environmefi @_St or e) specific to SystemC:
SCEnv = Env + Si g_.Env = [Var — Addr]+ [SC.Si g — Addr ,Addr],
whereVar is a set of variablesSC_Si g is a set of SystemC signals aAddr

C Nis a set of addresses.

Definition 3.3 (SystemC StoreSC_St or e)

The SystemC store is the summation of the default C++ s&irer(e) as defined
in [2] and the signal store$i g_St ore): SCStore=Store + Sig_Store
=[Addr — Val]+ [(Addr, Addr) — (Val ,val)], whereVal is a set of values
such thatSC_Env C Val .

Let Ry € P(SC_Env xSC_St or e) be a set of initial stategc;, be the en-
try point of the main functiorsc_mai n and —C: (SCEnv x SC St ore) x
(SC_Env xSC_St or e) be a transition relation.

3.2 Whole SystemC Program Semantics

The whole SystemC program semantics can be defined as tke tbthe execu-
tions of the program starting from a set of initial stalgs It can be expressed in
fixpoint semantics as follows:

Definition 3.4 (Whole SystemC Program Semantigg] SC_Pg])
Let SC Pg = (Lsc.md, SC_.mai n) be a SystemC program. Then, the semantics of
SC Pg, W[SCPg] e P(SCEnvxSC St ore)— P(7(SCEnvx SC_St or e))
is
W[SC—Pg] (RO) = lfp (z)g)‘X (RO) U {pU — - Pn pn+1| Pnt1 € (SC—EnV><
SCStore)A{po— ... pu} € X A pn — pni1}

3.3 Module Semantics

A SystemC module is a particular C++ class where the consirdeiclares a set
of processes and thread that will executed during simulatezording to a set of
events (timed or non-timed). The module semantics can beetkés the set of
all its instances. While and object module semantics reftbetgvolution of the

object internal state.

3.3.1 Module Constructor Semantics

Definition 3.5 (Process DeclarationPy [SC_Pr 1))
LetSC Pr = (PM h,PTh, PCTh) be a SystemC process. Then, the semantics of
Pr[SCPr]) € P(SCEnvxSC.Store)— P(7(SCEnvx SCStore))is
Pr[SCPr](Ry, M,SL) =
|fp(% AX, my sl (Ry) U{po— ... pn— pnt1| pni1 € (SCENV x
SCStore)A{po— .. pn} € X A pn = pni1 A pni1(X) = (m, sl)}

Definition 3.6 (SystemC Module ConstructdP¢;, [SC.Ct r]))
LetSCCir = (Nane, | nit, SCPr, SC.SSt) be a constructor of a SystemC
module. Then, the semanticslif,. [SC.Ctr] € P(SCEnv x SC St ore) —
P(T(SCEnv xSC_St or e)) is
PCtr[SC.Ct r] (LP,M,SL) = pr Q% A {(pl,ml, 8[1), e (pi,mi, Sli), RN
(Pn> M, $ln) }-
U(pi7mi75li)€Lp,m,sl]P)R [SC_Pr] (RQ, M, SL)}

3.3.2 Module Object Semantics

In a general OO context, such as C++, an object can be definetdoh smtes

including a first (initial) state representing the objedtjafter its creation and
a set of states resulting from the interaction of the objeith ws context [2].

In this case, the interaction can happen in two ways: (1) tmext invokes an
object’s method, or (2) the context modifies a memory locateachable from
the object’s environment. In [2], this interaction was vemgll defined using two
functionsnext 4, for direct interactions, andext ; ,q for indirect interactions
and the object semantic®,[0], was defined as:

O[o](v, s)=Mp & AT. So(v,8) U {og > ... "5 o, 1 /|

l ln—1

{og = ... > o, €T, next(o,) > (o)}
where nextf) = next 4(c) U next ,q(0), [is a transition label an8q (v, s) is a
set of initial states.

In addition to the semantics definition of an OO object in [2]SystemC
method can be activated by the SystemC simulator throughehsitivity list of
the process. This interaction is a hybrid direct/inderatgriaction because the
SystemC simulator will, according the state of the progranés (that maybe
external to the module), invoke directly the concerned wdsh First, we will
define the interaction states, then, we will provide the detepdefinition for the
direct, indirect and SystemC simulator based interactimections.

Definition 3.7 (Interaction States)
The set of interaction states}s = SC_Env x SC_St or e x Dy, x P(Addr)

After the creation of the module object, the reached staj@esent the initial
states defined as follows:

Definition 3.8 (Initial StatesSy (v, Ssc))
Letv,, € D, be a SystemC object input valug, € SC St ore a store at
object creation time an®C_Cbj a SystemC module object. The set of initial
states oSC_ oj is:

SO<USC7 SSC> = {<€{sc7 S;C, b, (Z)) ‘ IP)Ct?”[SCCtr] (LP,M,SL> = (620, 5lsc>}
where: Lp s = {(p1,ma, slh), .., (Dismiy sli), ..., (Pn, Ma, sly) } is @ list of
the all the module processes, methods, and sensitivisy list

In the previous definitior is a void value € D,,;) meaning that the con-
structor does not return any value and therefore does natsexgny address to
the context.

Definition 3.9 (Transition LabelsLabel _SC)
The set of transition labels Isabel SC=(M h x D) U(SCPr x D) U {k}.

In previous definition we distinguish three type of interacs corresponding
respectively to: (1) invoking a C++ method (direct interanji (2) invoking a
SystemC process (interaction through the SystemC sinmjlated (3) modifying
the memory location that is reachable from the the objectremment (indirect
interaction). The transition functionext SC is made up of three functions:
next _SCy;(, next _SGC,, andnext _SG .

Definition 3.10 (Direct interactions:next _SCy;)
Let (e, sse, Use, ESC) € > an interaction state. Then, the direct interaction func-
tionnext SCyi, € [>_ — P(>_ xLabel _SC)| is defined as:
next _SCyir ({€sc, Sses Vse, ESC)) =
{{{(e,, $.cs V., ESC™), (mth, v;y,)) | mth € M h, v, € Di n,

sc) Tscr) Tse)

M[rt h](vin, €se, Sse) D (VL. €L, S5.), ESC’ = ESC U reachablé@’ e)}.

c) ~sc) T sc

whereM][mt hlis the semantics of generic OO method as defined in [2].

The functionreachableis updated helper function of the one defined in [2].
For instance, given an address and a stores,., reachabledetermines all the
addresses that are reachable fram In the SystemC context, this function acts
only on the data members of the module according to the faligwecursive
definition:

Definition 3.11 (The functiorreachablg
The functiorreachables [D,,; x SC_St or e] — P(Addr) is defined as follows:
reachablé,.,s..) =
if v, € Addr then
{Addr } U {reachabl¢’, (dem).5.,) |
Jdsc_nodul e =
(DMem Por t s, Chan, M h, SC.Ctr),
dmem € DME‘”] Ssc(vsc)
is an instance ofc _nodul e, s.(ss.(vs.)) = €.

sc

elsel).

In the case of interactions related to changing the seitgilist of a processor,
the functionnext _SG,,; considers the method that was affected to the process in
the module constructor. Then, the invocation of the metbaihnilar to the direct
interaction.

Definition 3.12 (Process interactionsnext _SC,,)
Let (es., Sse, Vs, ESC) € > an interaction state. Then, the process interaction
functionnext _SC,, € [~ — P(3_ xLabel _SC)] is defined as:
next _SCy ((esc, Sse, Vse, ESC)) =
{{(e,, s” v Esc”), (pr,m,sl,vy,)) | pr € SCPr, v, € Di n,

sc) Tscr Ysc)

Pow [SC.Cr](pr,m,sl) 3> (vl €., s..),

Sc? ~sct Tsc

M[M(vin, €., S.) 2 (V2. €., s”

sc) “scr T sc/?

Esc” = Esc Ureachabl@” e”.)}.

sc? Ysc.

The third possible interaction corresponds to indireatratction which may
happen when an address escapes from an object. In that kbassgritext can
modify the content of this address with any value. The fuctiext SGC 4
defines this type of interaction:

Definition 3.13 (Indirect interactions:next _SG nq)
Let (es., Sse, Vs, ESC) € > an interaction state. Then, the indirect interaction
functionnext _SC 4 € [>_ — P(>_ xLabel _SC)| is defined as:
next _SG ng({€sc, Sse, Vse, ESC)) =
{{{ese, 8%y 0, ESC), k) | 3 € ESC. 5., € updatesda, s..) }.

)T sc

The updatesc function is an extension of thepdatefunction defined in [2]
in the sense that it considers SystemC signals in additi&@te variables. It is
defined as follows:

Definition 3.14 (The functiorupdatesc)
The functionupdatesc € [Addr x SC_St ore — P(SC_St or e)] is defined as
follows:

updatesqa,ss.) = {s.. | Jv € Val . .. = sg.[a — 1] }.

updatesc returns all the possible stores wherg(«) takes all the possible
values in values domaival .

Using the definitions ohext _SCyi, next _SC,, andnext _SG 4, we de-
fine the global transition functionext _SC as:

Definition 3.15 (Transition function:next _SC)
Letst = (ese, Sse, Use, ESC) € Y be an interaction state. Then, the transition
functionnext SCe [} — P(>_ xLabel _SC)] is defined as:

next _SC(st) = next _SGCyi (st) U next _SG,, (st) U next _SG q(st)

Using the transition function, a SystemC module object sditsis defined
as follows:

Definition 3.16 (SystemC Module Objed®s-[0_sc])

Letv,, € Val be a SystemC object input value and < SCStore a
store at object creation time. Then the SystemC object sreaB [0.SC] €
D hxStore] — P(7(X)) is defined as:

Osc[0-SC]) (vyes 5c) = Ifp § AT Solv,s) U{op ... " 0, 2 |
{00 & ... "5 5, € T, next _SC(o,)) > (o',) }}
where) = SCEnv x SCStore x Dy, x P(Addr) is a set of interaction

statespD ,, andD,,; are respectively the semantic domains for the input andudutp
values.

Theorem 3.1 Let
Fse = AT. Sp(v,s) U{og Jo, gt o, o
{00 2 ... "3 6, € T, next _SC(o,,) 5 (o', 1)}
Then@SC[O—SC]) (Usca Ssc) = U‘;L):OFsgnab)

Proof 1 The proof is immediate from the fixpoint theorem in [1].

Definition 3.17 (SystemC Module Semantid¥:s-[msc]))

Letmsc = (DMem Port s, Chan, M h, SCCt r) be a SystemC module, then

its semanticlsc[msc]) € P(7 (X)) is:

Mgc[msc]= {Ogc[0-sc] (vs, ssc) | 0-SC is an instance ofmsc,
vsceDin,ssceSCStore}

10

Theorem 3.2 (SystemC Module semantics in fixpoint) Let
Gyo(S)= AT. {So(v,s) | (v,s) € S}U{op % ... "5 0, L o]
{00 b, | ey on € T,next s¢(o,) 3 (o', 1)}
ThenMgc[msc] (vse, 55c) = Ifp 5 Gye(Dy xSt or €)

Proof 2 Although the SystemC model presents some additional unadities on
top of C++, the proof of this theorem is similar to the proof dfebrem 3.2 in [2].
For instance, considering the definition Mg~ and applying in order Definition
3.16, Theorem 3.1 and the fixpoint theorem in [1], the prostigightforward.

3.4 Soundness and Correctness of the Module Semantics

The last step in the SystemC fixpoint semantics is to relaertbdule semantics
to the whole SystemC program semantics. For this purposepn&der updated
versions of the functionsplit («;), project («f) andabstract(«°) as defined in

[2]. The new functions are upgraded to support the SystemGlation semantics,
environment and store. For exampplit SC (a_SC.) can drop the memory
reached by the environment for a method that was previousguted in the

current simulation cycle because a method cannot be exkagten until the next
cycle starts.

The basic concept behind defining the Module object senmidito cut all
the instances not involving the object. For this purpose, iteiper functions are
required: (1)a_SC. cuts all the traces involving the object instances; and (2)
«_SC; maps all the cut instances to interaction states.

Lets first define the helper functiaspl i t _SC that given a trace- and an
objecto_sc returns a pair consisting of the last state of the prefix mfade up of
the last state of the execution of a method or process ®¢ and the remaining
suffix of prefix of 7. In contrast to the general case of OO programs, for Sys-
temC, we consider both parts defaults C++ methods and pracasserding to
the following definition:

Definition 3.18 (The split helper functiospl i t _SC)

Leto_sc be a SystemC module objectc 7 (SC_Env x SC St or e),

Cur Process € SCPr, Cur Met hod € M h and pc.,;; be the exit point of
7(0)(Cur Met hod). Thenspl i t SCe [(7(SC_Env x SC_St or e) — (SC_Env x
SC.St ore) x T(SC_Env x SC_St or e)] is defined as:

11

split SC(r)= letn= min{i € N|7(i)(Cur Process)=
(Cur Met hod, SL) A
7(1)(SL)=true A 7(i)(PC)=PCerit A
7(i)(t hi s)= o.sc A 7(i)(St ackHei ght)=
7(0)(St ackHei ght)}
in (t(n),7(n+1) — ... - 7(Len(r) — 1))

The cut functiom_SC.. considers 4 different cases:
1. for empty traceg, it returns an empty trace.

2. if trace is part of the object trace then we split it recteli keeping only
the last state of the execution of a method or process. Thefrése trace
is are removed.

3. If this is not the current object and the store is not chdngeen, we con-
tinue with the rest of the trace.

4. If this is not the current object and the store is chandeeh,twe keep the
current trace and we continue with the rest of the traces.

Definition 3.19 (Cut function:a_SC..)
Let o_.sc be a SystemC module objeet,c 7(SCEnvx SC St ore). Then
a_SC. € [(T(SCEnvx SC St ore) x SC_St ore) — 7T (SCEnv x SC_St or e)]
is defined as:

a_SC. = A7, Sy ast)-

4 .
€ if 7=¢

let (o,7")=split _SC(r)
inlet (e.s,.)=/p i f 7= (s, Ssc) — 7" esc.(this)=0.scC
in J—aSC(r,s,)
i f 7= {es,Ssc) — 7",
a-SC(7", S ast) es(this)+#o.sc,
S/ S(o.sc) — SI ast/ S(o.sc)
if 7= (es,Ssc) — 7",

(€sc, Sse) — - SCL(T",S) esc(t hi s) #0.sc,
S/ S(o.sc) 7£ SI ast/ S(o.sc)

The second part of the abstraction includes4h8C; function which maps
the states of a trace to interaction states.

12

Definition 3.20 (Map function:a_SCY)
Let o_sc be a SystemC module objeet,c 7(SCEnvx SCStore). Then
a_SC; € [(T(SCEnv x SC St or e) x P(Addr)) — 7(3_)] is defined as:
a_SC} = \(7,Esc).
(¢ If r=c¢
let (es,Ssc)=p
inlet Esc'=EscU
reachabl e SC(p(retVal),s,.) if 7=p— 7 e,(this)=o0.sc
in ({es,ssp(retVal) Esc),
(p(cur Met hod), p(i nVal)))
— o SC}(7',Esc’)

| et <€SC7SSC> =p
in ({es,Sse, ®,ESC), k) if 7=p— 7 es(this)#0.sc
| — a-SC(7',Esc)

The abstraction function._SC° projects from the traces of an execution the
set of relevant states to a specific object.

Definition 3.21 (Abstract functionia_SC°)
Leto_sc be a SystemC module objett,C 7(SCEnvx SC St ore) a set of
execution traces andy the empty store. The the abstraction functiaisC° €
[(7(SCEnvx SCStore)— P(7T(>))]is defined as:

a_SC(T) = {a_SC(a_-SC. (1,89)0) | T€ T }

Theorem 3.3 (Soundness d¥ls-[msc]) Let Myc be a whole SystemC program
and letmyc € Mye. Then
VRy € SCEnvx SCStore.VreT(SCEnvx SC.Store).

7€ W[SCPg] (Ry) : 37" € Mgc[myc]. o SC({7}) = {7’}

Proof 3 (Sketch) We have to consider both cases wheontains an objeabsc,
instantiation ofimg, and when it does not include any,-. For the second situa-
tion, the proof of the theorem is trivial considering thatvill be an empty trace.
In the first case, the trace is not empty (let it1§. Since SystemC modules are
initialized in the main progransc _mai n before the simulation starts, there ex-
ist an initial environment, store and set of variables thafide the initial trace
oo € 7". The rest of the traces in” are interaction states ab s~ because they
are obtained by applying_SC> on 7. Therefore;” € Mgc[myc].

13

Theorem 3.4 (Completeness of;-[]) Let myo be a SystemC module. Then
VT € T(Z) T E Mgc[Nkco] :dSCPe <L5(;_pg>. dpo € SC_Env x
SC_St or e. 3 04¢ instance ofryc. exists 7" € T(SC_Env x
SCStore). 7 € Wp] A aSC({7'}) = {7}

Proof 4 (Sketch) A SystemC program satisfying the previous theca@rbe con-
structed by creating and instance of- in the sc_mai n function, the initial
state corresponds to the state when the module’s constr&Toet r , was exe-
cuted. An execution of a methodf- corresponds to executing a method thread
(setting of the events in its sensitivity listAative) and a change of a port cor-
responds to updating its internal signal by the new valueend¢, it is always
possible to construct botBC P and p,. For instance, there exist many other pos-
sible constructions involving SystemC threads, clockezhtls, etc.

4 Conclusion

In this report, we presented the fixpoint semantics of thee®y€ library. Then,

we proved the soundness and the correctness of the the $sesnainthe Sys-
temC basic class S®lodule w.r.t. to a trace semantics of a the whole SystemC
program. Such a result presents a first step towards apgigintal methods to
SystemC. In particular, the concrete semantics, we defiregdbe used to con-
struct sound abstract semantics allowing static code aisaty model checking

of SystemC programs.

References

[1] P. Cousot and R. Cousot. Systematic design of program aséigseworks.
In Proc. Symposium on Principles of Programming Languageges 269—
282, San Antonio, TX, USA, 1979.

[2] F. Logozzo.Anhalyse Statique Modulaire de Langages a ObjBtsD thesis,
Ecole Polytechnique, Paris, France, June 2004.

[3] W. Miller, J. Ruf, and W. RosenstieBystemC Methodologies and Applica-
tions Kluwer Academic Pub., 2003.

[4] P.D. MossesDenotational semantigyolume B ofHandbook of Theoretical
Computer Sciengehapter 11, pages 575-631. Elsevier Science B.V., 1990.

14

[5] Open SystemC Initiative. http://www.systemc.org, 200

[6] A. Salem. Formal semantics of synchronous System@rd&c. Design, Au-
tomation and Test in Europe Conferenpages 376-381, Munich, Germany,
March 2003.

15

