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�Z = {zi}
= {xi + jyi}
= {xi}+ j{yi}
= �X + j�Y

(1)

(: complexN)

(: realN × realN)

� ∀Z. −−Z = lambda i. −− Z$i

� ∀X Y. X+ Y = lambda i. X$i+ Y$i

� ∀c X. c % X = lambda i. c ∗ X$i

Table 1: Basic Operations and Definition on Complex Vector

Definitions Formalized signification

Negation |− !Z. -- Z = (lambda i. (-- Z$i))

Addition |− !X Y. X + Y = (lambda i. X$i + Y$i)

Identity element of addition |− vcx zero = lambda i. Cx(&0)

Subtraction |− !X Y. X - Y = (lambda i. X$i - Y$i)

Scalar Multiplication |− !c X. c % X = (lambda i. c * X$i)

type emf = point → time → complex3 × complex3

: point → time → complex3

type fabry perot = interface× interface× real× real

Constraint 1 (Valid Electromagnetic Field)
� ∀emf. is valid emf emf ⇔

(∀r t. corthogonal (e of emf emf r t) (h of emf emf r t))

�U(�r, t) = �a(�r)ejφ(�r)ejωt

1

Formalization:	  Light	  as	  Electromagnetic	  Field	  
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We	  need	  to	  formally	  define	  the	  concept	  of	  orthogonality	  of	  complex	  vectors!	  	  
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Formalization:	  Monochromatic	  Plane	  Waves	  

All	  the	  components	  of	  the	  electromagneCc	  field	  are	  harmonic	  funcCons	  of	  Cme	  
with	  the	  same	  frequency.	  	  
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Definition 1 (Monochromatic Plane Wave)

� plane wave (k : real3) (ω : real) (E : complex3) (H : complex3) : emf

= λ(r : point) (t : time). (e−ii(k·r−ωt)
E, e−ii(k·r−ωt)

H)

Constraint 2 (Valid Monochromatic Wave)

� ∀emf. is valid wave wave ⇔
(is valid emf wave ∧
(∃k w e h.
&0 < w ∧ ¬(k = vec 0) ∧ wave = plane wave k w e h ∧
corthogonal e (vector to cvector k) ∧
corthogonal h (vector to cvector k))

Definition 2 (Boundary Conditions)

� boundary conditions emf1 emf2 n p t ⇔
n× e of emf emf1 p t = n× e of emf emf2 p t ∧
n× h of emf emf1 p t = n× h of emf emf2 p t

Constraint 3 (Plane Wave and a Plane Interface)

� is plane wave at interface i emfi emfr emft ⇔
is valid interface i ∧ is plane wave emfi ∧
is plane wave emfr ∧ is plane wave emft ∧
let (n1, n2, p, n) = i in

let (ki, kr, kt) = map triple k of w (emfi, emfr, emft) in
let (ei, er, et) = map triple (norm ◦ e of w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map triple (norm ◦ k of w ) (emfi, emfr, emft) in
0 ≤ (ki · norm of plane p) ∧ (kr · norm of plane p) ≤ 0 ∧
0 ≤ (kt · norm of plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
∃k0. norm ki = k0n1 ∧ norm kr = k0n1 ∧ norm kt = k0n2 ∧
∃η0. hi = ein1/η0 ∧ hr = ern1/η0 ∧ ht = etn2/η0 ∧ ei �= 0 ∧ er �= 0

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at interface i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at interface i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(norm of plane (plane of interface i))

2
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Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧
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Physical	  Constraint:	  Plane	  wave	  at	  Plane	  Interface	  

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

Constraint 5 (Plane Wave and a Plane Interface)
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Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3



Formalization:	  Plane	  Interface	  

7	  

!"#$%&'("'()*'+,(*#-%.*

!

"
#

$!%!

$"

%" $#
%#

/,
(*
#-
%.
*

,0,1

&"

&#

&!

Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧

Physical	  Constraint:	  Plane	  wave	  at	  Plane	  Interface	  

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

Constraint 5 (Plane Wave and a Plane Interface)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
let (ei, er, et) = map trpl (norm ◦ e of w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map trpl (norm ◦ k of w ) (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
(∀pt. pt ∈ p ⇒ ∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
∃k0. norm ki = k0n1 ∧ norm kr = k0n1 ∧ norm kt = k0n2 ∧
∃η0. hi = ein1/η0 ∧ hr = ern1/η0 ∧ ht = etn2/η0

type interface = medium # medium # plane # real3

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

type interface = medium # medium # plane # real3

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3

	  

“medium”	  indicates	  the	  refracCve	  index.	  

“plane”	  indicates	  the	  interface	  between	  the	  two	  medium.	  

“real3”	  indicates	  the	  propagaCon	  direcCon.	  	  

	  

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

type interface = medium # medium # plane # real3

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3
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Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧

Physical	  Constraint:	  Plane	  wave	  at	  Plane	  Interface	  

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

Constraint 5 (Plane Wave and a Plane Interface)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
let (ei, er, et) = map trpl (norm ◦ e of w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map trpl (norm ◦ k of w ) (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
(∀pt. pt ∈ p ⇒ ∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
∃k0. norm ki = k0n1 ∧ norm kr = k0n1 ∧ norm kt = k0n2 ∧
∃η0. hi = ein1/η0 ∧ hr = ern1/η0 ∧ ht = etn2/η0

type interface = medium # medium # plane # real3

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3
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Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧

•  Law	  of	  Reflec-on	  

	  

Definition 3 (Checking if the wave is a plane wave at plane interface.)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

Constraint 5 (Plane Wave and a Plane Interface)

�def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
let (ei, er, et) = map trpl (norm ◦ e of w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map trpl (norm ◦ h of w ) (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧
(∀pt. pt ∈ p ⇒ ∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
∃k0. norm ki = k0n1 ∧ norm kr = k0n1 ∧ norm kt = k0n2 ∧
∃η0. hi = ein1/η0 ∧ hr = ern1/η0 ∧ ht = etn2/η0

type interface = medium # medium # plane # real3

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is plane wave at int i emfi emfr emft ∧
is incident basis (x, y, z) emfi i ⇒
k of w emfi · x = 0 ∧ k of w emfr · x = 0 ∧ k of w emft · x = 0

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ∧
non null emfr ⇒

are sym wrt (−(k of w emfi)) (k of w emfr)
(normal of plane (plane of interface i))

3
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Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧

•  Law	  of	  Reflec-on	  

•  Snell's	  Law	  

	  

Theorem 3 (Law of Reflection)
� ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ∧

non null emfr ⇒
are sym wrt (−(k of w emfi)) (k of w emfr) (normal of interface i)

Theorem 4 (Snell’s Law)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emft ⇒
let θ = λemf. vectorangle (k of w emf) (normal of interface i) in
n1 sin(θ emfi) = n2 sin(θ emft)

Theorem 5 (Fresnel Equations)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒
let (n1, n2, p, n) = i in
let mag = λemf. (TE axis i emfi emfr emft · FST(mag at pln p n emf)) in
let θ = λemf. vectorangle(k of w emfi) n in

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi

4
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Fig. 1. Plane Interface Between Two Mediums

two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

In order to show how the effectiveness of our formalization, we prove some
properties of waves at an interface (e.g., the law of reflection, i.e., a wave is
reflected in a symmetric way to the normal of the surface) derived from the
boundary conditions on electromagnetic fields. These conditions state that the
projection of the electric and magnetic fields shall be equal on both sides of the
interface plane. This can be formally expressed by saying that the cross product
between those fields and the normal to the surface shall be equal:

Definition 15 (Boundary Conditions).

� boundary_conditions emf1 emf2 n p t ⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in
let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w ) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w ) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p ⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧

•  Law	  of	  Reflec-on	  

•  Snell's	  Law	  

•  Fresnel	  Equa-ons	  in	  TE	  mode	  

	  

Theorem 3 (Law of Reflection)
� ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ∧

non null emfr ⇒
are sym wrt (−(k of w emfi)) (k of w emfr) (normal of interface i)

Theorem 4 (Snell’s Law)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emft ⇒
let θ = λemf. vectorangle (k of w emf) (normal of interface i) in
n1 sin(θ emfi) = n2 sin(θ emft)

Theorem 5 (Fresnel Equations)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒
let (n1, n2, p, n) = i in
let mag = λemf. (TE axis i emfi emfr emft · FST(mag at pln p n emf)) in
let θ = λemf. vectorangle(k of w emfi) n in

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi

Theorem 6 (Fresnel Equations)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Constraint 6 (Valid Fabry Pérot Resonator)

�def is valid fp fp ⇔
let (Mf, Mb, a, L) = fp in
is valid interface Mf ∧ is valid interface Mb ∧
n2 of interface Mf = n1 of interface Mb ∧
0 < a ∧ 0 < L ∧
(∃α. (0 < α ∧ normal of interface Mf = α % normal of interface Mb)

4
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Fabry-‐Perot	  Resonator	  Structure	  	  
Two	  parallel	  parCally	  reflecCng	  mirrors	  	  

	  

Based	  on	  the	  concepts	  of	  Construc-ve	  Interference	  of	  electromagne-c	  fields	   10	  
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	  	  Physical	  Constraint:	  Valid	  Fabry	  Perot	  Resonator	  

Theorem 3 (Law of Reflection)
� ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ∧

non null emfr ⇒
are sym wrt (−(k of w emfi)) (k of w emfr) (normal of interface i)

Theorem 4 (Snell’s Law)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emft ⇒
let θ = λemf. vectorangle (k of w emf) (normal of interface i) in
n1 sin(θ emfi) = n2 sin(θ emft)

Theorem 5 (Fresnel Equations)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒
let (n1, n2, p, n) = i in
let mag = λemf. (TE axis i emfi emfr emft · FST(mag at pln p n emf)) in
let θ = λemf. vectorangle(k of w emfi) n in

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi

Theorem 6 (Fresnel Equations)
� ∀i emfi emfr emft.

is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi

�def is valid interface i =
let(n1, n2, p, n) = i in
0 < n1 ∧ 0 < n2 ∧ plane p ∧ is normal to plane n p

Constraint 6 (Valid Fabry Pérot Resonator)

�def is valid fp fp ⇔
let (Mf, Mb, a, L) = fp in
is valid interface Mf ∧ is valid interface Mb ∧
n2 of interface Mf = n1 of interface Mb ∧
0 < a ∧ 0 < L ∧
(∃α. (0 < α ∧ normal of interface Mf = α % normal of interface Mb)

4

�Z = {zi}
= {xi + jyi}
= {xi}+ j{yi}
= �X + j�Y

(1)

(: complexN)

(: realN × realN)

� ∀Z. −−Z = lambda i. −− Z$i

� ∀X Y. X+ Y = lambda i. X$i+ Y$i

� ∀c X. c % X = lambda i. c ∗ X$i

Table 1: Basic Operations and Definition on Complex Vector

Definitions Formalized signification

Negation |− !Z. -- Z = (lambda i. (-- Z$i))

Addition |− !X Y. X + Y = (lambda i. X$i + Y$i)

Identity element of addition |− vcx zero = lambda i. Cx(&0)

Subtraction |− !X Y. X - Y = (lambda i. X$i - Y$i)

Scalar Multiplication |− !c X. c % X = (lambda i. c * X$i)

type emf = point → time → complex3 × complex3

: point → time → complex3

type fabry perot = interface× interface× real× real

Constraint 1 (Valid Electromagnetic Field)
� ∀emf. is valid emf emf ⇔

(∀r t. corthogonal (e of emf emf r t) (h of emf emf r t))

�U(�r, t) = �a(�r)ejφ(�r)ejωt

1
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Ef	   Eout	  Eb	  
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Theorem 7 (Magnitude of Ef , Eb, Eout)
� ∀ emf fp.

let (Mf, Mb, a, l) = fp in
let (emfi, emfr, emft) = (emf, reflected Mf emf, transmitted Mf emf) in
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in
let k = n1n2

�k of w emfi� in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1

n2
sin θ1) in

let θ3 = arcsin(n2
n3
sin θ2) in

is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧

tm mode Mf emfi emfr emft ⇒
let (rf, tf) = (n2 cos θ1−n1 cos θ2

n1 cos θ2+n2 cos θ1
, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = (n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in
mag (Ef emfi fp) = tf

1−rfrbe−(a+2jk)l mag emfi ∧
mag (Eb emfi fp = rbe

−( a
2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a2+jk)l

1−rfrbe−(a+2jk)l mag emfi

5
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Theorem 7 (Magnitude of Ef , Eb, Eout)
� ∀ emf fp.

let (Mf, Mb, a, l) = fp in
let (emfi, emfr, emft) = (emf, reflected Mf emf, transmitted Mf emf) in
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in
let k = n1n2

�k of w emfi� in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1

n2
sin θ1) in

let θ3 = arcsin(n2
n3
sin θ2) in

is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧

tm mode Mf emfi emfr emft ⇒
let (rf, tf) = (n2 cos θ1−n1 cos θ2

n1 cos θ2+n2 cos θ1
, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = (n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in
mag (Ef emfi fp) = tf

1−rfrbe−(a+2jk)l mag emfi ∧
mag (Eb emfi fp = rbe

−( a
2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a2+jk)l

1−rfrbe−(a+2jk)l mag emfi

tf = tb =
√
0.1 ∧ rf = rb =

√
0.9 ∧ e−aL = 0.98

5

! = 638.8 ±  40 nm Iout
Iin

! 0.7
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Intensity	  RaCo	  
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Intensity	  RaCo	  

Theorem 7 (Magnitude of Ef , Eb, Eout)
� ∀ emf fp.

let (Mf, Mb, a, l) = fp in
let (emfi, emfr, emft) = (emf, reflected Mf emf, transmitted Mf emf) in
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in
let k = n1n2

�k of w emfi� in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1

n2
sin θ1) in

let θ3 = arcsin(n2
n3
sin θ2) in

is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧

tm mode Mf emfi emfr emft ⇒
let (rf, tf) = (n2 cos θ1−n1 cos θ2

n1 cos θ2+n2 cos θ1
, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = (n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in
mag (Ef emfi fp) = tf

1−rfrbe−(a+2jk)l mag emfi ∧
mag (Eb emfi fp = rbe

−( a
2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a2+jk)l

1−rfrbe−(a+2jk)l mag emfi

tf = tb =
√
0.1 ∧ rf = rb =

√
0.9 ∧ e−aL = 0.98

n1 of interface Mf = n2 of interface Mb

n1 = n3

I = cn�0
2 �E · E∗ �

5

“c”	  :	  speed	  of	  light	  in	  vacuum.	  	  
“n”	  :	  refracCve	  index.	  	  
“ε0”:	  	  vacuum	  permievity.	  	  
“E”:	  complex	  amplitude	  of	  electric	  field.	  	  
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Intensity	  RaCo	  
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let (emfi, emfr, emft) = (emf, reflected i emf, transmitted i emf) in
is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧
tm mode Mf emfi emfr emft ⇒
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in
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let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1
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sin θ1) in

let θ3 = arcsin(n2
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sin θ2) in
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) in
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n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in
mag (Ef emfi fp) = tf

1−rfrbe−(a+2jk)l mag emfi ∧
mag (Eb emfi fp = rbe

−( a
2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a2+jk)l

1−rfrbe−(a+2jk)l mag emfi
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let k = n1n2
�k of w emfi� in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1

n2
sin θ1) in
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, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = (n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

tm mode Mf emfi emfr emft ∧
n1 of interface Mf = n2 of interface Mb ⇒

let S = c(n1 of interface Mf)�0
2

in

intensity S (Eout emfi fp)
intensity S emfi

= t2ft
2
be

−al

(1−rfrbe−al)2(1+ 4rfrbe
−al

(1−rfrbe
−al)2

sin2(kl))
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Intensity	  RaCo	  
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at

the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction

as the TE mode component of emfi, emfr, and emft . The quantity
mag emfr
mag emfi

is called the reflection coefficient

of the interface i for the wave emfi. The quantity
mag emft
mag emfi

is called the transmission coefficient of the interface

i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential

parameters of any optical interface. All the above results are essential to reason about any optical system. In

particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental

functions properties and involved rigorous human interaction. The major advantage of these formalizations is

the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.

Obviously, their development is significantly harder than their informal counterparts, especially since proofs in

physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are

justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot

resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,

lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting

mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-

magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially

transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,

propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected

wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves

Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three

electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from

the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the

energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model

of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the

system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free

Theorem 7 (Magnitude of Ef , Eb, Eout)
� ∀ emf fp.

let (Mf, Mb, a, l) = fp in
let (emfi, emfr, emft) = (emf, reflected Mf emf, transmitted Mf emf) in
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in
let k = n1n2

�k of w emfi� in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin(n1

n2
sin θ1) in

let θ3 = arcsin(n2
n3
sin θ2) in

is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧

tm mode Mf emfi emfr emft ⇒
let (rf, tf) = (n2 cos θ1−n1 cos θ2

n1 cos θ2+n2 cos θ1
, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = (n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in

let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in
mag (Ef emfi fp) = tf

1−rfrbe−(a+2jk)l mag emfi ∧
mag (Eb emfi fp = rbe

−( a
2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a2+jk)l

1−rfrbe−(a+2jk)l mag emfi

tf = tb =
√
0.1 ∧ rf = rb =

√
0.9 ∧ e−aL = 0.98

5

! = 638.8 ±  40 nm Iout
Iin

! 0.7

ü System	  Model	  ð	  System	  Specifica-on	  



Conclusion	  

•  A	  framework	  to	  formalize	  electromagneCc	  (and	  ray)	  opCcs	  

•  FormalizaCon	  of	  the	  infrastructures	  and	  fundamentals	  

•  Many	  components	  can	  be	  addressed	  
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Future	  Work	  

•  Enrich	  the	  libraries	  of	  opCcs	  

•  Make	  a	  connecCon	  between	  our	  approach	  and	  tradiConal	  
approaches	  
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Axioms	  
&	  	  

Lemmas	  

Formal	  Constraints	  

Theorem	  Prover	  

Formal	  Proof	  of	  System	  ProperCes	  

Developing	  and	  Enriching	  
Libraries	  

by	  automated	  reasoning?	  

Networks	  of	  MMSs	  &	  	  
Support	  of	  MKM	  



THANK	  YOU!	  

Formalization of Optics:  
hvg.ece.concordia.ca/projects/optics/ 

 


