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Formalization: Light as Electromagnetic Field

A Field: a physical quantity associated with each point of space-time

Type definition:
type emf = point — time — complex® X complex®

Physical constraints:
* Electric field and Magnetic Fields are Orthogonal

~ Vemf. is_valid emf emf &
(Vr t. corthogonal (e of emf emf r t) (h_of emf emf r t))

We need to formally define the concept of orthogonality of complex vectors! ( :



Formalization of Complex Vector Calculus

The HOL Light library of Multivariate Analysis
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Formalization: Monochromatic Plane Waves

All the components of the electromagnetic field are harmonic functions of time
with the same frequency.

U(7,t) = @(F)ei* et

- plane wave (k: real®) (w:real) (E: complex®) (H: complex®) : emf
= A\(r : point) (t : time). (e kT wt)E g-iilkr—wt)y)

Physical constraints:

~ Vemf. is valid wave wave <
(is_valid_emf wave A
(dk w e h.
&0 <w A —(k=vec 0) A wave = plane wave k w e h A
corthogonal e k A corthogonal h k)




Formalization: Plane Interface
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Formalization: Plane Interface N A
i ’E 2
ar <\\\\: \0 Normal to the interface >
Physical Constraint: Plane wave at Plane Interface o
Fd4et 1is_plane_wave_at_int i emf; emf, emf, & M
is_valid_interface i P :
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Formalization: Plane Interface b

ny

Physical Constraint: Plane wave at Plane Interface o
Fd4et 1is_plane_wave_at_int i emf; emf, emf, & M
is_valid_interface i P 2

type interface = medium # medium # plane # real’
“medium” indicates the refractive index.
“plane” indicates the interface between the two medium.

“real’®” indicates the propagation direction.

F4ef 1s_valid_interface i =
let(n17n27p7n) =1 1in
O<n; AN O<n, AN plane p A is_normal to planenp

Normal to the interface

>
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Formalization: Plane Interface N A
N / ’E ki
ar <\\\\: /////Klet Normal to the interface >
Physical Constraint: Plane wave at Plane Interface o
Fd4et 1is_plane_wave_at_int i emf; emf, emf, & M
is_valid_interface i A non.null emf; A & :

is_plane wave emf; A 1is_plane wave emf, A 1s_plane_wave emf, A

let (n4,ny,p,n) =1 in

let (ki,ky, k) = map trpl k of w (emf;, emf,, emf,) in

let (ej,er,e;) =map_trpl (norm o e of w) (emfl,emfr,emft) in

let (hl,hr,ht) = map_trpl (norm o k of w ) (emf;, emf,, emf,) in
<(kij-n) A (ky-n) <0 A 0< (ks n) A

(th. pt € p = Vt. boundary conditions (emf; + emf,) emf; n pt t) A

dko. norm k; = kon; A norm k, = kon; A norm ki = kon, A

1. h; =eing /Mo A hy =eni/ne A hy = egny/no
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Formalization: Primitive Rules b

np

° \////
* Law of Reflection o,
- Vi emf; emf, emf.,. M
is_plane wave_at_int i emf; emf, emf; A :

non_null emf, =
are sym wrt (—(k of w emf;)) (k_of w emf,)
(normal_of plane (plane_of_interface i))
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Formalization: Primitive Rules e =
\ tE, ki
* Law of Reflection 0,5

* Snell's Law M

~ Vi emf; emf, emf,. -
is plane wave at_int i emf; emf, emf, A
non_null emf, =

let # = demf. vectorangle (k of w emf) (normal of interface i) in
n; sin(f emf;) = n, sin(f emf,)




Formalization: Primitive Rules N A
ar <\i\\\\: \et Normal to the interface >
»  Law of Reflection 02
Snell's Law IRE//:
* Fresnel Equations in TE mode H
— Vi emf; emf, emf,.
is_plane wave_at_int 1 emf; emf, emf; A
non_null emf, A non_null emf.
A\ te_mode 1 emf; emf, emf, =
n; ccos(f emf;) — ny ccos(f emfy)
mag emt n; ccos(f emfi) 4+ ny ccos(f emfy) mag emt; /\

nac emf. — 2n; ccos(f emf;) mac emf
g t 7 nj; ccos(f emf;) + ny ccos(f emfy) & .




Towards Formalization of Optical Systems

System Description System Properties
Axioms & Lemmas

Complex Vectors | Euclidian Space Formal Mode| Formal Specification
Medium
Primitive Rules

Fundamental Optical Components HOL Light

Higher Order Logic

IOICICIUIUICIUTUICISUTCIC RO TCIC L) Formal Proof of System Properties




Fabry-PerotResonator Structure

Two parallel partially reflecting mirrors
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Based on the concepts of Constructive Interference of electromagnetic fields




Formalization of Fabry Perot Resonator

FP R Model FP Resonator
esonator Mode Specification

Higher Order Logic Formal Model Formal Specification
Axioms & Lemmas
Complex Vectors Euclidian Space

HOL Light

(Formal Proof of System Properties)




Formalization of Fabry Perot Resonator

PR Model FP Resonator
Sl MoEE Specification

Hishar Ordar L amic STV

type fabry_perot — interface X interface X real X real

Physical Constraint: Valid Fabry Perot Resonator

~4er 1is_valid fp fp &
let (Mg, Mp,a,L) = fp in
is_valid_interface My A 1s_valid_interface My A
n, of _interface Mf = n,;_of_interface My A
O<a N O<LA
(Ja. (0 < a A normal of interface M; = a % normal of interface M)

N -
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Formalization of Fabry Perot Resonator

Higher Ord

. .. FP Resonator

Incident Light g; g

H/_/

Front Mirror M

Back Mirror My,

ut.1
t2 .
3

-

9

[ ]




Formalization of Fabry Perot Resonator

—V emf fp.

is valid FP M¢ My a1l A 1s_plane wave_at_int M; emf; emf, emf; A

tm_mode M emf; emf, emf, =

__ (npcosfi—nj cos by 2n4 cos 04 .
let (rf7 tf) - (n1 cos 0>+ns cos 01’ ny cos Oy+ns cos 64 ) Lo

___ (n3cosfy—ns cos b3 2n5 cos 05 .
let (rb7 tb) - (ng cos 03+ns3 cos 05’ ny cos Oz3+ns3 cos 05 ) Lo

let mag = demf. (TM_axis i emf; emf, emf, - FST(mag at pln p n emf)) in
mag (E¢ emf; fp) = - mag emf; A

1—rfrbe_(a+2jk)1
mag (E, emf; fp = rye~(z13%)! nag (E; emf; fp) A
totpo— (301

1—rirpe—(at+2jk)l

N— i

mag (E,u. emf; fp) = mag emf;
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Case study: Intensity Ratio of a Fabry Perot Resonator
Tty = Ty, = V 0.1 A e — Iy — V 0.9 A e_aL = 0.98

—— ——
Front Mirror M Back Mirror M,
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Formalization of Intensity Ratio of FP Resonator

System Description Intensity Ratio

[ =0 | BB

Higher Ord

“c” : speed of light in vacuum.

“n” : refractive index.

“€,”: vacuum permittivity.

“E”: complex amplitude of electric field.

= A 4

EssssssssEsEEEEEEEEES Gmal Proof of FP Resonator PrOpertD




Formalization of Intensity Ratio of FP Resonator
Intensity ratio:

Intensity Ratio
~V emnf fp.

is valid FP M¢ My al A is_plane wave_at_int M¢ emf; emf, emf; A

tm_mode M; emf; emf, emf. A
n,_of_interface M = n,_of _interface M, =

24,2 —al
tftbe
4rfrbe_a1

(1——rfrbe‘*ﬂ)2(14—(1_rfrbe_al)

EssssssssEsEEEEEEEEES Qrmal Proof of FP Resonator Propert|9

intensity ratio emf fp =

5 sin? (k1))




Formalization of Intensity Ratio of FP Resonator
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Case study: Intensity Ratio of a Fabry Perot Resonator

ts =ty = Vv 0.1 A s —= Ip — V 0.9 A e_aL = 0.98

Higher Order

H_/
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Conclusion

* A framework to formalize electromagnetic (and ray) optics
* Formalization of the infrastructures and fundamentals

*  Many components can be addressed




Future Work

* Enrich the libraries of optics

* Make a connection between our approach and traditional
approaches
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