Introduction to Our Research in Formal Math and Our Interest in Formal Physics

Cezary Kaliszyk

Josef Urban

University of Innsbruck

Radboud University

August 25, 2014

Outline

Why Are We Here?

What is Our Research?

What Could Be the More Immediate Results?

Why Are We Here? - Part I

- ▶ We develop proof automation for HOL Light and are interested in its use in larger projects
- ▶ We are interested in presenting formal proofs
- ▶ We are also generally interested in examples of formalizations that need computer algebra (near future work)

Why Are We Here? - Part II

- ▶ We are interested in formal physics: unlike math this is not just a deductive science how will formalization work?
- ▶ 50 years from now, exact sciences will very likely be to a large extent understandable to computers how can we get there?
- ▶ What are the bottlenecks for formalizing physics?
- ▶ What are the things physicists can gain?
- ▶ semantic search, verified computer algebra and reasoning, automation of reasoning, better formal treatment of various physical models and theories that can be inconsisten
- ▶ better integration with math: having it all in one formal framework allows different experts to collaborate
- better education (linking of formal theories to wikipedia, etc.) ...

Why Are We Here? - Part III

- ▶ What are the immediate applications of formal physics?
- ► Can we convince at least some physicists/engineers that they need formal proofs?
- ▶ Optics? Quantum computers/cryptography?
- ▶ Security of nuclear reactors? Large Hadron Colliders?
- Space exploration? (some formal verification done in NASA E. Denney), etc.

What is Our Research

- ▶ Proof automation in large theories (HOL Light, Mizar, Isabelle, HOL, ...)
- ▶ AI and automated reasoning research over large formal theories
- ► Formalization, managing large formal repositories (wikis), tools for presentation and authoring of formal math
- ► Tools/systems for translating between various ITP and ATP systems and formalisms (HOLs, Isabelle, Mizar, Vampire, SMTs, etc.)

What Could Be the More Immediate Results?

- ► Some of our systems working and being useful on the physics formalizations
- ▶ Perhaps a short CICM (MKM/Calculemus/DML) paper on the topic/prospects of physics automation/presentation/formalization?