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Abstract—Traditionally, model order reduction methods have
been used to reduce the computational complexity of math-
ematical models of dynamic systems while preserving their
functional characteristics. This technique can also be used to
fasten analog circuit simulations without sacrificing their highly
nonlinear behavior. In this paper, we present an iterative ap-
proach for reducing the computational complexity of nonlinear
analog circuits using piecewise linear approximations, K-means
clustering, and Krylov space projection techniques. We show
that, using our approach, the robustness of the reduced models is
enhanced because of better selection of linearized points obtained
through qualitative circuit simulation. We model primary circuit
inputs, design initial conditions, and circuit parameters as fuzzy
variables with different distributions in qualitative simulations.
We then iteratively fine-tune the reduced models until a model is
achieved that meets a predefined performance and accuracy con-
formance criteria. The proposed model order reduction method
supports both flat and hierarchical circuit analysis thereby
making it suitable for fast and accurate simulation of larger
sized highly nonlinear analog, digital and mixed signal circuits.
We demonstrate the effectiveness of our method using several
key nonlinear circuits used in modern SoC today. They include: a
transmission line, a ring oscillator, a voltage controlled oscillator,
a phase locked loop, and an analog comparator circuit. Our
experiments show that the reduced model simulations are fast

and accurate compared to existing techniques.

Index Terms—Model Order Reduction; Analog Circuits;
Krylov Space; Qualitative Simulation.

I. INTRODUCTION

Computer simulation is an essential step in the design

and verification of analog Integrated Circuits (ICs). Accurate

mathematical models of analog circuits tend to be large and

thus their computer simulations are computationally expensive

in terms of both memory and CPU resources. A large number

of computer simulations are generally required to verify their

various functional and performance properties. Accurate and

less complex mathematical models of analog circuits can help

fasten their verification and optimization processes and in

meeting the ever pressing time-to-market constraints.

Model Order Reduction (MOR) is a promising technique

that reduces the size and complexity of large scale mathemati-

cal models while preserving their main characteristics [1]. This

technique has been successfully put in practice for the case of

linear analog ICs using Krylov space projections and Singular

Value Decomposition (SVD) [2]. However, the problem of

elaborating a method for the reduction of nonlinear analog

circuit models is still an active research area and only a

few methods have proven their effectiveness for applications

such as nonlinear transmission lines, amplifiers and oscil-

lators [3] [4] [5] [6]. These methods rely on transforming

the nonlinear model into a set of local linear or polynomial

models and applying projection to obtain reduced local models

which can be evaluated on the fly to approximate the original

full order model. The idea is very attractive but is based on

various heuristics. It is, therefore, not always guaranteed to

provide accurate reduced models for analog circuits given that

their behavior can be highly nonlinear. Large analog circuits

are often synthesized in a hierarchical way resulting in a

circuit structure that consists of an interconnection of several

instances of linear and nonlinear sub-circuits with possibly

different parameters. This fact can be used to help reduce the

overall computational cost by independently customizing the

MOR parameter for each sub-circuit as described in [7] for

linear analog circuits.

Qualitative Simulation (QS) is a method that can be used

to characterize the behavior of dynamic systems. It utilizes

multivariate optimization techniques in which dynamic sys-

tems parameters and initial conditions are considered fuzzy

variables with associated possibility distributions [8] instead of

concrete values. When applied to analog circuits, it provides

the set of trajectories which reach the state variables bounds

given all possible variations in their models. Therefore, it

offers a better coverage of their reachable state space and

characterization of their nonlinear behavior compared with

sampling based methods such as the Monte Carlo simulation

method [9].

In this paper, we propose a new method to MOR of

nonlinear analog circuits. We model analog circuits using

fuzzy dynamical models and use QS to characterize and

determine important trajectories and envelopes of their state

variables. Then, we employ the K-means clustering algorithm

to subdivide the circuit state space into discrete regions

containing its main responses. In each region, a linearized

model is reduced via Krylov space projections [10] and is

used to approximate the full order nonlinear circuit model. The

number of clusters required by our MOR method is determined

through an optimization problem constrained by a minimum

behavioral error between the original model and its piecewise

linearized model. We also extend the state space by adding the

input as a decision variable for the evaluation of the reduced

models. Moreover, we establish a set of conformance checking

criteria and refine the reduced model to guarantee simulation

acceleration and accuracy. We illustrate our proposed method-

ology on different analog circuits: a transmission line, a ring
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oscillator, a voltage controlled oscillator, a phase locked loop,

and an analog comparator.

The rest of the paper is organized as follows: first, we

give an overview of existing MOR techniques developed

for large analog ICs in Section II. Then, in Section III,

we briefly explain MOR through projection and qualitative

simulation. After that, Section IV details the different steps of

our proposed MOR method. Finally, in Section V, we display

and discuss our experimental results and in Section VI, we

present our conclusions and future work.

II. RELATED WORK

The state of the art MOR methods for VLSI circuits are

based on Krylov subspace projections and SVD [1]. The

Krylov subspace [10] projection methods perform an implicit

transfer function moment matching via efficient algorithms

like Arnoldi or Lanczos processes [1]. The SVD is a ma-

trix factorization which can be used to compute a low-rank

matrix approximation of a given large matrix [11]. These two

methods have been used successfully for reducing the size of

linear analog circuits differential models, as detailed in [2].

A framework for Hierarchical MOR (HMOR), which rely on

partitioning the circuits into blocks, was introduced in [12].

The target application was the reduction of linear interconnect

models for signal integrity analysis. In [13], HMOR was

used to enhance the performance analysis of large RLKC

power delivery systems. Also, in [7] the authors introduced

a hierarchical MOR method to reduce large linear blocks of

ICs while preserving their passivity.

The above techniques can efficiently address the problem of

reduction of linear analog IC models and linearized models,

such that RC, RL, and RLC networks. However, the existing

MOR techniques for nonlinear circuit models are based on

various heuristics and have many limitations related to the

dependency on the inputs, the initial conditions variations and

the parameters of the nonlinear circuit model under consid-

eration. The Proper Orthogonal Decomposition (POD) [14] is

a straightforward application of the SVD reduction method

to the case of a nonlinear dynamical system. It uses singular

vectors of the system response for a fixed input to project

the system dynamics into a smaller state space retaining only

its main singular values. In [6], the authors used the POD to

derive surrogate models for semiconductors devices that are

modeled by Drift-Diffusion Equations. They also outlined the

drawback of this method that is the dependency on the original

model inputs and parameters.

In [15] and [16], the author presented a simple method

for automatically extracting macro-models of weakly non-

linear circuits with time-varying operating points based on

Volterra series and variational analysis theory [17]. In [18],

the authors outlined that the efficiency of the methods [15]

and [16] is limited because of the exponential increase of

the size of the Volterra series descriptions. They proposed

to enhance them by using a two sided projection method.

In [19], nonlinear systems are approximated with quadratic

Taylor approximations and reduced via Krylov space projec-

tions. This method is accurate only if the nonlinear model

is similar to a quadratic approximation. These limitations

have been addressed in [20] by rewriting strongly nonlinear

models in quadratic-linear form without any approximation.

However, this method increases the size of the initial model

by introducing new variables and equations and scale poorly

with the number of nonlinear terms.

The Trajectory PieceWise Linear (TPWL) [3] MOR method

utilizes an aggregation of local linear approximations around

expansion points that are selected from the trained original

model trajectories. This method was used for the case of

weakly nonlinear systems such as nonlinear transmission lines,

amplifier chains and Micro-machined devices. The accuracy of

the TPWL method heavily depends on the extracted expansion

points and the training inputs. An improvement for the linear

models aggregation in the TPWL MOR method, that uses state

velocities in weights computation, is introduced in [21]. An

enhancement of the TPWL MOR method, which consists in an

adaptive sampling of the linearization points across the model

trajectory based on the error between the nonlinear model and

its linearized form, is proposed in [22]. In [5], the authors used

a k-means clustering to optimize the set of linearization points

and used simple weights to improve speedup of the TPWL

method. The main steps of the TPWL MOR method have been

followed with a replacement of the local linear models with

local PieceWise Polynomial (PWP) models [4] and Tcheby-

chev interpolating polynomial models [23], respectively. This

approaches improved the accuracy of the local reduced models

but increased their on-the-fly evaluation time. In [24], the

authors presented a nonlinear MOR method that constructs

parameterized manifolds capturing DC and AC responses for

nonlinear systems using symbolic transformations and Krylov

projections.

In [25], the authors presented a methodology to approxi-

mate nonlinear analog circuit models with a compact set of

analytical behavioral models. These models are obtained by

extracting nodal matrices from SPICE transient simulations

and using recursive vector fitting regression algorithm. This

method enhances the MOR method automation but does not

overcome the input dependency problem. A similar idea,

which consist in using curve fitting to automatically generate

analog circuits model from their SPICE transient simulation

traces and reducing them using Krylov space projections,

is proposed in [26]. In [27], the authors formulated the

identification of stable compact models for radio frequency

systems as a semi-definite optimization problem. In [28], a

method for high-order Volterra transfer functions reduction

via Krylov projection is proposed. The novelty of the method

consists in using association of multivariate (Laplace) variables

in high-order multiple-input multiple-output (MIMO) transfer

functions to generate the standard single-s transfer functions.

While the cited MOR methods present a variety of tech-

niques to reduce different types of circuit models, there are still

many limitations that need to be addressed. For example the

reduced model dependency on the input, the parameters, the

number and the selection procedure of the expansion points,

and the number and type of weighting functions when using

piecewise linear or polynomial approximations have to be

addressed. Also, the optimization of the model reduction effort
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and the verification system level simulation acceleration using

reduced models are still not approached. In this work, we

propose to enhance the robustness of MOR methods based

on piecewise linear representations by performing qualitative

simulation of the circuit behavior and using global optimiza-

tion to predetermine good guesses of the parameters of the

reduction process such as the number and the location of the

linearization points. During the on-the-fly integration of the

reduced model, we use both the input and the state variables

to determine the closest linear models and use simple weight

functions to avoid increasing its computational cost. We also

present a method to apply the MOR scheme in a hierarchical

way to optimize the reduction effort and preserve better the

nonlinear behavior of the original model.

III. PRELIMINARIES

A. Model Order Reduction (MOR)

The majority of analog ICs can be described by the large

differential model in Equation (1)1.

ẋ = f(x, t, u, p) (1)

y = g(x)

where f : Rn → Rn is a vector valued function, x and ẋ ∈ Rn

are the state vector and its time derivative, t is the time,

u ∈ Rm is a vector of inputs, p ∈ Rnp is a set of parameters,

y ∈ Rny is a vector of outputs, and g : Rn → Rny is an output

generation function.

MOR consists of transforming algorithmically the large

mathematical model Model(n) of Equation (1) to a smaller

model Model(q), as given in Equation (2).

ż = f̂(z, t, u, p̂) (2)

ŷ = ĝ(z)

where f̂ : Rq → Rq is a vector valued function, z and ż ∈ Rq

are the state reduced vector and its time derivative, p̂ ∈ Rnp̂ is

a set of parameters, ŷ ∈ Rny is an approximate of the output

vector y, and ĝ : Rq → Rny is an output generation function.

The reduced model has a smaller size q ≪ n, has less

parameters np̂ ≤ np, is less computationally expensive than

Model(n), and its output accurately reproduces the behavior

of Model(n). For the case of analog IC models, the creation

of a robust method which outputs, in a finite number of step,

an accurate and efficient reduced model is very challenging.

It should be customized and elaborated based on the common

characteristics of analog IC models which are their infinite

state space, their sensitivity to parameters and environment

conditions, their nonlinearity, and the type of analysis (DC

steady state, AC steady state, transient simulations, etc.). In

this paper, we focus on reducing the number of equations re-

quired to describe the model while preserving their parameters

and input dependency.

1All terms defined, in this section, have the same meaning in the rest of
this paper, unless stated differently.

B. Projection Based MOR

The MOR of the mathematical model in Equation (1) via

projection consists in finding an n × q unitary projection

matrix (V · V t = In) and using the projection x̂ = V · z
as an approximate of the original state vector x, where z

is the reduced state vector of variables. There are different

algorithms which compute such reduction matrix, e.g., the

Arnoldi or Lanczos algorithm [1], the SVD [2], and the

POD [6]. For linear dynamical models, only one projection

matrix is needed to perform the reduction of the full order

model. However, reducing a nonlinear model is extremely

challenging. It requires as much reduction matrices as the

number of piecewise linear models used to approximate its

nonlinear behavior. This is the idea behind the TPWL [3]

method and its derivatives [4] [5], as well as the method we

propose in this paper.

C. Qualitative Simulation (QS)

QS is an extension of traditional numerical-logical inte-

gration methods for dynamical system performance analy-

sis [8]. It uses Fuzzy Differential Equations (FDE), which

are differential equations where the deterministic quantities,

such as parameters, coefficients, and/or initial conditions, are

considered as fuzzy numbers, as given in Equation (3).

ẋ = f(x, t, u, p) (3)

x(0) = µx(0), u = µu, p = µp

where µx(0), µu, and µp refer to the membership functions

used for the possibility distributions of the fuzzy numbers

x(0), u, and p, respectively. The membership functions can

have uniform, Gaussian, trapezoidal, triangular, or bell func-

tion forms. They are transformed into sets of intervals by

means of α−cut levels during the QS. Therefore, the uniform

membership function is represented with a single α−cut level,

the Gaussian membership function allows the evaluation of the

model for different α − cut levels and consequently requires

larger QS runtime than the uniform membership function [8].

To illustrate the use of QS, we explain its application for the

case of a dynamical system subject to uncertain initial state

values. The QS finds an envelope of all system trajectories

originating in time from the fuzzy number µx(0). It formulates

this problem as a multi-objective optimization problem, as

given in Equation (4).

min F (y) =

∫ t∗

0

f(x, t, u, p) dt, y = x(0) (4)

s.t. y = µx(0), x ∈ [a, b]n

where the objective function is the solution x = F (y) of

the dynamical system in Equation (3) and the constraints are

the initial fuzzy condition y described with a membership

function µx(0) and the solution x being within the set [a, b]n.

In this problem, the optimal solution y∗ is not important as

xl(t
∗) = F (y∗), which provides the lowest possible state

value. The highest possible state value xh(t
∗) is obtained by

maximizing the same problem in Equation (4). The complete

envelope of the dynamical system transient behavior, that is
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the time evolution of the initial fuzzy state µx(0), is obtained

by computing all the trajectories which lead to xl(t
∗) and

xh(t
∗) for t∗ = 0 . . . tf . The evaluation of the effect of

process variation on the model trajectories is formulated

similar to Equation (4). However, for a better convergence,

the gradient of the objective function x = F (p) with respect

to the parameter p (∂x
∂p

), which can numerically approximated

using the relation (∂ẋ
∂p

= ∂ẋ
∂x

∂x
∂p

), has to be provided to the

optimization engine [8]. In this work, we only used QS for

input and initial conditions uncertainty types.
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Fig. 1. Initial Conditions Membership Function Examples: (a) Uniform (b)
Gaussian
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Fig. 2. Qualitative Simulation Examples : (a) Transmission Line Output (b)
Differential Ring Oscillator Output

Figures 1(a) and 1(b) provide an example of fuzzy initial

output conditions modeled with uniform and Gaussian mem-

bership functions for a transmission line and a differential

ring oscillator, respectively. The QS of their output voltage is

illustrated in Figures 2(a) and 2(b), respectively. The obtained

transient envelopes contain a complete set of their model

trajectories and provide an insight on how sensitive the model

is to the considered fuzzy quantities. For example, Figure 2(a)

shows that the transmission line behavior is equally affected

while in Figure 2(b) the differential ring oscillator is more

sensitive to its initial output state during the startup time.

IV. PROPOSED METHODOLOGY

Figure 3 presents the proposed method for reducing analog

circuits mathematical models. It has five main components

which are executed in an iterative way until the reduced model

satisfies a defined set of accuracy and speedup constraints.

First, in the model extraction and the pre-Analysis steps the

circuit differential model is extracted and simulated in order to

define a good guess of the MOR method parameters [5]. In this

step, the model is linearized at different linearization points,

which have been previously classified into regions via QS and

clustering of the extended state space, in the previous pre-

Analysis step. Then, the linearized models are reduced in each

region using Krylov space projections and the final reduced

model is obtained by dynamically evaluating a weighted sum

of three local models. After that, the reduced model is input to

a conformance criteria step to check that it is much faster than

the original circuit model while it mimics its behavior. Based

on the result of this step, either the reduced model is accepted

or it is refined iteratively during the model refinement step

until all the speedup and accuracy requirements are checked.
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Fig. 3. MOR Method Overview

A. Model Extraction and Pre-Analysis

The model extraction step, which parses a circuit SPICE

netlist and applies Modified Nodal Analysis (MNA) formu-

lation [29], which leads to a parametric differential model

(Model(n)), as given in Equation (1). It consists of n symbolic

nonlinear differential equations relating all the state variables

(the circuit voltages and currents) and including a set of

parameters p which represent devices values and geometry.

The main objective of the Pre-Analysis step is the evaluation

of the full order Model(n) and the prediction of a good

initial guess of the MOR method parameters for a good

reduced model accuracy/speedup tradeoff. In fact, Model(n)
is transformed to a set of FDEs, as given in Equation (3), and

is input to QS. The input, initial conditions are considered

as fuzzy numbers with uniform or Gaussian membership

distributions, as detailed in Subsection III-C. The QS of the

obtained FDEs leads to a set of state trajectories and their

envelopes. The state trajectories are used to select linearization

points and the envelopes provide a means to measure how

sensitive the model is to each of the specified fuzzy quantities.

If the state envelopes are tight, the model is not too sensitive to

the introduced fuzziness. Otherwise, if the state envelopes are
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wide, the model is very sensitive to the provided fuzzy quantity

and the reduced model has to be built carefully in order to

preserve the same behavior variations. As detailed in [5], the

algorithm used for the selection of the k linearization points is

based on k-means clustering. The linearization of Equation (1)

is given in Equation (5).

ẋ = Axc
· (x− xc) +Auc

· (u− uc) (5)

+Ap0
· (p− p0) + f(xc, t, uc, p0)

y = g(x)

where Axc
= df

dx |x=xc
, Auc

= df
du |u=uc

and Ap0
= df

dp |p=p0

.

One of the main shortcomings of previous MOR methods

is the automatic selection of the linearization points set. In the

proposed method, the extended state space which also includes

the input, is considered and the linearization points selection

is performed in two steps: (1) a subdivision of the circuit state

space into R regions which are overlapping at their interface,

where the behavior of the circuit is coarsely the same (extra-

wide, wide, and tight QS envelope regions, etc.); and (2) the

clustering via k-means of the content of each of these regions.

The number of the linearization points, which ensure a target

model accuracy in each of these regions, has to be minimal.

The reason behind this is related to the speedup of the reduced

model that is higher when using a smaller number of points.

Figure 4 depicts this idea for a model having 2 state variables

and requiring R = 3 behavior regions. The region R1 contains

many points, R2 contains few points of R1 and shares few

points with R3. Using this kind of regions subdivision, limits

the total number of linearization points required to evaluate the

reduced model during simulation which improves speedup and

accuracy. For example, some points of regions 1 are required

at the beginning of a simulation during a transient behavior

and are never reused for the rest of the simulation time, while

the remaining regions are alternatively used for a steady state

behavior.

R1

R2

R3

x1

x2

Fig. 4. State Space Regions

The objective of clustering is to gather similar states of the

circuit in the same cluster and use their centroid (geometrical

mean) as a linearization point. A local linear model around

that point is going to be used to generate a local reduced

model. However, using the centroid, which is not necessarily a

real numerical solution of the circuit model, as a linearization

point might introduce errors. Therefore, after clustering the

content of each of the main R behavior regions using k-means

clustering method, the clusters centroid are replaced with

their nearest points from the simulation traces. The number

of clusters k is not the same for all the R regions and is

determined using the optimization procedure in Equation (6)

below.

min k (6)

s.t. ||y − yL|| ≤ ε

where the number of clusters k needs to guarantee a minimal

error between the solution y of the original Model(n), given

in Equation (1) and the solution yL of the piecewise linearized

model given in Equation (5).
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Fig. 5. Effect of the Number of Clusters on Model Accuracy

Figure 5 shows the error of a test circuit (Phase Locked-

Loop) output for a varying number of clusters, using one

behavior region after the lockup time. If we use less than

6 clusters the output error is greater than a predefined error

threshold ε = 0.05. This error is going to increase after

reducing the model. Then, we initially use a k ≥ 6 as a first

guess to generate a reduced model and we may tune it during

the Model Refinement step, based on the Conformance Criteria

Checking status.

B. Model Reduction

Figure 6 details the MOR method which consist of three

main steps:

Step 1: Local Linear Models Generation: the matrices and

the vectors in Equation (5) are computed for ki clusters in

each of the i = 1 . . . R regions.

Step 2: Reduction using Krylov Space Projection: a Krylov

type projection basis Vi is determined for each of the i =
1 . . . R regions using the Arnoldi process [1]. It is a unified

basis for the reduction via projection of all the local models

within a region Vi = SVD(∪ki

j=1Vj), where SV D is the

singular value decomposition operator [1]. The local reduced

models Modeli(q) are given in Equation (7), where z is the

reduced state variable, i is the region index and j is the
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Fig. 6. Model Reduction Method

linearization point index. The terms related to the parameters

are included only when the original model is sensitive to them.

Otherwise, their presence in the reduced model will increase

its evaluation time without necessarily improving its accuracy.

ż = Âzj · (z − zj) + Âuj
· (u − uj) (7)

+Âp0
· (p− p0) + f̂(xj , t, uj , p0)

where Âzj = V t
i · Axj

· Vi, Âuj
= V t

i ·Auj
, Âp0

= V t
i ·Ap0

,

and f̂(xj , t, uj , p0) = V t
i · f(xj , t, uj, p0).

The matrices and the vectors in Equation (7) are stored in

a lookup table and are used to compute on the fly the solution

of the reduced differential model.

Step 3: Generation of a Sequence of Weighted Models:

three reduced models Modeli(q, p) are weighted to form the

reduced model Model(q). The weights are intended to smooth

transitions between state space regions and allow contributions

of different local models. However, the procedure for selecting

the closest linearization points to the current state z and the

weights computation should be simple, otherwise, the simu-

lation time will increase extensively (more multiplication and

summing operations) without any gain in terms of accuracy.

We find the set of only three closest linearization points ks
such that [ks] = 3 and it verifies the condition in Equation (8),

where ki represents the current region linearization points

indexes.

∀s ∈ ks ∀j ∈ {ki − ks} ‖
z − zs
u− us

‖ ≤ ‖
z − zj
u− uj

‖ (8)

We make sure that the selected closest points set ks to the

current state have been generated for similar input conditions

by involving the input u as a constraint in Equation (8). Also,

the fact that the linearization points are organized into sets,

which correspond to different behavioral regions instead of a

single region with many points, makes the search for the set

of points ks faster.

The final reduced model Model(q) is given in Equation (9).

ż =
∑

s∈ks

ws · Âzs · (z − zs) + Âus
· (u− us) (9)

+Âp0
· (p− p0) + f̂(xs, t, us, p0)

ŷ = g(Vi · z)

where ŷ is the output of the reduced model that

approximates the output y of the full order model,

ws =
‖z−zs‖

−1

(
∑

s∈ks
‖z−zs‖)−1 , s ∈ ks are the current state weights

and the rest of the terms are as defined in Equation (7).

The main limitations of the above MOR method are the

possible large number of state space regions and linearization

points, when the circuit behavior is strongly nonlinear and the

signal variability is high. Also, this method blindly reduces

a flat circuit without optimizing the reduction effort when

repeated circuit structures are present. These limitations can

be avoided by subdividing a flat circuit into a set of sub-

circuits. Therefore, this simple MOR method can be applied

in an iterative way to reduce each sub-circuit in an order that

depends on their computational cost, complexity and size, until

a reduced model compliant with the conformance criteria is

obtained, as described in the sequel.

C. Hierarchical MOR

The idea of hierarchical MOR of linear independent sub-

circuits presented in [7], is extended here for the case of

nonlinear circuit models based on the simple MOR shown in

Figure 3. The advantage of a hierarchical reduction is to reduce

the set of linearization points for large models and reduce the

MOR computational effort when repeated circuit structures are

present. For example, if a circuit has N = 4 transmission lines

and each of them needs a set of k = 7 linearization points.

The total number of linearization points required for the case

of the simple MOR method is kN (74 = 2401) while this

number is N × k (7 × 4 = 28) for the case of a hierarchical

MOR method. Using a large number of linearization points

slows down the reduced model considerably since during its

evaluation the solution is always based on the closest points

which are searched in the set of linearization points. The

number of required transient regions R is also reduced in the

same way.

Accepted Model

F
u

rt
h

e
r 

re
d

u
ct

io
n

s

 Checking Reduction Effect

Model(n)

    Subdividion of Model(n) to N Models                           

Evaluation of Reduction Options

MOR of Model  i      {1...N}∈

Model Reconstruction    

Fig. 7. Hierarchical MOR Scheme
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Figure 7 provides the five main steps to perform a hierar-

chical MOR of large circuits having repeated sub-circuits by

iteratively employing the simple MOR method, as follows:

x1 x2 x3 x4 . . . xn−1 xn








































































eq1 : 1 1 1 0 1 0 0 0 . . . 0 0
eq2 : 1 1 1 1 0 0 0 0 0 0
eq3 : 0 1 1 0 1 0 0 0 0 0
eq4 : 1 1 0 1 1 0 0 0 . . . 0 0

1 1 1 0 1 0 0 0 0 0
0 0 2 0 0 2 2 2 0 0
0 0 0 0 0 0 2 0 . . . 0 0
0 0 0 0 0 2 0 2 0 0

...
...

...
...

...
...

0 0 0 0 0 0 0 0 N 0
eqn : N 0 0 0 0 0 0 0 . . . 0 N

Fig. 8. Dependency Matrix

Step 1: Subdivision of Model(n) into N models: if the

circuit netlist is not defined as independent sub-circuits then

the differential Model(n) is subdivided into a set of N models

(Equation (10)) while performing the MNA formulation.

ẋMi = fi(xMi, t, u, p) (10)

where xMi is a subset of the state variables x1, . . . , xn.

The dependency matrix, whose rows refer to the Model(n)
equations indexes and columns refer to the state variables

indexes, is generated as shown in Figure 8. Each element dij
of this matrix is set to the number i = 1 . . .N of the sub-

circuit based on the dependency of the equation i on each of

the state variable xj , j = 1 . . . n.

Step 2: Evaluation of Reduction Options: the obtained N

models are analyzed and the following quantities are com-

puted:

- The complexity C quantified as the total number of

nonlinear terms (nonlinear device) and the total number of

linear terms (linear devices) divided by two (Equation (11)).

C = nbr(nonlinear terms) +
nbr(linear terms)

2
(11)

- The percentage pi of the total simulation time Ttot of all

the N models (Equation (12)).

pi =
Ti

Ttot

× 100 (12)

where Ti is the simulation time for the sub-circuit model i in

Equation (10).

Based on this analysis, the sub-circuit model i which has the

highest complexity and the largest percentage pi of the total

simulation time is reduced using the simple MOR method.

Step 3: Reduction of the model i: the simple MOR method,

described in Figure 3, is applied to the sub-circuit model i

leading to a speedup Si that is computed as the simulation

time of the original model i over its reduced model simulation

time.

Step 4: Reconstruction of the circuit model: this is done

using the reduced sub-circuit model i which leads to a partially

reduced model. The expected speedup Sf of the reconstructed

model is given in Equation (13) where Si is the speedup of

the reduced sub-circuit model i. It gives an idea of when the

MOR in a hierarchical way can lead to a good overall speedup.

In fact, if a part is consuming only pi = 30% of the total

simulation time, the speedup limit we can reach by reducing

this model is Slim ≈ 1.4. However, if a part is worth pi = 90%
of the total computational time, the speedup limit that can be

reached by reducing this model is Slim ≈ 10. This emphasizes

that the hierarchical MOR method is more effective for large

circuits with many repeated similar entities.

Sf =
1

1 + pi

100 ( 1
Si

− 1)
(13)

Step 5: Reduction Effect: the reconstructed model speedup

and accuracy are checked by simulation. Based on the result

of this step, either the reconstructed model is accepted or

additional reduction effort is performed on a new candidate

from the remaining sub-circuits models.

D. Checking Conformance Criteria

The objective of this step is to check that the reduced model

fulfills some conformance criteria (accuracy and speedup) and

can effectively be used instead of the original model for system

level simulations. Because of its piecewise nature, the reduced

models cannot be as accurate as the original nonlinear model

for all inputs and conditions ranges. However, the proposed

method strengthens the accuracy of the generated models by

construction and through the use of qualitative simulation that

defines the performance bounds of the model. For example,

if the original model has a strong nonlinear behavior related

to the input variation, the reduced model is compared to the

original model for complete ranges of inputs. The system in

Equation (14) below provides a few examples of conformance

criteria used to verify that the reduced model is behaviorally

equivalent to the original model, where the error tolerances

ε1, ε2, ε3, and ε4 depend on the level of accuracy of the

application that will make use of the reduced model. In

practice, relative error values are used to measure the accuracy

of two curves and are considered probably acceptable and

meaningful in the range 3 − 5%, good if less than 2%, and

excellent if less than 1% [30].

‖x̂− x‖2
‖x‖2

≤ ε1 (14)

‖ŷ − y‖2
‖y‖2

≤ ε2

‖Freq(y)− Freq(ŷ)‖ ≤ ε3

‖DC(y)−DC(ŷ)‖ ≤ ε4

S(Model(q)) =
Tsim(Model(n))

Tsim(Model(q))
≥ Smin

In order to check that the input-output relationship of the

original model is preserved, the relative error threshold of

the output is required to be (ε2 ≤ 2%). The relative error
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threshold of the state variables, which are expected to have

some deviations from the original behavior without affecting

the output, is required to be (ε1 ≤ 3 − 5%) or better. The

frequency of the original model and the frequency of reduced

model outputs have to be the same (ε3 ≤ 2%). The DC

characteristics of the original and reduced models are required

to be accurate (ε4 ≤ 2%) in addition to preserving the same

properties (stability, hysteresis, gain, noise margin, etc.) [31].

The reduced model has to achieve a minimum speedup com-

pared to the original model. Also, the conformance criteria

are evaluated for a range of inputs and initial conditions.

If the conformance criteria are not satisfied, a refinement

of the MOR parameters step is conducted. During this step,

the conformance criteria which are not met are investigated

and the MOR parameters are iteratively adjusted until the

requirements are satisfied which leads to an acceptance of the

reduced model Model(q).

E. Reduced Model Refinement

The reduced model refinement step consists in tuning the

parameters of the MOR method which affects the accuracy

and speedup of the reduced model, based on the conformance

criteria checking result. The simulation traces of the reduced

model are analyzed and the regions, where the conformance

criteria are not met, are determined and used to update the

parameters which can lead to a better speedup and accuracy

tradeoff.

Algorithm 1 Reduced Model Refinement Example

1: Input: Smin, S(Model(q)), ε1, ε2, K = {k1, k2, . . ., kR},
kmax,Rmax, V , x, z, y, ŷ, q, qmin

2: Output: Kup = {k1, k2, . . ., kRup}, Rup, Vup, qup
3: if Error(x) or Error(y) then
4: i← Find(K,x, x̂, y, ŷ, ε1, ε2)
5: if ki ≤ kmax then
6: ki ← Increase(ki)
7: else if R < Rmax then
8: Rup ← Increase(R, ki)
9: else

10: Return(“Accuracy can not be improved!”)
11: end if
12: Kup ← Verify(Equation (6))
13: else if S(Model(q)) ≤ Smin then

14: if
S(Model(q))

Smin
> 0.75 and R < Rmax then

15: Rup ← Increase(R,K)
16: Kup ← Verify(Equation (6))
17: else if q > qmin then
18: qup ← Decrease(q)
19: else
20: Return(“Speedup can not be improved!”)
21: end if
22: end if
23: for i = 1 . . . Rup do

24: Vi ← SV D(∪ki
j=1Vj)

25: end for
26: Vup ← {V1, V2, . . . , VRup}

Algorithm 1 is a simplified form of the reduced model

refinement process for the simple MOR method. It requires

as inputs, in line 1, the conformance checking criteria, the

simulation traces of Model(n) and Model(q) and the current

MOR parameters and their maximal and minimal values. It

outputs, in line 2, the number of regions R, the number of

clusters ki in each region, the unified projection basis for

each region, and the reduction order q which is also the size

of the reduced model. The accuracy criteria of the reduced

model is addressed before the speedup criteria in a recursive

way. In lines 3 − 9, the number of linearization points ki is

increased in order to fix the behavior of the reduced model

in the region Ri (determined in line 4), which does not

meet the accuracy conformance criteria. If the number of the

linearization points ki reach the limit kmax, the set of regions

is increased by splitting the region Ri into two new regions.

After updating the number of clusters or the number of regions,

the piecewise linearized model accuracy is verified in line 12
using Equation (6). In lines 13−16, the number of regions R is

increased first if it is less than the limit Rmax and the speedup

value is within the 75−100% of the target speedup Smin and

Equation (6) is verified. Otherwise, the size of the reduced

model q is decreased to improve its speedup S(Model(q)) in

lines 17 − 18. In all refinement cases, the unified reduction

basis Vi in all regions are updated in lines 23 − 25, since

the piecewise linear approximations are changed according to

the refinement process. The reduced model refinement process

is performed independently for each of the failing regions.

Because of that, it is usually performed at the cost of several

simulations of the reduced model for the failing regions until

the required accuracy constraint is met. In lines 10 and 20,

the algorithm outputs that no further refinements can be done

to check the current conformance criteria. In this case, the

HMOR might become a good alternative to the simple MOR

method.

V. APPLICATIONS

In this section, the simple MOR method is applied to a non-

linear transmission line, a ring oscillator, a voltage controlled

oscillator, a phase locked loop and an analog comparator. Also,

we perform a PLL model reduction using the hierarchical

MOR presented in Subsection IV-C. All simulations were per-

formed in the MATLAB environment [11], on a Windows 7
operating system with an Intel core I7 CPU, 2.8GHz with

24GB of RAM. In the following applications, we refer to the

size of the original model and the reduced model as Model(n)
and Model(q) where n is the size of the original model, q is

the size of the reduced model and n > q.

A. Transmission Line

Figure 9 shows the transmission line model that is a chain

of connected resistor, capacitor and nonlinear diode cells. The

input current source is i(t) and all capacitors and resistors

values are set to 1 F and 1 Ω, respectively. The behavior of the

diodes is nonlinear and is given by Id(v) = exp(40v)+v−1.

The full order model of the transmission line is given in

Equation (15), where x1, . . . , xn are the circuit node voltages.

ẋ1 = −Id(x1)− Id(x1 − x2) + b i(t) (15)

ẋi = Id(xi−1 − xi)− Id(xi − xi+1)

ẋn = Id(xn−1 − xn)

y = x1
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c
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Id(x1-x2)

r

Id(x1)

c c

r

Id(xn-1-xn)

c

x1 x2 xn-1 xn

i(t)

Fig. 9. Transmission line with nonlinear diodes

In this application, we used 3 main transient regions and

k = 20 linearization points. We also considered three cases of

inputs and problem sizes as follows:

- Case I: i(t) = H(t− 3), n = 1500, q = 30
- Case II: i(t) = exp(−t), n = 1500, q = 30
- Case III: i(t) = sin(2πt10 ), n = 100, q = 10
Figure 10 shows that the transient behavior of the full order

model and the reduced order model problems of Table I is the

same, for the above three simulation cases.
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−10
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V

]

 

 

Model(1500)
Model(30)

i(t)=sin(2π t/10)

i(t)=exp(−t)

i(t)=H(t−3)

Fig. 10. Transmission line transient behavior

Table I compares the simulation times of the TPWL [3],

PWP [4] and our method for the transmission line. Although

the shown results were conducted using different processors,

the speedup criteria can measure the improvement of the

proposed MOR method. In fact, the generated reduced models

are more than 10 times faster than the TPWL and our plain

implementation of the PWP method and 1000 times faster than

the full nonlinear model for the first two large scale problem

sizes.

TABLE I
SIMULATION TIMES AND SPEEDUP FOR THE NONLINEAR TRANSMISSION

LINE CIRCUIT USING k = 20 LINEARIZATION POINTS

Case TPWL [3] PWP [4] Proposed Method

I 9573.30
80.80

≃ 118 873.38
17.16

≃ 51 810.39
0.64

≃ 1248

II 11713.10
110.90

≃ 105 986.32
43.53

≃ 23 1061.32
0.82

≃ 1284

III 25.40
2.70

≃ 9 4.6
2.4

≃ 2 1.84
0.31

≃ 6

Table II shows that the proposed method reduced models

mimic the behavior of their original models for the three

considered problem cases. The accuracy criteria is satisfied

for the different experiments and the relative errors of the

state variables and the output are always less than 10−2, that is

the maximum acceptable error during the conformance criteria

checking step. Unexpectedly, the PWP method, which employs

local second order Taylor polynomial approximations, is less

accurate than the TPWL and our method, which employ only

local linear approximations, for the first two problem cases.

This can be explained by the fact that the aggregation of

multiple projection basis for the first order terms and second

order terms in the PWP method can sometimes lead to large

errors. An additional drawback of the PWP is a large memory

requirement to store the second order matrices. For example,

the size of the projection matrices of the second order terms

for the cases I and II is size(V ⊗ V ) = (1500× 30)2 which

requires a minimum memory of (1500 × 30)2 × 8 Bytes =
16.2 GB assuming a double precision number of 8 Bytes.

Therefore this method is impractical and very computationally

expensive for large models.

TABLE II
ACCURACY FOR THE TRANSMISSION LINE CIRCUIT USING k = 20

LINEARIZATION POINTS

Case TPWL [3] PWP [4] Proposed Method

I 0.3 10−2 11.69 10−2 0.12 10−2

II 0.48 10−2 4.27 10−2 0.18 10−2

III 0.56 10−2 0.56 10−2 0.37 10−2

B. Ring Oscillator

Figure 11 represents a ring oscillator composed of a large

odd number n of inverters connected in a circular chain. Each

inverter is single ended and is composed of a cascaded nmos

and pmos transistors and a capacitance C connected to their

drains. The node voltages xi of each of the n inverter oscillates

between the ground gnd = 0V and the power vdd = 1.8V .

vdd

x1 x2 xn-1 xn

Fig. 11. Ring oscillator circuit

The circuit model is given in Equation (16), where xi, i =
1 . . . n, are the node voltages, C = 0.164fF and the functions

In and Ip model the nonlinear current generated by the nmos

and pmos transistors, respectively, based on their gate, drain

and source voltages. The initial conditions x(0) are represented

by the fuzzy number µx(0).

ẋ1 = −
1

C
(In(xn, x1, gnd) + Ip(xn, x1, vdd)) (16)

ẋi = −
1

C
(In(xi−1, xi, gnd) + Ip(xi−1, xi, vdd))

y = xn

x(0) = µx(0)
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When using one transient region for the ring oscillator

model, it is hard to reproduce the oscillation behavior of

the full order Model(131) with the required speedup and

accuracy constraints, (Smin = 100) and (
‖x̂−x‖2

‖x‖2

≤ 10−2 and
‖ŷ−y‖2

‖y‖2

≤ 10−2), respectively. This could be explained by the

highly nonlinear initial startup transient region that needs to be

accurately approximated by the reduced model. This highlights

two key points of our method, namely the need for a further

subdivision of the transient behavior into smaller regions, and

the QS that provides better coverage of the initial region.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Time [ns]

x 1[V
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..,
x n[V
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Fig. 12. Ring oscillator internal state transient responses

Our method used 10 transient regions to provide a reduced

model that mimics accurately the full order model behavior

as shown in Figure 12, where the state vector of the original

full order model x is represented by the solid line and the

backward projection of the reduced order model x̂ = V z is

represented by the dotted line.

Table III presents the refinement of the MOR for the ring

oscillator model. The speedup and accuracy requirements were

satisfied after refinement of the number of clusters in each

region with SRing = 139 and
‖x̂−x‖2

‖x‖2

= 0.4 10−2 and
‖ŷ−y‖2

‖y‖2

= 0.63 10−2.

TABLE III
REFINEMENT OF Model(51) FOR THE RING OSCILLATOR MODEL

Number of Speedup ‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2

Status
clusters k SRing

10 142.33
0.68

≃ 207 0.99 10−2 2.33 10−2 rejected

14 142.33
0.71

≃ 199 0.55 10−2 1.30 10−2 rejected

18 142.33
0.96

≃ 147 0.43 10−2 1.76 10−2 rejected

19 142.33
1.02

≃ 139 0.40 10−2 0.63 10−2 accepted

C. Voltage Controlled Oscillator

We apply the MOR method to the current-starved Voltage

Controlled Oscillator (VCO) detailed in [32]. Figure 13 shows

the schematic of the VCO that consists in two main compo-

nents: an inverter chain composed of the pmos and nmos

transistors at the center and a current mirror structure (upper

pmos and lower nmos transistors) that limits the current

mirrored in each of the inverters.

vdd

vinvco

stage 1 stage N

y

Fig. 13. VCO circuit

The QS of the VCO output voltage using a fuzzy input

µvinvco returns that it is very sensitive to the input voltage

vinvco which determines its oscillating frequency, as shown

in Figure 14. Using the full order VCO simulation, we

determined 50 clusters within four main regions to build the

reduced model. The obtained reduced VCO model has 35 state

variables and is 23 times faster than the original VCO model

(SV CO = 8708.73s
378.61s = 23).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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[V

]

Fig. 14. QS of the VCO output

Figure 15 compares the frequencies of the VCO full order

Model(48) and the reduced Model(35) output signals, ob-

tained using Fast Fourier Transform [11]. It shows that both

models are oscillating at the exact frequencies for the specified

input voltage range.
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Model(48)
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Fig. 15. Comparison of the VCO output frequency

Figure 16 compares the state variables and the output of

the full order Model(48) and the backward projection of the

reduced Model(35). It proves that accuracy conformance cri-

teria are verified by having
‖x̂−x‖2

‖x‖2

≤ 0.02 and
‖ŷ−y‖2

‖y‖2

≤ 0.02.
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Fig. 16. Accuracy of the VCO reduced model

TABLE IV
COMPARISON OF THE EFFECT OF QS, CLUSTERING, REGIONS

SUBDIVISION, AND WEIGHTING LOCAL MODELS

Without QS Clustering Regions Weights

‖x̂−x‖2
‖x‖2

[10−2] 42.1 12.10 3.37 2.38

‖ŷ−y‖2
‖y‖2

[10−2] 19.08 9.74 1.89 1.71

SV CO 24 5 11 27

Table IV compares the effect of QS, clustering, regions

subdivisions and the use of the weighted closest local models.

In each column one component of the presented method is

omitted and the obtained reduced VCO model is evaluated.

When the QS is not used and is replaced with training the

original VCO model in column 2, a slight perturbation of

the input leads to large relative error values. This is due to

the fact that important trajectories, which correspond to the

input variation, were not considered and because of that the

linearized model was not accurate. Using a linearization points

selection procedure based on traversing the training trajectories

and comparing the linear approximation with the original

VCO trajectory instead of clustering in column 3 leads to

inaccurate approximation and a smaller speedup value. This is

due to the larger number of linearization points and a resulting

lossy projection matrix. The effect of omitting the regions

subdivision leads also to higher error values and smaller

speedup value. This is expected since a single projection

matrix is used instead of four different projection matrices for

each of the separate four behavioral regions. The last column

5 shows that the obtained reduced VCO model is fast but is

not as accurate as the refined VCO model where all these

techniques are employed as shown in Figure 16.

D. Phase-Locked Loops

We consider a cmos− 180nm implementation of a Phase-

Locked Loop (PLL), as described in [32]. This circuit is

frequently used in the front-end of modern integrated circuits.

It is a nonlinear frequency-control system that generates a

clock signal that locks after a delay time (the locking time)

given an input data signal. The PLL is said to be locked

when the input and the feedback clock frequencies match.

However, the PLL might not lock for various reasons such

as an input frequency out of the specified range, jitter, noise,

reset situations, or when any of the PLL sub-circuits is not

behaving properly [33].

Figure 17 shows a simplified block diagram of the major

sub-circuits of the PLL of this application. This PLL is

modeled at the transistor level with a set of 62 differential

equations and has the following main blocks:

Phase Frequecy 

Divider

Charge Pump 

+ Low Pass Filter

Voltage 

Controlled 

Oscillator

Divide by Two Inverter

down

up
u

yd

yvinvco

Fig. 17. PLL Block Description

- A Phase Frequency Detector (PFD), that detects the

difference in phase and frequency between the input clock

u and feedback clock yd, and asserts an up or down control

signal based on whether the feedback signal yd frequency is

lagging or leading the input u frequency.

- A Charge Pump (CP) and a Low Pass Filter (LPF), that

receives the up and down signals from the PFD and drives a

current to the LPF if the up signal is high and draws a current

from the LPF if the down signal is high.

- A Voltage Controlled Oscillator (VCO), which is biased

with the control voltage vinvco generated by the LPF sub-

circuit. It oscillates at a higher frequency if the vinvco

signal increases and oscillates at a lower frequency, otherwise.

Consequently, the oscillation frequency of the VCO affects

directly the phase and frequency of the feedback clock signal

y. It stabilizes at a fixed frequency when the output of the LPF

settles to a DC voltage.

- An inverter, which is a buffer inverting the output of the

VCO.

- A feedback divide by two sub-circuit that increases the

frequency of the VCO output signal generating a signal yd
that is input to the PFD.

The full order PLL Model(62) was reduced to Model(7)
using 21 regions and a number of 10 clusters in each of these

regions. The first 18 regions were required to approximate the

start up behavior and after the locking time, only 3 regions

are required to reproduce the behavior of the original PLL.

Figure 18 shows the verification of the locking property for

two PLLs: the original PLL (on the bottom) and the reduced

PLL (on the top). The VCO input signal reaches a stable value

which make both PLLs lock almost at the same time Tlock =
0.3µs.

Figure 19 shows three internal voltages of the full order PLL

Model(62) on the left side and the reduced PLL Model(7) on

the right side. The slight deviation of the signals is expected

because the MOR process is lossy. However, this deviation

does not affect the VCO output that still oscillates at the

expected frequency.

Table V compares the PLL internal voltages with their

respective approximations generated with the PLL reduced

model for different input clock frequencies. Basically, it shows

that the reduction is quite accurate. In all cases, the reduced

PLL of size Model(7) is more than 40 times faster than the

full order model Model(62).
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Fig. 18. PLL locking signal comparison
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Fig. 19. PLL internal voltages comparison

TABLE V
REDUCED PLL PERFORMANCE FOR DIFFERENT INPUT FREQUENCIES

Frequency[Ghz] ‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2

Speedup
SPLL

1 1.87 10−2 0.38 10−2 41
0.8 0.56 10−2 0.46 10−2 43
0.6 1.03 10−2 0.23 10−2 43

E. PLL Reduction using Hierarchical MOR

Following the procedure described in Subsection IV-C, we

performed a subdivision of a PLL original model, having

813 state variables, into 4 sub-circuits and analyzed their

performance, as shown in Table VI. The VCO (255 stages) and

the inverter, which are modeled with 768 nonlinear equations,

are the most computationally expensive part that uses 96.85%
of the total PLL simulation time. These statistics make the

VCO and the inverter sub-circuit the ultimate candidate for the

HMOR reduction type of the PLL. Based on the formula in

Equation (13), we can target at least a PLL simulation speedup

of SPLL = 1
1+ 96.85

100
( 1

1000
−1)

≈ 30, if the VCO and the inverter

reduced sub-circuit has a speedup SV CO+Inverter ≥ 1000.

Table VII compares the accuracy and speedup results when

reducing the PLL as a flat circuit using the simple MOR

method or reducing the VCO and the inverter sub-circuit using

the HMOR method. The original PLL Model(813) is reduced

to Model(105) and Model(75) using the same number of lin-

TABLE VI
PLL SUB-CIRCUITS ANALYSIS REPORT

sub-circuits
Percentage(%) N◦ of Complexity

Simulation time pi Equations C

PFD 1.92 30 60
CP and LPF 0.71 9 14.5
VCO and Inverter 96.85 768 1027.5
Divide by Two 0.65 6 9

earization points and the same regions subdivision, in the first

two rows and the last two rows, respectively. The reduced PLL

models obtained via the HMOR method are more accurate

and slightly faster than the ones via the simple MOR method.

The better accuracy results when using the HMOR method

are expected because the unreduced PLL sub-circuits (PFD,

CP, LPF, and Divide by Two) are modeled with their original

nonlinear equations while only the VCO and the inverter,

which have the same uniform structure, are reduced. The

speedup of the reduced sub-circuit is SV CO+Inverter ≥ 1300
and the obtained PLL speedup is as expected in both HMOR

cases. The slightly smaller speedup for the simple MOR

method is explained by the fact that replacing a small number

of nonlinear equations for the sub-circuits (PFD, CP, LPF, and

Divide by Two) with a piecewise linear representation is not

expected to lead to higher speedup values. In fact, the speedup

is considerable only when the reduction ratio is important

because the matrices involved in a reduced model are dense

and the number of multiplication and summations becomes

comparable to the nonlinear model case for small reduction

ratios.

TABLE VII
COMPARISON OF PLL SIMULATION RESULTS

PLL Size ‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2

Speedup
Reduction q SPLL

HMOR 60 + 45 0.35 10−2 4.49 10−3 31.36
MOR 105 1.03 10−2 1.25 10−2 27.10
HMOR 30 + 45 0.81 10−2 2.49 10−3 31.56
MOR 75 3.53 10−2 2.89 10−2 30.93

F. Analog Comparator

We consider a cmos−180nm analog comparator circuit, as

described in [32]. It is a decision-making circuit composed of

three main stages: a pre-amplification (a differential amplifier

with active loads), a decision circuit (a positive feedback)

and a post-amplification (a self biasing differential amplifier

used as a buffer), as shown in Figure 20. If the positive

input voltage vp is greater than the negative input voltage

vm, the comparator output is set to the maximum voltage

vout = 1.8V . Otherwise, the comparator output is set to the

minimum voltage vout = 0V . In practice, the propagation

delay, the sensitivity and the noise rejection of the comparator

are of a great concern.

Using a SPICE comparator netlist, we elaborated a differ-

ential model Model(16) having 16 state variables using a set

of nominal parameters p0 representing the width and length

of each of the 19 comparator transistors. Model(16) has been



13

vp vm

y
Ibias

vdd

Fig. 20. Analog comparator circuit

reduced using 10 behavioral regions to a weighted piecewise

linear model Model(5) having only 5 reduced state variables,

as given in Equation (17).

ż = Âzj (z − zj) + Âvpj (vp − vpj) (17)

+Âvmj
(vm − vmj) + f̂(xj , t, vpj , vmj , p0)

x̂ = V t
i z

vout = x̂(16)
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Fig. 21. Comparator inputs and corresponding output for sine input vm

Figure 21 compares the behavior of the comparator re-

duced model Model(5) to the full order model while the

input is such that the input vp is held to 1V and the input

vm = 0.8− 0.7 cos(2π × 108). The output voltage vout is

accurately set to its maximum value when vp ≥ vm.

Figure 22 shows the case when the input vm is held to

0.9V and the input vp is swept up and down between 0V and

1.8V . This experiment shows that the reduced model has the

same DC characteristic, the same offset voltage and the same

hysteresis behavior that prevents its output instability.

Figure 23 shows the case when the input vm is held to 1.2V
and the input vp is a pulse of a 10ns duration and reaching a

maximum voltage of 1.25V . This experiment proves that the

comparator reduced model has the same sensitivity of 50mv.

Finally, Table VIII provides accuracy and speedup results

for the reduced comparator Model(5) for different inputs. The
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Fig. 22. Comparator inputs and corresponding output for DC sweep input
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Fig. 23. Comparator inputs and corresponding output for pulse input

simulation results of rows 1,2 and 3 are shown respectively in

Figures 21, 22, and 23.

TABLE VIII
PERFORMANCE OF THE COMPARATOR Model(5) FOR DIFFERENT INPUTS

Input Case
‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2

Speedup
Scomp

Figure 21 0.044 0.107 132.44
12.06

= 11

Figure 22 0.045 0.063 194.44
21.57

= 9

Figure 23 0.014 0.107 171.34
13.46

= 13

VI. CONCLUSION

This paper presented a methodology for model order reduc-

tion of nonlinear analog circuits. Different techniques such as

qualitative simulation, k-means clustering, linearization, and

Krylov projections were used to build reduced models which

are more robust to small signal and parameters variations. The

selection of an initial guess of the number of linearization

points was addressed as an optimization problem minimizing

the behavior error between the full order model and its full

order linearized form. The use of the input as a decision

variable in an extended state space enhanced the method and

improved its accuracy. A hierarchical MOR method that subdi-

vides a circuit model into different blocks was also added as an

option to meet specific accuracy and reduction requirements
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and optimize the reduction effort. The experimental results

on several analog circuits show that the presented method is

accurate and effective. The comparison of our results with

two main related methods [3] [4] shows better speedup and

accuracy results for the transmission line model. However, our

experiments with these methods for the remaining applications

show that they fail to preserve their behaviors (large relative

errors > 10%). In future work, the reduced model refinement

process can be extended to generate the specifications and

limitations of the reduced models automatically. Also, a sta-

tistical or a learning based method, which selects a reduced

model from a set different reduced models given a target

performance requirements, can be implemented. Furthermore,

the implementation of a technique that handles the interface

between adjacent behavioral regions can enhance the accuracy

of the reduced models. Finally, the developed framework can

be used to enhance statistical simulation and circuit synthesis.
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