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Abstract This chapter proposes a complementary formal-based solution to the
verification of analog and mixed-signal (AMS) designs. The authors use symbolic
computation to model and verify AMS designs through the application of
induction-based model checking. They also propose the use of higher order logic
theorem proving to formally verify continuous models of analog circuits. To test
and validate the proposed approaches, they developed prototype implementations in
Mathematica and HOL and target analog and mixed-signal systems such as
delta-sigma modulators.
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5.1 Introduction

Analog and mixed-signal (AMS) integrated circuits are cornerstone components
used at the interface between an embedded system and its external environment [1].
As such, AMS designs are dedicated for realizing data processing functions over
physical signals, such as analog to digital (A/D) and digital to analog (D/A) con-
verters. Computer-aided design (CAD) methods have been proposed and developed
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to overcome challenges in the design process of AMS designs [2, 3].
Sophisticated CAD tools and concepts are then needed to provide unique insights
into the behavior and characteristics of the integrated circuits, to help the designer
select best design strategies. The verification of AMS designs is one of the most
important issues in their design.

In general, there exists two main approaches for validating an electronic systems
with respect to a set of given properties. The first method uses monitoring with
simulation to check if a property is valid or not. However, since realistic electronics
systems are accepting large numbers of input combinations, it is impossible to cover
all the behaviors using simulation. The major research efforts today are centered to
find a cleaver way to cover most operating modes through an intelligent generation
of test cases and coverage analysis. The second method, formal verification, is
exploring a mathematical model of the system in order to prove the correctness of
its properties. The foundations of this method are based on logic, automata, and
semantics in which roots originate from computational intelligence. For digital
circuits, this is applied using, for example, model checking or satisfiability-based
verification. A major obstacle here is that of state explosion as the number of states
of the system is exponential in the number of state variables.

However, the situation with analog and mixed-signal designs is radically dif-
ferent. The continuous-time behavior of analog circuits is expressed using models
of differential and algebraic equations, while discrete-time behavior is described
using a system of recurrence equations (SRE). In fact, closed-form solutions and
systematic mathematical analysis methods for these models exist typically only for
limited classes of systems. Usually, designers use differential and difference
equations models more with engineering and applied mathematics tradition, not
related to the careful semantics and methodological concepts developed for mod-
eling digital concurrent systems. However, as computer systems are becoming more
complex, the importance of analog components rises as AMS systems become more
often integrated. The verification with simulation alone is proven not to be enough,
and formal methods are advocated to occupy a complementary currently used
design methods for analog systems, as they already do for digital systems.

This chapter suggests changing the strategy by tackling the problem from the
point of view of difference equations (DE) used to describe the discrete-time
behavior of AMS designs. In fact, a basic understanding of discrete-time behavior is
essential in the design of modern AMS designs. For instance, discrete-time signal
processing is used in the design and analysis of data converters used in commu-
nication and audio systems. Moreover, discrete-time processing techniques based
on switched capacitor methods are used extensively in the design of analog filters
[4]. We extend the definition of DE in order to represent digital components. The
model then is called a generalized SRE. Then, we define the algorithms of bounded
model checking (BMC) [5] on the SRE model by means of an algebraic compu-
tation theory based on interval arithmetics [6]. We associate the bounded model
checking with a powerful and fully decidable equational theorem proving to verify
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properties for unbound time using induction. We also propose to use higher order
logic theorem proving in order to formally verify continuous models of analog
circuits. In order to facilitate the user-guided verification process, we develop a
library of higher order logic models for commonly used analog components, such
as resistor, inductor, and capacitor, and circuit analysis laws, such as Kirchhoff’s
voltage and current laws. These foundations along with the formalization of cal-
culus fundamentals can be used to reason about the correctness of any AMS
property, which can be expressed in a closed mathematical form, within the sound
core of a theorem prover. We illustrate the proposed method on the verification of a
variety of designs including DR modulator and a voltage-controlled oscillator. The
rest of the chapter is organized as follows: We start in Sect. 5.2 by discussing
relevant related work. The bounded model checking methodology is presented in
Sect. 5.3 followed by a description of the theorem proving verification methodol-
ogy in Sect. 5.4 before concluding with a discussion in Sect. 5.5.

5.2 Related Work

Using formal methods, two types of properties are frequently distinguished in
temporal logic: Safety properties state that something bad does not happen, while
liveness properties prescribe that something good eventually happens. In the con-
text of AMS designs, examples of safety properties can be about voltages at specific
nodes not exceeding certain values throughout the operation. Such a property is
important when designing AMS circuits, as a voltage exceeding a certain specified
value can lead to failure of functionality and ultimately to a breakdown of the circuit
which can result in undesirable consequences of the whole design. On the other
hand, occurrence of oscillation or switching is good example of liveness properties.
A bounded liveness property specifies that something good must happen within a
given time; for example, switching must happen within n units of time, from the
previous switching occurrence. This section overviews the research activities in the
application of formal methods for the verification of AMS systems with respect to
safety and liveness properties. A detailed literature overview of AMS formal ver-
ification can be found in [7].

Model checking and reachability analysis are proposed for validating AMS
designs over a range of parameter values and a set of possible input signals.
Common in these methods is the necessity for the explicit computation of the
reachable sets corresponding to the continuous dynamics behavior. Such compu-
tation is usually approximated due to the difficulty to obtain exact values for the
reachable state space (e.g., closed-form solutions for ODEs cannot be obtained in
general). Several methods for approximating reachable sets for continuous
dynamics have been proposed in the literature. They rely on the discretization of the
continuous state space by using over-approximating representation domains such as
polyhedra and hypercubes [8, 9]. On-the-fly algorithms have been proposed to
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address shortcomings of the previous method [10–13]. The model checking tools
d/dt [14], CheckMate [15], and PHaver [16] are adapted and used in the verification
of a biquad low-pass filter [14], a tunnel diode oscillator and a DR modulator
[15, 17], and voltage-controlled oscillators [16].

5.3 First Verification Methodology: Bounded Model
Checking

Our methodology aims to prove that an AMS description satisfies a set of prop-
erties. This is achieved in two phases: modeling and verification, as shown in
Fig. 5.1. The AMS description is composed in general of a digital part and an
analog part. For the analog part, it could be described using recurrence equations.
For the digital part, it could be described using event driven models. The properties
are temporal relations between signals of the system. Starting with an AMS
description and a set of properties, the symbolic simulator performs a set of
transformations by rewriting rules in order to obtain a normal mathematical rep-
resentation called generalized SRE [18]. These are combined recurrence relations
that describe each property blended directly with the behavior of the system. The
next step is to prove these properties using an algebraic verification engine that
combines bounded model checking over interval arithmetic [6] and induction over
the normal structure of the generalized recurrence equations. Interval analysis is
used to simulate the set of all input conditions with a given length that drives the
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discrete-time system from given initial states to a given set of final states satisfying
the property of interest. If for all time steps the property is satisfied, then verification
is ensured; otherwise, we provide counterexamples for the non-proved property.
Due to the over-approximation associated with interval analysis, divergence may
occur, hence preventing the desired verification. To overcome such drawback,
unbounded verification can be achieved using the principle of induction over the
structure of the recurrence equations. A positive proof by induction ensures that the
property of interest is always satisfied; otherwise, a witness can be generated
identifying a counterexample.

5.3.1 Modeling and Specification

Recurrence equations are functional models used for the definition of relations
between consecutive elements of a sequence. In the current work, we argue that, for
certain classes of AMS designs, it is more natural to represent their behavior using
recurrence equations rather than other conventional models such as hybrid auto-
mata. The notion of recurrence equation is extended in [18] to describe digital
circuits with control elements, using what is called generalized If-formula. Such
formalization, we believe, is practical in modeling hybrid systems such as
discrete-time AMS design, where discrete components control the dynamics of the
circuit, for example, the valuation of an analog signal. In mathematical analysis, we
define recurrence equations by:

Definition 1 (Recurrence equation) Let K be a numerical domain (N;Z;Q or RÞ, a
recurrence equation of order n0 2 N is a formula that computes the values of a
sequence UðnÞ 2 K, 8n 2 N, as a function of last n0 values:

UðnÞ ¼ f Uðn� 1Þ;Uðn� 2Þ; . . .;Uðn� n0Þð Þ ð5:1Þ
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Fig. 5.2 Third-order DR modulator
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Definition 2 (Generalized If-formula) In the context of symbolic expressions, the
generalized If-formula is a class of expressions that extend recurrence equations to
describe digital systems. Let K be a numerical domain N;Z;Q;R or Bð Þ, a gen-
eralized If-formula is one of the following:

• A variable xiðnÞ 2 xðnÞ, with i 2 f1; . . .; dg, n 2 N, and xðnÞ ¼ fx1ðnÞ; . . .;
xdðnÞg.

• A constant C 2 K

• Any arithmetic operation } 2 fþ;�;�;�g between variables xiðnÞ 2 K

• A logical formula: any expression constructed using a set of variables xiðnÞ 2 B

and logical operators: not; and; or; xor; nor; . . ., etc.
• A comparison formula: any expression constructed using a set of xiðnÞ 2 K and

a comparison operator a 2 f¼; 6¼;\; � ; [ ; �g.
• An expression IFðX; Y ; ZÞ, where X is a logical formula or a comparison for-

mula and Y ; Z are any generalized If-formula. Here, IFðx; y; zÞ : B�K�K !
K satisfies the axioms:

1. IFðTrue;X; YÞ ¼ X
2. IFðFalse;X; YÞ ¼ Y

Definition 3 (Generalized SRE) The following describes the transition relation of
the system at the end of a simulation time unit n, by the way of a SRE; one equation
for each element x in the system is:

xiðnÞ ¼ fiðxjðn� cÞÞ; ðj; cÞ 2 ei; 8n 2 Z ð5:2Þ

where fiðxjðn� cÞÞ is a generalized If-formula. The set ei is a finite non-empty
subset of 1; . . .; d � N, with j 2 f1; . . .; dg. The integer c is called the delay.

Example 1 Consider the third-order discrete-time DR modulator illustrated in
Fig. 5.2. Such class of DR design can be described using vectors recurrence
equations:

Xðk þ 1Þ ¼ CXðkÞ þ BuðkÞ þ AvðkÞ ð5:3Þ

where A, B, and C are matrices providing the parameters of the circuit, uðkÞ is the
input signal, vðkÞ is the digital part of the system and b4 ¼ 1. In more detail, the
recurrence equations for the analog part of the system are:

x1ðk þ 1Þ ¼ x1ðkÞ þ b1uðkÞ þ a1vðkÞ
x2ðk þ 1Þ ¼ c1x1ðkÞ þ x2ðkÞ þ b2uðkÞ þ a2vðkÞ
x3ðk þ 1Þ ¼ c2x2ðkÞ þ x3ðkÞ þ b3uðkÞ þ a3vðkÞ

ð5:4Þ
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Also, the condition of the threshold of the quantizer is computed to be equal to
c3x3ðkÞ þ uðkÞ. The digital description of the quantizer is transformed into a
recurrence equation using the approach defined in [18]. Thus, the equivalent
recurrence equation that describes vðkÞ is vðkÞ ¼ IF c3x3ðkÞ þ uðkÞ� 0;�a; að Þ,
where a is the maximum output value of the quantizer, typically equals to one.

In order to reason about the functional properties of the design under verifica-
tion, we need a language that describes the temporal relations between the different
signals of the system, including input, output, and internal signals. We adopt the
basic subset of linear temporal logic (LTL) [19], as the specification language. Each
property PðnÞ is composed of two parts: a Boolean formula and a temporal oper-
ator. The Boolean formula pðnÞ is a recurrence time relation written using a logical
formula (see Definition 2) built over the SREs of the system. To describe properties
on analog signals such as current and voltages, atomic propositions, qðnÞ, are used,
which are predicates (inequalities) over reals. The provided propositions are alge-
braic relations between signals (variables) of the system, such that the Boolean
formula is a logical combination of such atomic propositions.

Definition 4 (Atomic Property) An atomic property qðnÞ is a logical formula
defined as follows: qðnÞ ¼ vðnÞ}y, where } 2 \; � ; [ ; � ;¼; 6¼f g; vðnÞ is an
arithmetic formula over the design signals and y is an arbitrary value (y 2 R)

The temporal operator can be one of the basic LTL operators: Next (X),
Eventually (F), and Always (G). As in traditional BMC, we define temporal
operators regarding a bounded time step k. Thus, the verification of the temporal
part is handled by the verification engine during reachability analysis.

Example 2 Consider the DR modulator of Example 1. The modulator is said to be
stable if the integrator output remains bounded under a bounded input signal, thus
avoiding the overloading of the quantizer in the modulator. This property is of a
great importance since the integrator saturation can deteriorate circuit performance,
hence leading to instability. If the signal level at the quantizer input exceeds the
maximum output level by more than the maximum error value, a quantizer overload
occurs. The quantizer in the modulator shown in Fig. 5.2 is a one-bit quantizer with
two quantization levels, +1 V and −1 V. Hence, the quantizer input should be
always bounded between specific values in order to avoid overloading [15]. The
stability property of the DR modulator is written as PðkÞ :¼ GpðkÞ, where

pðkÞ ¼ x3ðkÞ[�2 ^ x3ðkÞ\2ð Þ ð5:5Þ

The symbolic simulation algorithm is based on rewriting by substitution. The
computation aims to obtain the SRE defined in the previous section. In the context
of functional programming and symbolic expressions, we define the following
functions [20].
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Definition 5 (Substitution) Let u and t be two distinct terms and x be a variable. We
call x ! t a substitution rule. We use Replace u; x ! tð Þ, read “replace in u any
occurrence of x by t,” to apply the rule x ! t on the expression u.

The function Replace can be generalized to include a list of rules. ReplaceList
takes as arguments an expression expr and a list of substitution rules
R1;R2; . . .;Rnf g. It applies each rule sequentially on the expression.

ReplaceRepeatedðexpr;RÞ applies a set of rules R on an expression expr until a
fixpoint is reached, as shown in Definition 6.

Definition 6 (Repetitive Substitution) Repetitive substitution is defined using the
following procedure:

ReplaceRepeated(expr, )
Begin
Do

exprt = ReplaceList(expr, )
expr = exprt

Until FP(exprt , )
End

A substitution fixpoint FPðexpr;RÞ is obtained, if Replaceðexpr;RÞ � Replace
Replaceðexpr;RÞ;Rð Þ.
Depending on the type of expressions, we distinguish the following kinds of

rewriting rules:
Polynomial Symbolic Expressions RMath are rules intended for the simplification

of polynomial expressions R
n½x	ð Þ.

Logical Symbolic Expressions RLogic are rules intended for the simplification of
Boolean expressions and to eliminate obvious ones such as andða; aÞ ! að Þ and
not notðaÞð Þ ! að Þ.
If-formula Expressions RIF are rules intended for the simplification of compu-

tations over If-formulas. The definition and properties of the IF rules, such as
reduction and distribution, are defined as follows (see [21] for more details):

• IF Reduction: IF x; y; yð Þ ! y
• IF Distribution: f A1; . . .; IFðx; y; zÞ; . . .;Anð Þ !

IF x; f A1; . . .; y; . . .;Anð Þ; f A1; . . .; z; . . .;Anð Þð Þ

Equation Rules REq result from converting other equations in the SRE into a set
of substitution rules.

Interval Expressions RInt are rules intended for the simplification of interval
expressions.

Interval-Logical Symbolic Expressions RInt�Logic are rules intended for the
simplification of Boolean expressions over intervals.

Rules RInt and RInt�Logic are described in more detail later on. In the case of
symbolic expressions over R, the normal form is obtained using a Buchberger-
based algorithm for the construction of the Gröbner base. The symbolic
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computation uses the repetitive substitution ReplaceRepeatedðExpr;RÞ (defined in
Definition 6) over the set of rules defined above as follows:

Definition 7 (Symbolic Computation) A symbolic computation over the SREs is
defined as:

Symbolic Comp XiðnÞð Þ ¼ ReplaceRepeated XiðnÞ;Rsimp
� �

where RsimpðtÞ ¼ RMath [RLogic [RIF [REq [RInt [RInt�Logic:

The correctness of this algorithm and the proof of termination and confluence of
the rewriting system formed by all above rules are discussed in [18].

Example 3 Applying Definition 6 for the DR modulator of Example 1, we obtain
the following unified modeling for both the analog and discrete parts.

x1ðk þ 1Þ ¼ if c3x3ðkÞ þ uðkÞ� 0; x1ðkÞ þ b1uðkÞ � a1að ;

x1ðkÞ þ b1uðkÞ þ a1aÞ
x2ðk þ 1Þ ¼ if c3x3ðkÞ þ uðkÞ� 0; c1x1ðkÞ þ x2ðkÞ þ b2uðkÞð

�a2a; c1x1ðkÞ þ x2ðkÞ þ b2uðkÞ þ a2aÞ
x3ðk þ 1Þ ¼ if c3x3ðkÞ þ u� 0; c2x2ðkÞ þ x3ðkÞ þ b3uðkÞð

�a3a; c2x2ðkÞ þ x3ðkÞ þ b3uðkÞ þ a3aÞ

ð5:6Þ

The expression of the property in Example 2 after symbolic simulation is:

pðk þ 1Þ ¼ ifðc3x3ðkÞ þ uðkÞ� 0;

�2\c2x2ðkÞ þ x3ðkÞ þ b3uðkÞ � a3a;

c2x2ðkÞ þ x3ðkÞ þ b3uðkÞ þ a3a\2Þ

5.3.2 The Automated Verification Algorithm

The proposed verification algorithm is based on combining induction and bounded
model checking to generate correctness proof for the system. This method is an
algebraic version of the induction-based bounded model checking developed
recently for the verification of digital designs [22]. We start with an initial set of
states encoded as intervals as shown in Fig. 5.3. Then, iteratively the possible
reachable successors states from the previous states are evaluated using interval
analysis-based computation rules over the SREs, i.e., the output of this step is a
reduced If-formula where all variables are substituted by intervals. If there exits a
path that evaluates the property to be false, then we search for a concrete coun-
terexample. Otherwise, if all paths give true, then we transform the set of current
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states to constraints and we try to prove by induction that the property holds for all
future states. If a proof is obtained, then the property is verified. Otherwise, if the
proof fails, then the BMC step is incremented; we compute the next set of interval
states and the operations are re-executed.

In summary, the verification loop terminates in one of the following situations:

• Complete Verification:

– The property is proved by induction for all future states.
– The property is false and a concrete counterexample is found.

• Bounded Verification:

– The resource limits have been attained (memory or CPU) as the verification
is growing exponentially with increasing number of reachability analysis
steps.

– The constraints extracted from the interval states are divergent with respect
to some pre-specified criteria (e.g., width of computed interval states).

5.3.2.1 Background

Bounded Model Checking: Given a state transition system ðS; I;TÞ, where S is
the set of states, I
 S is the set of initial states, and T
S� S, the general bounded
model checking problem can be encoded as follows:
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Fig. 5.3 Overview of the verification algorithm
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BMCðP; kÞ, Iðs0Þ ^
k̂�1

i¼0

Tðsi; siþ1Þ ! PðskÞ ð5:7Þ

where Iðs0Þ is the initial valuation for the state variables, T defines the transition
between two states, and PðskÞ is the property valuation at step k. For instance,

PðskÞ,GpðskÞ ¼
k̂

i¼0

pðsiÞ or PðskÞ,FpðskÞ ¼
_k
i¼0

pðsiÞ

In practice, the inverse of the property (:P) under verification is used in the
BMC algorithm [22], which we refer to as BMC. When a satisfying valuation is
returned by the solver, it is interpreted as a counterexample of length k and the
property P is proved unsatisfied (:P is satisfied). However, if the problem is
determined to be unsatisfiable, the solver produces a proof (of unsatisfiability) of
the fact that there are no counterexamples of length k.

Interval Arithmetics: Interval domains give the possibility to extend the notion
of real numbers by introducing a sound computation framework [6]. The basic
interval arithmetics are defined as follows:

Let I1 ¼ ½a; b	 and I2 ¼ ½a0; b0	 be two real intervals (bounded and closed), the
basic arithmetic operations on intervals are defined by:

I1UI2 , r1Ur2jr1 2 I1 ^ r2 2 I2f g

with U 2 þ;�;�; =f g except that I1=I2 is not defined if 0 2 I2 [6]. In addition,
other elementary functions can be included as basic interval arithmetic operators.
For example, the exponential function exp may be defined as expð½a; b	Þ ¼ ½expðaÞ;
expðbÞ	. The guarantee that the real solutions for a given function are enclosed by
the interval representation is formalized by the following property.

Definition 8 (Inclusion Function) [6] Let f : Rd ! R be a continuous function,
then F : Id ! I is an interval extension (inclusion function) of f if

f ðx1; . . .; xdÞjx1 2 X1; . . .; xd 2 Xdf g
F X1; . . .;Xdð Þ ð5:8Þ

where I is the interval domain and Xi 2 I, i 2 f1; . . .; dg.
Inclusion functions have the property to be inclusion monotonic (i.e.,

XI 
 YI ! FðXIÞ
FðYIÞ), hence allowing the checking of inclusion fixpoints [6].

d-induction: In formal verification, induction has been used to prove a property
GPðnÞ in a transition system by showing that P holds in the initial states of the
system and that P is maintained by the transition relation of the system. As such, the
induction hypotheses are typically much simpler than a full reachable state
description. Besides being a complete proof technique, when it succeeds, induction
is able to handle larger models than bounded model checking, since the induction
step has to consider only paths of length 1, whereas bounded model checking needs
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to check sufficiently long paths to get a reasonable confidence. Hence, simple
induction is not powerful enough to verify many properties.

d-induction [22] is a modified induction technique, where one attempts to prove
that a property holds in the current state, assuming that it holds in the previous d
consecutive states. Essentially, induction with depth corresponds to strengthening
the induction hypothesis by imposing the original induction hypothesis on d con-
secutive time frames. Given a state transition system ðS; I;TÞ, where S is the set of
states and I
 S is the set of initial states, T
 S� S, the d-induction proof is
defined as d-Indproof ,wd�base ^ wd�induc, where wd�base is the induction base and
wd�induc is the induction step defined as follows:

wd�base , Iðs0Þ ^ ^
d�1

i¼0
T ðsi; siþ1Þ ) ^

d

i¼0
pðsiÞ

and

wd�induc , ^
kþd

i¼k
T ðsi; siþ1Þ ^ ^

kþd

i¼k
pðsiÞ ) pðskþdþ1Þ

ð5:9Þ

It is worth noting that when d ¼ 1, we have exactly the basic induction steps
defined in classical induction. Similar to the general induction methods, (un)
satisfiability-based induction d-Indsat is the dual of the induction proof; Indsat ¼
:d-Indproof with d-Indsat ,/d�base _ /d�induc, where the formulas /d�base (the base
step) and /d�induc (the induction step) are defined as follows:

/d�base , Iðs0Þ ^ ^
d�1

i¼0
Tðsi; siþ1Þ ^ _

d

i¼0
:pðsiÞ

and

/d�induc , ^
kþd

i¼k
Tðsi; siþ1Þ ^ ^

kþd

i¼k
pðsiÞ ^ :pðskþdþ1Þ

ð5:10Þ

The advantage of d-induction over classical induction is that it provides the user
with ways of strengthening the induction hypothesis by lengthening the time steps d
computed. Practically speaking, /d�base is bounded model checking (BMC) as
defined earlier in this section. For the case of systems with variables interpreted
over real domains such as AMS designs, the satisfiability of the formulas with a
given set of initial conditions requires algorithms to produce bounded envelopes for
all reachable states at the discrete-time points. In the following, we demonstrate
how to achieve BMC using interval arithmetics.

5.3.2.2 BMC Realization

The bounded forward reachability algorithm starts at the initial states and at each
step computes the image, which is the set of reachable interval states. This pro-
cedure is continued until either the property is falsified in some state or no new

126 M.H. Zaki et al.



states are encountered. We evaluate the reachable states over interval domains, at
arbitrary time steps. The verification steps for safety properties are shown in
Algorithm 5.1. The AMS model, described as a set of recurrence equations, is
provided along with the (negated) property :PðnÞ under verification. Initial and
environment constraints Env Const are also defined prior to the verification pro-
cedure described in lines (1–12) as a loop for Nmax time steps. At each step n, we
check whether the property is satisfied or not (line 2). If :PðnÞ is satisfied, then a
counterexample is generated (line 9); if not, then we check if fixpoint inclusion is
reached (line 3); otherwise, we update the reachable states (line 11) and go to the
next time step of verification. The functions Prop Check, Find Counterexample,
and Update Reach are described below.

Prop_Check: Given the property :P, apply algebraic decision procedures to
check for satisfiability. The safety verification at a given step n can be defined with
the following formula:

Prop Check, x½n	 ¼ f x½n� 1	ð Þ ^ :Pðx½n	Þ ^ x½n� 1	 2 I
d ð5:11Þ

Update_Reach(R1, R2): This function returns the union of the states in the sets
R1 and R2.

Reach[x½n	:] This evaluates the reachable states over interval domains, at an
arbitrary time step.

Find_Counterexample(:PðnÞ; x½n	;Env Const): This function returns a coun-
terexample, indicating a violation of the property, within the environment
constraints.

Setting bounds on the maximum number of iterations ensures that the algorithm
will eventually terminate in one of the following possibilities. If at a given time step
n�Nmax, no new interval states are explored, then fixpoint inclusion guarantees
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that the property will be always verified; otherwise, if a property is proved to be
incorrect, then a counterexample is generated. If we reach the maximum number of
steps n ¼ Nmax, and no counterexample is generated, then the property is verified up
to bounded step Nmax.

Example 4 Given the design in Example 1 and the safety property in Example 2,
we apply Algorithm 5.1. For instance, the correctness of the property Pðk þ 1Þ (see
Example 3) depends on the parameter vectors A;B, and C, the values of variables
x1ðkÞ, x2ðkÞ, and x3ðkÞ, the time k, and the input signal uðkÞ (see Table 5.1). We
verify the DR modulator for the following set of parameters inspired from the
analysis in [15]:

a ¼ 1 a1 ¼ 0:044 a2 ¼ 0:2881
a3 ¼ 0:7997 b1 ¼ 0:07333 b2 ¼ 0:2881
b3 ¼ 0:7997 c1 ¼ c2 ¼ c3 ¼ 1

8<
:

The initial constraints define the set of test cases over which interval-based
simulation is applied. If the property is false, as in the first and third cases in
Table 5.1, then the verification is completed and a counterexample is generated
from the simulated intervals. On the contrary, when the property is true, we have a
partial verification result as it is bounded in terms of simulation steps. The second
case in Table 5.1 illustrates such limitation.

Unfortunately, we note that in some cases (as case 4 in Table 5.1), divergence
happens quickly, so we cannot deduce useful information on the property. We

Table 5.1 Verification results for DR modulator in Example 4

Initial constraints Property
evaluation for
n ¼ 0 to Nmax

cycles

Counterexample CPU
time
used (s)

0:028� x1ð0Þ� 0:03
�0:03� x2ð0Þ��0:02
0:8� x3ð0Þ� 0:82; u :¼ 0:8

Nmax ¼ 40
n ¼ 0 to 15
true
n[ 15 false

x1½16	 7! 0:263

x2½16	 7! 1:256; x3½16	 7! 2:42

1.5

0:012� x1ð0Þ� 0:013
0:01� x2ð0Þ� 0:02
0:8� x3ð0Þ� 0:82; u :¼ 0:54

Nmax ¼ 38
true

31

0:163� x1ð0Þ� 0:164
�0:022� x2ð0Þ��0:021
0:8� x3ð0Þ� 0:82; u :¼ 0:6

Nmax ¼ 40
n ¼ 0 to 17
true
n[ 17 false

x1½19	 7! 0:163

x2½19	 7! 0:886; x3½19	 7! 2:47

0.8

0:012� x1ð0Þ� 0:013
0:01� x2ð0Þ� 0:02
0:8� x3ð0Þ� 0:82; 0:58� u� 0:6

Divergent at
time step 4

0.5
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tackle such problem by extending the bounded model checking with an induction
engine as proposed in the verification methodology.

5.3.2.3 Constrained Induction-Based Verification

In the following, we define an induction engine over the SREs for the safety
property verification of AMS designs. The inductive proof, which is a special case
of the d-induction described earlier in this chapter, for verifying a safety property
PðnÞ ¼ GpðnÞ, can be derived by checking the formula Indproof ,wbase ^ winduc,
where wbase is the induction base and winduc is the induction step defined as follows:

wbase , 8s 2 S0 : Iðs0Þ ) pðs0Þ
and

winduc , 8sk; skþ1 2 S : Tðsk; skþ1Þ ^ pðskÞ ) pðskþ1Þ
ð5:12Þ

The core of the induction engine is a decision procedure function that checks
satisfiability of algebraic formulas under certain constraints on quantified state
variables.

Definition 9 (The Prove Function)

Prove(quant(X ,cond,expr)) =
I f (Prop Veri f y(quant(X ,cond,expr))) = True,

True,
Find Counterexample(cond∧¬expr)

The decision procedure function Prove tries to prove a property of the form
quantðX; cond; exprÞ, using Prop Verify; otherwise, it gives a counterexample
using Find Counterexample, where quant 2 f8; 9g define quantifiers over a set of
state variables x, cond is a logical combination of comparison formulas constructed
over the variables x describing initial and environment constraints, and expr is an If-
formula expression representing the property of interest, obtained after applying the
symbolic rule outlined earlier. Similar to Prop_Check, Prop Verify applies alge-
braic decision procedures to check for satisfiability, but for all time steps n. The
safety verification can be defined with the following formula:

Prop Verify, 8n � ðx½n	 ¼ SREðx½n	ÞÞ ^ Pðx½n	Þ ð5:13Þ

The Prove function generates a counterexample if the property of interest cannot
be proved to hold using Find Counterexampleðcond ^ :exprÞ. If a proof cannot be
obtained, then we may need to find a particular combination of inputs and local
signal values for which the property is not satisfied. The properties verification

5 Framework for Formally Verifying Analog and Mixed-Signal Designs 129



using Prove starts by checking the validity at time t ¼ 1 and then at time t ¼ n
assuming that the properties are satisfied at time t ¼ n� 1. Case splitting divides
the property into subproperties for which validation results are conjuncted to check
the validation of the original property.

Let P be a property of the form quantðX; cond; exprÞ. We define the function
SplitProve that depending on the If-formula structure of expr, applies the function
Prove, or splits the verification. SplitProve is defined recursively as follows:

Definition 10 (The SplitProve Function) According to the nature of expr,
SplitProve can be one of the following:

• expr is a comparison formula C, SplitProveðquantðX; cond;CÞÞ ¼ Proveðquant
ðX; cond;CÞÞ

• expr is a logical formula of the form a}b, with } 2 f:;^;_;�; . . .g and a; b
are If-formulas that take values in B.
SplitProveðPÞÞ’SplitProveðquantðX; cond; aÞÞ}SplitProveðquantðX; cond; bÞÞ

• expr is an expression of the form IFðq; l; rÞ SplitProveðPÞ ¼ SplitProve
ðquantðX; cond ^ q; lÞÞ _ SplitProveðquantðX; cond ^ :q; rÞÞ

Let PðnÞ be the recurrence equation of the property P written as an If-formula,
condn0 the initial condition at time n0, condn the constraints that are true for all
n[ n0, and X the set of dependency variables of PðnÞ, and the proof by induction
over n is defined as follows:

Definition 11 (Proof by Induction)

SplitProve ForAll Xn0 ; condn0 ;Pðn0Þð Þð Þ
^
SplitProve ForAll n[ n0 ^ Xn; n 2 N ^ condn ^ PðnÞ;Pðnþ 1Þð Þð Þ

Example 5 We verify the DR modulator of Example 1 for two sets of parameters
inspired from the analysis in [15]:

Param1:
a ¼ 1 a1 ¼ 0:044 a2 ¼ 0:2881

a3 ¼ 0:7997 b1 ¼ 0:044 b2 ¼ 0:2881
b3 ¼ 0:7997 c1 ¼ c2 ¼ c3 ¼ 1

8<
:

Param2:
a ¼ 1 a1 ¼ 0:044 a2 ¼ 0:2881

a3 ¼ 0:7997 b1 ¼ 0:07333 b2 ¼ 0:2881
b3 ¼ 0:7997 c1 ¼ c2 ¼ c3 ¼ 1

8<
:

We apply induction in order to verify the DR modulator stability for the above
sets of parameters and for two cases of conditions (state space constraints).
Table 5.2 summarizes the verification results. The property is True if it is proved
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under the set of conditions and the set of parameters for all k[ 0. If there is no k for
which the property is valid, then it is False, and a counterexample is provided.
When the property is valid for some values of k and not for other values, we say that
the property is not proved and counterexamples are provided for both cases.

5.3.2.4 Combining d-Induction and Interval-Based BMC

The d-induction-based verification algorithm is an incremental algorithm, where
depth is incremented at each step and induction is applied on the new formulas until
a d-length counterexample is generated or the property is proved. The verification
steps are given in Algorithm 5.2.

The AMS model, described as a set of recurrence equations, is provided along
with the (negated) property :PðnÞ under verification. Initial and environment
constraints are also defined prior to the verification procedure described in lines (1–
18) as a loop of depth Nmax steps. For each depth d\Nmax, we first check the initial
d-induction step by verifying whether the property is verified for all steps up to this
depth d (line 3). If the property is false, we generate a counterexample (lines 4).
Before checking the induction step (line 10), we verify whether an inclusion fix-
point is reached. If so, the verification ends as it will be trivial to check for the
induction step as no new verification information can be implied. When we apply
the induction step, where either the property is verified for unbounded time (line
11), otherwise, we conclude that the current depth is not enough to verify the
property and the depth is incremented (line 14).

Table 5.2 Verification results for DR modulator in Example 5

State space
constraints

Property with Parameter1 Property with
Parameter2

Case 1 Values at t = 0 True True

0� x1ð0Þ� 0:01
�0:01� x2ð0Þ� 0
0:8� x3ð0Þ� 0:82; u :¼ 0:6

Values at t = n

�0:1� x1ðnÞ� 0:1
�0:5� x2ðnÞ� 0:5
0:5� x3ðnÞ� 1:5; u :¼ 0:6

Case 2 Values at t = 0 False False

0� x1ð0Þ� 0:02
�0:03� x2ð0Þ� � 0:01
1� x3ð0Þ� 1:4; u :¼ 0:8

Values at t = n x2½k	 7! 0:4237
x3½k	 7! 1:8378

x2½k	 7! 0:2103
x3½k	 7! 2�0:1� x1ðnÞ� 0:1

�1� x2ðnÞ� 0:5
�1� x3ðnÞ� 2:5; u :¼ 0:8
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It is worth noting that constraints used in the induction steps are extracted from
the previous reachable states. Hence, we strengthen the induction hypothesis by
lengthening the time steps d computed. In case a counterexample needs to be
generated, the extracted constraints allow for finding a partial path violating the
property. Setting bounds on the maximum number of iterations ensures that
Algorithm 5.2 will eventually terminate in one of the following possibilities. If the
initial induction step fails, a counterexample is generated; otherwise, if at a given
time step n�Nmax, no new interval states are explored, and then, fixpoint inclusion
guarantees that the property will be always verified. In case the induction step is
verified true, then the algorithm terminates; otherwise, we increase the induction
depth and restart the verification. If we reach the maximum number of steps
n ¼ Nmax, and no counterexample is generated, then the property is verified up to
bounded step Nmax.

5.3.3 Applications

We have implemented a prototype for the presented verification algorithms using
symbolic algebraic manipulation and real number theorem proving developed
inside the computer algebra tool Mathematica [23].
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5.3.3.1 Third-Order DR Modulator

We extended the verification results outlined throughout the chapter and summa-
rized in Tables 5.1 and 5.2 by applying the d-induction algorithm to verify the
stability of the third-order DR modulator for different combinations of design
parameters, inputs, and initial conditions. We are able to prove properties using the
inductive BMC method, which we were unable to verify previously using the
conventional BMC method (rows 2 and 4 in Table 5.1). In row 2 (Table 5.1), we are
able only to verify the property for a bounded time step, with the d-induction BMC
method; however, we are able to prove that the property will always hold (second
row with param2 in Table 5.3). On the other hand, in row 4 (Table 5.1), the
divergence occurs quickly; however, the property is proven True as shown in
Table 5.3, row 4 with param2.

5.3.3.2 Voltage-Controlled Oscillator

Recurrence equations have been proposed as a simplified operational modeling
framework for certain AMS designs, in which precise continuous-time modeling
poses challenging requirements to achieve simulation. As an instance, precise PLL
verification necessitates the accounting for different time constants which render the
simulation hard to achieve. Accordingly, at the early steps of the design, a
discrete-time model is constructed representing the main functional aspects of the
design. This can be later translated to a more refined model at subsequent design
stages.

Table 5.3 d-induction BMC verification results for the third-order DR modulator

State space constraints Verification results Verification
details

Param1 0� x1ð0Þ� 0:01
�0:01� x2ð0Þ� 0
0:8� x3ð0Þ� 0:82; u :¼ 0:6

Proved true by d-induction k-step = 3

0� x1ð0Þ� 0:02
�0:03� x2ð0Þ��0:01
1� x3ð0Þ� 1:4; u :¼ 0:8

Proved true by BMC then
divergent

k-step = 14

Param2 0� x1ð0Þ� 0:01
�0:01� x2ð0Þ� 0
0:8� x3ð0Þ� 0:82; u :¼ 0:6

Proved true by d-induction k-step = 3

0:012� x1ð0Þ� 0:013
0:01� x2ð0Þ� 0:02
0:8� x3ð0Þ� 0:82; u :¼ 0:54

Proved true by d-induction k-step = 3

0� x1ð0Þ� 0:02
�0:03� x2ð0Þ��0:01
1� x3ð0Þ� 1:4; u :¼ 0:8

Proved false by
counterexample

k-step = 16

0:012� x1ð0Þ� 0:013
0:01� x2ð0Þ� 0:02
0:8� x3ð0Þ� 0:82; 0:58� u� 0:6

Proved true by d-induction k-step = 3
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In the following, we apply the induction-based verification for the voltage-
controlled oscillator (VCO) block of a charge pump PLL. A VCO is an oscillator, in
which output frequency is controlled and varied by the applied input voltage. The
recurrence equation modeling of the VCO is based on the circuit shown in Fig. 5.4
that describes a relaxation oscillator, in which output is a digital signal [4]. In the
shown design, the input voltage is used to derive the VCO which according to some
switching conditions triggers the one-shot timer, which in turn acts by controlling
the discharging switch Sosc and the input to the toggle circuit. For instance, assume
that the capacitor Cosc is initially discharged, it will be slowly charged by the
current Iosc with the voltage V2 at each analysis step. Once the voltage Vth2 across
the capacitor Cosc exceeds the threshold voltage Vth2, then the output of the com-
parator goes to high (if it is not) and the one-shot timer is activated. The details
about the functionality modeling of this VCO can be found in [4].

For correct operation of the VCO within the PLL design, it is required that the
output will toggle from time to time (frequency of toggling is depending on the
input voltage to the VCO). Such property has a flavor of liveness characteristics,
which cannot be checked directly through induction. However, we use induction to
check whether the input voltage variations will not lead to improper functionality.
The verified property can be stated as follows: For a given set of input voltage
variations, Vosc will always remain unchanged (GVosc½n	 � Vosc½n� 1	 ¼ 0). If this
property is verified true, then we deduce that our choice of input signal range and/or
parameters values is inappropriate for a correct behavior for the design.

We verified the property over several input signal V1 ranges, for different values
of the transcendence of the VCO Gosc and the capacitor Cosc. The results in the
experiments are obtained using the parameters proposed in [4]. First, we choose the
range of input voltage as the interval [0, 2] volts. The property in this case is
verified true. However, when we increase the input range to [0, 2.3], the property
becomes false. From those two results, we deduce that a possible correct func-
tionality would require at least a larger swing for the input signal to the VCO. In
another experiment, we preserve the first input voltage range while perturbing the
set of parameter values and the property is verified again to false. Another inter-
esting property we checked is the following safety criteria: For all possible input

Q T

OSCI

2

C

V

One−Shot

OSC th2
V

V
OSC

1OSC
g    V

th1

cntlV

V
V1

+

−
+

−

Fig. 5.4 Voltage-controlled oscillator
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voltage ranges (i.e., V1 2 ½�2:5; 2:5	), the comparator input voltage V2 will never
exceed certain bounds (i.e., V2 2 ½�2:51; 2:51	). This property is verified true. In
fact, this verification is very beneficial as it provides us with the knowledge of the
upper and lower bounds of the reachable state space. It is important to note that the
correct functionality of the VCO requires the analysis over different voltage
changes and notice the output. This would demand a dynamic verification method
such as reachability or simulation, rather than a static method such as
induction-based verification. Nevertheless, this latter technique allows the designer
to have a better knowledge about the design limitations and to avoid and prune out
undesirable constraints and parameters values when integrating the design with
other components.

5.4 Second Verification Methodology: Theorem Proving

Most of the existing formal verification approaches work with abstracted discretized
models of analog circuits (e.g., [24, 25]). This is mainly because of the inability to
model and analyze continuous systems by the widely used formal verification
techniques, such as model checking or automated theorem proving. Thus, despite
the inherent soundness of formal verification methods, such analysis cannot be
termed as absolutely accurate. Higher order logic theorem proving can be used to
overcome these limitations due to the high expressiveness of the underlying logic.
However, most of the existing higher order logic theorem proving-based analog
circuit verification works (e.g., [26–28]) use discrete models of the given analog
circuits by abstracting the continuous details. Thus, neither real numbers nor dif-
ferential equations are used to represent the analog circuit behaviors in these
analyses, which makes them prone to round-off and approximation errors.

We argue that the high expressibility of higher order logic can be leveraged upon
to formalize the continuous models of analog circuit implementations and their
desired specifications. Their equivalence can then be verified within the sound core
of a theorem prover. Due to the high expressibility of higher order logic, the
proposed approach is very flexible in terms of analyzing a variety of analog circuits
and reasoning about their generic properties.

There are two main challenges in the proposed approach. Firstly, due to the
undecidable nature of higher order logic, the proofs have to be done interactively,
which may become very tedious due to the involvement of continuous elements and
transcendental functions. Secondly, no closed-form solutions exist for a large
number of analog circuits, and thus for these kinds of circuits, we cannot formally
reason about approximate solutions in a theorem prover. We overcome both of
these challenges in the proposed methodology [29], depicted in Fig. 5.5, by
developing a library of analog circuit analysis definitions, theorems, and automatic
simplifiers to minimize the user effort in the formal reasoning process and by using
the support of computer algebra system for solving differential equations for which
no closed-form solutions exist.
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The first step in the proposed methodology is to obtain an implementation model
of the given analog circuit by using the behavior of its individual components and
its overall structure. To facilitate this formalization, we developed a database of
formal definitions of commonly used analog components, such as resisters,
capacitors, and inductors, and circuit analysis laws such as Kirchhoff’s voltage and
current laws. The second step in the proposed methodology is to develop a formal
model of the specification of the circuit, which is usually expressed as a differential
equation. For this purpose, we choose the HOL4 theorem prover to implement the
proposed methodology since it provides formalized libraries of real numbers and
calculus foundations [30]. The third step is to verify the equivalence or implication
relationships between the formalized implementations and specifications. To min-
imize the user interaction, required in this step, we formally verified most of the
frequently used properties and developed some simplifying tactics with access to
these results so that the users can verify most of the proof goals associated with
analog circuit verification with minimal interaction. The main contribution in this
regard is the formal verification of properties related to solutions of differential
equation. Finally, if the differential equation corresponding to the given analog
circuit does not have a closed mathematical solution, then it can be fed to a
computer algebra system, such as Mathematica, to obtain its approximate solution.
It is important to note here that the soundness of the analysis is not compromised at
all by the computer algebra system link since it would only be invoked for the cases
where a closed-form precise solution cannot be attained.

Fig. 5.5 Proposed methodology for the formal verification of AMS circuits

136 M.H. Zaki et al.



The main strengths of the proposed approach include its generic nature and
accuracy. Any kind of analog circuit can be modeled, and its corresponding linear,
nonlinear, homogenous, or non-homogenous differential equation can be formally
expressed in higher order logic. If a closed-form solution for this equation exists,
then it can be formally verified within the sound core of a theorem prover. In this
case, modeling or analysis does not involve computer arithmetics or any discreti-
zation and thus, actual continuous models are formally verified. On the other hand,
if a closed form does not exist, then the analysis is done using computer algebra
systems, which is definitely the most accurate method in this scenario.

In the rest of this section, we first provide a formalization of the solutions of the
second-order homogeneous linear differential equation to be able to reason about
the solutions of differential equations for which a closed-form solution exist. Many
interesting analog circuits lead to these kinds of equations. The formalization of
circuit analysis fundamentals, i.e., KVL, KCL, and basic circuit components, is
provided next. A couple of illustrative examples are then presented in the end.

5.4.1 Second-Order Homogeneous Linear Differential
Equations

Second-order homogeneous linear differential equations are widely used to model
analog circuits, and differential equations of higher order are seldom required in this
domain. They can be mathematically expressed as follows:

p2ðxÞ
d2yðxÞ
dx

þ p1ðxÞ
dyðxÞ
dx

þ p0ðxÞyðxÞ ¼ 0 ð5:14Þ

where terms pi represent the coefficients of the differential equation defined over a
function y. The equation is linear because (i) the function y and its derivatives
appear only in their first power and (ii) the products of y with its derivatives are also
not present in the equation. By finding the solution of the above equation, we mean
to find functions that can be used to replace the function y in Eq. (5.14) and satisfy
it.

We proceed to formally represent Eq. (5.14) by first formalizing an nth-order
derivative function as follows [31]:

Definition 12 (Nth-order Derivative of a Function)

� (∀ f x. n order deriv 0 f x = f x) ∧
(∀ f x n. n order deriv (n+1) f x =

n order deriv n (deriv f x) x)

The function n_order_deriv accepts an integer n that represents the order of
the derivative, the function f that represents the function that needs to be
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differentiated, and the variable x that is the variable with respect to which we want
to differentiate the function f . The function deriv accepts two parameters f and x
and returns the derivative of the function f at point x. Thus, the function
n_order_deriv returns the nth-order derivative of f with respect to x. Now,
based on this definition, we can formalize the left-hand side (LHS) of an nth-order
differential equation in HOL4 as the following definition [31].

Definition 13 (LHS of a Nth-order Differential Equation)

� ∀ P y x. diff eq lhs P y x =
sum(0,LENGTH P)(λn.(EL n P x) *

(n order deriv n y x))

The function diff_eq_lhs accepts a list P of coefficient functions corre-
sponding to the pi’s of Eq. (5.14), the differentiable function y and the differenti-
ation variable x. It utilizes the functions sum (0,m) f and EL m L, which
correspond to the summation (

Pm�1
i¼0 fi) and the mth element of a list Lm, respec-

tively. It generates the LHS of a differential equation of order equal to the number
of elements in the coefficient list P using the length of the list function LENGTH.

If the coefficients pi’s of Eq. (5.14) are constants, then using the fact that the
derivative of the exponential function y ¼ erx (with a constant r) is a constant
multiple of itself dy=dx ¼ rerx, we can obtain the following solution of Eq. (5.14):

YðxÞ ¼ c1er1x þ c2er2x ð5:15Þ

where c1 and c2 are arbitrary constants and r1 and r2 are the roots of the auxiliary
equation p2r2 þ p1r1 þ p0 ¼ 0. In this chapter, we formally verify this result which
plays a key role in formal reasoning about the solutions of second-order homo-
geneous linear differential equations [31].

Theorem 1 Differential Equation with distinct roots

� ∀ a b c c1 c2 r1 r2 x.
(c + (b * r1) + (a * r12) = 0) ∧
(c + (b * r2) + (a * r22) = 0) ⇒
(diff eq lhs (const list [c; b; a])

(λx. c1 * (exp (r1 * x)) +
c2 * (exp (r2 * x))) x = 0)

where ½c; b; a	 represents the list of constants corresponding to the coefficients p0,
p1, and p2 of Eq. (5.14); r1 and r2 represent the roots of the corresponding auxiliary
equation as given in the assumptions; c1 and c2 are the arbitrary constants; and x is
the variable of differentiation. The function const_fn_list transforms a list of
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real numbers to the corresponding list of constant functions recursively, i.e.,
functions with data type real → real that return a constant value for all values
of arguments [31]. The formal reasoning about Theorem 1 is primarily based on the
linearity property of higher order derivatives

5.4.2 Kirchhoff’s Voltage and Current Laws

Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL) form the most
foundational circuit analysis laws. The KVL and KCL state that the directed sum of
all the voltage drops around any closed network (loop) of an electrical circuit and
the directed sum of all the branch currents leaving an electrical node is zero,
respectively. Mathematically,

Xn
k¼1

Vk ¼ 0;
Xn
k¼1

Ik ¼ 0 ð5:16Þ

where Vk and Ik represent the voltage drops across the kth component in a loop and
the current leaving the kth branch in a node, respectively. The formalization is as
follows [29]:

Definition 14 (Kirchhoff’s Voltage and Current Law)

� ∀ V t. kvl V t =
(∀ x. 0 < x ∧ x < t ⇒

(sum (0,LENGTH V) (λn. EL n V x) = 0))
� ∀ V t. kcl I t =

(∀ x. 0 < x ∧ x < t ⇒
(sum (0,LENGTH I) (λn. EL n I x) = 0))

The function kvl accepts a list V of functions of type (real → real ), which
represents the behavior of time-dependant voltages in the given circuit and a time
variable t as a real number. It return the predicate that guarantees that the sum of all
the voltages in the loop is zero for all time instants in the interval ð0; tÞ. Similarly,
the function kcl accepts a list I, which represents the behavior of time-dependant
currents and a time variable t and returns the predicate that guarantees that the sum
of all the currents leaving the node is zero for all time instants in the interval ð0; tÞ.

We now present some of the foundational formalization that is required to
formally model analog circuits. The V–I characteristics of fundamental analog
components such as resistors, inductors, capacitors, and op-amps can be formalized
as [29]:
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Definition 15 (Resistor, Inductor Capacitor, and Op-amp)

� ∀ R i.resistor voltage R i = (λt.i t * R)
� ∀ R v.resistor current R v = (λt.v t / R)
� ∀ L i.inductor voltage L i =

(λt. L * deriv i t)
� ∀ L v Io.inductor current =

(λt. Io + 1/L * integral (0,t) v)
� ∀ C i Vo. capacitor voltage C i Vo =

(λt. Vo + 1/C * integral (0,t) i)
� ∀ C v. capacitor current =

(λt. C * deriv v t)
� ∀ Vpos Vneg A. op amp voltage Vpos Vneg A=

(λt. A * (Vpos t - Vneg t))

The variables i and v represent the time-dependant current and voltage variables,
respectively, in the above function definitions. While the variables R, L, and C
represent the constant resistance, inductance, and the capacitance of their respective
components, respectively. The variables Io and Vo are used in the definitions of
inductance and capacitance to model the initial current in the inductor and the initial
voltage across the capacitor, respectively. The parameters Vpos, Vneg, and A
represent non-inverting input, inverting input, and gain of an op-amp, respectively.
The function deriv accepts two parameters f and x and returns the derivative of
the function f at point x. Likewise, the function integral takes three parameters
f , a, and b and returns the integrated result of f in the interval (a, b). All these
functions return a (real → real) type function that models the corresponding
time-dependant voltage or current.

5.4.3 Applications

5.4.3.1 RLC Series Circuit

Serially connected resistor (R), inductor (L), and capacitor (C), or the RLC, circuit
is one of the classical examples of an AMS circuit. It is also widely used in
modeling parasitics in the metal interconnect of submicrometer ICs. We utilize the
foundational formalization for analyzing AMS circuits, described in the last two
subsections, to formally verify the electrical current flow relationship in the RLC
circuit, shown in Fig. 5.6, with the intent to demonstrate the proposed methodology
for formally analyzing AMS circuits.

The first step in the proposed methodology is to model the behavior of the given
circuit in higher order logic. The behavior of the given circuit can be captured using
the KVL as follows [31]:
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Definition 16 (RLC Series Circuit Model)

�∀ R L C V Vo i t.rlc ckt R L C V Vo i t =
kvl [resistor voltage R i;

inductor voltage L i;
capacitor voltage C i Vo; (λt. -V)] t

The list input of the function kvl is composed of all the elements of the circuit
that have a voltage drop. The dc voltage source V is modeled in this list as a
time-independent constant. The next step in the proposed methodology is to obtain
a differential equation representation of the given AMS circuit. We formally veri-
fied this relationship as follows [31].

Theorem 2 Differential Equation for the RLC Circuit

� ∀ R L C V Vo i t y.
(0 < y) ∧ (y < t) ∧
(∀x. 0≤x ∧ x≤t ⇒ i differentiable x) ∧
(∀x. 0≤x ∧ x≤t ⇒ ((λt.deriv i t))

differentiable x) ∧
(rlc ckt R L C V Vo i t) ⇒

(diff eq lhs(const list[1/C;R;L]) i y = 0)

The conclusion of Theorem 2 describes the second-order differential equation
corresponding to the RLC circuit given in the assumption using the function
rlc_ckt. The theorem is verified under the assumptions that both the current
function i and its first derivative are differentiable. It is also important to note that
the theorem is valid for all time y in the interval ð0; tÞ, where t represents the upper
bound of the time for which the behavior of the function rlc_ckt is valid.
Theorem 2 has been primarily verified using Theorem 1, some real analysis-based
reasoning.

Fig. 5.6 RLC series circuit with constant voltage
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5.4.3.2 Delta-Sigma Modulator

In order to illustrate the proposed methodology, we present the formal verification
of the first-order delta-sigma modulator, shown in Fig. 5.7, which is the widely used
benchmark in formal verification of analog circuits.

The implementation model of this circuit can be obtained by applying KCL
function at the input node of the op-amp:

Definition 17 (Implementation Model of Delta-Sigma Modulator)

� ∀ R C Vin Vout Vc Veq y.
delta sigma imp R C Vin Vout Vc Veq y =

(kcl [resistor current R Vin;
resistor current R Vout;
capacitor current C (λx. -Vc x)] t)∧

(Vout = (λt. Veq t - Vc t))

The next step is to formalize its specification:

Definition 18 (Behavioral Model of Delta-Sigma Modulator)

� ∀ R C Vin Vout Veq y.
delta sigma behav R C Vin Vout Veq y =

(diff eq [1; R * C] Vout y =
-Vin y + diff eq [0; R * C] Veq y)

The function diff_eq accepts the list of coefficients of a differential equation,
the differentiable function, and the differentiation variable and returns the corre-
sponding differential equation.

Next, we formally verified the following implication between the implementa-
tion and specification of the given first-order delta-sigma modulator.

Fig. 5.7 First-order
delta-sigma modulator
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Theorem 3 Implementation implies Specification

� ∀ R C Vin Vc Vout Veq t .
delta sigma imp R C Vin Vc Vout Veq t⇒
delta sigma behav R C Vin Vout Veq t

The proof was very straightforward due to the available formally verified
properties and simplifiers for real analysis-related reasoning in HOL. The differ-
ential equation of Definition 18 does not have a closed-form mathematical solution,
and thus, we feed it to a computer algebra system to obtain its solution and thus
other interesting characteristics of the delta-sigma modulator.

The proof scripts for both of the application theorems are composed of just 300
lines approximately. This is far less than the proof script for the formalization,
presented in the previous two subsections, which is more than 3500 lines of HOL
code. This fact clearly indicates the usefulness of our foundational formalization
associated with the proposed methodology. Just like the case studies, presented in
this section, our formalization results can be utilized to automatically verify
interesting properties of a wide variety of analog circuits in a straightforward
manner and the results would be guaranteed to be correct due to the inherent
soundness of theorem proving.

5.5 Summary

Early uncovering of design flows is a daunting procedure during the integration of
digital and AMS components. The heterogeneous verification of AMS designs
poses great challenges for the development of System-on-Chip because of the
infinite state space composed of continuous and discrete states. In this chapter, we
have presented two complementary formal verification methodologies that address
this obstacle. The rigorous characteristics of the methodology strengthen the veri-
fication and provide a support for simulation through state space exploration and
corner cases identification. Experimental results have proven the feasibility of the
approach. The symbolic-based method can find application along the design flow of
complex AMS designs. Formal verification can be applied to check conformance of
reduced order models. We are currently expanding the application of formal veri-
fication as a guidance during circuit sizing. In addition, our formally verified exact
solutions of differential equations can also be used to formally verify error bounds
for the numerical method-based solutions for the analog circuits for which the
differential equations do not have closed-form mathematical solutions. To broaden
the scope of analog circuit verification, we also plan to extend the library of analog
circuit components with diodes and transistors, etc. We are also working on
developing reasoning support for non-homogeneous linear differential equations.
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Finally, the calculus theories available in HOL-Light [32] are based on multivariate
real numbers and thus can model complex numbers. Moreover, this work has been
recently extended to formalize some Laplace transform theory [33]. Our formal-
ization can be ported in a very straightforward manner to HOL-Light to be able to
benefit from these mathematical foundations, which would enable handling the
formal analysis of analog circuits in the complex plane.
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