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Chapter 13

Formal Analysis of Real-
Time Systems

Osman Hasan
National University of Science and Technology (NUST), Pakistan

Sofiène Tahar
Concordia University, Canada

INTRODUCTION

Real-time systems can be characterized as sys-
tems for which the correctness of an operation is 
dependant not only on its functional correctness 
but also on the time taken. Some commonly used 
real-time system applications include embedded 
systems, digital circuits with uncertain delays, 
communication protocols and dynamic recon-
figurable systems.

Until the last decade, real-time systems were 
analyzed using traditional techniques, such as 
paper-and-pencil proof methods or simulation. 
The paper-and-pencil based proof techniques 
usually have some risk of an erroneous analysis 
due to the human-error factor. Similarly, accuracy 
of analysis cannot be guaranteed in computer 
simulation as well since the fundamental idea in 
this approach is to approximately answer a query 
by analyzing a large number of samples. These 
inaccuracy limitations of paper-and-pencil proof 
methods and simulation techniques may lead to 

ABSTRACT

Real-time systems usually involve a subtle interaction of a number of distributed components and have 
a high degree of parallelism, which makes their performance analysis quite complex. Thus, traditional 
techniques, such as simulation, or state-based formal methods usually fail to produce reasonable results. 
The main limitation of these approaches may be overcome by conducting the performance analysis of 
real-time systems using higher-order-logic theorem proving. This chapter is mainly oriented towards 
this emerging trend and it provides the details about analyzing both functional and performance re-
lated properties of real-time systems using a higher-order-logic theorem prover (HOL). For illustra-
tion purposes, the Stop-and-Wait protocol, which is a classical example of real-time systems, has been 
considered as a case-study.
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disastrous consequences in today’s world, where 
real-time systems are extensively being used in 
safety critical and extremely sensitive applications 
such as medicine, military and transportation. In 
fact, some unfortunate incidents have already 
happened in this regard. One of the well-known 
incidents is the loss, in December 1999, of the 
Mars Polar Lander; a $165 million NASA space-
craft launched to survey Martian conditions. The 
Mars Polar Lander is believed to be lost mainly 
because of its engine shutdown while it was still 
40 meters above the Mars surface. The engine 
shutdown happened due to the vibrations caused 
by the deployment of the Lander’s legs, i.e., a 
probabilistic behavior that gave false indication 
that spacecraft had landed. Some other such inci-
dents related to inaccurate or inadequate analysis of 
real-time systems include the loss of $125 million 
Mars Climate Orbiter in 1998 and the performance 
degradation of Microsoft’s IIS indexing service 
DLL due to a buffer overflow problem caused by 
the “Code Red’’ worm in 2001, which resulted in 
a loss of over $2 billion to the company. A more 
recent incident is the faulty operation of the fly-
by-wire primary flight control real-time software 
of a Boeing 777, operated by the Malaysia Air-
lines, in August 2005, which could have resulted 
in the loss of 177 passenger lives if the pilot had 
not manually taken over the autopilot program in 
time. All these incidents happened because the 
erroneous conditions were not caught during the 
analysis phase, due to the imprecise nature of the 
analysis techniques, and thus bugs appeared in the 
original product. Therefore, techniques like paper-
and-pencil proof methods and simulation should 
not be relied upon for the analysis of real-time 
systems especially when they are used in safety 
or financial critical domains.

Formal methods are capable of conducting 
precise system analysis and thus overcome the 
above mentioned limitations. The main principle 
behind formal analysis of a system is to construct 
a computer based mathematical model of the given 
system and formally verify, within a computer, 

that this model meets rigorous specifications of 
intended behavior. A number of elegant approaches 
for the formal analysis of real-time systems can 
be found in the open literature using state-based 
or theorem proving techniques (e.g., Alur, 1992; 
Cardell-Oliver, 1992; Amnell, 2001; Beyer, 2003; 
Kwiatkowska, 2002; Bucci, 2005; Kwiatkowska, 
2007; Hasan, 2009). However, some of these ex-
isting formal verification tools are only capable 
of specifying and verifying hard deadlines, i.e., 
properties where a late response is considered to 
be incorrect. Whereas, in the case of performance 
analysis of real-time systems, soft deadlines, i.e., 
properties that provide the quality of service in 
terms of probabilistic quantities or averages, play 
a vital role. Also, the above mentioned state-based 
approaches are limited by reduced expressive 
power of their automata based or Petri net based 
specification formalism. On the other hand, the 
higher-order-logic theorem proving based tech-
nique [Hasan, 2009] tends to overcome the above 
mentioned limitations of existing formal real-time 
system analysis techniques.

The main principle behind the higher-order 
logic theorem proving based approach is to lever-
age upon the high expressiveness of higher-order 
logic to formally specify and reason about the 
temporal properties and random behaviors of 
the present age complex real-time systems. This 
approach is primarily based upon the previous 
work reported for the functional verification of 
hard real-time systems [Cardell-Oliver, 1992], the 
formalization of random variables [Hurd, 2002] 
and the verification of expectation properties for 
discrete random variables [Hasan, 2008]. The idea 
is to formally specify the given real-time system 
as a logical conjunction of higher-order-logic 
predicates [Cadell-Oliver, 1992], whereas each 
one of these predicates defines an autonomous 
component or process of the given real-time 
system, while representing the unpredictable or 
random elements in the system as formalized 
random variables [Hurd, 2002]. The functional 
correctness and the performance related proper-
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ties for various parameters for this formal model 
can then be verified using an interactive theorem 
prover with the help of the useful theorems already 
proved in [Cadell-Oliver, 1992; Hurd, 2002; 
Hasan, 2008]. Since the analysis is conducted 
within the core of a mechanical theorem prover, 
there would be no question about the soundness 
or the precision of the results. Also, there is no 
equivalence verification required between the 
models used for functional verification and per-
formance evaluation as the same formal model is 
used for both of these analyses in this approach.

The main focus of this chapter is on this 
theorem proving based real-time system analysis 
approach. In order to illustrate the utilization and 
practical effectiveness of the presented approach, 
the chapter includes the functional verification 
and performance analysis of a variant of the 
Stop-and-Wait protocol [Widjaja, 2004], which 
is a classical example of a real-time system. The 
Stop-and-Wait protocol utilizes the principles of 
error detection and retransmission and is a fun-
damental mechanism for reliable communication 
between computers. Indeed, it is one of the most 
important parts of the Internet’s Transmission 
Control Protocol (TCP). The main motivation 
behind selecting the Stop-and-Wait protocol as a 
case study is its widespread popularity in the lit-
erature regarding real-time system analysis meth-
odologies. The Stop-and-Wait protocol and some 
of its closely related variants have been checked 
formally for functional verification using theo-
rem proving [Cadell-Oliver, 1992], state-based 
formal approaches (e.g. [Gallasch, 2006]) and a 
combination of both techniques (e.g. [Havelund, 
1996]) and their performance has been analyzed 
using a number of innovative state-based formal 
or semi-formal techniques (e.g. [Wells, 2002]). In 
all of these previous works, only one aspect, i.e., 
either functional correctness or performance was 
analyzed. However, this chapter utilizes a single 
formal model of the Stop-and-Wait protocol and 
presents the analysis of its functional correctness 

and performance by leveraging upon the expres-
siveness of higher-order logic.

The chapter is organized as follows. Section 
2 provides some preliminaries including an over-
view of higher-order logic theorem proving and 
Stop-and-Wait protocol. The higher-order-logic 
theorem proving based technique for the analy-
sis of real-time systems is outlined in Section 3. 
Next in Section 4, we present a higher-order-logic 
specification of the Stop-and-Wait protocol and 
formally verify its functional and performance 
related properties using a theorem prover in Sec-
tions 5 and 6, respectively. Finally, Section 7 will 
conclude the chapter.

PRELIMINARIES

In this section, we provide an overview of higher-
order-logic theorem proving and the HOL theorem 
prover that will be used in the rest of this chapter. 
The intent is to provide a brief introduction to 
these topics along with some notation that is go-
ing to be used later.

Higher-Order-Logic Theorem Proving

Theorem proving [Gordon, 1989] is a widely used 
formal verification technique. The system that 
needs to be analyzed is mathematically modeled in 
an appropriate logic and the properties of interest 
are verified using computer based formal tools. 
The use of formal logics as a modeling medium 
makes theorem proving a very flexible verification 
technique as it is possible to formally verify any 
system that can be described mathematically. The 
core of theorem provers usually consists of some 
well-known axioms and primitive inference rules. 
Soundness is assured as every new theorem must 
be created from these basic axioms and primi-
tive inference rules or any other already proved 
theorems or inference rules.

The verification effort of a theorem varies 
from trivial to complex depending on the under-
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lying logic [Harrison, 2009]. For instance, first-
order logic is restricted to propositional calculus 
and terms (constants, function names and free 
variables) and is semi-decidable. A number of 
sound and complete first-order logic automated 
reasoners are available that enable completely 
automated proofs. More expressive logics, such 
as higher-order logic, can be used to model a 
wider range of problems than first-order logic, 
but theorem proving for these logics cannot be 
fully automated and thus involves user interac-
tion to guide the proof tools. For performance 
and probabilistic analysis, we need to formalize 
(mathematically model) random variables as 
functions and formalize characteristics of random 
variables, such as probability distribution func-
tions and expectation, etc., by quantifying over 
random variable functions. Henceforth, first-order 
logic does not support such formalization and 
we need to use higher-order logic to formalize 
probabilistic analysis.

HOL Theorem Prover

In this chapter, we use the HOL theorem prover 
[Gordon, 1993] to conduct all the real-time system 
performance analysis related formalization and 
verification. HOL is an interactive theorem prover 
developed by Mike Gordon at the University of 
Cambridge for conducting proofs in higher-order 
logic. It utilizes the simple type theory of Church 
[Church, 1940] along with Hindley-Milner poly-
morphism [Milner, 1977] to implement higher-
order logic. HOL has been successfully used as 
a verification framework for both software and 
hardware as well as a platform for the formaliza-
tion of pure mathematics.

Secure Theorem Proving

In order to ensure secure theorem proving, the 
logic in the HOL system is represented in the 
strongly-typed functional programming language 
ML [Paulson, 1996]. An ML abstract data type is 

used to represent higher-order-logic theorems and 
the only way to interact with the theorem prover 
is by executing ML procedures that operate on 
values of these data types. The HOL core consists 
of only 5 basic axioms and 8 primitive inference 
rules, which are implemented as ML functions. 
Soundness is assured as every new theorem must 
be verified by applying these basic axioms and 
primitive inference rules or any other previously 
verified theorems/inference rules.

Terms

There are four types of HOL terms: constants, 
variables, function applications, and lambda-terms 
(denoted function abstractions). Polymorphism, 
types containing type variables, is a special fea-
ture of higher-order logic and is thus supported 
by HOL. Semantically, types denote sets and 
terms denote members of these sets. Formulas, 
sequences, axioms, and theorems are represented 
by using terms of Boolean types.

Theories

A HOL theory is a collection of valid HOL types, 
constants, axioms and theorems and is usually 
stored as a file in computers. Users can reload a 
HOL theory in the HOL system and utilize the cor-
responding definitions and theorems right away. 
The concept of HOL theory allows us to build 
upon existing results in an efficient way without 
going through the tedious process of regenerating 
these results using the basic axioms and primitive 
inference rules.

HOL theories are organized in a hierarchical 
fashion. Any theory may inherit types, definitions 
and theorems from other theories. Various math-
ematical concepts have been formalized and saved 
as HOL theories by the users. These theories are 
available to a user when he/she first starts a HOL 
session. The HOL theories of Booleans, lists, sets, 
positive integers, real numbers, measure and prob-
ability are some of the frequently used theories in 
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analyzing the performance of real-time systems. 
In fact, one of the primary motivations of select-
ing the HOL theorem prover for this work was to 
benefit from these built-in mathematical theories.

HOL Symbols

Figure 1 provides the mathematical interpreta-
tions of some frequently used HOL symbols and 
functions in this chapter.

PROBABILISTIC THEOREM 
PROVING BASED METHODOLOGY

A real-time system and its environment may be 
viewed as a bunch of concurrent, communicat-
ing processes that are autonomous, i.e., they can 
communicate asynchronously. The behavior of 
these processes over time may be specified by 
higher-order-logic predicates on positive integers 
[Cadell-Oliver, 1992]. These positive integers 
represent the ticks of a clock counting physical 
time in any appropriate units, e.g., nanoseconds. 
The granularity of the clock’s tick is believed to 

be chosen in such a way that it is sufficiently fine 
to detect properties of interest. The behavior of a 
real-time system can now be formally specified 
by combining the corresponding process speci-
fications (higher-order-logic predicates) using 
logical conjunction. In a similar way, additional 
constraints for the real-time system such as ini-
tial conditions or any assumptions, if required to 
ensure the correct behavior of the model, can also 
be defined as predicates and combined with its 
formal specification using logical conjunctions.

The performance analysis of real-time systems 
is primarily based on probability theory concepts. 
A hypothetical model of a theorem proving based 
real-time system performance analysis frame-
work is given in Figure 2, with some of its most 
fundamental components depicted with shaded 
boxes. Like all traditional analysis problems, the 
starting point of performance analysis is also a 
system description and some intended system 
properties and the goal is to check if the given 
system satisfies these properties. For simplicity, 
we have divided system properties into two cat-
egories, i.e., system properties related to discrete 

Figure 1. HOL symbols and functions
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random variables and system properties related 
to continuous random variables.

The first step in the methodology illustrated 
in Figure 2 is to construct a model of the given 
real-time system in higher-order logic. For this 
purpose, we model the real-time system as a 
logical conjunction of processes as illustrated 
above while modeling the random components 
of the system by random variables. The foremost 
requirement for this step is the availability of 
infrastructures that allow us to formalize all kinds 
of discrete and continuous random variables as 
higher-order-logic functions, which in turn can 
be used to represent the random components of 
the given system in its higher-order-logic model. 
The second step is to utilize the formal model of 
the system to express system properties as high-
er-order-logic theorems. The prerequisite for this 
step is the ability to express probabilistic and 
statistical properties related to both discrete and 
continuous random variables in higher-order-
logic. All probabilistic properties of discrete and 

continuous random variables can be expressed in 
terms of their Probability Mass Functions (PMFs) 
and Cumulative Distribution Functions (CDFs), 
respectively. Similarly, most of the commonly 
used statistical properties can be expressed in 
terms of the expectation and variance character-
istics of the corresponding random variable. Thus, 
we require the formalization of mathematical 
definitions of PMF, CDF, expectation and variance 
for both discrete and continuous random variables 
in order to be able to express the given system’s 
performance characteristics as higher-order-
logic theorems. The third and the final step for 
conducting performance analysis of a real-time 
system in a theorem prover is to formally verify 
the higher-order-logic theorems developed in the 
previous step using a theorem prover. For this 
verification, it would be quite handy to have ac-
cess to a library of some pre-verified theorems 
corresponding to some commonly used properties 
regarding probability distribution functions, ex-
pectation and variance. Since, we can build upon 

Figure 2. Theorem proving based real-time system performance analysis framework
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such a library of theorems and thus speed up the 
verification process. The formalization details 
regarding the above mentioned steps are briefly 
described now.

Discrete Random Variables 
and the PMF

A random variable is called discrete if its range, 
i.e., the set of values that it can attain, is finite 
or at most countably infinite. Discrete random 
variables can be completely characterized by their 
PMFs that return the probability that a random 
variable X is equal to some value x, i.e., Pr(X = 
x). Discrete random variables are quite frequently 
used to model randomness in performance analy-
sis. For example, the Bernoulli random variable 
is widely used to model the fault occurrence in 
a component and the Binomial random variable 
may be used to represent the number of faulty 
components in a lot.

Discrete random variables can be formalized 
in higher-order-logic as deterministic functions 
with access to an infinite Boolean sequence B∞; 
an infinite source of random bits with data type 
(natural → bool) [Hurd, 2002]. These determin-
istic functions make random choices based on the 
result of popping the top most bit in the infinite 
Boolean sequence and may pop as many random 
bits as they need for their computation. When 
the functions terminate, they return the result 
along with the remaining portion of the infinite 
Boolean sequence to be used by other functions. 
Thus, a random variable that takes a parameter 
of type α and ranges over values of type β can be 
represented by the function

F: α→ B∞→β x B∞ 

For example, a Bernoulli(½) random vari-
able that returns 1 or 0 with probability ½ can 
be modeled as

bit = λs. (if shd s then 1 else 0, stl s) 

where the variable s represents the infinite Boolean 
sequence and the functions shd and stl are the se-
quence equivalents of the list operations ‘head’ and 
‘tail’. A function of the form λx. t(x) represents a 
lambda abstraction function that maps x to t(x). The 
function bit accepts the infinite Boolean sequence 
and returns a pair with the first element equal to 
either 0 or 1 and the second element equal to the 
unused portion of the infinite Boolean sequence.

The higher-order-logic formalization of the 
probability theory [Hurd, 2002] also consists 
of a probability function P from sets of infinite 
Boolean sequences to real numbers between 0 and 
1. The domain of P is the set E of events of the 
probability. Both P and E are defined using the 
Caratheodory’s Extension theorem, which ensures 
that E is a σ-algebra: closed under complements 
and countable unions. The formalized P and E can 
be used to formally verify all the basic axioms of 
probability. Similarly, they can also be used to 
prove probabilistic properties for random vari-
ables. For example, we can formally verify the 
following probabilistic property for the function 
bit, defined above,

P {s | fst (bit s) = 1} = ½ 

where {x|C(x)} represents a set of all elements x 
that satisfy the condition C, and the function fst 
selects the first component of a pair.

The above mentioned infrastructure can be 
utilized to formalize most of the commonly used 
discrete random variables and verify their corre-
sponding PMF relations. In this chapter, we will 
utilize the models for Bernoulli and Geometric 
random variables formalized as higher-order-
logic functions prob_bernoulli and prob_geom 
and verified using the following PMF relations 
in [Hurd, 2002] and [Hasan, 2008], respectively.

Theorem 1:
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ (P {s | fst (prob_bernoulli 
p s)} = p)
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Theorem 2:
∀ n p. 0 ≤ p ∧ p ≤ 1 ⇒ (P {s | fst (prob_geom p 
s) = (n + 1)} = p(1 - p)n)

The Geometric random variable returns the 
number of Bernoulli trials needed to get one 
success and thus cannot return 0. This is why we 
have (n+1) in Theorem 2, where n is a positive 
integer {0,1,2,3 …}. Similarly, the probability p 
in Theorem 2 represents the probability of suc-
cess and thus needs to be greater than 0 for this 
theorem to be true as has been specified in the 
precondition.

Continuous Random 
Variables and the CDF

A random variable is called continuous if it ranges 
over a continuous set of numbers that contains all 
real numbers between two limits. Continuous ran-
dom variables can be completely characterized by 
their CDFs that return the probability that a random 
variable X is exactly less than or equal to some 
value x, i.e., Pr(X ≤ x). Examples of continuous 
random variables include measuring T, the arrival 
time of a data packet at a web server (ST = {t | 0 
≤ t < ∞}) and measuring V, the voltage across a 
resistor (SV = { v | -∞ < v < ∞ }).

The sampling algorithms for continuous 
random variables are non-terminating and hence 
require a different formalization approach than 
discrete random variables, for which the sampling 
algorithms are either guaranteed to terminate or 
satisfy probabilistic termination, meaning that 
the probability that the algorithm terminates is 
1. One approach to address this issue is to utilize 
the concept of the nonuniform random number 
generation, which is the process of obtaining 
arbitrary continuous random numbers using a 
Standard Uniform random number generator. The 
main advantage of this approach is that we only 
need to formalize the Standard Uniform random 
variable from scratch and use it to model other 
continuous random variables by formalizing the 

corresponding nonuniform random number gen-
eration method.

Based on the above approach, a methodology 
for the formalization of all continuous random 
variables for which the inverse of the CDF can 
be represented in a closed mathematical form is 
presented in [Hasan, 2007}. The first step in this 
methodology is the formalization of the Standard 
Uniform random variable, which can be done 
by using the formalization approach for discrete 
random variables and the formalization of the 
mathematical concept of limit of a real sequence 
[Harrison, 1998]. The formalization details are 
outlined in [Hasan, 2007].

The second step in the methodology for the for-
malization of continuous probability distributions 
is the formalization of the CDF and the verification 
of its classical properties. This is followed by the 
formal specification of the mathematical concept 
of the inverse function of a CDF. This definition 
along with the formalization of the Standard 
Uniform random variable and the CDF properties, 
can be used to formally verify the correctness of 
the Inverse Transform Method (ITM). The ITM 
is a well known nonuniform random generation 
technique for generating nonuniform random vari-
ables for continuous probability distributions for 
which the inverse of the CDF can be represented 
in a closed mathematical form. Formally, it can 
be verified for a random variable X with CDF F 
using the Standard Uniform random variable U 
as follows

Pr (F-1(U) ≤ x) = F(x) 

The formalized Standard Uniform random 
variable can now be used to formally specify any 
continuous random variable for which the inverse 
of the CDF can be expressed in a closed mathemati-
cal form as X=F-1(U). Whereas, the CDF of this 
formally specified continuous random variable, X, 
can be verified using simple arithmetic reasoning 
and the formal proof of the ITM. Based on this 
approach, Exponential, Uniform, Rayleigh and 
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Triangular random variables have been formal-
ized and their CDF relations have been verified 
[Hasan, 2007].

Statistical Properties for 
Discrete Random Variables

In probabilistic analysis, statistical characteristics 
play a major role in decision making as they tend 
to summarize the probability distribution charac-
teristics of a random variable in a single number. 
Due to their widespread interest, the computation 
of statistical characteristics has now become one 
of the core components of every contemporary 
probabilistic analysis framework.

The expectation for a function of a discrete 
random variable, which attains values in the posi-
tive integers only, is formally defined as follows.

∀ X. expec X = suminf (λn. n P {s | fst (X s) = n})

where the mathematical notions of the probabil-
ity function P and random variable X have been 
inherited from [Hurd, 2002], as presented in the 
previous section. The function suminf represents 
the HOL formalization of the infinite summation 
of a real sequence [Harrison, 1998]. The function 
expec accepts the random variable X with data type 
B∞→ natural x B∞ and returns a real number. The 
above definition can be used to verify the average 
values of most of the commonly used discrete 
random variables [Hasan, 2008]. For example, the 
average value of the Geometric random variable 
can be verified as the following theorem.

Theorem 3:
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ (expec (λs. prob_geom p 
s) = 1/p)

In order to verify the correctness of the formal 
definition of expectation and facilitate reason-
ing about expectation properties in probabilistic 
systems, many widely used expectation properties 
have been formally verified in the HOL theorem 

prover [Hasan, 2009a]. Namely being the linear-
ity of expectation, Markov and Chebyshev’s 
inequalities, variance and linearity of variance. 
In this chapter, we utilize the following linearity 
property out of this rich library of formally veri-
fied expectation properties.

Theorem 4:
∀ a b X. expec (λs. (a (fst (X s) + b, snd (X s))) 
= a((expec X) + b)

Statistical Properties for 
Continuous Random Variables

The expectation of a continuous random variable 
has been formally defined in [Hasan, 2009b] 
using the Lebesgue integral, which has strong 
relationship with the measure theory fundamen-
tals [Galambos, 1995]. This definition is general 
enough to cater for both discrete and continuous 
random variables and is thus far more superior 
than the commonly used Rieman integral based 
definition that is only applicable to continuous 
random variables with well-defined PDF. Though, 
the main limitation of the Lebesgue integral based 
definition is the complex reasoning process in-
volved for verifying expectation properties. This 
limitation has been tackled in [Hasan, 2009b] and 
the main idea is to verify two relatively simplified 
expressions for expectation by building on top 
of the Lebesgue integral based definition. The 
first expression is for the case when the given 
continuous random variable is bounded in the 
positive interval [a,b] and the second one is for 
an unbounded random variable. Both of these 
expressions are verified using the fundamentals 
from measure and Lebesgue integral theories 
but once verified, they can be utilized to verify 
expectation properties of any continuous random 
variable without applying these complex underly-
ing concepts. The usage of these expressions is 
illustrated by verifying the expected values of 
Uniform, Triangular and Exponential random 
variables [Hasan, 2009b].
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STOP-AND-WAIT PROTOCOL

This section provides a brief introduction to the 
Stop-and-Wait protocol [Widjaja, 2004], which 
will be used as case study for the formal analysis 
framework presented in the previous section. 
The Stop-and-Wait is a basic Automatic Repeat 
Request (ARQ) protocol that ensures reliable data 
transfers across noisy channels. In a Stop-and-Wait 
system, both sending and receiving stations have 
error detection capabilities. The operation is il-
lustrated in Figure 3 using the following notation.

• tf: Data message transmission time
• ta: ACK message transmission time
• tprop: One-way signal propagation delay be-

tween transmitter and receiver
• tproc: Processing time required for error 

detection in the received message at both 
transmitter and receiver ends

• tout: Timeout period

The transmitter sends a data message to the 
receiver and spends tf time units in doing so. 
Then, it stops and waits to receive an acknowl-

Figure 3. Stop-and-Wait operation
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edgement (ACK) of reception of that message 
from the receiver. If no ACK is received within 
a given time out, tout, period, the data message is 
resent by the transmitter and once again it stops 
and starts waiting for the ACK (Figure 3.a). If 
an ACK is received within the given tout period 
then the transmitter checks the received message 
for errors during the next tproc time units. If errors 
are detected then the ACK is ignored and the 
data message is resent by the transmitter after tout 
expires and once again the transmitter stops and 
waits for the ACK (Figure 3.b). Thus, the main 
idea is that the transmitter keeps on retransmit-
ting the same data message, after a pre-defined 
time-out period, tout, until and unless it receives 
a corresponding error-free ACK message from 
the receiver. When an error-free ACK message 
is finally received then the transmitter transmits 
the next data message in its queue (Figure 3.c).

The receiver is always waiting to receive data 
messages. When a new message arrives, the re-
ceiver checks it for errors during the next tproc time 
units. If errors are detected then the data message 
is ignored and the receiver continues to be in the 
wait state (Figure 3.a), otherwise it initiates the 
transmission of an ACK message, which takes ta 
time units (Figure 3.b,c).

Under the above mentioned conditions, the 
ACK message cannot be received before tprop+ 
tproc +ta+ tprop+ tproc units of time after sending 
out a data message. It is, therefore, necessary to 
set tout ≥ 2(tprop+ tproc)+ ta, i.e., the retransmission 
must not be allowed to start before the expected 
arrival time of the ACK is lapsed, for reliable 
communication between transmitter and receiver.

ARQ allows the transmitting station to trans-
mit a specific number, usually termed as sending 
window, of messages before receiving an ACK 
frame and the receiving station to receive and 
store a specific number, usually termed as re-
ceiving window, of error-free messages even if 
they arrive out-of-sequence. Generally, both the 
sending window and the receiving window are 
assigned the same value, which is termed as the 

window size of the ARQ protocol. The window 
size for the Stop-and-Wait protocol is 1, as can 
be observed from its transmitter and receiver 
behavior descriptions given above.

In order to distinguish between new messages 
and duplicates of previous messages at the receiver 
or transmitter, a sequence number is included in 
the header of both data and ACK messages. It has 
been shown that, for correct ARQ operation, the 
number of distinct sequence numbers must be at 
least equal to twice the window size. Thus, the 
simplest and the most commonly used version 
of the Stop-and-Wait protocol uses two distinct 
sequence numbers (0 and 1) and is known as the 
Alternating Bit Protocol (ABP). The transmitter 
keeps track of the sequence number of the last 
data message it had sent, its associated timer 
and the message itself in case a retransmission 
is required. Whereas, the receiver keeps track of 
the sequence number of the next data message 
that it is expecting to receive. Thus, if an out-of-
sequence data message arrives at the receiver, it 
ignores it and responds with the ACK for the data 
message that it is expecting to receive. On the 
other hand, when an in-sequence data message 
arrives at the receiver, it updates its sequence 
number by performing a modulo-2 addition with 
the number 1, i.e., 0 is updated to 1 and 1 is up-
dated to 0. Similarly, if an out-of-sequence ACK 
message appears at the transmitter, it ignores it 
and retains the sequence number of the last data 
message it had sent. Whereas, in the case of the 
reception of an in-sequence ACK message, the 
sequence number at the transmitter is also updated 
by performing a modulo-2 addition by 1, which 
becomes the sequence number of the next data 
message as well. More details about sequence 
numbering in the Stop-and-Wait protocol can be 
found in [Widjaja, 2004].

The most widely used performance metric for 
the Stop-and-Wait protocol is the time required 
for the transmitter to send a single data message 
and know that it has been successfully received at 
the receiver. In the case of error-free or noiseless 
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channels, which do not reorder or loose messages 
(Figure 3.c), the message transmission delay is 
given by

tf + tprop + tproc + ta + tprop + tproc (1)

On the other hand, in the presence of noise, 
every damaged or lost message (data or ACK) 
will cause a retransmission from the transmitter 
and thus wastes tf+tout units of time (Figure 3a,b). 
Whereas, the final successful transmission will 
take the amount of time equal to the one given 
by Equation (1). In order to obtain more concise 
information about this delay, we consider the 
probability, p, of a message transmission being 
in error. This allows us to model the number of 
retransmissions in the Stop-and-Wait protocol 
in terms of a Geometric random variable, which 
returns the number of trials required to achieve 
the first success, with success probability 1-p. 
Therefore, the delay of the Stop-and-Wait protocol 
can be mathematically expressed as

(tf + tout) (G(1-p)-1) + tf + tprop + tproc + ta + tprop + 
tproc (2)

where Gx denotes a Geometric random variable 
with success probability x. The above representa-
tion allows us to express the average delay of a 
single data message in a Stop-and-Wait protocol 
using the average or mean value of Geometric 
random variables as follows

(tf + tout)p/(1-p) + tf + tprop + tproc + ta + tprop + tproc 
(3)

The main scope of the rest of the chapter is 
to formally specify the Stop-and-wait protocol, 
described in this section, as a real-time system 
and mechanically verify its functional correct-
ness and average message delay relation, given 
in Equation (3), using the methodology described 
in the previous section.

FORMAL SPECIFICATION OF THE 
STOP-AND-WAIT PROTOCOL

Based on the formal probabilistic analysis meth-
odology presented earlier, we formally specify the 
Stop-and-Wait protocol described in the previous 
section as a combination of six processes, as shown 
in Figure 2. The protocol mainly consists of three 
major modules, i.e., the sender or the transmit-
ter, the receiver and the communication channel. 
Each one of these modules can be subdivided into 
two processes as both the sender and the receiver 
transmit messages and receive them and the chan-
nel between the sender and receiver consists of 
two logical channels: one carrying data messages 
from the sender to the receiver and one carrying 
ACK messages in the opposite direction.

Next we present the data type definitions of the 
six predicates, corresponding to each one of the 
processes in Figure 4, and finally the formal speci-
fication of the Stop-and-Wait protocol, which also 
includes the predicates for assumptions and initial 
conditions. We include the timing information 
associated with every action in these predicates 
so that the corresponding model can be utilized 
to reason about the message delay characteristic 
of the Stop-and-Wait protocol.

Type Definitions

The input to the Stop-and-Wait protocol, source, 
is basically a list of data messages that can be 
modeled in HOL by a list of *data elements

source: *data list

where *data list represents any concrete HOL data 
type such as a record, a character, an integer or 
an n-bit word. The output of the protocol, sink, is 
also a list of data messages that grows with time 
as new data messages are delivered to the receiver. 
It can be modeled in HOL as follows

sink: time → *data list
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where time is assigned the HOL data-type for 
natural number and represents physical time in 
this case. This kind of variable, which is time 
dependant, is termed as a history in this chap-
ter. The arrows in Figure 4 between processes 
represent information that is shared between the 
sender, channel and receiver. Data messages are 
transmitted from the sender to the receiver (dataS, 
dataR) and ACK messages are transmitted in the 
opposite direction (ackR, ackS). These messages 
are transmitted across the Stop-and-Wait protocol 
in a form of a packet, which can be modeled in 
HOL as a pair containing a sequence number and 
a message element

packet: natural x *data

where a natural number is used here for the 
sequence number and the *data represents the 
message. Since we are dealing with an unreliable 
channel, the output of a channel may or may not 
be a packet. In order to model the no-packet case 
in HOL, a data-type non_packet is defined, which 
has only one value, i.e., one. Every message can 
either be of type packet or of type non_packet.

message: packet + non_packet

Data Transmission

The process DATA_TRANS in Figure 4 character-
izes the data transmission behavior of the Stop-

and-Wait protocol and the corresponding predicate 
is defined as follows in Box 1.

The variables ws and sn represent the window 
size and the number of distinct sequence numbers 
available for the protocol, respectively. By using 
these variables in our definitions, instead of their 
corresponding fixed values of 1 and 2 for the case 
of the Stop-and-Wait protocol, we attain two 
benefits. Firstly, it makes our definitions more 
generic as they can now be used, with minor 
updates, to formally model the corresponding 
processes of other ARQ protocols, such as Go-
Back-N and Selective-Repeat [Garcia, 2004], as 
well. Secondly, this allows us to establish a logi-
cal implication between our definitions for the 
six processes (Figure 4) to the corresponding 
definitions for the Sliding Window protocol, 
given in [Cadell-Oliver, 1992]. This relationship 
can be used to inherit the functional correctness 
theorem, verified for the Sliding Window proto-
col in [Cadell-Oliver, 1992], for our Stop-and-Wait 
protocol model and thus saves us a considerable 
amount of verification time and effort. More 
details on this are given in the next section. It is 
important to note that in order to model the correct 
behavior for the Stop-and-Wait protocol; we will 
assign the values of 1 and 2 to the variables ws 
and sn, respectively, in an assumption that is used 
in all of the theorems that we verify for the Stop-
and-Wait protocol.

The history datas represents the data messages 
transmitted by the sender at any particular time. 

Figure 4. Logical structure of an ARQ protocol
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The history s represents, modulo sn, the sequence 
number of the first unacknowledged data message. 
Data remaining to be sent at any time is represented 
by the history rem that has type time→*data list. 
whereas, the history i: time→natural is used to 
identify the number of data messages, at any 
particular time, that have been transmitted by 
the sender but are still unacknowledged by the 
receiver. the history acks represents the ack mes-
sages received by the sender at any particular time. 
the variables tout and tf hold the values for the 
tout and tf delays, respectively, defined in section 
2, and histories dtout and dtf keep track of the 
timers associated with these delays.

The HOL functions tli and hdi, in the above 
definition, accept two arguments, i.e., a list l and 
a positive integer n, and return the tail of the list 
l starting from its nth element and the nth element 
of the list l, respectively. Whereas the functions 
new_packet and set_non_packet declare a mes-

sage of type packet (using its two arguments) 
and non_packet, respectively. The function label 
returns the sequence number of a packet and the 
predicate good_packet checks the message type of 
its argument and returns False if it is non_packet 
and True otherwise. The functions mod_n_add and 
mod_n_sub return the modulo-n, where n is their 
third argument, addition or subtraction results of 
their first two arguments, respectively.

The definition of DATA_TRANS_STOP_WAIT 
should be read as follows. At all times t, check 
for the transmission conditions, i.e., there is 
data available to be transmitted ~NULL (tli (i 
t) (rem t))) and the number of unacknowledged 
messages is less than the window size (i t < ws). 
If the transmission conditions are satisfied, then 
wait for the next tf time units, i.e., decrement the 
timer dtf by one at every increment of the time 
until it reaches 0 and during this time maintain 
the values of histories I and dtout while holding 

Box 1.

∀ ws sn dataS s rem i ackS tout tf dtout dtf.
     DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf = 

       ∀ t. (if ~NULL (tli (i t) (rem t)) ∧ i t < ws then
         (if dtf t = 0 then 

           (i (t + 1) = i t + 1) ∧ (dtout (t + 1) = tout - 1) ∧
           (dtf (t + 1) = tf) ∧
           (dataS t = 

             new_packet (mod_n_add (s t) (i t) sn) (hdi (i t) (rem t))) 

           else 

             (i (t + 1) = i t) ∧ (dtout (t + 1) = tout) ∧
             (dtf (t + 1) = dtf (t - 1) ∧ (dataS t = set_non_packet))
       else 

         (dtf (t + 1) = tf) ∧ (dataS t = set_non_packet)) ∧
         (if (dtout t = 1) ∨
           good_packet (ackS t) ∧
           mod_n_sub (label (ackS t)) (s t) sn < ws 

         then 

           (i (t + 1) = i t - 1) ∧ (dtout (t + 1) = tout)
         else 

           (i (t + 1) = i t) ∧ (dtout (t + 1) = dtout t - 1))



356

Formal Analysis of Real-Time Systems

the transmission of a new packet to the channel. 
Once tf time units have elapsed, i.e., the contents 
of dtf timer become 0, then instantly transmit the 
(i t)th message in the window hdi (i t) (rem t)) 
using the sequence number mod_n_add (s t) (i t) 
sn) and increment the value of the history i by 1, 
activate the timer dtout, associated with the tout 
delay, by decrementing its value by 1 and initial-
ize the timer dtf, associated with the tf delay, to its 
default value of tf, in the next increment of time 
t. On the other hand, for all times t for which one 
of the transmission conditions is not satisfied, no 
message is transmitted (set_non_packet) and the 
initial value of the dtf timer is maintained. The 
values of i and dtout, under the no transmission 
conditions, depend on the event if the timer dtout 
reaches 1 or an ACK message (good_packet (ackS 
t)) is received for a data message that has been sent 
and not yet acknowledged, i.e., if the difference 
between the label of (ackS t) and the sender’s se-
quence number is less than ws (mod_n_sub (label 
(ackS t)) (s t) sn < ws). If this event happens, then 
the timer dtout is initialized to its default value 
tout and the value of i is decremented by 1 in the 
next increment of time t. Otherwise, we remain 
in the wait state until the timer dtout expires or 
a valid ACK is received, while maintaining the 
value of i and decrementing the timer dtout by 
one at every increment of the time t.

Data Reception

The process DATA_RECV in Figure 4 characterizes 
the data reception behavior, at the receiver end, of 
the Stop-and-Wait protocol and the corresponding 
predicate is defined as follows in Box 2, where 
the history dataR represents the data messages 
received by the receiver at any particular time. 
The history r represents, modulo sn, the sequence 
number of the data messages that the receiver is 
expecting to receive. The function data returns 
the data portion of a packet and ++ is the symbol 
for the list cons function in HOL.

The definition of DATA_RECV_STOP_WAIT 
should be read as follows. At all times t, if (dataR 
t) is not a non_packet, i.e., (good_packet (dataR 
t)), and the sequence field of the packet (dataR t) 
is equal to the next number to be output to the 
sink (label (dataR t) = r t), then the data part of 
the packet is appended to the sink list and r is 
updated to the sequence number of the next mes-
sage expected, i.e., (r (t + 1) = mod_n_add (r t) 
1 sn). Otherwise if a valid data packet is not re-
ceived then the output list sink and r retain their 
old values.

We have intentionally assigned a fixed value 
of 1 to the processing delay (tp), which specifies 
the time required for processing an incoming 
message at the receiver end, in order to simplify 
the understandability of the proofs presented in 
the next two sections. If required, the processing 

Box 2.

∀ sn dataR sink r.
     DATA_RECV_STOP_WAIT sn dataR sink r = 

     ∀ t. (if good_packet (dataR t) ∧ (label (dataR t) = r t) then
         (sink (t + 1) = sink t ++ [ data (dataR t) ]) ∧
         (r (t + 1) = mod_n_add (r t) 1 sn) 

       else 

         (sink (t + 1) = sink t) ∧ (r (t + 1) = r t))
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delay can be made a variable quantity by using a 
similar approach that we used for tout and tf delays 
in the predicate DATA_TRANS_STOP_WAIT.

ACK Transmission

The process ACK_TRANS in Figure 4 characterizes 
the ACK transmission behavior of the Stop-and-
Wait protocol and the corresponding predicate is 
defined as follows in Box 3.

The history ackR represents the ACK mes-
sages transmitted by the sender. The history 
ackty represents the data part of the ACK message 
that could be used to specify properties of proto-
cols, such as negative acknowledgements: a type 
of acknowledgement message which enables the 
sender to retransmit messages efficiently. The 
variable ack_msg represents a constant data field 
that is sent along with every ACK message by the 

receiving station, as in the Stop-and-Wait protocol 
the ACK messages do not convey any other in-
formation except the reception of a data message. 
The variable ta holds the value for the ta delay, 
defined in Section 2 and the history dta keeps 
track of the timer associated with this delay. 
Whereas, the history rec_flag keeps track of the 
reception of a data message at the receiver until 
a corresponding ACK message is sent.

The definition of ACK_TRANS_STOP_WAIT 
should be read as follows. At all times t, the his-
tory ackty is assigned the value of the default 
ACK message for the Stop-and-Wait protocol, i.e., 
ack_msg. For all times t, if an in-sequence data 
message arrives at the receiver ~(r t = r (t - 1)), 
then instantly transmit an ACK message if the 
contents of the timer dta are 0, otherwise do not 
issue an ACK and retain the information of receiv-
ing a valid data in the rec_flag while activating 

Box 3.

∀ sn ackR r ackty ack_msg ta dta rec_flag.
     ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag = 

     ∀ t. (ackty t = ack_msg) ∧
       (if ~(r t = r (t - 1)) then 

         (if dta t = 0 then 

           (ackR t = new_packet (mod_n_sub (r t) 1 sn) (ackty t)) ∧
           (dta (t + 1) = ta) ∧ (rec_flag (t + 1) = F)
         else 

           (ackR t = set_non_packet) ∧ (dta (t + 1) = dta t - 1) ∧
           (rec_flag (t + 1) = T)) 

       else 

         (if rec_flag t then 

           (if dta t = 0 then 

             (ackR t = new_packet (mod_n_sub (r t) 1 sn) (ackty t)) ∧
             (dta (t + 1) = ta) ∧ (rec_flag (t + 1) = F)
           else 

             (ackR t = set_non_packet) ∧
             (dta (t + 1) = dta t - 1) ∧ (rec_flag (t + 1) = T))
         else 

           ackR t = set_non_packet) ∧ (dta (t + 1) = ta) ∧
           (rec_flag (t + 1) = F)))
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the timer associated with ta by decrementing its 
value by 1. On the other hand, for all times t for 
which no in-sequence data message arrives at the 
receiver, check if there exists a valid data message 
that has successfully arrived at the receiver but has 
not been acknowledged so far (rec_flag t). If that 
is the case, then if the timer associated with the 
delay ta has expired (dta t =0) then instantly issue 
the respective ACK message while initializing 
histories dta and rec_flag to their default values 
of ta and False, respectively. Otherwise wait for 
the dta timer to expire while holding the ACK 
transmission and the value of history rec_flag and 
decrementing the value of the timer dta by 1. On 
the other hand, if there is no valid data arrival or 
no pending ACK transmission, then the receiver 
is not allowed to transmit an ACK message and 
it assigns the histories dta and rec_flag to their 
default values of ta and False, respectively.

ACK Reception

The process ACK_RECV in Figure 4 characterizes 
the ACK reception behavior, at the sending station, 
of the Stop-and-Wait protocol and the correspond-
ing predicate is defined as follows in Box 4.

The sender checks the label of every ACK 
message it receives to find out if it is one of the 
messages that has been sent and not yet acknowl-
edged, i.e., if the modulo-sn difference between 
the sequence number of (ackS t) and the sender’s 

sequence number is less than ws, i.e., (mod_n_sub 
(label (ackS t)) (s t) sn < ws). If this is the case, 
then the sender slides the window up by updating 
the sender’s history (s t) to be the first message 
not known to be accepted: (mod_n_add (label 
(ackS t)) 1 sn) and by updating (rem t), the list of 
data remaining to be sent. Otherwise, both histo-
ries s and rem retain their previous values. Just 
like the receiver, we again assigned a fixed value 
of 1 to the processing delay (tp).

Communication Channel

The processes DATA_CHAN and ACK_CHAN in 
Figure 4 characterize the communication channel 
connecting the sender and receiver in the Stop-and-
Wait, respectively. In this chapter, we are dealing 
with a channel that has a fixed propagation delay 
(tprop). We present two definitions for the commu-
nication channel for the Stop-and-Wait protocol; 
the first one models the channel that is noiseless 
and the second one models a noisy channel, which 
may lose packets. The noiseless channel predicate 
is defined as follows in Box 5, where the histories 
in, out and d represent the input message, output 
message and the propagation delay for the chan-
nel at a particular time, respectively. The variable 
tprop represents the fixed value of channel delay 
(d t) for all t. According to the above definition, 
the output from a channel at time t is a copy of 
the channel’s input at time (t - tprop).

Box 4.

∀ ws sn ackS rem s.
     ACK_RECV_STOP_WAIT ws sn ackS rem s = 

     ∀ t. (if good_packet (ackS t) ∧
         mod_n_sub (label (ackS t)) (s t) sn < ws 

       then 

         (s (t + 1) = mod_n_add (label (ackS t)) 1 sn) ∧
         (rem (t + 1) = tli (mod_n_sub (s (t + 1)) (s t) sn) (rem t)) 

       else 

         (s (t + 1) = s t) ∧ (rem (t + 1) = rem t))
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Next, we define a predicate that models a noisy 
channel that looses a message with probability p. 
(Box 6)

In Box 6, we utilized the formal definition of 
the Bernoulli(p) random variable to model the 
noise effect. The variable p represents the prob-
ability of channel error or getting a True from the 
Bernoulli random variable and the history bseqt 
keeps track of the remaining portion of the infinite 
Boolean sequence, explained in Section 3, after 
every call of the Bernoulli random variable. Ac-
cording to the above definition, a valid packet 
that arrives at input of the channel appears at the 
output of the channel after tprop time units with 
probability 1-p.

Stop-and-Wait Protocol

We first define some constraints that are required 
to ensure the correct behavior of our Stop-and-Wait 
protocol specification, before giving the actual 
formalization of the protocol.

INITIAL CONDITIONS

In case of the formal specification of real-time 
systems in HOL, we need to assign appropriate 
values to the history variables as initial condi-
tions. We use following initial conditions for the 
Stop-and-Wait protocol (Box 7).

Box 5.

∀ in out d tprop.
     NOISELESS_CHANNEL_STOP_WAIT in out d tprop = 

     ∀ t. (if t < tprop then
         out t = set_non_packet 

       else 

         out t = in (t - d t)) ∧ 0 < tprop ∧ (d t = tprop)

Box 6.

∀ in out d tprop p bseqt.
     NOISY_CHANNEL_STOP_WAIT in out d tprop p bseqt = 

     ∀ t. (if t < tprop then
         (out t = set_non_packet) ∧ (bseqt (t + 1) = bseqt t)
       else 

         (if good_packet (in (t - d t)) then 

           (if ~fst (prob_bernoulli p (bseqt t)) then 

             (out t = in (t - d t)) ∧
             (bseqt (t + 1) = snd (prob_bernoulli p (bseqt t))) 

           else 

             (out t = set_non_packet) ∧
             (bseqt (t + 1) = snd (prob_bernoulli p (bseqt t)))) 

         else 

           (out t = set_non_packet) ∧ (bseqt (t + 1) = bseqt t))) ∧
           0 < tprop ∧ (d t = tprop)
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ASSUMPTIONS

Liveness or Timeliness: While verifying a system, 
which allows nondeterministic or probabilistic 
choice between actions, we often need to include 
additional constraints to make sure that events of 
interest do occur. This has been done by includ-
ing a timeliness constraint in the specification of 
the Stop-and-Wait protocol: if the sender’s state 
has not changed over an interval of maxP time 
units, then the sender assumes that the receiver or 
the channel has crashed and aborts the protocol. 
A predicate ABORT is defined that is True only 
when the protocol aborts and False otherwise. 
Now, the predicate ABORT characterizes which 
abort histories satisfy this constraint. (Box 8)

A protocol is said to be live if it is never 
aborted. This kind of liveness is assumed using 
the following constraint

LIVE_ASSUMPTION abort = ∀ t. ~(abort t)

Window Size and Sequence Numbers: As has 
been mentioned before, instead of using their 
exact values of 1 and 2, we use the variables ws 
and sn to represent the window size and distinct 
sequence numbers for the Stop-and-Wait protocol 

in the above predicates. This has been done, in 
order to be able to establish logical implications 
between the predicates defined in this chapter 
and the corresponding predicates for the Sliding 
Window protocol, defined in [Cadell-Oliver_92]. 
Now, we assign the exact values to these variables 
in an assumption predicate as follows

∀ ws sn. WSSN_ASSUM_STOP_WAIT ws sn = 
(ws = 1) ∧ (sn = 2)

The Stop-and-Wait protocol can now be for-
malized as the logical conjunction of the predicates 
defined in the preceding sections. We present two 
specifications corresponding to noiseless or ideal 
and noisy channel conditions. (Box 9)

The higher-order-logic predicate STOP_
WAIT_NOISELESS formally specifies the behav-
ior of the Stop-and-Wait protocol under ideal or 
noiseless conditions as the corresponding predi-
cate for the channel has been used for both data 
and ACK channels. It is also important to note 
here that we do not initialize the history bseqt in 
the predicate INIT_STOP_WAIT as there is no 
need to use the infinite Boolean sequence in this 
case. Next, we utilize the noisy channel predicate 

Box 7.

∀ source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag bseqt bseq. 
INIT_STOP_WAIT source rem s sink r I ackR dtout dtf dta tout tf ta rec_flag 

bseqt bseq = (rem 0 = source) ∧ (s 0 = 0) ∧ (sink 0 [ ]) ∧ (r 0 = 0) ∧
     (i 0 = 0) ∧ (dtout 0 = tout) ∧ (rec_flag 0 = F) ∧ (ackR 0 = set_non_pack-
et) ∧
     (dtf 0 = tf) ∧ (dta 0 = ta) ∧ (bseqt 0 = bseq)

Box 8.

∀ abort maxP rem.
     ABORT abort maxP rem = 

     ∀ t. abort t = (rem t = rem (t - maxP)) ∧ maxP ≤ t ∧ ~NULL (rem t)
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to formally specify the Stop-and-Wait protocol 
with a noisy channel as follows in Box 10.

In the above definition, the data channel has 
been made noisy while a noiseless channel is used 
for the ACK messages. This has been done on 
purpose in order to reduce the length of the per-
formance analysis proof by avoiding some redun-
dancy. On the other hand, this decision does not 
affect the illustration of the idea behind the per-
formance analysis of the Stop-and-Wait protocol 
under noisy conditions as we present the complete 
handling of a noisy channel in one direction. The 
analysis can be extended to both noisy channels 
by choosing noisy channel predicates for both 
channels and then handling the ACK channel in 
a similar way as the noisy data channel is handled 
in this chapter.

FUNCTIONAL VERIFICATION OF 
THE STOP-AND-WAIT PROTOCOL

The job of an ARQ protocol is to ensure reliable 
transfer of a stream of data from the sender to the 
receiver. This functional requirement can be for-
mally specified as follows [Cadell-Oliver, 1992].

∀ source sink.
     REQ source sink = 

     (∃ t. sink t = source) ∧ ∀ n. 
is_prefix (sink t) (sink (t + n))

where the predicate is_prefix is True if its first list 
argument is a prefix of its second list argument. 
According to the predicate REQ, an ARQ protocol 
satisfies its functional requirements only if there 
exists a time at which the sink list becomes equal 
to the original source list, i.e., a time when the data 
at the sender is transferred, as is, to the receiver, 
and the history sink is prefix closed.

In order to verify the functional correctness of 
our specification of the Stop-and-Wait protocol, 
we now define the predicates for the Stop-and-
Wait protocol in such a way that they logically 
imply the corresponding predicates used for the 
formal specification of the Sliding Window pro-
tocol presented in [Cadell-Oliver, 1992]. This 
relationship allows us to inherit the functional 
correctness theorem verified for the specification 
of the Sliding Window protocol for our Stop-and-
Wait protocol specification.

For illustration purposes, consider the example 
of the data transmission predicate. It has been 

Box 9.

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR d
     tprop dtout dtf dta tf ack_msg ta tout rec_flag. 

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort dataS 

       dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag = 

     INIT_STOP_WAIT source rem s sink r I ackR dtout dtf dta tout tf ta rec_

flag ∧
     DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf ∧
     NOISELESS_CHANNEL_STOP_WAIT dataS dataR d tprop ∧
     DATA_RECV_STOP_WAIT sn dataR sink r ∧
     ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag ∧
     NOISELESS_CHANNEL_STOP_WAIT ackR ackS d tprop ∧
     ACK_RECV_STOP_WAIT ws sn ackS rem s ∧
     ABORT abort maxP rem ∧ WSSN_ASSUM_STOP_WAIT ws sn
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defined in [Cadell-Oliver, 1992] for the Sliding 
Window protocol as follows in Box 11.

It can be easily observed, and we verified it 
in HOL using Boolean algebra properties, that the 
predicate DATA_TRANS_STOP_WAIT, given 
in the previous section, logically implies the above 
predicate

∀ ws ns dataS s rem i ackS tout tf 
dtout dtf. 

     DATA_TRANS_STOP_WAIT ws ns dataS 

s rem i ackS tout tf dtout dtf ⇒
     DATA_TRANS_SW ws ns dataS s rem 

i

In a similar way, we were able to prove logical 
implications between all the predicates used in 
the formal specification of the Sliding Window 
protocol and the corresponding predicates used 
for the formal specification of the Stop-and-Wait 
protocol (see Boxes 12 and 13). These relation-
ships allowed us to formally verify the functional 
correctness of both of the formal specifications of 
the Stop-and-Wait protocol, given in the previous 
section, in HOL.

It is important to note that the generic speci-
fication of the Sliding Window Protocol in [Cadell-
Oliver, 1992] is quite general and does not include 
many details, such as the precise conditions under 
which the messages are transmitted or acknowl-

Box 10.

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR d
     tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p. 

     STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS 

       dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout 

       rec_flag bseqt bseq = 

     INIT_STOP_WAIT source rem s sink r i 

         ackR dtout dtf dta tout tf ta rec_flag bseqt bseq ∧
     DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf ∧ NOISY_
CHANNEL_STOP_WAIT in out d tprop p bseqt ∧
     DATA_RECV_STOP_WAIT sn dataR sink r ∧
     ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag ∧
     NOISELESS_CHANNEL_STOP_WAIT ackR ackS d tprop ∧ ACK_RECV_STOP_WAIT ws sn 
ackS rem s ∧
     ABORT abort maxP rem ∧
     WSSN_ASSUM_STOP_WAIT ws sn

Box 11.

∀ ws sn dataS s rem i.
     DATA_TRANS_SW ws sn dataS s rem i = 

     ∀ t. (if ~NULL (tli (i t) (rem t)) ∧ i t < ws then
         (dataS t = new_packet (mod_n_add (s t) (i t) sn) (hdi (i t) (rem t))) ∨
         (dataS t = set_non_packet) 

       else 

         dataS t = set_non_packet)
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edged and the delays (tout, tf, ta, etc.) associated 
with different operations. Therefore, it cannot be 
used for reasoning about message delays and thus 
performance related properties, as such. On the 
other hand, the formal specification of the Stop-
and-Wait protocol, given in this chapter, is more 
specific and provides a detailed description of the 
protocol including the timing behavior associated 
with different operations.

Another major point that we would like to men-
tion here is that in order to establish the logical 
implication between the two protocol models, we 
had to introduce some additional generality in our 
formal definitions, such as the usage of variables 
ws and sn instead of their exact values of 1 and 
2, respectively.

Even though, such generalizations are not 
required for the functional description of the 
Stop-and-Wait protocol, they do not harm us in 
any way. They lead to a much faster functional 
verification, as has been illustrated in this section. 
On the other hand, they do not affect the formal 
reasoning related to the performance issues, since 
the exact values for these variables are assigned 
in an assumption (WSSN_ASSUM_STOP_WAIT) 

that is a part of our Stop-and-Wait protocol 
specification, which is used for conducting the 
performance analysis as well.

PERFORMANCE ANALYSIS OF 
THE STOP-AND-WAIT PROTOCOL

In this section, we present the verification of the 
message delay relations for the Stop-and-Wait 
protocol, given in Equations 1 and 3, for noiseless 
and noisy channels, respectively. The verification 
is based on the two formal specifications of the 
Stop-and-Wait protocol, STOP_WAIT_NOISE-
LESS and STOP_WAIT_NOISY, given earlier in 
the chapter.

Noiseless Channel Conditions

The first and the foremost step in verifying the 
message delay characteristic for the Stop-and-
Wait protocol is to formally specify it. Informally 
speaking, the message delay refers to the time 
required for the transmitter to send a single data 
message and know that it has been successfully 

Box 12. Theorem 5

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
       ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag. 

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort dataS 

     dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag ∧
LIVE_ASSUMPTION abort ⇒ REQ source sink

Box 13. Theorem 6

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
       ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag 

         bseqt bseq p. 

STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS 

     dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout 

     rec_flag bseqt bseq ∧
LIVE_ASSUMPTION abort ⇒ REQ source sink
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received at the receiver. We specify this in higher-
order-logic as follows

∀ rem source.
     DELAY_STOP_WAIT_NOISELESS rem 

source = 

     @ t. (rem t = TL source) ∧ (rem 
(t - 1) = source)

where TL refers to the tail function for lists and 
@x.t refers to the Hilbert choice operator in HOL 
that represents the value of x such that t is True. 
Thus, the above specification returns the time t 
at which the rem list, which represents the data 
remaining to be sent at any time t, is reduced by 
one element from its initially assigned value of 
the source list. Indeed it is precisely equal to the 
message delay of the first data element in the 
source list.

Based on the above definition of the message 
delay and the delays associated with the formal 
specification of the Stop-and-Wait protocol 
(STOP_WAIT_NOISELESS), Equation 1 can be 
formally expressed in HOL as follows in Box 14.

It is important to note here that the processing 
delay, tp, has been assigned a value of 1 in our 
model, as explained in the previous section. The 
two assumptions that we have added to Theorem 
7 ensure that the source list is not an empty list, 
i.e., ~(NULL source), otherwise no data transfer 
takes place, and the time out period tout is always 
greater than or equal to its lower bound. Rewrit-
ing the proof goal of Theorem 7 with the formal 

specification of the Stop-and-Wait protocol delay 
and removing the Hilbert Choice operator we get 
the following expression

(∃x. (rem x = TL source) ∧ (rem (x - 
1) = source)) ∧
     ∀ x. (rem x = TL source) ∧ (rem 
(x - 1) = source) ⇒
       (x = tf + tprop + 1 + ta + 

tprop + 1 

The above subgoal is a logical conjunction of 
two Boolean expressions and it can be proved to 
be True only if there exists a time x for which the 
conditions (rem x = TL source) and (rem (x - 1) 
= source) are True and the value of any variable 
x that satisfies these conditions is unique and is 
equal to tf + tprop + 1 + ta + tprop + 1.

We proceed with the proof of this subgoal by 
assuming the following expression

Lemma 1:

(rem (tf + tprop + 1 + ta + tprop + 

1) = TL source) ∧
(rem ((tf + tprop + 1 + ta + tprop + 

1) - 1) = source))

to be True, which we will prove later, under the 
given constraints for the Stop-and-Wait protocol. 
Lemma 1 leads us to prove the first Boolean ex-
pression in our subgoal as now we know an x = 
(tf + tprop + 1 + ta + tprop + 1) for which the 

Box 14. Theorem 7

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
     ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag. 

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort 

dataS dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag ∧ 
~(NULL source) ∧ (tprop + 1 + ta + tprop + 1 ≤ tout) ⇒
     (DELAY_STOP_WAIT_NOISELESS rem source = 

     tf + tprop + 1 + ta + tprop + 1)
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given conditions are True. We verify the second 
Boolean expression in the subgoal by first prov-
ing the monotonically decreasing characteristic 
of the history rem under the given constraints of 
the Stop-and-Wait protocol, i.e.,

∀ a b. a < b ⇒ ∃c. c ++ rem b = rem a

where ++ represents the list cons function in 
HOL. Now, if there exists an x, that satisfies the 
conditions (rem x = TL source) and (rem (x - 1) 
= source), then it may be equal to, less than or 
greater than (tf + tprop + 1 + ta + tprop + 1). 
For the latter two cases, we reach a contradiction 
in the assumption list, based on the monotoni-
cally decreasing characteristic of the history rem, 
whereas, the case when x = (tf + tprop + 1 + ta + 
tprop +1) verifies our subgoal of interest, which 
concludes the proof of Theorem 7 under the as-
sumption of Lemma 1.

Lemma 1 can now be proved in HOL using 
the definitions of the predicates in the formal 
specification of the Stop-and-Wait protocol under 
noiseless channels. The corresponding HOL proof 
step sequence is summarized in Figure 5.

Noisy Channel Conditions

The message delay, under noisy channel condi-
tions, refers to the time required for the transmitter 
to send a single data message and know that it has 
been successfully received at the receiver. Though 
the delay, in this case, is a random quantity since 
its value is non-deterministic and depends on the 
outcomes of a sequence of Bernoulli trials, which 
are used to model the channel noise as can be seen 
in the definition of the predicate NOISY_CHAN-
NEL_STOP_WAIT. Therefore, the message delay 
of the Stop-and-Wait protocol under noisy chan-
nel conditions needs to be formally specified as 
a random variable as follows in Box 15, where 

Figure 5. HOL Proof Sequence for Lemma 1
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history bseqt t represents the unused portion of the 
infinite Boolean sequence, explained in Section 2, 
after performing the required number of Bernoulli 
trials at any given time t. The above specification 
returns a pair with the first element equal to the 
time t that satisfies the two conditions (rem t = 
TL source) and (rem (t - 1) = source), and thus 
represents the random message delay of the first 
data element in the source list, and the second 
element equal to the unused portion of the infinite 
Boolean sequence at this time instant t.

As a first step towards the verification of the 
average value of the random delay specified in 
DELAY_STOP_WAIT_NOISY, we establish its 
relationship with the infamous Geometric random 
variable, which basically returns the number of 
trials to attain the first success in an infinite se-
quence of Bernoulli trials. This way, we can 
benefit from existing HOL theorems related to 
the average characteristic of Geometric random 
variable, such as Theorem 2, for the verification 
of the average value of the message delay of a 

Stop-and-Wait protocol. This relationship, given 
in Equation 2 can be expressed in HOL using the 
formal specification of the Stop-and-Wait proto-
col STOP_WAIT_NOISY and the Geometric 
random variable prob_geom [Hasan, 2007], as 
follows in Box 16, where p represents the prob-
ability of channel error, i.e., getting a True from 
the Bernoulli random variable. The first argument 
of the function prob_geom [Hasan, 2007] repre-
sents the probability of success for the correspond-
ing sequence of the Bernoulli trials, which, in the 
case of our definition of the noisy channel, is 
equal to the probability of getting a False from a 
Bernoulli trial. The above theorem is proved 
under the assumption that the value of the prob-
ability p always falls in the interval [0,1). It is not 
allowed to attain the value 1, in order to avoid the 
case when the channel always rejects incoming 
packets and thus leads to no data transfers. The 
assumption, LIVE_ASSUMPTION abort ensures 
liveness as has been explained in Section 2. The 
other assumptions used in the above theorem are 

Box 15.

∀ rem source bseqt.
     DELAY_STOP_WAIT_NOISY rem source bseqt = 

     ((@t. (rem t = TL source) ∧ (rem (t - 1) = source)),
     bseqt @t. (rem t = TL source) ∧ (rem (t - 1) = source))

Box 16. Theorem 8

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR
       d tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p. 

STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS 

       dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout 

       rec_flag bseqt bseq ∧
LIVE_ASSUMPTION abort ∧
0 ≤ p ∧ p < 1 ∧ ~NULL source ∧
tprop + 1 + ta + tprop + 1 ≤ tout ⇒
     (DELAY_STOP_WAIT_NOISY rem source bseqt = 

         ((tf + tout) * (fst (prob_geom (1 - p) bseq) - 1) + tf + 

       tprop + 1 + ta + tprop + 1, snd (prob_geom (1 - p) bseq)))
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similar to the ones used for the verification of 
Theorem 7.

We proceed with the verification of Theorem 
8 in HOL by first defining the following two re-
cursive functions (see Box 17).

The first function, BERNOULLI_TRIAL_F_
IND returns True if and only if its first argument, 
say n, represents the positive integer index of a 
trial, in a sequence of independent Bernoulli trials, 
that returns a False while all Bernoulli trials with 
lower index values than n have returned a True. 
The second function NTH_BERNOULLI_TRI-
AL_SND returns the value of the snd element of 
the nth Bernoulli trial in a sequence of independent 
Bernoulli trials, where n is the first argument of 
the function NTH_BERNOULLI_TRIAL_SND. 
In other words, it basically returns the unused 
infinite Boolean sequence after n independent 
Bernoulli trials have been performed using the 
given infinite Boolean sequence.

Under the given assumptions of Theorem 8, it 
can be shown that a data message available at the 
source list does finally make through the noisy 
channel at some time. This can be verified in HOL, 
for the top element of the source list, by proving 
that there exists some n for which the function 
BERNOULLI_TRIAL_F_IND returns a True

∃ n. BERNOULLI_TRIAL_F_IND n p bseq

for the given values of p and bseq. If a positive 
integer n exists that satisfies the above condition, 
then it can be verified in HOL that the Geometric 
random variable, which returns the number of 
trials to attain the first success in an independent 
sequence of Bernoulli(p) trials, with success prob-
ability equal to (1 - p) can be formally expressed 
as follows

∀ n p s.
     0 ≤ p ∧ p < 1 ∧ BERNOULLI_
TRIAL_F_IND n p s ⇒
     (prob_geometric_p (1 - p) s = 

     (n + 1,NTH_BERNOULLI_TRIAL_SND 

(n + 1) p s)) 

The HOL proof is based on the formal defini-
tion of the function prob_geom and the underlying 
probability theory principles, presented in [Hurd, 
2002].

Based on the above results, the proof goal of 
Theorem 8 can be simplified using the definition 
of DELAY_STOP_WAIT_NOISY and removing 
the Hilbert choice operator as follows

(∃ x. (rem x = TL source) ∧ (rem (x - 
1) = source)) ∧
     ∀ x.
       (rem x = TL source) ∧ (rem (x 
- 1) = source) ⇒
       (x = (tf + tout) * n + tf + 

Box 17.

(∀ p bseq.
     BERNOULLI_TRIAL_F_IND 0 p bseq = ~fst (prob_bernoulli p bseq)) ∧
   ∀ n p bseq. BERNOULLI_TRIAL_F_IND (SUC n) p bseq =
     fst (prob_bernoulli p bseq) ∧
     BERNOULLI_TRIAL_F_IND n p (snd (prob_bernoulli p bseq)) 

 

(∀ p bseq. NTH_BERNOULLI_TRIAL_SND 0 p bseq = bseq) ∧
   ∀ n p bseq. NTH_BERNOULLI_TRIAL_SND (SUC n) p bseq =
     snd (prob_bernoulli p (NTH_BERNOULLI_TRIAL_SND n p bseq))
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tprop + 1 + ta + tprop + 1) ∧
       (bseqt x = NTH_BERNOULLI_TRI-

AL_SND (n + 1) p bseq)

The above subgoal is quite similar to the one 
that we got after simplifying the proof goal of 
Theorem 7. Therefore, we follow the same proof 
approach and assume the following expression

Lemma 2:

(rem ((tf + tout) * n + tf + tprop + 

1 + ta + tprop + 1 - 1) = source) ∧
(rem ((tf + tout) * n + tf + tprop + 

1 + ta + tprop + 1) = TL source) ∧
(bseqt ((tf + tout) * n + tf + tprop 

+ 1 + ta + tprop + 1) = 

     NTH_BERNOULLI_TRIAL_SND (n + 1) 

p bseq)

to be True, which we will prove later, under the 
given assumptions of Theorem 8. Lemma 2 leads 
us to prove the first Boolean expression in the 
subgoal as now we know an x = ((tf + tout) * n 
+ tf + tprop + 1 + ta + tprop + 1) for which the 
given conditions (rem x = TL source) and (rem 
(x - 1) = source) are True. The second Boolean 
expression in the subgoal can now be proved 
using Lemma 2 along with the monotonically 
decreasing characteristic of the history rem in a 
similar way as we handled the counterpart while 
verifying Theorem 7.

The next step is to prove Lemma 2 under the 
assumptions given in the assumption list of Theo-
rem 8. We proceed in this direction by verifying 
a more generalized lemma (Box 18), under the 
assumptions of Theorem 8, for which Lemma 2 
is a special case when v=0.

The first assumption in Lemma 3, i.e., the 
predicate INIT_STOP_WAIT_GEN, provides the 
status of the histories used in the predicate 
STOP_WAIT_NOISY at time v and is defined as 
shown in Box 19.

It can be proved to be a logical implication of 
the predicate INIT_STOP_WAIT, which is in-
cluded in the definition of STOP_WAIT_NOISY 
and is thus present in the assumption list of 
Theorem 8, for the case when v = 0.

Whereas, the second assumption of Lemma 3, 
i.e., BERNOULLI_TRIAL_F_IND n p bseq has 
already been shown to be a consequence of the 
assumptions of Theorem 8. Thus, Lemma 2 can 
be proved as a special case of Lemma 3 when the 
positive integer variable v is assigned a value of 
0. Now, in order to complete the formal proof of 
Theorem 8 in HOL, we need to verify Lemma 3. 
We proceed with this proof by applying induction 
on the positive integer variable n. For the base case, 
i.e., n = 0, we get the following subgoal after some 
basic arithmetic simplification and using the func-
tion definitions of BERNOULLI_TRIAL_F_IND 
and NTH_BERNOULLI_TRIAL_SND.

Box 18. Lemma 3

∀ bseq v.
INIT_STOP_WAIT_GEN source rem s sink r i 

     ackR dtout dtf dta tout tf ta rec_flag bseqt bseq v ∧
     BERNOULLI_TRIAL_F_IND n p bseq ⇒
     (rem (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1 - 1) = source) ∧
       (rem (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1) = TL 

source)∧
       (bseqt (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1) = 

NTH_BERNOULLI_TRIAL_SND (n + 1) p bseq)
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INIT_STOP_WAIT_GEN source rem s sink 

r i ackR dtout dtf dta tout tf ta 

rec_flag bseqt bseq v ∧
~fst (prob_bernoulli p bseq) ⇒
     (rem (v + tf + tprop + 1 + ta + 

tprop + 1 - 1) = source) ∧
     (rem (v + tf + tprop + 1 + ta + 

tprop + 1) = TL source) ∧
     (bseqt (v + tf + tprop + 1 + ta 

+ tprop + 1) = 

       snd (prob_bernoulli p bseq)) 

The assumption ~fst (prob_bernoulli p bseq) 
ensures that the noisy data channel allows reliable 
transmission of the first data message in the first 
trial. Thus, the base case of Lemma 3 becomes 
similar to the case of a noiseless data channel, as 
far as the transmission of the first data element of 
the source list is concerned. Therefore, its proof 
can be handled in a similar way as the proof of 
Lemma 1, presented in the last section, as the only 
difference between the two is the fact that now 
the initial conditions are defined for an arbitrary 
positive integer v instead of 0. The HOL proof 
step sequence is summarized in Figure 6. These 
proofs are based on the INIT_STOP_WAIT_GEN 
and the predicates corresponding to the six pro-
cesses, given in Figure 4, for the Stop-and-Wait 
protocol under a noisy data channel.

In the step case for Lemma 3, we get the fol-
lowing subgoal after some simplifications using 
the function definitions of BERNOULLI_
TRIAL_F_IND and NTH_BERNOULLI_TRIAL_
SND (Box 20), which needs to be proved under 
the assumption list of Theorem 8 along with the 
statement of Lemma 3. 

The above subgoal can be proved in a very 
straightforward manner by specializing Lemma 
3 for the case when bseq and v are equal to snd 
(prob_bernoulli p bseq) and (v + tf + tout), re-
spectively, if the given initial conditions in the 
predicate INIT_STOP_WAIT_GEN hold for snd 
(prob_bernoulli p bseq) and (v + tf + tout), i.e.,

Lemma 4:

INIT_STOP_WAIT_GEN source rem s sink 

r i ackR dtout dtf dta 

tout tf ta rec_flag bseqt (snd (prob_

bernoulli p bseq)) (v + tf + tout)

under the assumptions of Theorem 8 and the 
step case of Lemma 3. In order to prove Lemma 
4 we need to formally verify the behavior of the 
histories, used in the predicate INIT_STOP_
WAIT_GEN, at various points in the interval [0, 
v + tf + tout]. Therefore, we again use the same 
approach that we used to prove Lemma 1 and the 
base case of Lemma 3, i.e., to verify the value of 

Box 19.

∀ source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag bseqt bseq v.
     INIT_STOP_WAIT_GEN source rem s sink r i ackR dtout dtf dta tout tf 

       ta rec_flag bseqt bseq v = 

     (i v = 0) ∧ (dtout v = tout) ∧ (dtf v = tf) ∧ (dta v = ta) ∧
     (bseqt v = bseq) ∧
     (∀ t.
       t ≤ v ⇒
       (rem t = source) ∧ (s t = 0) ∧ (sink t = [ ]) ∧ (r t = 0) ∧
       (rec_flag t = F) ∧ (ackR t = set_non_packet)) ∧
     ∀ t. v - (tout - 1) ≤ t ∧ t < v ⇒ (i t = 1))
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Figure 6. HOL Proof Sequence for the base Case of Lemma 3

Box 20.

INIT_STOP_WAIT_GEN source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag 

bseqt bseq v ∧
     fst (prob_bernoulli p bseq) ∧
     NTH_BERNOULLI_TRIAL_F n p (snd (prob_bernoulli p bseq)) ⇒
     (rem (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1 - 1) = 

source) ∧
     (rem (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1) = TL 

source) ∧
     (bseqt (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1) = 

       NTH_BERNOULLI_TRIAL_SND (n + 1) p (snd (prob_bernoulli p bseq))
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these histories using the initial conditions and the 
definitions of the predicates used for the formal 
specification of the Stop-and-Wait protocol. In 
fact, the first 11 proof lines, given in Figure 6, for 
the base case of Lemma 3 can be used as they are 
for the proof of Lemma 4 as well, since a mes-
sage transmission cannot complete before v + tf 
+ tprop + 1 + ta + tprop + 1 time units are lapsed 
and the first data message is issued at time v + tf 
in both cases. Hereafter, contrary to the base case 
of Lemma 3, where one of the assumptions assured 
the reliable transmission of the first data message, 
in the case of Lemma 4 we have the assumption 
fst (prob_bernoulli p bseq) that forces the channel 
to lose the first data message. Thus, the sender 
keeps on waiting for a valid ACK until the timer 
associated with the tout delay expires and this is 
how the initial state at time v is maintained until 
the time v + tf + tout. We were able to verify this 
result, and thus Lemma 4, using the first 11 proof 
lines, given in Figure 6, followed by the proof 

sequence given in Figure 7. The proof of Lemma 
4 concludes the proof of Lemma 3, which in turn 
leads to the proof of Theorem 8 as well.

Now, we are in the position of verifying the 
average message delay relation, given in Equation 
3, for the Stop-and-Wait protocol under noisy 
channels. The corresponding theorem can be 
expressed in HOL as follows in Box 21.

The above proof goal can be reduced to the 
following subgoal using Theorems 4 and 8 and 
some arithmetic simplification

∀ p. 0 < p ∧ p ≤ 1 ⇒
   (expec 

   (\.s. (fst (prob_geom p s) - 1, 

     snd (prob_geom p s))) = (1 - p) 

/ p)

which we were able to verify in HOL, using the 
formalization of the expectation theory and the 
Geometric random variable prob_geom, given in 

Figure 7. HOL Proof Sequence for Lemma 4



372

Formal Analysis of Real-Time Systems

[Hasan, 2007], and the probability theory prin-
ciples, formalized in [Hurd, 2002].

Theorem 9 specifies the average message de-
lay relation of a Stop-and-Wait protocol in terms 
of individual delays of the various autonomous 
processes, which are the basic building blocks of 
the protocol. Thus, it allows us to tweak various 
parameters of the protocol to optimize its perfor-
mance for any given conditions. It is important to 
note here that the result of Theorem 9 is not new 
and the performance analysis of Stop-and-Wait 
protocols, based on Equation 3, existed since the 
early days of their introduction, however, using 
theoretical paper-and-pencil proof techniques. 
On the other hand, to the best of our knowledge, 
this is the first time that such a relation has been 
mechanically verified without any loss in accuracy 
or precision of the results. It therefore provides 
a superior approach to both paper-and-pencil 
proofs and simulation based performance analysis 
techniques.

CONCLUSION

In this chapter, we presented a higher-order-logic 
theorem prover based approach for the functional 
verification and performance analysis of real-time 
systems. A real-time system and its environment 
can be formalized as a logical conjunction of 

higher-order-logic predicates on positive integers, 
whereas the positive integers represent the ticks of 
a clock counting physical time in any appropriate 
units. Higher-order-logic has been successfully 
used for the formalization of a significant amount 
of probability theories. This feature allows us to 
use random variables in our model to represent the 
random and unpredictable elements of a real-time 
system and its environment. The functional and 
performance related properties, such as average 
characteristics, of a real-time system can now be 
formally verified, using this model, in a higher-
order-logic theorem prover. Due to the inherent 
soundness of the theorem-proving based analysis, 
the presented approach ensures accurate and pre-
cise results and thus can prove to be quite useful 
for the performance and reliability optimization 
of safety critical and highly sensitive real-time 
system application domains, such as medicine, 
military or space travel. Similarly, unlike other 
commonly used state-based formal techniques, 
which are severely affected by the state-space 
explosion problem, the presented approach is 
capable of handling any real-time system that 
can be expressed in a closed mathematical form 
due to the high expressive nature of higher-order-
logic. Also, there is no equivalence verification 
required between the models used for functional 
verification and performance evaluation as the 

Box 21. Theorem 9

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR
ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p. 

(∀ bseq. STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort
     dataS dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout 

       rec_flag bseqt bseq) ∧
     (LIVE_ASSUMPTION abort) ∧
     (0 ≤ p ∧ p < 1) ∧ (~NULL source) ∧
     tprop + 1 + ta + tprop + 1 ≤ tout ⇒
       (expec (DELAY_STOP_WAIT_NOISY rem source bseqt) = 

         ((tf + tout) * p/(1-p) + (tf + tprop + 1 + ta + tprop + 1)))
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same formal model is used for both of these 
analysis in the approach presented in this chapter.

In order to illustrate the practical effectiveness 
of theorem proving in the domain of analyzing 
real-time systems, we have utilized it in this chapter 
to conduct the functional verification and perfor-
mance analysis of a Stop-and-Wait protocol using 
the HOL theorem prover. A higher-order-logic 
specification for the Stop-and-Wait protocol is 
presented, with the noise effect modeled as a ran-
dom variable. We also outlined the major steps in 
the verification of performance related theorems. 
The most significant result is the verification of 
the classical average message delay relation for 
the Stop-and-Wait protocol in HOL. To the best 
of our knowledge, formal verification of the aver-
age message delay relation for the Stop-and-Wait 
protocol cannot be handled by any other formal 
technique. Because of the fact that the Stop-and-
Wait protocol bears most of the essential char-
acteristics of the present day real-time systems, 
these results clearly demonstrate the usefulness 
of the proposed performance analysis approach.

The main limitation of the higher-order-logic 
theorem proving based performance analysis ap-
proach is the associated significant user interac-
tion, i.e., the user needs to guide the proof tools 
manually since we are dealing with higher-order-
logic. In the analysis of the Stop-and-Wait proto-
col, presented in this chapter, we tried to minimize 
the effect of this inherent limitation by taking 
a number of decisions, such as, building upon 
existing HOL theories, whenever possible, and 
choosing the discrete time domain for the analysis, 
which allows us to use the powerful induction 
technique for verification and thus minimize the 
proof effort considerably. The formalization and 
verification presented in this paper translated to 
approximately 6000 lines of HOL code and we 
had to spend about 300 man-hours on this project. 
Because of the interactive nature of the analysis, 
the proposed approach should not be viewed as 
an alternative to methods such as simulation and 
model-checking for the performance analysis of 

real-time systems but rather as a complementary 
technique, which can prove to be very useful when 
precision of the results is of prime importance.
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