
Reconfigurable Embedded
Control Systems:
Applications for Flexibility and
Agility

Mohamed Khalgui
Xidian University, China

Hans-Michael Hanisch
Martin Luther University, Germany

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Joel Gamon
Publishing Assistant: Casey Conapitski
Typesetter: Milan Vracarich Jr.
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Reconfigurable embedded control systems : applications for flexibility and
agility / Mohamed Khalgui and Hans-Michael Hanisch, editors.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-60960-086-0 (hardcover) -- ISBN 978-1-60960-088-4 (ebook) 1.
Programmable controllers. 2. Embedded computer systems. 3. Digital control
systems. I. Khalgui, Mohamed. II. Hanisch, Hans-Michael.
 TJ223.P76R43 2011
 629.8'95--dc22
 2010042276

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

342

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-60960-086-0.ch013

Chapter 13

Formal Analysis of Real-
Time Systems

Osman Hasan
National University of Science and Technology (NUST), Pakistan

Sofiène Tahar
Concordia University, Canada

INTRODUCTION

Real-time systems can be characterized as sys-
tems for which the correctness of an operation is
dependant not only on its functional correctness
but also on the time taken. Some commonly used
real-time system applications include embedded
systems, digital circuits with uncertain delays,
communication protocols and dynamic recon-
figurable systems.

Until the last decade, real-time systems were
analyzed using traditional techniques, such as
paper-and-pencil proof methods or simulation.
The paper-and-pencil based proof techniques
usually have some risk of an erroneous analysis
due to the human-error factor. Similarly, accuracy
of analysis cannot be guaranteed in computer
simulation as well since the fundamental idea in
this approach is to approximately answer a query
by analyzing a large number of samples. These
inaccuracy limitations of paper-and-pencil proof
methods and simulation techniques may lead to

ABSTRACT

Real-time systems usually involve a subtle interaction of a number of distributed components and have
a high degree of parallelism, which makes their performance analysis quite complex. Thus, traditional
techniques, such as simulation, or state-based formal methods usually fail to produce reasonable results.
The main limitation of these approaches may be overcome by conducting the performance analysis of
real-time systems using higher-order-logic theorem proving. This chapter is mainly oriented towards
this emerging trend and it provides the details about analyzing both functional and performance re-
lated properties of real-time systems using a higher-order-logic theorem prover (HOL). For illustra-
tion purposes, the Stop-and-Wait protocol, which is a classical example of real-time systems, has been
considered as a case-study.

343

Formal Analysis of Real-Time Systems

disastrous consequences in today’s world, where
real-time systems are extensively being used in
safety critical and extremely sensitive applications
such as medicine, military and transportation. In
fact, some unfortunate incidents have already
happened in this regard. One of the well-known
incidents is the loss, in December 1999, of the
Mars Polar Lander; a $165 million NASA space-
craft launched to survey Martian conditions. The
Mars Polar Lander is believed to be lost mainly
because of its engine shutdown while it was still
40 meters above the Mars surface. The engine
shutdown happened due to the vibrations caused
by the deployment of the Lander’s legs, i.e., a
probabilistic behavior that gave false indication
that spacecraft had landed. Some other such inci-
dents related to inaccurate or inadequate analysis of
real-time systems include the loss of $125 million
Mars Climate Orbiter in 1998 and the performance
degradation of Microsoft’s IIS indexing service
DLL due to a buffer overflow problem caused by
the “Code Red’’ worm in 2001, which resulted in
a loss of over $2 billion to the company. A more
recent incident is the faulty operation of the fly-
by-wire primary flight control real-time software
of a Boeing 777, operated by the Malaysia Air-
lines, in August 2005, which could have resulted
in the loss of 177 passenger lives if the pilot had
not manually taken over the autopilot program in
time. All these incidents happened because the
erroneous conditions were not caught during the
analysis phase, due to the imprecise nature of the
analysis techniques, and thus bugs appeared in the
original product. Therefore, techniques like paper-
and-pencil proof methods and simulation should
not be relied upon for the analysis of real-time
systems especially when they are used in safety
or financial critical domains.

Formal methods are capable of conducting
precise system analysis and thus overcome the
above mentioned limitations. The main principle
behind formal analysis of a system is to construct
a computer based mathematical model of the given
system and formally verify, within a computer,

that this model meets rigorous specifications of
intended behavior. A number of elegant approaches
for the formal analysis of real-time systems can
be found in the open literature using state-based
or theorem proving techniques (e.g., Alur, 1992;
Cardell-Oliver, 1992; Amnell, 2001; Beyer, 2003;
Kwiatkowska, 2002; Bucci, 2005; Kwiatkowska,
2007; Hasan, 2009). However, some of these ex-
isting formal verification tools are only capable
of specifying and verifying hard deadlines, i.e.,
properties where a late response is considered to
be incorrect. Whereas, in the case of performance
analysis of real-time systems, soft deadlines, i.e.,
properties that provide the quality of service in
terms of probabilistic quantities or averages, play
a vital role. Also, the above mentioned state-based
approaches are limited by reduced expressive
power of their automata based or Petri net based
specification formalism. On the other hand, the
higher-order-logic theorem proving based tech-
nique [Hasan, 2009] tends to overcome the above
mentioned limitations of existing formal real-time
system analysis techniques.

The main principle behind the higher-order
logic theorem proving based approach is to lever-
age upon the high expressiveness of higher-order
logic to formally specify and reason about the
temporal properties and random behaviors of
the present age complex real-time systems. This
approach is primarily based upon the previous
work reported for the functional verification of
hard real-time systems [Cardell-Oliver, 1992], the
formalization of random variables [Hurd, 2002]
and the verification of expectation properties for
discrete random variables [Hasan, 2008]. The idea
is to formally specify the given real-time system
as a logical conjunction of higher-order-logic
predicates [Cadell-Oliver, 1992], whereas each
one of these predicates defines an autonomous
component or process of the given real-time
system, while representing the unpredictable or
random elements in the system as formalized
random variables [Hurd, 2002]. The functional
correctness and the performance related proper-

344

Formal Analysis of Real-Time Systems

ties for various parameters for this formal model
can then be verified using an interactive theorem
prover with the help of the useful theorems already
proved in [Cadell-Oliver, 1992; Hurd, 2002;
Hasan, 2008]. Since the analysis is conducted
within the core of a mechanical theorem prover,
there would be no question about the soundness
or the precision of the results. Also, there is no
equivalence verification required between the
models used for functional verification and per-
formance evaluation as the same formal model is
used for both of these analyses in this approach.

The main focus of this chapter is on this
theorem proving based real-time system analysis
approach. In order to illustrate the utilization and
practical effectiveness of the presented approach,
the chapter includes the functional verification
and performance analysis of a variant of the
Stop-and-Wait protocol [Widjaja, 2004], which
is a classical example of a real-time system. The
Stop-and-Wait protocol utilizes the principles of
error detection and retransmission and is a fun-
damental mechanism for reliable communication
between computers. Indeed, it is one of the most
important parts of the Internet’s Transmission
Control Protocol (TCP). The main motivation
behind selecting the Stop-and-Wait protocol as a
case study is its widespread popularity in the lit-
erature regarding real-time system analysis meth-
odologies. The Stop-and-Wait protocol and some
of its closely related variants have been checked
formally for functional verification using theo-
rem proving [Cadell-Oliver, 1992], state-based
formal approaches (e.g. [Gallasch, 2006]) and a
combination of both techniques (e.g. [Havelund,
1996]) and their performance has been analyzed
using a number of innovative state-based formal
or semi-formal techniques (e.g. [Wells, 2002]). In
all of these previous works, only one aspect, i.e.,
either functional correctness or performance was
analyzed. However, this chapter utilizes a single
formal model of the Stop-and-Wait protocol and
presents the analysis of its functional correctness

and performance by leveraging upon the expres-
siveness of higher-order logic.

The chapter is organized as follows. Section
2 provides some preliminaries including an over-
view of higher-order logic theorem proving and
Stop-and-Wait protocol. The higher-order-logic
theorem proving based technique for the analy-
sis of real-time systems is outlined in Section 3.
Next in Section 4, we present a higher-order-logic
specification of the Stop-and-Wait protocol and
formally verify its functional and performance
related properties using a theorem prover in Sec-
tions 5 and 6, respectively. Finally, Section 7 will
conclude the chapter.

PRELIMINARIES

In this section, we provide an overview of higher-
order-logic theorem proving and the HOL theorem
prover that will be used in the rest of this chapter.
The intent is to provide a brief introduction to
these topics along with some notation that is go-
ing to be used later.

Higher-Order-Logic Theorem Proving

Theorem proving [Gordon, 1989] is a widely used
formal verification technique. The system that
needs to be analyzed is mathematically modeled in
an appropriate logic and the properties of interest
are verified using computer based formal tools.
The use of formal logics as a modeling medium
makes theorem proving a very flexible verification
technique as it is possible to formally verify any
system that can be described mathematically. The
core of theorem provers usually consists of some
well-known axioms and primitive inference rules.
Soundness is assured as every new theorem must
be created from these basic axioms and primi-
tive inference rules or any other already proved
theorems or inference rules.

The verification effort of a theorem varies
from trivial to complex depending on the under-

345

Formal Analysis of Real-Time Systems

lying logic [Harrison, 2009]. For instance, first-
order logic is restricted to propositional calculus
and terms (constants, function names and free
variables) and is semi-decidable. A number of
sound and complete first-order logic automated
reasoners are available that enable completely
automated proofs. More expressive logics, such
as higher-order logic, can be used to model a
wider range of problems than first-order logic,
but theorem proving for these logics cannot be
fully automated and thus involves user interac-
tion to guide the proof tools. For performance
and probabilistic analysis, we need to formalize
(mathematically model) random variables as
functions and formalize characteristics of random
variables, such as probability distribution func-
tions and expectation, etc., by quantifying over
random variable functions. Henceforth, first-order
logic does not support such formalization and
we need to use higher-order logic to formalize
probabilistic analysis.

HOL Theorem Prover

In this chapter, we use the HOL theorem prover
[Gordon, 1993] to conduct all the real-time system
performance analysis related formalization and
verification. HOL is an interactive theorem prover
developed by Mike Gordon at the University of
Cambridge for conducting proofs in higher-order
logic. It utilizes the simple type theory of Church
[Church, 1940] along with Hindley-Milner poly-
morphism [Milner, 1977] to implement higher-
order logic. HOL has been successfully used as
a verification framework for both software and
hardware as well as a platform for the formaliza-
tion of pure mathematics.

Secure Theorem Proving

In order to ensure secure theorem proving, the
logic in the HOL system is represented in the
strongly-typed functional programming language
ML [Paulson, 1996]. An ML abstract data type is

used to represent higher-order-logic theorems and
the only way to interact with the theorem prover
is by executing ML procedures that operate on
values of these data types. The HOL core consists
of only 5 basic axioms and 8 primitive inference
rules, which are implemented as ML functions.
Soundness is assured as every new theorem must
be verified by applying these basic axioms and
primitive inference rules or any other previously
verified theorems/inference rules.

Terms

There are four types of HOL terms: constants,
variables, function applications, and lambda-terms
(denoted function abstractions). Polymorphism,
types containing type variables, is a special fea-
ture of higher-order logic and is thus supported
by HOL. Semantically, types denote sets and
terms denote members of these sets. Formulas,
sequences, axioms, and theorems are represented
by using terms of Boolean types.

Theories

A HOL theory is a collection of valid HOL types,
constants, axioms and theorems and is usually
stored as a file in computers. Users can reload a
HOL theory in the HOL system and utilize the cor-
responding definitions and theorems right away.
The concept of HOL theory allows us to build
upon existing results in an efficient way without
going through the tedious process of regenerating
these results using the basic axioms and primitive
inference rules.

HOL theories are organized in a hierarchical
fashion. Any theory may inherit types, definitions
and theorems from other theories. Various math-
ematical concepts have been formalized and saved
as HOL theories by the users. These theories are
available to a user when he/she first starts a HOL
session. The HOL theories of Booleans, lists, sets,
positive integers, real numbers, measure and prob-
ability are some of the frequently used theories in

346

Formal Analysis of Real-Time Systems

analyzing the performance of real-time systems.
In fact, one of the primary motivations of select-
ing the HOL theorem prover for this work was to
benefit from these built-in mathematical theories.

HOL Symbols

Figure 1 provides the mathematical interpreta-
tions of some frequently used HOL symbols and
functions in this chapter.

PROBABILISTIC THEOREM
PROVING BASED METHODOLOGY

A real-time system and its environment may be
viewed as a bunch of concurrent, communicat-
ing processes that are autonomous, i.e., they can
communicate asynchronously. The behavior of
these processes over time may be specified by
higher-order-logic predicates on positive integers
[Cadell-Oliver, 1992]. These positive integers
represent the ticks of a clock counting physical
time in any appropriate units, e.g., nanoseconds.
The granularity of the clock’s tick is believed to

be chosen in such a way that it is sufficiently fine
to detect properties of interest. The behavior of a
real-time system can now be formally specified
by combining the corresponding process speci-
fications (higher-order-logic predicates) using
logical conjunction. In a similar way, additional
constraints for the real-time system such as ini-
tial conditions or any assumptions, if required to
ensure the correct behavior of the model, can also
be defined as predicates and combined with its
formal specification using logical conjunctions.

The performance analysis of real-time systems
is primarily based on probability theory concepts.
A hypothetical model of a theorem proving based
real-time system performance analysis frame-
work is given in Figure 2, with some of its most
fundamental components depicted with shaded
boxes. Like all traditional analysis problems, the
starting point of performance analysis is also a
system description and some intended system
properties and the goal is to check if the given
system satisfies these properties. For simplicity,
we have divided system properties into two cat-
egories, i.e., system properties related to discrete

Figure 1. HOL symbols and functions

347

Formal Analysis of Real-Time Systems

random variables and system properties related
to continuous random variables.

The first step in the methodology illustrated
in Figure 2 is to construct a model of the given
real-time system in higher-order logic. For this
purpose, we model the real-time system as a
logical conjunction of processes as illustrated
above while modeling the random components
of the system by random variables. The foremost
requirement for this step is the availability of
infrastructures that allow us to formalize all kinds
of discrete and continuous random variables as
higher-order-logic functions, which in turn can
be used to represent the random components of
the given system in its higher-order-logic model.
The second step is to utilize the formal model of
the system to express system properties as high-
er-order-logic theorems. The prerequisite for this
step is the ability to express probabilistic and
statistical properties related to both discrete and
continuous random variables in higher-order-
logic. All probabilistic properties of discrete and

continuous random variables can be expressed in
terms of their Probability Mass Functions (PMFs)
and Cumulative Distribution Functions (CDFs),
respectively. Similarly, most of the commonly
used statistical properties can be expressed in
terms of the expectation and variance character-
istics of the corresponding random variable. Thus,
we require the formalization of mathematical
definitions of PMF, CDF, expectation and variance
for both discrete and continuous random variables
in order to be able to express the given system’s
performance characteristics as higher-order-
logic theorems. The third and the final step for
conducting performance analysis of a real-time
system in a theorem prover is to formally verify
the higher-order-logic theorems developed in the
previous step using a theorem prover. For this
verification, it would be quite handy to have ac-
cess to a library of some pre-verified theorems
corresponding to some commonly used properties
regarding probability distribution functions, ex-
pectation and variance. Since, we can build upon

Figure 2. Theorem proving based real-time system performance analysis framework

348

Formal Analysis of Real-Time Systems

such a library of theorems and thus speed up the
verification process. The formalization details
regarding the above mentioned steps are briefly
described now.

Discrete Random Variables
and the PMF

A random variable is called discrete if its range,
i.e., the set of values that it can attain, is finite
or at most countably infinite. Discrete random
variables can be completely characterized by their
PMFs that return the probability that a random
variable X is equal to some value x, i.e., Pr(X =
x). Discrete random variables are quite frequently
used to model randomness in performance analy-
sis. For example, the Bernoulli random variable
is widely used to model the fault occurrence in
a component and the Binomial random variable
may be used to represent the number of faulty
components in a lot.

Discrete random variables can be formalized
in higher-order-logic as deterministic functions
with access to an infinite Boolean sequence B∞;
an infinite source of random bits with data type
(natural → bool) [Hurd, 2002]. These determin-
istic functions make random choices based on the
result of popping the top most bit in the infinite
Boolean sequence and may pop as many random
bits as they need for their computation. When
the functions terminate, they return the result
along with the remaining portion of the infinite
Boolean sequence to be used by other functions.
Thus, a random variable that takes a parameter
of type α and ranges over values of type β can be
represented by the function

F: α→ B∞→β x B∞

For example, a Bernoulli(½) random vari-
able that returns 1 or 0 with probability ½ can
be modeled as

bit = λs. (if shd s then 1 else 0, stl s)

where the variable s represents the infinite Boolean
sequence and the functions shd and stl are the se-
quence equivalents of the list operations ‘head’ and
‘tail’. A function of the form λx. t(x) represents a
lambda abstraction function that maps x to t(x). The
function bit accepts the infinite Boolean sequence
and returns a pair with the first element equal to
either 0 or 1 and the second element equal to the
unused portion of the infinite Boolean sequence.

The higher-order-logic formalization of the
probability theory [Hurd, 2002] also consists
of a probability function P from sets of infinite
Boolean sequences to real numbers between 0 and
1. The domain of P is the set E of events of the
probability. Both P and E are defined using the
Caratheodory’s Extension theorem, which ensures
that E is a σ-algebra: closed under complements
and countable unions. The formalized P and E can
be used to formally verify all the basic axioms of
probability. Similarly, they can also be used to
prove probabilistic properties for random vari-
ables. For example, we can formally verify the
following probabilistic property for the function
bit, defined above,

P {s | fst (bit s) = 1} = ½

where {x|C(x)} represents a set of all elements x
that satisfy the condition C, and the function fst
selects the first component of a pair.

The above mentioned infrastructure can be
utilized to formalize most of the commonly used
discrete random variables and verify their corre-
sponding PMF relations. In this chapter, we will
utilize the models for Bernoulli and Geometric
random variables formalized as higher-order-
logic functions prob_bernoulli and prob_geom
and verified using the following PMF relations
in [Hurd, 2002] and [Hasan, 2008], respectively.

Theorem 1:
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ (P {s | fst (prob_bernoulli
p s)} = p)

349

Formal Analysis of Real-Time Systems

Theorem 2:
∀ n p. 0 ≤ p ∧ p ≤ 1 ⇒ (P {s | fst (prob_geom p
s) = (n + 1)} = p(1 - p)n)

The Geometric random variable returns the
number of Bernoulli trials needed to get one
success and thus cannot return 0. This is why we
have (n+1) in Theorem 2, where n is a positive
integer {0,1,2,3 …}. Similarly, the probability p
in Theorem 2 represents the probability of suc-
cess and thus needs to be greater than 0 for this
theorem to be true as has been specified in the
precondition.

Continuous Random
Variables and the CDF

A random variable is called continuous if it ranges
over a continuous set of numbers that contains all
real numbers between two limits. Continuous ran-
dom variables can be completely characterized by
their CDFs that return the probability that a random
variable X is exactly less than or equal to some
value x, i.e., Pr(X ≤ x). Examples of continuous
random variables include measuring T, the arrival
time of a data packet at a web server (ST = {t | 0
≤ t < ∞}) and measuring V, the voltage across a
resistor (SV = { v | -∞ < v < ∞ }).

The sampling algorithms for continuous
random variables are non-terminating and hence
require a different formalization approach than
discrete random variables, for which the sampling
algorithms are either guaranteed to terminate or
satisfy probabilistic termination, meaning that
the probability that the algorithm terminates is
1. One approach to address this issue is to utilize
the concept of the nonuniform random number
generation, which is the process of obtaining
arbitrary continuous random numbers using a
Standard Uniform random number generator. The
main advantage of this approach is that we only
need to formalize the Standard Uniform random
variable from scratch and use it to model other
continuous random variables by formalizing the

corresponding nonuniform random number gen-
eration method.

Based on the above approach, a methodology
for the formalization of all continuous random
variables for which the inverse of the CDF can
be represented in a closed mathematical form is
presented in [Hasan, 2007}. The first step in this
methodology is the formalization of the Standard
Uniform random variable, which can be done
by using the formalization approach for discrete
random variables and the formalization of the
mathematical concept of limit of a real sequence
[Harrison, 1998]. The formalization details are
outlined in [Hasan, 2007].

The second step in the methodology for the for-
malization of continuous probability distributions
is the formalization of the CDF and the verification
of its classical properties. This is followed by the
formal specification of the mathematical concept
of the inverse function of a CDF. This definition
along with the formalization of the Standard
Uniform random variable and the CDF properties,
can be used to formally verify the correctness of
the Inverse Transform Method (ITM). The ITM
is a well known nonuniform random generation
technique for generating nonuniform random vari-
ables for continuous probability distributions for
which the inverse of the CDF can be represented
in a closed mathematical form. Formally, it can
be verified for a random variable X with CDF F
using the Standard Uniform random variable U
as follows

Pr (F-1(U) ≤ x) = F(x)

The formalized Standard Uniform random
variable can now be used to formally specify any
continuous random variable for which the inverse
of the CDF can be expressed in a closed mathemati-
cal form as X=F-1(U). Whereas, the CDF of this
formally specified continuous random variable, X,
can be verified using simple arithmetic reasoning
and the formal proof of the ITM. Based on this
approach, Exponential, Uniform, Rayleigh and

350

Formal Analysis of Real-Time Systems

Triangular random variables have been formal-
ized and their CDF relations have been verified
[Hasan, 2007].

Statistical Properties for
Discrete Random Variables

In probabilistic analysis, statistical characteristics
play a major role in decision making as they tend
to summarize the probability distribution charac-
teristics of a random variable in a single number.
Due to their widespread interest, the computation
of statistical characteristics has now become one
of the core components of every contemporary
probabilistic analysis framework.

The expectation for a function of a discrete
random variable, which attains values in the posi-
tive integers only, is formally defined as follows.

∀ X. expec X = suminf (λn. n P {s | fst (X s) = n})

where the mathematical notions of the probabil-
ity function P and random variable X have been
inherited from [Hurd, 2002], as presented in the
previous section. The function suminf represents
the HOL formalization of the infinite summation
of a real sequence [Harrison, 1998]. The function
expec accepts the random variable X with data type
B∞→ natural x B∞ and returns a real number. The
above definition can be used to verify the average
values of most of the commonly used discrete
random variables [Hasan, 2008]. For example, the
average value of the Geometric random variable
can be verified as the following theorem.

Theorem 3:
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ (expec (λs. prob_geom p
s) = 1/p)

In order to verify the correctness of the formal
definition of expectation and facilitate reason-
ing about expectation properties in probabilistic
systems, many widely used expectation properties
have been formally verified in the HOL theorem

prover [Hasan, 2009a]. Namely being the linear-
ity of expectation, Markov and Chebyshev’s
inequalities, variance and linearity of variance.
In this chapter, we utilize the following linearity
property out of this rich library of formally veri-
fied expectation properties.

Theorem 4:
∀ a b X. expec (λs. (a (fst (X s) + b, snd (X s)))
= a((expec X) + b)

Statistical Properties for
Continuous Random Variables

The expectation of a continuous random variable
has been formally defined in [Hasan, 2009b]
using the Lebesgue integral, which has strong
relationship with the measure theory fundamen-
tals [Galambos, 1995]. This definition is general
enough to cater for both discrete and continuous
random variables and is thus far more superior
than the commonly used Rieman integral based
definition that is only applicable to continuous
random variables with well-defined PDF. Though,
the main limitation of the Lebesgue integral based
definition is the complex reasoning process in-
volved for verifying expectation properties. This
limitation has been tackled in [Hasan, 2009b] and
the main idea is to verify two relatively simplified
expressions for expectation by building on top
of the Lebesgue integral based definition. The
first expression is for the case when the given
continuous random variable is bounded in the
positive interval [a,b] and the second one is for
an unbounded random variable. Both of these
expressions are verified using the fundamentals
from measure and Lebesgue integral theories
but once verified, they can be utilized to verify
expectation properties of any continuous random
variable without applying these complex underly-
ing concepts. The usage of these expressions is
illustrated by verifying the expected values of
Uniform, Triangular and Exponential random
variables [Hasan, 2009b].

351

Formal Analysis of Real-Time Systems

STOP-AND-WAIT PROTOCOL

This section provides a brief introduction to the
Stop-and-Wait protocol [Widjaja, 2004], which
will be used as case study for the formal analysis
framework presented in the previous section.
The Stop-and-Wait is a basic Automatic Repeat
Request (ARQ) protocol that ensures reliable data
transfers across noisy channels. In a Stop-and-Wait
system, both sending and receiving stations have
error detection capabilities. The operation is il-
lustrated in Figure 3 using the following notation.

• tf: Data message transmission time
• ta: ACK message transmission time
• tprop: One-way signal propagation delay be-

tween transmitter and receiver
• tproc: Processing time required for error

detection in the received message at both
transmitter and receiver ends

• tout: Timeout period

The transmitter sends a data message to the
receiver and spends tf time units in doing so.
Then, it stops and waits to receive an acknowl-

Figure 3. Stop-and-Wait operation

352

Formal Analysis of Real-Time Systems

edgement (ACK) of reception of that message
from the receiver. If no ACK is received within
a given time out, tout, period, the data message is
resent by the transmitter and once again it stops
and starts waiting for the ACK (Figure 3.a). If
an ACK is received within the given tout period
then the transmitter checks the received message
for errors during the next tproc time units. If errors
are detected then the ACK is ignored and the
data message is resent by the transmitter after tout
expires and once again the transmitter stops and
waits for the ACK (Figure 3.b). Thus, the main
idea is that the transmitter keeps on retransmit-
ting the same data message, after a pre-defined
time-out period, tout, until and unless it receives
a corresponding error-free ACK message from
the receiver. When an error-free ACK message
is finally received then the transmitter transmits
the next data message in its queue (Figure 3.c).

The receiver is always waiting to receive data
messages. When a new message arrives, the re-
ceiver checks it for errors during the next tproc time
units. If errors are detected then the data message
is ignored and the receiver continues to be in the
wait state (Figure 3.a), otherwise it initiates the
transmission of an ACK message, which takes ta
time units (Figure 3.b,c).

Under the above mentioned conditions, the
ACK message cannot be received before tprop+
tproc +ta+ tprop+ tproc units of time after sending
out a data message. It is, therefore, necessary to
set tout ≥ 2(tprop+ tproc)+ ta, i.e., the retransmission
must not be allowed to start before the expected
arrival time of the ACK is lapsed, for reliable
communication between transmitter and receiver.

ARQ allows the transmitting station to trans-
mit a specific number, usually termed as sending
window, of messages before receiving an ACK
frame and the receiving station to receive and
store a specific number, usually termed as re-
ceiving window, of error-free messages even if
they arrive out-of-sequence. Generally, both the
sending window and the receiving window are
assigned the same value, which is termed as the

window size of the ARQ protocol. The window
size for the Stop-and-Wait protocol is 1, as can
be observed from its transmitter and receiver
behavior descriptions given above.

In order to distinguish between new messages
and duplicates of previous messages at the receiver
or transmitter, a sequence number is included in
the header of both data and ACK messages. It has
been shown that, for correct ARQ operation, the
number of distinct sequence numbers must be at
least equal to twice the window size. Thus, the
simplest and the most commonly used version
of the Stop-and-Wait protocol uses two distinct
sequence numbers (0 and 1) and is known as the
Alternating Bit Protocol (ABP). The transmitter
keeps track of the sequence number of the last
data message it had sent, its associated timer
and the message itself in case a retransmission
is required. Whereas, the receiver keeps track of
the sequence number of the next data message
that it is expecting to receive. Thus, if an out-of-
sequence data message arrives at the receiver, it
ignores it and responds with the ACK for the data
message that it is expecting to receive. On the
other hand, when an in-sequence data message
arrives at the receiver, it updates its sequence
number by performing a modulo-2 addition with
the number 1, i.e., 0 is updated to 1 and 1 is up-
dated to 0. Similarly, if an out-of-sequence ACK
message appears at the transmitter, it ignores it
and retains the sequence number of the last data
message it had sent. Whereas, in the case of the
reception of an in-sequence ACK message, the
sequence number at the transmitter is also updated
by performing a modulo-2 addition by 1, which
becomes the sequence number of the next data
message as well. More details about sequence
numbering in the Stop-and-Wait protocol can be
found in [Widjaja, 2004].

The most widely used performance metric for
the Stop-and-Wait protocol is the time required
for the transmitter to send a single data message
and know that it has been successfully received at
the receiver. In the case of error-free or noiseless

353

Formal Analysis of Real-Time Systems

channels, which do not reorder or loose messages
(Figure 3.c), the message transmission delay is
given by

tf + tprop + tproc + ta + tprop + tproc (1)

On the other hand, in the presence of noise,
every damaged or lost message (data or ACK)
will cause a retransmission from the transmitter
and thus wastes tf+tout units of time (Figure 3a,b).
Whereas, the final successful transmission will
take the amount of time equal to the one given
by Equation (1). In order to obtain more concise
information about this delay, we consider the
probability, p, of a message transmission being
in error. This allows us to model the number of
retransmissions in the Stop-and-Wait protocol
in terms of a Geometric random variable, which
returns the number of trials required to achieve
the first success, with success probability 1-p.
Therefore, the delay of the Stop-and-Wait protocol
can be mathematically expressed as

(tf + tout) (G(1-p)-1) + tf + tprop + tproc + ta + tprop +
tproc (2)

where Gx denotes a Geometric random variable
with success probability x. The above representa-
tion allows us to express the average delay of a
single data message in a Stop-and-Wait protocol
using the average or mean value of Geometric
random variables as follows

(tf + tout)p/(1-p) + tf + tprop + tproc + ta + tprop + tproc
(3)

The main scope of the rest of the chapter is
to formally specify the Stop-and-wait protocol,
described in this section, as a real-time system
and mechanically verify its functional correct-
ness and average message delay relation, given
in Equation (3), using the methodology described
in the previous section.

FORMAL SPECIFICATION OF THE
STOP-AND-WAIT PROTOCOL

Based on the formal probabilistic analysis meth-
odology presented earlier, we formally specify the
Stop-and-Wait protocol described in the previous
section as a combination of six processes, as shown
in Figure 2. The protocol mainly consists of three
major modules, i.e., the sender or the transmit-
ter, the receiver and the communication channel.
Each one of these modules can be subdivided into
two processes as both the sender and the receiver
transmit messages and receive them and the chan-
nel between the sender and receiver consists of
two logical channels: one carrying data messages
from the sender to the receiver and one carrying
ACK messages in the opposite direction.

Next we present the data type definitions of the
six predicates, corresponding to each one of the
processes in Figure 4, and finally the formal speci-
fication of the Stop-and-Wait protocol, which also
includes the predicates for assumptions and initial
conditions. We include the timing information
associated with every action in these predicates
so that the corresponding model can be utilized
to reason about the message delay characteristic
of the Stop-and-Wait protocol.

Type Definitions

The input to the Stop-and-Wait protocol, source,
is basically a list of data messages that can be
modeled in HOL by a list of *data elements

source: *data list

where *data list represents any concrete HOL data
type such as a record, a character, an integer or
an n-bit word. The output of the protocol, sink, is
also a list of data messages that grows with time
as new data messages are delivered to the receiver.
It can be modeled in HOL as follows

sink: time → *data list

354

Formal Analysis of Real-Time Systems

where time is assigned the HOL data-type for
natural number and represents physical time in
this case. This kind of variable, which is time
dependant, is termed as a history in this chap-
ter. The arrows in Figure 4 between processes
represent information that is shared between the
sender, channel and receiver. Data messages are
transmitted from the sender to the receiver (dataS,
dataR) and ACK messages are transmitted in the
opposite direction (ackR, ackS). These messages
are transmitted across the Stop-and-Wait protocol
in a form of a packet, which can be modeled in
HOL as a pair containing a sequence number and
a message element

packet: natural x *data

where a natural number is used here for the
sequence number and the *data represents the
message. Since we are dealing with an unreliable
channel, the output of a channel may or may not
be a packet. In order to model the no-packet case
in HOL, a data-type non_packet is defined, which
has only one value, i.e., one. Every message can
either be of type packet or of type non_packet.

message: packet + non_packet

Data Transmission

The process DATA_TRANS in Figure 4 character-
izes the data transmission behavior of the Stop-

and-Wait protocol and the corresponding predicate
is defined as follows in Box 1.

The variables ws and sn represent the window
size and the number of distinct sequence numbers
available for the protocol, respectively. By using
these variables in our definitions, instead of their
corresponding fixed values of 1 and 2 for the case
of the Stop-and-Wait protocol, we attain two
benefits. Firstly, it makes our definitions more
generic as they can now be used, with minor
updates, to formally model the corresponding
processes of other ARQ protocols, such as Go-
Back-N and Selective-Repeat [Garcia, 2004], as
well. Secondly, this allows us to establish a logi-
cal implication between our definitions for the
six processes (Figure 4) to the corresponding
definitions for the Sliding Window protocol,
given in [Cadell-Oliver, 1992]. This relationship
can be used to inherit the functional correctness
theorem, verified for the Sliding Window proto-
col in [Cadell-Oliver, 1992], for our Stop-and-Wait
protocol model and thus saves us a considerable
amount of verification time and effort. More
details on this are given in the next section. It is
important to note that in order to model the correct
behavior for the Stop-and-Wait protocol; we will
assign the values of 1 and 2 to the variables ws
and sn, respectively, in an assumption that is used
in all of the theorems that we verify for the Stop-
and-Wait protocol.

The history datas represents the data messages
transmitted by the sender at any particular time.

Figure 4. Logical structure of an ARQ protocol

355

Formal Analysis of Real-Time Systems

The history s represents, modulo sn, the sequence
number of the first unacknowledged data message.
Data remaining to be sent at any time is represented
by the history rem that has type time→*data list.
whereas, the history i: time→natural is used to
identify the number of data messages, at any
particular time, that have been transmitted by
the sender but are still unacknowledged by the
receiver. the history acks represents the ack mes-
sages received by the sender at any particular time.
the variables tout and tf hold the values for the
tout and tf delays, respectively, defined in section
2, and histories dtout and dtf keep track of the
timers associated with these delays.

The HOL functions tli and hdi, in the above
definition, accept two arguments, i.e., a list l and
a positive integer n, and return the tail of the list
l starting from its nth element and the nth element
of the list l, respectively. Whereas the functions
new_packet and set_non_packet declare a mes-

sage of type packet (using its two arguments)
and non_packet, respectively. The function label
returns the sequence number of a packet and the
predicate good_packet checks the message type of
its argument and returns False if it is non_packet
and True otherwise. The functions mod_n_add and
mod_n_sub return the modulo-n, where n is their
third argument, addition or subtraction results of
their first two arguments, respectively.

The definition of DATA_TRANS_STOP_WAIT
should be read as follows. At all times t, check
for the transmission conditions, i.e., there is
data available to be transmitted ~NULL (tli (i
t) (rem t))) and the number of unacknowledged
messages is less than the window size (i t < ws).
If the transmission conditions are satisfied, then
wait for the next tf time units, i.e., decrement the
timer dtf by one at every increment of the time
until it reaches 0 and during this time maintain
the values of histories I and dtout while holding

Box 1.

∀ ws sn dataS s rem i ackS tout tf dtout dtf.
 DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf =

 ∀ t. (if ~NULL (tli (i t) (rem t)) ∧ i t < ws then
 (if dtf t = 0 then

 (i (t + 1) = i t + 1) ∧ (dtout (t + 1) = tout - 1) ∧
 (dtf (t + 1) = tf) ∧
 (dataS t =

 new_packet (mod_n_add (s t) (i t) sn) (hdi (i t) (rem t)))

 else

 (i (t + 1) = i t) ∧ (dtout (t + 1) = tout) ∧
 (dtf (t + 1) = dtf (t - 1) ∧ (dataS t = set_non_packet))
 else

 (dtf (t + 1) = tf) ∧ (dataS t = set_non_packet)) ∧
 (if (dtout t = 1) ∨
 good_packet (ackS t) ∧
 mod_n_sub (label (ackS t)) (s t) sn < ws

 then

 (i (t + 1) = i t - 1) ∧ (dtout (t + 1) = tout)
 else

 (i (t + 1) = i t) ∧ (dtout (t + 1) = dtout t - 1))

356

Formal Analysis of Real-Time Systems

the transmission of a new packet to the channel.
Once tf time units have elapsed, i.e., the contents
of dtf timer become 0, then instantly transmit the
(i t)th message in the window hdi (i t) (rem t))
using the sequence number mod_n_add (s t) (i t)
sn) and increment the value of the history i by 1,
activate the timer dtout, associated with the tout
delay, by decrementing its value by 1 and initial-
ize the timer dtf, associated with the tf delay, to its
default value of tf, in the next increment of time
t. On the other hand, for all times t for which one
of the transmission conditions is not satisfied, no
message is transmitted (set_non_packet) and the
initial value of the dtf timer is maintained. The
values of i and dtout, under the no transmission
conditions, depend on the event if the timer dtout
reaches 1 or an ACK message (good_packet (ackS
t)) is received for a data message that has been sent
and not yet acknowledged, i.e., if the difference
between the label of (ackS t) and the sender’s se-
quence number is less than ws (mod_n_sub (label
(ackS t)) (s t) sn < ws). If this event happens, then
the timer dtout is initialized to its default value
tout and the value of i is decremented by 1 in the
next increment of time t. Otherwise, we remain
in the wait state until the timer dtout expires or
a valid ACK is received, while maintaining the
value of i and decrementing the timer dtout by
one at every increment of the time t.

Data Reception

The process DATA_RECV in Figure 4 characterizes
the data reception behavior, at the receiver end, of
the Stop-and-Wait protocol and the corresponding
predicate is defined as follows in Box 2, where
the history dataR represents the data messages
received by the receiver at any particular time.
The history r represents, modulo sn, the sequence
number of the data messages that the receiver is
expecting to receive. The function data returns
the data portion of a packet and ++ is the symbol
for the list cons function in HOL.

The definition of DATA_RECV_STOP_WAIT
should be read as follows. At all times t, if (dataR
t) is not a non_packet, i.e., (good_packet (dataR
t)), and the sequence field of the packet (dataR t)
is equal to the next number to be output to the
sink (label (dataR t) = r t), then the data part of
the packet is appended to the sink list and r is
updated to the sequence number of the next mes-
sage expected, i.e., (r (t + 1) = mod_n_add (r t)
1 sn). Otherwise if a valid data packet is not re-
ceived then the output list sink and r retain their
old values.

We have intentionally assigned a fixed value
of 1 to the processing delay (tp), which specifies
the time required for processing an incoming
message at the receiver end, in order to simplify
the understandability of the proofs presented in
the next two sections. If required, the processing

Box 2.

∀ sn dataR sink r.
 DATA_RECV_STOP_WAIT sn dataR sink r =

 ∀ t. (if good_packet (dataR t) ∧ (label (dataR t) = r t) then
 (sink (t + 1) = sink t ++ [data (dataR t)]) ∧
 (r (t + 1) = mod_n_add (r t) 1 sn)

 else

 (sink (t + 1) = sink t) ∧ (r (t + 1) = r t))

357

Formal Analysis of Real-Time Systems

delay can be made a variable quantity by using a
similar approach that we used for tout and tf delays
in the predicate DATA_TRANS_STOP_WAIT.

ACK Transmission

The process ACK_TRANS in Figure 4 characterizes
the ACK transmission behavior of the Stop-and-
Wait protocol and the corresponding predicate is
defined as follows in Box 3.

The history ackR represents the ACK mes-
sages transmitted by the sender. The history
ackty represents the data part of the ACK message
that could be used to specify properties of proto-
cols, such as negative acknowledgements: a type
of acknowledgement message which enables the
sender to retransmit messages efficiently. The
variable ack_msg represents a constant data field
that is sent along with every ACK message by the

receiving station, as in the Stop-and-Wait protocol
the ACK messages do not convey any other in-
formation except the reception of a data message.
The variable ta holds the value for the ta delay,
defined in Section 2 and the history dta keeps
track of the timer associated with this delay.
Whereas, the history rec_flag keeps track of the
reception of a data message at the receiver until
a corresponding ACK message is sent.

The definition of ACK_TRANS_STOP_WAIT
should be read as follows. At all times t, the his-
tory ackty is assigned the value of the default
ACK message for the Stop-and-Wait protocol, i.e.,
ack_msg. For all times t, if an in-sequence data
message arrives at the receiver ~(r t = r (t - 1)),
then instantly transmit an ACK message if the
contents of the timer dta are 0, otherwise do not
issue an ACK and retain the information of receiv-
ing a valid data in the rec_flag while activating

Box 3.

∀ sn ackR r ackty ack_msg ta dta rec_flag.
 ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag =

 ∀ t. (ackty t = ack_msg) ∧
 (if ~(r t = r (t - 1)) then

 (if dta t = 0 then

 (ackR t = new_packet (mod_n_sub (r t) 1 sn) (ackty t)) ∧
 (dta (t + 1) = ta) ∧ (rec_flag (t + 1) = F)
 else

 (ackR t = set_non_packet) ∧ (dta (t + 1) = dta t - 1) ∧
 (rec_flag (t + 1) = T))

 else

 (if rec_flag t then

 (if dta t = 0 then

 (ackR t = new_packet (mod_n_sub (r t) 1 sn) (ackty t)) ∧
 (dta (t + 1) = ta) ∧ (rec_flag (t + 1) = F)
 else

 (ackR t = set_non_packet) ∧
 (dta (t + 1) = dta t - 1) ∧ (rec_flag (t + 1) = T))
 else

 ackR t = set_non_packet) ∧ (dta (t + 1) = ta) ∧
 (rec_flag (t + 1) = F)))

358

Formal Analysis of Real-Time Systems

the timer associated with ta by decrementing its
value by 1. On the other hand, for all times t for
which no in-sequence data message arrives at the
receiver, check if there exists a valid data message
that has successfully arrived at the receiver but has
not been acknowledged so far (rec_flag t). If that
is the case, then if the timer associated with the
delay ta has expired (dta t =0) then instantly issue
the respective ACK message while initializing
histories dta and rec_flag to their default values
of ta and False, respectively. Otherwise wait for
the dta timer to expire while holding the ACK
transmission and the value of history rec_flag and
decrementing the value of the timer dta by 1. On
the other hand, if there is no valid data arrival or
no pending ACK transmission, then the receiver
is not allowed to transmit an ACK message and
it assigns the histories dta and rec_flag to their
default values of ta and False, respectively.

ACK Reception

The process ACK_RECV in Figure 4 characterizes
the ACK reception behavior, at the sending station,
of the Stop-and-Wait protocol and the correspond-
ing predicate is defined as follows in Box 4.

The sender checks the label of every ACK
message it receives to find out if it is one of the
messages that has been sent and not yet acknowl-
edged, i.e., if the modulo-sn difference between
the sequence number of (ackS t) and the sender’s

sequence number is less than ws, i.e., (mod_n_sub
(label (ackS t)) (s t) sn < ws). If this is the case,
then the sender slides the window up by updating
the sender’s history (s t) to be the first message
not known to be accepted: (mod_n_add (label
(ackS t)) 1 sn) and by updating (rem t), the list of
data remaining to be sent. Otherwise, both histo-
ries s and rem retain their previous values. Just
like the receiver, we again assigned a fixed value
of 1 to the processing delay (tp).

Communication Channel

The processes DATA_CHAN and ACK_CHAN in
Figure 4 characterize the communication channel
connecting the sender and receiver in the Stop-and-
Wait, respectively. In this chapter, we are dealing
with a channel that has a fixed propagation delay
(tprop). We present two definitions for the commu-
nication channel for the Stop-and-Wait protocol;
the first one models the channel that is noiseless
and the second one models a noisy channel, which
may lose packets. The noiseless channel predicate
is defined as follows in Box 5, where the histories
in, out and d represent the input message, output
message and the propagation delay for the chan-
nel at a particular time, respectively. The variable
tprop represents the fixed value of channel delay
(d t) for all t. According to the above definition,
the output from a channel at time t is a copy of
the channel’s input at time (t - tprop).

Box 4.

∀ ws sn ackS rem s.
 ACK_RECV_STOP_WAIT ws sn ackS rem s =

 ∀ t. (if good_packet (ackS t) ∧
 mod_n_sub (label (ackS t)) (s t) sn < ws

 then

 (s (t + 1) = mod_n_add (label (ackS t)) 1 sn) ∧
 (rem (t + 1) = tli (mod_n_sub (s (t + 1)) (s t) sn) (rem t))

 else

 (s (t + 1) = s t) ∧ (rem (t + 1) = rem t))

359

Formal Analysis of Real-Time Systems

Next, we define a predicate that models a noisy
channel that looses a message with probability p.
(Box 6)

In Box 6, we utilized the formal definition of
the Bernoulli(p) random variable to model the
noise effect. The variable p represents the prob-
ability of channel error or getting a True from the
Bernoulli random variable and the history bseqt
keeps track of the remaining portion of the infinite
Boolean sequence, explained in Section 3, after
every call of the Bernoulli random variable. Ac-
cording to the above definition, a valid packet
that arrives at input of the channel appears at the
output of the channel after tprop time units with
probability 1-p.

Stop-and-Wait Protocol

We first define some constraints that are required
to ensure the correct behavior of our Stop-and-Wait
protocol specification, before giving the actual
formalization of the protocol.

INITIAL CONDITIONS

In case of the formal specification of real-time
systems in HOL, we need to assign appropriate
values to the history variables as initial condi-
tions. We use following initial conditions for the
Stop-and-Wait protocol (Box 7).

Box 5.

∀ in out d tprop.
 NOISELESS_CHANNEL_STOP_WAIT in out d tprop =

 ∀ t. (if t < tprop then
 out t = set_non_packet

 else

 out t = in (t - d t)) ∧ 0 < tprop ∧ (d t = tprop)

Box 6.

∀ in out d tprop p bseqt.
 NOISY_CHANNEL_STOP_WAIT in out d tprop p bseqt =

 ∀ t. (if t < tprop then
 (out t = set_non_packet) ∧ (bseqt (t + 1) = bseqt t)
 else

 (if good_packet (in (t - d t)) then

 (if ~fst (prob_bernoulli p (bseqt t)) then

 (out t = in (t - d t)) ∧
 (bseqt (t + 1) = snd (prob_bernoulli p (bseqt t)))

 else

 (out t = set_non_packet) ∧
 (bseqt (t + 1) = snd (prob_bernoulli p (bseqt t))))

 else

 (out t = set_non_packet) ∧ (bseqt (t + 1) = bseqt t))) ∧
 0 < tprop ∧ (d t = tprop)

360

Formal Analysis of Real-Time Systems

ASSUMPTIONS

Liveness or Timeliness: While verifying a system,
which allows nondeterministic or probabilistic
choice between actions, we often need to include
additional constraints to make sure that events of
interest do occur. This has been done by includ-
ing a timeliness constraint in the specification of
the Stop-and-Wait protocol: if the sender’s state
has not changed over an interval of maxP time
units, then the sender assumes that the receiver or
the channel has crashed and aborts the protocol.
A predicate ABORT is defined that is True only
when the protocol aborts and False otherwise.
Now, the predicate ABORT characterizes which
abort histories satisfy this constraint. (Box 8)

A protocol is said to be live if it is never
aborted. This kind of liveness is assumed using
the following constraint

LIVE_ASSUMPTION abort = ∀ t. ~(abort t)

Window Size and Sequence Numbers: As has
been mentioned before, instead of using their
exact values of 1 and 2, we use the variables ws
and sn to represent the window size and distinct
sequence numbers for the Stop-and-Wait protocol

in the above predicates. This has been done, in
order to be able to establish logical implications
between the predicates defined in this chapter
and the corresponding predicates for the Sliding
Window protocol, defined in [Cadell-Oliver_92].
Now, we assign the exact values to these variables
in an assumption predicate as follows

∀ ws sn. WSSN_ASSUM_STOP_WAIT ws sn =
(ws = 1) ∧ (sn = 2)

The Stop-and-Wait protocol can now be for-
malized as the logical conjunction of the predicates
defined in the preceding sections. We present two
specifications corresponding to noiseless or ideal
and noisy channel conditions. (Box 9)

The higher-order-logic predicate STOP_
WAIT_NOISELESS formally specifies the behav-
ior of the Stop-and-Wait protocol under ideal or
noiseless conditions as the corresponding predi-
cate for the channel has been used for both data
and ACK channels. It is also important to note
here that we do not initialize the history bseqt in
the predicate INIT_STOP_WAIT as there is no
need to use the infinite Boolean sequence in this
case. Next, we utilize the noisy channel predicate

Box 7.

∀ source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag bseqt bseq.
INIT_STOP_WAIT source rem s sink r I ackR dtout dtf dta tout tf ta rec_flag

bseqt bseq = (rem 0 = source) ∧ (s 0 = 0) ∧ (sink 0 []) ∧ (r 0 = 0) ∧
 (i 0 = 0) ∧ (dtout 0 = tout) ∧ (rec_flag 0 = F) ∧ (ackR 0 = set_non_pack-
et) ∧
 (dtf 0 = tf) ∧ (dta 0 = ta) ∧ (bseqt 0 = bseq)

Box 8.

∀ abort maxP rem.
 ABORT abort maxP rem =

 ∀ t. abort t = (rem t = rem (t - maxP)) ∧ maxP ≤ t ∧ ~NULL (rem t)

361

Formal Analysis of Real-Time Systems

to formally specify the Stop-and-Wait protocol
with a noisy channel as follows in Box 10.

In the above definition, the data channel has
been made noisy while a noiseless channel is used
for the ACK messages. This has been done on
purpose in order to reduce the length of the per-
formance analysis proof by avoiding some redun-
dancy. On the other hand, this decision does not
affect the illustration of the idea behind the per-
formance analysis of the Stop-and-Wait protocol
under noisy conditions as we present the complete
handling of a noisy channel in one direction. The
analysis can be extended to both noisy channels
by choosing noisy channel predicates for both
channels and then handling the ACK channel in
a similar way as the noisy data channel is handled
in this chapter.

FUNCTIONAL VERIFICATION OF
THE STOP-AND-WAIT PROTOCOL

The job of an ARQ protocol is to ensure reliable
transfer of a stream of data from the sender to the
receiver. This functional requirement can be for-
mally specified as follows [Cadell-Oliver, 1992].

∀ source sink.
 REQ source sink =

 (∃ t. sink t = source) ∧ ∀ n.
is_prefix (sink t) (sink (t + n))

where the predicate is_prefix is True if its first list
argument is a prefix of its second list argument.
According to the predicate REQ, an ARQ protocol
satisfies its functional requirements only if there
exists a time at which the sink list becomes equal
to the original source list, i.e., a time when the data
at the sender is transferred, as is, to the receiver,
and the history sink is prefix closed.

In order to verify the functional correctness of
our specification of the Stop-and-Wait protocol,
we now define the predicates for the Stop-and-
Wait protocol in such a way that they logically
imply the corresponding predicates used for the
formal specification of the Sliding Window pro-
tocol presented in [Cadell-Oliver, 1992]. This
relationship allows us to inherit the functional
correctness theorem verified for the specification
of the Sliding Window protocol for our Stop-and-
Wait protocol specification.

For illustration purposes, consider the example
of the data transmission predicate. It has been

Box 9.

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR d
 tprop dtout dtf dta tf ack_msg ta tout rec_flag.

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort dataS

 dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag =

 INIT_STOP_WAIT source rem s sink r I ackR dtout dtf dta tout tf ta rec_

flag ∧
 DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf ∧
 NOISELESS_CHANNEL_STOP_WAIT dataS dataR d tprop ∧
 DATA_RECV_STOP_WAIT sn dataR sink r ∧
 ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag ∧
 NOISELESS_CHANNEL_STOP_WAIT ackR ackS d tprop ∧
 ACK_RECV_STOP_WAIT ws sn ackS rem s ∧
 ABORT abort maxP rem ∧ WSSN_ASSUM_STOP_WAIT ws sn

362

Formal Analysis of Real-Time Systems

defined in [Cadell-Oliver, 1992] for the Sliding
Window protocol as follows in Box 11.

It can be easily observed, and we verified it
in HOL using Boolean algebra properties, that the
predicate DATA_TRANS_STOP_WAIT, given
in the previous section, logically implies the above
predicate

∀ ws ns dataS s rem i ackS tout tf
dtout dtf.

 DATA_TRANS_STOP_WAIT ws ns dataS

s rem i ackS tout tf dtout dtf ⇒
 DATA_TRANS_SW ws ns dataS s rem

i

In a similar way, we were able to prove logical
implications between all the predicates used in
the formal specification of the Sliding Window
protocol and the corresponding predicates used
for the formal specification of the Stop-and-Wait
protocol (see Boxes 12 and 13). These relation-
ships allowed us to formally verify the functional
correctness of both of the formal specifications of
the Stop-and-Wait protocol, given in the previous
section, in HOL.

It is important to note that the generic speci-
fication of the Sliding Window Protocol in [Cadell-
Oliver, 1992] is quite general and does not include
many details, such as the precise conditions under
which the messages are transmitted or acknowl-

Box 10.

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR d
 tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p.

 STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS

 dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout

 rec_flag bseqt bseq =

 INIT_STOP_WAIT source rem s sink r i

 ackR dtout dtf dta tout tf ta rec_flag bseqt bseq ∧
 DATA_TRANS_STOP_WAIT ws sn dataS s rem i ackS tout tf dtout dtf ∧ NOISY_
CHANNEL_STOP_WAIT in out d tprop p bseqt ∧
 DATA_RECV_STOP_WAIT sn dataR sink r ∧
 ACK_TRANS_STOP_WAIT sn ackR r ackty ack_msg ta dta rec_flag ∧
 NOISELESS_CHANNEL_STOP_WAIT ackR ackS d tprop ∧ ACK_RECV_STOP_WAIT ws sn
ackS rem s ∧
 ABORT abort maxP rem ∧
 WSSN_ASSUM_STOP_WAIT ws sn

Box 11.

∀ ws sn dataS s rem i.
 DATA_TRANS_SW ws sn dataS s rem i =

 ∀ t. (if ~NULL (tli (i t) (rem t)) ∧ i t < ws then
 (dataS t = new_packet (mod_n_add (s t) (i t) sn) (hdi (i t) (rem t))) ∨
 (dataS t = set_non_packet)

 else

 dataS t = set_non_packet)

363

Formal Analysis of Real-Time Systems

edged and the delays (tout, tf, ta, etc.) associated
with different operations. Therefore, it cannot be
used for reasoning about message delays and thus
performance related properties, as such. On the
other hand, the formal specification of the Stop-
and-Wait protocol, given in this chapter, is more
specific and provides a detailed description of the
protocol including the timing behavior associated
with different operations.

Another major point that we would like to men-
tion here is that in order to establish the logical
implication between the two protocol models, we
had to introduce some additional generality in our
formal definitions, such as the usage of variables
ws and sn instead of their exact values of 1 and
2, respectively.

Even though, such generalizations are not
required for the functional description of the
Stop-and-Wait protocol, they do not harm us in
any way. They lead to a much faster functional
verification, as has been illustrated in this section.
On the other hand, they do not affect the formal
reasoning related to the performance issues, since
the exact values for these variables are assigned
in an assumption (WSSN_ASSUM_STOP_WAIT)

that is a part of our Stop-and-Wait protocol
specification, which is used for conducting the
performance analysis as well.

PERFORMANCE ANALYSIS OF
THE STOP-AND-WAIT PROTOCOL

In this section, we present the verification of the
message delay relations for the Stop-and-Wait
protocol, given in Equations 1 and 3, for noiseless
and noisy channels, respectively. The verification
is based on the two formal specifications of the
Stop-and-Wait protocol, STOP_WAIT_NOISE-
LESS and STOP_WAIT_NOISY, given earlier in
the chapter.

Noiseless Channel Conditions

The first and the foremost step in verifying the
message delay characteristic for the Stop-and-
Wait protocol is to formally specify it. Informally
speaking, the message delay refers to the time
required for the transmitter to send a single data
message and know that it has been successfully

Box 12. Theorem 5

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
 ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag.

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort dataS

 dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag ∧
LIVE_ASSUMPTION abort ⇒ REQ source sink

Box 13. Theorem 6

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
 ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag

 bseqt bseq p.

STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS

 dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout

 rec_flag bseqt bseq ∧
LIVE_ASSUMPTION abort ⇒ REQ source sink

364

Formal Analysis of Real-Time Systems

received at the receiver. We specify this in higher-
order-logic as follows

∀ rem source.
 DELAY_STOP_WAIT_NOISELESS rem

source =

 @ t. (rem t = TL source) ∧ (rem
(t - 1) = source)

where TL refers to the tail function for lists and
@x.t refers to the Hilbert choice operator in HOL
that represents the value of x such that t is True.
Thus, the above specification returns the time t
at which the rem list, which represents the data
remaining to be sent at any time t, is reduced by
one element from its initially assigned value of
the source list. Indeed it is precisely equal to the
message delay of the first data element in the
source list.

Based on the above definition of the message
delay and the delays associated with the formal
specification of the Stop-and-Wait protocol
(STOP_WAIT_NOISELESS), Equation 1 can be
formally expressed in HOL as follows in Box 14.

It is important to note here that the processing
delay, tp, has been assigned a value of 1 in our
model, as explained in the previous section. The
two assumptions that we have added to Theorem
7 ensure that the source list is not an empty list,
i.e., ~(NULL source), otherwise no data transfer
takes place, and the time out period tout is always
greater than or equal to its lower bound. Rewrit-
ing the proof goal of Theorem 7 with the formal

specification of the Stop-and-Wait protocol delay
and removing the Hilbert Choice operator we get
the following expression

(∃x. (rem x = TL source) ∧ (rem (x -
1) = source)) ∧
 ∀ x. (rem x = TL source) ∧ (rem
(x - 1) = source) ⇒
 (x = tf + tprop + 1 + ta +

tprop + 1

The above subgoal is a logical conjunction of
two Boolean expressions and it can be proved to
be True only if there exists a time x for which the
conditions (rem x = TL source) and (rem (x - 1)
= source) are True and the value of any variable
x that satisfies these conditions is unique and is
equal to tf + tprop + 1 + ta + tprop + 1.

We proceed with the proof of this subgoal by
assuming the following expression

Lemma 1:

(rem (tf + tprop + 1 + ta + tprop +

1) = TL source) ∧
(rem ((tf + tprop + 1 + ta + tprop +

1) - 1) = source))

to be True, which we will prove later, under the
given constraints for the Stop-and-Wait protocol.
Lemma 1 leads us to prove the first Boolean ex-
pression in our subgoal as now we know an x =
(tf + tprop + 1 + ta + tprop + 1) for which the

Box 14. Theorem 7

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS
 ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag.

STOP_WAIT_NOISELESS source sink rem s i r ws sn ackty maxP abort

dataS dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag ∧
~(NULL source) ∧ (tprop + 1 + ta + tprop + 1 ≤ tout) ⇒
 (DELAY_STOP_WAIT_NOISELESS rem source =

 tf + tprop + 1 + ta + tprop + 1)

365

Formal Analysis of Real-Time Systems

given conditions are True. We verify the second
Boolean expression in the subgoal by first prov-
ing the monotonically decreasing characteristic
of the history rem under the given constraints of
the Stop-and-Wait protocol, i.e.,

∀ a b. a < b ⇒ ∃c. c ++ rem b = rem a

where ++ represents the list cons function in
HOL. Now, if there exists an x, that satisfies the
conditions (rem x = TL source) and (rem (x - 1)
= source), then it may be equal to, less than or
greater than (tf + tprop + 1 + ta + tprop + 1).
For the latter two cases, we reach a contradiction
in the assumption list, based on the monotoni-
cally decreasing characteristic of the history rem,
whereas, the case when x = (tf + tprop + 1 + ta +
tprop +1) verifies our subgoal of interest, which
concludes the proof of Theorem 7 under the as-
sumption of Lemma 1.

Lemma 1 can now be proved in HOL using
the definitions of the predicates in the formal
specification of the Stop-and-Wait protocol under
noiseless channels. The corresponding HOL proof
step sequence is summarized in Figure 5.

Noisy Channel Conditions

The message delay, under noisy channel condi-
tions, refers to the time required for the transmitter
to send a single data message and know that it has
been successfully received at the receiver. Though
the delay, in this case, is a random quantity since
its value is non-deterministic and depends on the
outcomes of a sequence of Bernoulli trials, which
are used to model the channel noise as can be seen
in the definition of the predicate NOISY_CHAN-
NEL_STOP_WAIT. Therefore, the message delay
of the Stop-and-Wait protocol under noisy chan-
nel conditions needs to be formally specified as
a random variable as follows in Box 15, where

Figure 5. HOL Proof Sequence for Lemma 1

366

Formal Analysis of Real-Time Systems

history bseqt t represents the unused portion of the
infinite Boolean sequence, explained in Section 2,
after performing the required number of Bernoulli
trials at any given time t. The above specification
returns a pair with the first element equal to the
time t that satisfies the two conditions (rem t =
TL source) and (rem (t - 1) = source), and thus
represents the random message delay of the first
data element in the source list, and the second
element equal to the unused portion of the infinite
Boolean sequence at this time instant t.

As a first step towards the verification of the
average value of the random delay specified in
DELAY_STOP_WAIT_NOISY, we establish its
relationship with the infamous Geometric random
variable, which basically returns the number of
trials to attain the first success in an infinite se-
quence of Bernoulli trials. This way, we can
benefit from existing HOL theorems related to
the average characteristic of Geometric random
variable, such as Theorem 2, for the verification
of the average value of the message delay of a

Stop-and-Wait protocol. This relationship, given
in Equation 2 can be expressed in HOL using the
formal specification of the Stop-and-Wait proto-
col STOP_WAIT_NOISY and the Geometric
random variable prob_geom [Hasan, 2007], as
follows in Box 16, where p represents the prob-
ability of channel error, i.e., getting a True from
the Bernoulli random variable. The first argument
of the function prob_geom [Hasan, 2007] repre-
sents the probability of success for the correspond-
ing sequence of the Bernoulli trials, which, in the
case of our definition of the noisy channel, is
equal to the probability of getting a False from a
Bernoulli trial. The above theorem is proved
under the assumption that the value of the prob-
ability p always falls in the interval [0,1). It is not
allowed to attain the value 1, in order to avoid the
case when the channel always rejects incoming
packets and thus leads to no data transfers. The
assumption, LIVE_ASSUMPTION abort ensures
liveness as has been explained in Section 2. The
other assumptions used in the above theorem are

Box 15.

∀ rem source bseqt.
 DELAY_STOP_WAIT_NOISY rem source bseqt =

 ((@t. (rem t = TL source) ∧ (rem (t - 1) = source)),
 bseqt @t. (rem t = TL source) ∧ (rem (t - 1) = source))

Box 16. Theorem 8

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR ackS ackR
 d tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p.

STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort dataS

 dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout

 rec_flag bseqt bseq ∧
LIVE_ASSUMPTION abort ∧
0 ≤ p ∧ p < 1 ∧ ~NULL source ∧
tprop + 1 + ta + tprop + 1 ≤ tout ⇒
 (DELAY_STOP_WAIT_NOISY rem source bseqt =

 ((tf + tout) * (fst (prob_geom (1 - p) bseq) - 1) + tf +

 tprop + 1 + ta + tprop + 1, snd (prob_geom (1 - p) bseq)))

367

Formal Analysis of Real-Time Systems

similar to the ones used for the verification of
Theorem 7.

We proceed with the verification of Theorem
8 in HOL by first defining the following two re-
cursive functions (see Box 17).

The first function, BERNOULLI_TRIAL_F_
IND returns True if and only if its first argument,
say n, represents the positive integer index of a
trial, in a sequence of independent Bernoulli trials,
that returns a False while all Bernoulli trials with
lower index values than n have returned a True.
The second function NTH_BERNOULLI_TRI-
AL_SND returns the value of the snd element of
the nth Bernoulli trial in a sequence of independent
Bernoulli trials, where n is the first argument of
the function NTH_BERNOULLI_TRIAL_SND.
In other words, it basically returns the unused
infinite Boolean sequence after n independent
Bernoulli trials have been performed using the
given infinite Boolean sequence.

Under the given assumptions of Theorem 8, it
can be shown that a data message available at the
source list does finally make through the noisy
channel at some time. This can be verified in HOL,
for the top element of the source list, by proving
that there exists some n for which the function
BERNOULLI_TRIAL_F_IND returns a True

∃ n. BERNOULLI_TRIAL_F_IND n p bseq

for the given values of p and bseq. If a positive
integer n exists that satisfies the above condition,
then it can be verified in HOL that the Geometric
random variable, which returns the number of
trials to attain the first success in an independent
sequence of Bernoulli(p) trials, with success prob-
ability equal to (1 - p) can be formally expressed
as follows

∀ n p s.
 0 ≤ p ∧ p < 1 ∧ BERNOULLI_
TRIAL_F_IND n p s ⇒
 (prob_geometric_p (1 - p) s =

 (n + 1,NTH_BERNOULLI_TRIAL_SND

(n + 1) p s))

The HOL proof is based on the formal defini-
tion of the function prob_geom and the underlying
probability theory principles, presented in [Hurd,
2002].

Based on the above results, the proof goal of
Theorem 8 can be simplified using the definition
of DELAY_STOP_WAIT_NOISY and removing
the Hilbert choice operator as follows

(∃ x. (rem x = TL source) ∧ (rem (x -
1) = source)) ∧
 ∀ x.
 (rem x = TL source) ∧ (rem (x
- 1) = source) ⇒
 (x = (tf + tout) * n + tf +

Box 17.

(∀ p bseq.
 BERNOULLI_TRIAL_F_IND 0 p bseq = ~fst (prob_bernoulli p bseq)) ∧
 ∀ n p bseq. BERNOULLI_TRIAL_F_IND (SUC n) p bseq =
 fst (prob_bernoulli p bseq) ∧
 BERNOULLI_TRIAL_F_IND n p (snd (prob_bernoulli p bseq))

(∀ p bseq. NTH_BERNOULLI_TRIAL_SND 0 p bseq = bseq) ∧
 ∀ n p bseq. NTH_BERNOULLI_TRIAL_SND (SUC n) p bseq =
 snd (prob_bernoulli p (NTH_BERNOULLI_TRIAL_SND n p bseq))

368

Formal Analysis of Real-Time Systems

tprop + 1 + ta + tprop + 1) ∧
 (bseqt x = NTH_BERNOULLI_TRI-

AL_SND (n + 1) p bseq)

The above subgoal is quite similar to the one
that we got after simplifying the proof goal of
Theorem 7. Therefore, we follow the same proof
approach and assume the following expression

Lemma 2:

(rem ((tf + tout) * n + tf + tprop +

1 + ta + tprop + 1 - 1) = source) ∧
(rem ((tf + tout) * n + tf + tprop +

1 + ta + tprop + 1) = TL source) ∧
(bseqt ((tf + tout) * n + tf + tprop

+ 1 + ta + tprop + 1) =

 NTH_BERNOULLI_TRIAL_SND (n + 1)

p bseq)

to be True, which we will prove later, under the
given assumptions of Theorem 8. Lemma 2 leads
us to prove the first Boolean expression in the
subgoal as now we know an x = ((tf + tout) * n
+ tf + tprop + 1 + ta + tprop + 1) for which the
given conditions (rem x = TL source) and (rem
(x - 1) = source) are True. The second Boolean
expression in the subgoal can now be proved
using Lemma 2 along with the monotonically
decreasing characteristic of the history rem in a
similar way as we handled the counterpart while
verifying Theorem 7.

The next step is to prove Lemma 2 under the
assumptions given in the assumption list of Theo-
rem 8. We proceed in this direction by verifying
a more generalized lemma (Box 18), under the
assumptions of Theorem 8, for which Lemma 2
is a special case when v=0.

The first assumption in Lemma 3, i.e., the
predicate INIT_STOP_WAIT_GEN, provides the
status of the histories used in the predicate
STOP_WAIT_NOISY at time v and is defined as
shown in Box 19.

It can be proved to be a logical implication of
the predicate INIT_STOP_WAIT, which is in-
cluded in the definition of STOP_WAIT_NOISY
and is thus present in the assumption list of
Theorem 8, for the case when v = 0.

Whereas, the second assumption of Lemma 3,
i.e., BERNOULLI_TRIAL_F_IND n p bseq has
already been shown to be a consequence of the
assumptions of Theorem 8. Thus, Lemma 2 can
be proved as a special case of Lemma 3 when the
positive integer variable v is assigned a value of
0. Now, in order to complete the formal proof of
Theorem 8 in HOL, we need to verify Lemma 3.
We proceed with this proof by applying induction
on the positive integer variable n. For the base case,
i.e., n = 0, we get the following subgoal after some
basic arithmetic simplification and using the func-
tion definitions of BERNOULLI_TRIAL_F_IND
and NTH_BERNOULLI_TRIAL_SND.

Box 18. Lemma 3

∀ bseq v.
INIT_STOP_WAIT_GEN source rem s sink r i

 ackR dtout dtf dta tout tf ta rec_flag bseqt bseq v ∧
 BERNOULLI_TRIAL_F_IND n p bseq ⇒
 (rem (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1 - 1) = source) ∧
 (rem (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1) = TL

source)∧
 (bseqt (v + (tf + tout) * n + tf + tprop + 1 + ta + tprop + 1) =

NTH_BERNOULLI_TRIAL_SND (n + 1) p bseq)

369

Formal Analysis of Real-Time Systems

INIT_STOP_WAIT_GEN source rem s sink

r i ackR dtout dtf dta tout tf ta

rec_flag bseqt bseq v ∧
~fst (prob_bernoulli p bseq) ⇒
 (rem (v + tf + tprop + 1 + ta +

tprop + 1 - 1) = source) ∧
 (rem (v + tf + tprop + 1 + ta +

tprop + 1) = TL source) ∧
 (bseqt (v + tf + tprop + 1 + ta

+ tprop + 1) =

 snd (prob_bernoulli p bseq))

The assumption ~fst (prob_bernoulli p bseq)
ensures that the noisy data channel allows reliable
transmission of the first data message in the first
trial. Thus, the base case of Lemma 3 becomes
similar to the case of a noiseless data channel, as
far as the transmission of the first data element of
the source list is concerned. Therefore, its proof
can be handled in a similar way as the proof of
Lemma 1, presented in the last section, as the only
difference between the two is the fact that now
the initial conditions are defined for an arbitrary
positive integer v instead of 0. The HOL proof
step sequence is summarized in Figure 6. These
proofs are based on the INIT_STOP_WAIT_GEN
and the predicates corresponding to the six pro-
cesses, given in Figure 4, for the Stop-and-Wait
protocol under a noisy data channel.

In the step case for Lemma 3, we get the fol-
lowing subgoal after some simplifications using
the function definitions of BERNOULLI_
TRIAL_F_IND and NTH_BERNOULLI_TRIAL_
SND (Box 20), which needs to be proved under
the assumption list of Theorem 8 along with the
statement of Lemma 3.

The above subgoal can be proved in a very
straightforward manner by specializing Lemma
3 for the case when bseq and v are equal to snd
(prob_bernoulli p bseq) and (v + tf + tout), re-
spectively, if the given initial conditions in the
predicate INIT_STOP_WAIT_GEN hold for snd
(prob_bernoulli p bseq) and (v + tf + tout), i.e.,

Lemma 4:

INIT_STOP_WAIT_GEN source rem s sink

r i ackR dtout dtf dta

tout tf ta rec_flag bseqt (snd (prob_

bernoulli p bseq)) (v + tf + tout)

under the assumptions of Theorem 8 and the
step case of Lemma 3. In order to prove Lemma
4 we need to formally verify the behavior of the
histories, used in the predicate INIT_STOP_
WAIT_GEN, at various points in the interval [0,
v + tf + tout]. Therefore, we again use the same
approach that we used to prove Lemma 1 and the
base case of Lemma 3, i.e., to verify the value of

Box 19.

∀ source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag bseqt bseq v.
 INIT_STOP_WAIT_GEN source rem s sink r i ackR dtout dtf dta tout tf

 ta rec_flag bseqt bseq v =

 (i v = 0) ∧ (dtout v = tout) ∧ (dtf v = tf) ∧ (dta v = ta) ∧
 (bseqt v = bseq) ∧
 (∀ t.
 t ≤ v ⇒
 (rem t = source) ∧ (s t = 0) ∧ (sink t = []) ∧ (r t = 0) ∧
 (rec_flag t = F) ∧ (ackR t = set_non_packet)) ∧
 ∀ t. v - (tout - 1) ≤ t ∧ t < v ⇒ (i t = 1))

370

Formal Analysis of Real-Time Systems

Figure 6. HOL Proof Sequence for the base Case of Lemma 3

Box 20.

INIT_STOP_WAIT_GEN source rem s sink r i ackR dtout dtf dta tout tf ta rec_flag

bseqt bseq v ∧
 fst (prob_bernoulli p bseq) ∧
 NTH_BERNOULLI_TRIAL_F n p (snd (prob_bernoulli p bseq)) ⇒
 (rem (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1 - 1) =

source) ∧
 (rem (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1) = TL

source) ∧
 (bseqt (v + (tf + tout) * (n + 1) + tf + tprop + 1 + ta + tprop + 1) =

 NTH_BERNOULLI_TRIAL_SND (n + 1) p (snd (prob_bernoulli p bseq))

371

Formal Analysis of Real-Time Systems

these histories using the initial conditions and the
definitions of the predicates used for the formal
specification of the Stop-and-Wait protocol. In
fact, the first 11 proof lines, given in Figure 6, for
the base case of Lemma 3 can be used as they are
for the proof of Lemma 4 as well, since a mes-
sage transmission cannot complete before v + tf
+ tprop + 1 + ta + tprop + 1 time units are lapsed
and the first data message is issued at time v + tf
in both cases. Hereafter, contrary to the base case
of Lemma 3, where one of the assumptions assured
the reliable transmission of the first data message,
in the case of Lemma 4 we have the assumption
fst (prob_bernoulli p bseq) that forces the channel
to lose the first data message. Thus, the sender
keeps on waiting for a valid ACK until the timer
associated with the tout delay expires and this is
how the initial state at time v is maintained until
the time v + tf + tout. We were able to verify this
result, and thus Lemma 4, using the first 11 proof
lines, given in Figure 6, followed by the proof

sequence given in Figure 7. The proof of Lemma
4 concludes the proof of Lemma 3, which in turn
leads to the proof of Theorem 8 as well.

Now, we are in the position of verifying the
average message delay relation, given in Equation
3, for the Stop-and-Wait protocol under noisy
channels. The corresponding theorem can be
expressed in HOL as follows in Box 21.

The above proof goal can be reduced to the
following subgoal using Theorems 4 and 8 and
some arithmetic simplification

∀ p. 0 < p ∧ p ≤ 1 ⇒
 (expec

 (\.s. (fst (prob_geom p s) - 1,

 snd (prob_geom p s))) = (1 - p)

/ p)

which we were able to verify in HOL, using the
formalization of the expectation theory and the
Geometric random variable prob_geom, given in

Figure 7. HOL Proof Sequence for Lemma 4

372

Formal Analysis of Real-Time Systems

[Hasan, 2007], and the probability theory prin-
ciples, formalized in [Hurd, 2002].

Theorem 9 specifies the average message de-
lay relation of a Stop-and-Wait protocol in terms
of individual delays of the various autonomous
processes, which are the basic building blocks of
the protocol. Thus, it allows us to tweak various
parameters of the protocol to optimize its perfor-
mance for any given conditions. It is important to
note here that the result of Theorem 9 is not new
and the performance analysis of Stop-and-Wait
protocols, based on Equation 3, existed since the
early days of their introduction, however, using
theoretical paper-and-pencil proof techniques.
On the other hand, to the best of our knowledge,
this is the first time that such a relation has been
mechanically verified without any loss in accuracy
or precision of the results. It therefore provides
a superior approach to both paper-and-pencil
proofs and simulation based performance analysis
techniques.

CONCLUSION

In this chapter, we presented a higher-order-logic
theorem prover based approach for the functional
verification and performance analysis of real-time
systems. A real-time system and its environment
can be formalized as a logical conjunction of

higher-order-logic predicates on positive integers,
whereas the positive integers represent the ticks of
a clock counting physical time in any appropriate
units. Higher-order-logic has been successfully
used for the formalization of a significant amount
of probability theories. This feature allows us to
use random variables in our model to represent the
random and unpredictable elements of a real-time
system and its environment. The functional and
performance related properties, such as average
characteristics, of a real-time system can now be
formally verified, using this model, in a higher-
order-logic theorem prover. Due to the inherent
soundness of the theorem-proving based analysis,
the presented approach ensures accurate and pre-
cise results and thus can prove to be quite useful
for the performance and reliability optimization
of safety critical and highly sensitive real-time
system application domains, such as medicine,
military or space travel. Similarly, unlike other
commonly used state-based formal techniques,
which are severely affected by the state-space
explosion problem, the presented approach is
capable of handling any real-time system that
can be expressed in a closed mathematical form
due to the high expressive nature of higher-order-
logic. Also, there is no equivalence verification
required between the models used for functional
verification and performance evaluation as the

Box 21. Theorem 9

∀ source sink rem s i r ws sn ackty maxP abort dataS dataR
ackS ackR d tprop dtout dtf dta tf ack_msg ta tout rec_flag bseqt bseq p.

(∀ bseq. STOP_WAIT_NOISY source sink rem s i r ws sn ackty maxP abort
 dataS dataR ackS ackR d tprop dtout dtf dta tf ack_msg ta tout

 rec_flag bseqt bseq) ∧
 (LIVE_ASSUMPTION abort) ∧
 (0 ≤ p ∧ p < 1) ∧ (~NULL source) ∧
 tprop + 1 + ta + tprop + 1 ≤ tout ⇒
 (expec (DELAY_STOP_WAIT_NOISY rem source bseqt) =

 ((tf + tout) * p/(1-p) + (tf + tprop + 1 + ta + tprop + 1)))

373

Formal Analysis of Real-Time Systems

same formal model is used for both of these
analysis in the approach presented in this chapter.

In order to illustrate the practical effectiveness
of theorem proving in the domain of analyzing
real-time systems, we have utilized it in this chapter
to conduct the functional verification and perfor-
mance analysis of a Stop-and-Wait protocol using
the HOL theorem prover. A higher-order-logic
specification for the Stop-and-Wait protocol is
presented, with the noise effect modeled as a ran-
dom variable. We also outlined the major steps in
the verification of performance related theorems.
The most significant result is the verification of
the classical average message delay relation for
the Stop-and-Wait protocol in HOL. To the best
of our knowledge, formal verification of the aver-
age message delay relation for the Stop-and-Wait
protocol cannot be handled by any other formal
technique. Because of the fact that the Stop-and-
Wait protocol bears most of the essential char-
acteristics of the present day real-time systems,
these results clearly demonstrate the usefulness
of the proposed performance analysis approach.

The main limitation of the higher-order-logic
theorem proving based performance analysis ap-
proach is the associated significant user interac-
tion, i.e., the user needs to guide the proof tools
manually since we are dealing with higher-order-
logic. In the analysis of the Stop-and-Wait proto-
col, presented in this chapter, we tried to minimize
the effect of this inherent limitation by taking
a number of decisions, such as, building upon
existing HOL theories, whenever possible, and
choosing the discrete time domain for the analysis,
which allows us to use the powerful induction
technique for verification and thus minimize the
proof effort considerably. The formalization and
verification presented in this paper translated to
approximately 6000 lines of HOL code and we
had to spend about 300 man-hours on this project.
Because of the interactive nature of the analysis,
the proposed approach should not be viewed as
an alternative to methods such as simulation and
model-checking for the performance analysis of

real-time systems but rather as a complementary
technique, which can prove to be very useful when
precision of the results is of prime importance.

REFERENCES

Alur, R. (1992). Techniques for Automatic Verifica-
tion of Real-Time Systems. PhD Thesis, Stanford
University, Stanford, CA.

Amnell, T., Behrmann, G., Bengtsson, J.,
D’Argenio, P., David, A., Fehnker, A., et al. (2001).
Uppaal - Now, Next, and Future. In Cassez, F.,
Jard, C., Rozoy, B., Ryan, M.D. (Eds.), Modeling
and Verification of Parallel Processes, (LNCS
Vol. 2067, pp. 99-124). Berlin: Springer.

Beyer, D., Lewerentz, C., & Noack, A. (2003).
Rabbit: A Tool for BDD-based Verification
of Real-Time Systems. In W.A. Hunt, Jr. & F.
Somenzi (Eds.), Computer Aided Verification,
(LNCS. Vol. 2725, pp. 122-125), Boulder, CO.
Berlin: Springer.

Bucci, G., Sassoli, L., & Vicario, E. (2005). Cor-
rectness Verification and Performance Analysis
of Real-Time Systems Using Stochastic Preemp-
tive Time Petri Nets. Transactions on Software
Engineering, 31(11), 913–927. doi:10.1109/
TSE.2005.122

Cardell-Oliver, R. (1992). The Formal Verification
of Hard Real-time Systems. PhD Thesis, University
of Cambridge, Cambridge, UK.

Church, A. (1940). A Formulation of the Simple
Theory of Types. J. of Symbolic Logic, 5, 56–68.
doi:10.2307/2266170

Galambos, J. (1995). Advanced Probability
Theory. New York: Marcel Dekker, Inc.

Gallasch, G., & Billington, J. (2006). A Parametric
State Space for the Analysis of the Infinite Class
of Stop-and-Wait Protocols. In Model Checking
Software, (LNCS 3925, pp. 201-218). Berlin:
Springer.

374

Formal Analysis of Real-Time Systems

Garcia, A. L., & Widjaja, I. (2004). Communica-
tion Networks: Fundamental Concepts and Key
Architectures. New York: McGraw-Hill.

Gordon, M. J. C & Melham T.F. (1993). Introduc-
tion to HOL: A Theorem Proving Environment for
Higher-Order Logic. Cambridge, UK: Cambridge
University Press.

Gordon, M. J. C. (1989). Mechanizing Program-
ming Logics in Higher-order Logic. Current
Trends in Hardware Verification and Automated
Theorem Proving (pp. 387–439). New York:
Springer.

Harrison, J. (1998). Theorem proving with Real
Numbers. Berlin: Springer.

Harrison, J. (2009). Handbook of Practical
Logic and Automated Reasoning. Cambridge,
UK: Cambridge University Press. doi:10.1017/
CBO9780511576430

Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., &
Akbarpour, R. (2009b). Formal Reasoning about
Expectation Properties for Continuous Random
Variables. In A. Cavalcanti & D. Dams (Eds.),
Formal Methods, (LNCS 5850, pp. 435-450).
Berlin: Springer.

Hasan, O., & Tahar, S. (2007). Formalization of
Continuous Probability Distributions. In F. Pfen-
ning (Ed.), Automated Deduction, (LNCS Vol.
4603, pp. 2-18). Berlin: Springer.

Hasan, O., & Tahar, S. (2008). Using Theorem
Proving to Verify Expectation and Variance for
Discrete Random Variables. Journal of Auto-
mated Reasoning, 41(3-4), 295–323. doi:10.1007/
s10817-008-9113-6

Hasan, O., & Tahar, S. (2009). Performance
Analysis and Functional Verification of the Stop-
and-Wait Protocol in HOL. Journal of Automated
Reasoning, 42(1), 1–33. doi:10.1007/s10817-
008-9105-6

Hasan, O., & Tahar, S. (2009a). Formal Verifi-
cation of Tail Distribution Bounds in the HOL
Theorem Prover. Mathematical Methods in the
Applied Sciences, 32(4), 480–504. doi:10.1002/
mma.1055

Havelund, K., & Shankar, N. (1996). Experi-
ments in Theorem Proving and Model Checking
for Protocol Verification. Industrial Benefit and
Advances in Formal Methods, (LNCS 1051, pp.
662-681). Berlin: Springer.

Hurd, J. (2002). Formal Verification of Proba-
bilistic Algorithms. PhD Thesis, University of
Cambridge, Cambridge, UK.

Kwiatkowska, M., Norman, G., & Parker, D.
(2007). Stochastic Model Checking. In M. Ber-
nardo and J. Hillston (Eds.). Formal Methods for
Performance Evaluation, Bertinoro, Italy, (LNCS,
4486, pp. 220-270). Berlin: Springer.

Kwiatkowska, M., Norman, G., Segala, R., &
Sproston, J. (2002). Automatic Verification of
Real-Time Systems with Discrete Probability Dis-
tributions. Theoretical Computer Science, 282(1),
101–150. doi:10.1016/S0304-3975(01)00046-9

Milner, R. (1977). A Theory of Type Polymor-
phism in Programming. Journal of Computer and
System Sciences, 17, 348–375. doi:10.1016/0022-
0000(78)90014-4

Paulson, L. C. (1996). ML for the Working Pro-
grammer. Cambridge, UK: Cambridge University
Press.

Wells, L. (2002). Performance Analysis Using Co-
loured Petri Nets. In International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, (pp. 217-222).
Washington, DC: IEEE Computer Society.

375

Formal Analysis of Real-Time Systems

ADDITIONALREADING

Billington, J., Gallasch, G., & Petrucci, L. (2005).
Fast Verification of the Class of Stop-and-Wait
Protocols Modelled by Coloured Petri Nets. Nordic
Journal of Computing, 12(3), 251–274.

Duflot, M., Fribourg, L., Herault, T., Lassaigne,
R., Magniette, F., Messika, S., et al. (2004).
Probabilistic Model Checking of the CSMA/CD
Protocol using PRISM and APMC. Workshop
on Automated Verification of Critical Systems,
(pp.195-214). Elsevier Science.

Hasan, O. Abbasi & Tahar, S. (2009). Formal
Probabilistic Analysis of Stuck-at Faults in Re-
configurable Memory Arrays; M. Leuschel and
H. Wehrheim (Eds.), Integrated Formal Methods,
LNCS Vol.5423, (pp. 277-291) Springer. Düs-
seldorf, Germany.

Hasan, O., & Tahar, S. (2007). Formalization of the
Standard Uniform Random Variable. [Elsevier.].
Theoretical Computer Science, 382(1), 71–83.
doi:10.1016/j.tcs.2007.05.009

Hasan, O., & Tahar, S. (2007). Verification of
Probabilistic Properties in the HOL Theorem
Prover, J. Davies and J. Gibbons (Eds.), Integrated
Formal Methods, LNCS Vol. 4591, (pp. 333-352).
Springer. Oxford, UK.

Hasan, O., & Tahar, S. (2008). Performance
Analysis of ARQ Protocols using a Theorem
Prover, International Symposium on Performance
Analysis of Systems and Software, (pp. 85-94).
IEEE Computer Society. Austin, Texas, USA.

Hasan, O., & Tahar, S. (2009). Probabilistic Analy-
sis of Wireless Systems using Theorem Prov-
ing. [Elsevier.]. Electronic Notes in Theoretical
Computer Science, 242(2), 43–58. doi:10.1016/j.
entcs.2009.06.022

Suzuki, I. (1990). Formal Analysis of the Alternat-
ing Bit Protocol by Temporal Petri Nets. [IEEE.].
Transactions on Software Engineering, 16(10),
1273–1281. doi:10.1109/32.60315

