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Formal Reliability Analysis of Railway 
Systems Using Theorem Proving Technique

Waqar Ahmad, Osman Hasan, and Sofiène Tahar

36.1 � Introduction

In recent years, high-speed railway has been rapidly developed and deployed around the 
world including Germany, China, France, and Japan. The continuous endeavor to operate 
these trains at higher speeds has led to the development of high-speed railways into a 
new era. For instance, the high-speed railways in China had been operating at speeds of 
300 km/h, but the introduction of the Beijing–Shanghai high-speed railway in June 2011 
has further ushered China toward superhigh-speed trains that can operate at speeds of 
380 km/h [1]. Due to the widespread coverage and continuous operation of the railway sys-
tems, the rigorous reliability analysis of these high-speed trains is a dire need. Moreover, a 
slight malfunctioning in the train components may cause undesirable delays at the arrival 
stations or even the loss of human lives in extreme cases.

Reliability block diagrams (RBDs) [2] are commonly used to develop reliability mod-
els for high-speed railway systems. Traditionally, these reliability models are analyzed 
by paper-and-pencil proof methods and simulation tools. However, the paper-and-pencil 
methods are prone to human errors for large systems, and it is often the case that many 
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key assumptions that are essentially required for the analytical proofs are in the minds of 
the engineers and, hence, are not properly documented. These missing assumptions are 
thus not communicated to the design engineers and are ignored in system implementa-
tions, which may also lead to unreliable designs. On the other hand, there are numerous 
simulation tools available, such as ReliaSoft [3] and ASENT reliability analysis tool [4], that 
offer scalable reliability analysis compared to paper-and-pencil methods. However, these 
tools cannot ensure accurate analysis due to the involvement of pseudorandom numbers 
and numerical methods. Additionally, exhaustive verification of systems for all values of 
the variables is not possible.

To overcome the inaccuracy limitations of traditional techniques mentioned earlier, for-
mal methods have also been proposed as an alternative for the RBD-based analysis using 
both state-based [5,6] and theorem-proving techniques [7]. The main idea behind the for-
mal analysis of a system is to first construct a mathematical model of the given system 
using a state machine or an appropriate logic and then use logical reasoning and deduc-
tion methods to formally verify that this system model exhibits the desired characteristics, 
which are also mathematically specified using an appropriate logic. However, state-based 
approaches cannot be used for verifying generic mathematical expressions for reliability. 
On the other hand, theorem proving, which is based on the expressive higher-order logic 
(HOL) [8], allows working with a variety of datatypes, such as lists and real numbers and 
has been recently used to formalize commonly used RBDs [9] by leveraging upon the prob-
ability theory formalization in HOL [10]. This HOL-based RBD formalization provides the 
formally verified generic reliability expressions that can be used to carry out an accurate 
and rigorous reliability analysis of high-speed railway systems. In this chapter, we have 
utilized the recently proposed HOL formalization of RBDs [9] to conduct formal reliability 
analysis of a railway system designed for the Italian high-speed railways [11] consisting 
of several critical components, such as traction drive system, induction motors, converters, 
and transformers.

The rest of the chapter is organized as follows: Section 36.2 presents a review of the 
related work. Section 36.3 provides an overview of the proposed methodology that has 
been used to conduct formal reliability analysis of railway systems. To facilitate the under-
standing of the chapter for nonexperts in theorem proving, we present a brief introduction 
about theorem proving, the HOL theorem prover, and the formalization of probability and 
reliability theories in Section 36.4. This is followed by the description of our formalization 
of the RBD configurations in Section 36.5. The RBD-based formal reliability analysis of 
the Italian high-speed railway system is presented in Section 36.6, and finally Section 36.7 
concludes the chapter.

36.2 � Related Work

Many simulation tools, such as DNV-GL [12], ReliaSoft [3], and ASENT [4], support RBD-
based reliability analysis and provide powerful graphical editors that can be used to con-
struct the RBD models of the high-speed trains. These tools generate samples from the 
exponential or Weibull random variables to model the reliabilities of the individual system 
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components. These samples are then processed by using computer arithmetic and numeri-
cal techniques in order to compute the reliability of the complete system. Although these 
software tools provide more scalable and quick analysis compared to paper-and-pencil 
based analytical methods, they cannot ascertain the absolute correctness of the system 
because of their inherent sampling based nature and the involvement of pseudorandom 
numbers and numerical methods.

Formal methods, such as Petri nets (PNs), have also been used to model RBDs [13] 
as well as dynamic RBDs [5] that are used to describe the reliability behavior of sys-
tems. PN verification tools, based on model checking principles, are then used to verify 
behavioral properties of the RBD models to identify design flaws [5,13]. Similarly, the 
probabilistic model checker Prism [14] has been used for the quantitative verification of 
various safety and mission-critical systems, such as failure analysis for an industrial 
product development workflow [15], an airbag system [6], and the reliability analysis 
of a global navigation satellite system that enables an aircraft to determine its position 
(latitude, longitude, and altitude) [16]. However, due to the state-based models, only 
state-related property verification, such as deadlock checks, reachability, and safety 
properties, is supported by these approaches, i.e., we cannot verify generic reliability 
relationships for the given system using the approaches presented in the studies by 
Robidoux et al. [5], Norman and Parker [6], Signoret et al. [13], Herbert and Hansen [15], 
and Lu et al. [16].

A number of formalizations of probability theory are available in HOL (e.g., the studied 
by Mhamdi et al. [10], Hurd [17], and Hölzl and Heller [18]). Hurd’s [17] formalization of 
probability theory has been utilized to verify sampling algorithms of a number of com-
monly used discrete [19] and continuous random variables [20,21] based on their proba-
bilistic and statistical properties. Moreover, this formalization has been used to conduct 
the reliability analysis of a number of applications, such as memory arrays [22] and elec-
tronic components [23]. However, Hurd’s formalization of probability theory only sup-
ports having the whole universe as the probability space. This feature limits its scope, and 
thus, this probability theory cannot be used to formalize more than a single continuous 
random variable, whereas in the case of reliability analysis of railways systems, mul-
tiple continuous random variables are required. The recent formalizations of probability 
theory by Mhamdi et al. [10] and Hölzl and Heller [18] are based on extended real num-
bers (including ±∞) and provide the formalization of Lebesgue integral to reason about 
advanced statistical properties. These theories also allow using any arbitrary probability 
space, a subset of the universe, and are thus more flexible than Hurd’s formalization. 
Leveraging upon the high expressiveness of HOL and the inherent soundness of theo-
rem proving, Mhamdi et al.’s [10] formalized probability theory has been recently used 
for the formalization of RBDs [9], including series [7], parallel [24], parallel–series [24], 
series–parallel [25], and k-out-n [26]. These formalizations have been used for the reli-
ability analysis of many applications, including simple oil and gas pipelines with serial 
components [7], wireless sensor network protocols [24], logistic supply chains [25], and oil 
and gas pipelines [26]. Similarly, Mhamdi et al.’s probability theory has also been used for 
the formalization of commonly used fault tree (FT) gates, such as AND, OR, NAND, NOR, 
XOR, and NOT, and the probabilistic inclusion–exclusion principle [27]. In addition, the 
RBD and FT formalizations mentioned earlier have been recently utilized for availability 
analysis [28]. In this chapter, we utilize recently proposed HOL formalization of RBDs 

9781138035126_C036.indd   649 12/5/2017   2:48:58 PM



650 Handbook of RAMS in Railway Systems

[9] to carry out the formal reliability analysis of a railway system operated by the Italian 
high-speed railways.

36.3 � Proposed Methodology

The proposed methodology for the formal reliability analysis of railway systems, depicted 
in Figure 36.1, allows us to formally verify the reliability expressions corresponding to 
the given railway system description and thus formally check that the given railway system 
satisfies its reliability requirements. The core component of this methodology is the HOL 
formalizations of the notions of probability, reliability, and RBDs.

The given railway system is first partitioned into segments, and the corresponding RBD 
model is constructed. This model can then be formalized in HOL using the core formaliza-
tions mentioned earlier, particularly the formalization of commonly used RBD configura-
tions. The next step is to assign failure distributions, such as exponential and Weibull, to 
individual components of the given railway system. These distributions are also formal-
ized by building upon the formalized probability theory and are used, along with the 
formal RBD model, to formalize the given reliability requirements as a proof goal in HOL. 
The user has to reason about the correctness of this proof goal using a theorem prover by 
building upon the core formalizations of probability and reliability theories. If all subgoals 
are discharged, then we obtain formally verified reliability expressions, which correspond 
to the given railway system and its reliability requirements of the given railway system. 
Otherwise, we can use the failing subgoals to debug the formal RBD model and proof goal, 
which represent the originally specified model and requirements, respectively, as depicted 
by the dotted line in Figure 36.1.

Formalization
of failure

distributions

Formal RBD
model

Proof goal

�eorem prover

Proof goals
discharged?

Formally verified
reliability

expressions

Reliability requirements

Assigning the failure distributions

Railway system RBD model

Partitioning of railway system
into components

Railway system description

Probability

Reliability

No

HOL

RBDs

Yes

FIGURE 36.1
Methodology for formal railway system reliability analysis.
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36.4 � Preliminaries

In this section, we give a brief introduction to theorem proving and the HOL theorem 
prover to facilitate the understanding of the rest of the chapter.

36.4.1 � Theorem Proving

Theorem proving [8] is a widely used formal verification technique. The system that 
needs to be analyzed is mathematically modeled in an appropriate logic, and the prop-
erties of interest are verified using computer-based formal tools. The use of formal log-
ics as a modeling medium makes theorem proving a very flexible verification technique 
as it is possible to formally verify any system that can be mathematically described. 
The core of theorem provers usually consists of some well-known axioms and primi-
tive inference rules. Soundness is assured as every new theorem must be created from 
these basic or already proven theorems and primitive inference rules. The verification 
effort of a theorem in a theorem prover varies from trivial to complex depending on the 
underlying logic [29].

36.4.2 � HOL Theorem Prover

HOL [30] is an interactive theorem prover developed at the University of Cambridge, 
United Kingdom, for conducting proofs in HOL. It utilizes the simple type theory of 
Church [31] along with Hindley–Milner polymorphism [32] to implement HOL. HOL has 
been successfully used as a verification framework for both software and hardware as well 
as a platform for the formalization of pure mathematics.

The HOL core consists of only five basic axioms and eight primitive inference rules, 
which are implemented as meta language (ML) functions. The type system of the ML 
ensures that only valid theorems can be constructed. Soundness is assured as every new 
theorem must be verified by applying these basic axioms and primitive inference rules or 
any other previously verified theorems/inference rules.

In the work presented in this chapter, we utilize the HOL theories of Booleans, lists, 
sets, positive integers, real numbers, measure, and probability [10]. In fact, one of the pri-
mary motivations of selecting the HOL theorem prover for our work was to benefit from 
these built-in mathematical theories. Table 36.1 provides the mathematical interpretations 
of some frequently used HOL symbols and functions, which are inherited from existing 
HOL theories.

36.4.3 � Probability and Reliability in HOL

Mathematically, a measure space is defined as a triple (Ω, Σ, µ), where Ω is a set, called 
the sample space; Σ represents a σ algebra of subsets of Ω, where the subsets are usually 
referred to as measurable sets; and µ is a measure with domain Σ. A probability space is a 
measure space (Ω, Σ, Pr), such that the measure, referred to as the probability and denoted 
by Pr, of the sample space is 1. In the HOL formalization of probability theory [10], given 
a probability space p, the functions space, subsets, and prob return the corresponding 
Ω, Σ, and Pr, respectively. This formalization also includes the formal verification of some 
of the most widely used probability axioms, which play a pivotal role in formal reasoning 
about reliability properties.
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A random variable is a measurable function between a probability space and a measur-
able space. The measurable functions belong to a special class of functions, which pre-
serves the property that the inverse image of each measurable set is also measurable. A 
measurable space refers to a pair (S, A), where S denotes a set and A represents a nonempty 
collection of subsets of S. Now, if S is a set with finite number of elements, then the cor-
responding random variable is termed as discrete; otherwise, it is known as a continuous 
random variable.

The probability that a random variable X is less than or equal to some value t, Pr(X ≤ t) 
is called the cumulative distribution function (CDF), and it characterizes the distribution 
of both discrete and continuous random variables. The CDF has been formalized in HOL 
as follows [7]:

⊢ ∀ p X t. CDF p X t = distribution p X {y | y ≤ Normal t},

where the variables p: (α → bool)#((α → bool) → bool)#((α → bool) → real), X: (α → extreal), and 
t: real represent a probability space, a random variable, and a real number, respectively. The 
function Normal takes a real number as its input and converts it to its corresponding value 
in the extended real data type, i.e., it is the real data type with the inclusion of positive and 
negative infinity. The function distribution takes three parameters: a probability space 
p, a random variable X, and a set of extended real numbers and outputs the probability of a 
random variable X that acquires all values of the given set in probability space p.

Now, reliability R(t) is stated as the probability of a system or component performing its 
desired task over a certain interval of time t:

	 R t X t X t F tX( ) ( ) ( ) ( )= > = − ≤ = −Pr Pr1 1 	 (36.1)

where FX(t) is the CDF. The random variable X, in the preceding definition, models 
the time to failure of the system and is usually modeled by the exponential random 

TABLE 36.1

HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list
++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
MEM a L member True if a is a member of list L
λ x.t λ x.t Function that maps x to t(x)
SUC n n + 1 Successor of a num

lim(λ n.f(n)) lim ( )
n

f n
→∞

Limit of a real sequence f
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variable with parameter λ, which corresponds to the failure rate of the system. Based 
on the HOL formalization of probability theory [10], Equation 36.1 has been formalized 
as follows [7]:

⊢ ∀ p X t. Reliability p X t = 1 − CDF p X t.

The series RBD, presented by Ahmad et al. [7], is based on the notion of mutual inde-
pendence of random variables, which is one of the most essential prerequisites for reason-
ing about the mathematical expressions for all RBDs. If N reliability events are mutually 
independent, then

	

Pr A Pr Ai

i

N

i

i

N

= =









 = ∏

1 1


( ). 	 (36.2)

This concept has been formalized as follows [7]:

⊢ ∀ p L. mutual_indep p L = ∀ L1 n. PERM L L1 ∧
    1 ≤ n ∧ n ≤ LENGTH L ⇒
     prob p (inter_list p (TAKE n L1)) =
    list_prod (list_prob p (TAKE n L1))

The function mutual _ indep accepts a list of events L and probability space p and 
returns True if the events in the given list are mutually independent in the probability 
space p. The predicate PERM ensures that its two lists as its arguments form a permutation 
of one another. The function LENGTH returns the length of the given list. The function 
TAKE returns the first n elements of its argument list as a list. The function inter _ list 
performs the intersection of all sets in its argument list of sets and returns the probability 
space if the given list of sets is empty. The function list _ prob takes a list of events 
and returns a list of probabilities associated with the events in the given list of events in 
the given probability space. Finally, the function list _ prod recursively multiplies all 
elements in the given list of real numbers. Using these functions, the function mutual _
indep models the mutual independence condition such that for any 1 or more events n 

taken from any permutation of the given list L, the property Pr A Pr Ai
i

N

i
i

N

= =





 = ∏1 1

( )  
holds.

36.5 � Formalization of the Reliability Block Diagrams

Commonly used RBD configurations for the reliability analysis of the railway system 
include series, parallel, and a combination of both and are depicted in Figure 36.2. In this 
chapter, we present their formalization, which, in turn, can then be used to formally model 
the structures of a railway system in HOL and reason about their reliability, availability, 
and maintainability characteristics.
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36.5.1 � Formalization of Reliability Event

We describe the formally verified reliability expressions for the commonly used RBD con-
figurations using reliability event lists, where a single event represents the scenario when 
the given system or component does not fail before a certain time. The HOL formalization 
of this concept is as follows:

Definition 36.1: ⊢ ∀ p X t.

rel_event p X t = PREIMAGE X {y | Normal t < y} ∩ p_space p

The function PREIMAGE takes two arguments, a function f and a set s, and returns a 
set, which is the domain of the function f operating on a given range set s. The function 
rel _ event accepts a probability space p; a random variable X, representing the failure 
time of a system or a component; and a real number t, which represents the time index at 
which the reliability is desired. It returns an event representing the reliable functioning of 
the system or component at time t.

Similarly, a list of reliability events can be derived by mapping the function rel _ event 
on each element of the given random variable list in HOL as follows:

Definition 36.2: ⊢ ∀ p L t.

rel_event_list p L t = MAP (λa. rel_event p a t) L,

where the HOL function MAP takes a function f and a list and returns a list by applying the 
function f on each element of the given list.

1 

M O 1 N

1 N

M

I O

I O

(a) (b)

I
I

O

(c)

O

(d)

1 N

M

FIGURE 36.2
RBDs: (a) series; (b) parallel; (c) series–parallel; (d) parallel–series.
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Now, we describe the formalization process by type abbreviating the notion of event, 
which is essentially a set of observations with type/a → bool as follows:

type_abbrev (“event” , ‘‘:’a ->bool’’)

We then define a recursive datatype rbd in the HOL system as follows:

Hol_datatype ‘rbd = series of rbd list |
                parallel of rbd list |
                atomic of ’a event‘

An RBD can be either a series configuration, a parallel configuration, or an atomic event. 
The type constructors series and parallel recursively function on rbd-typed lists and 
thus enable us to deal with nested RBD configurations. The type constructor atomic is 
basically a typecasting operator between event and rbd-typed variables. Typically, a new 
datatype is defined in HOL as (α1, α2, ..., αn)op, where (α1, α2, ..., αn) represent the arguments 
taken by the HOL datatype op [30]. For instance, the atomic type constructor is defined 
with the arbitrary type α, which is taken by the already defined type events. On the other 
hand, the type constructors series and parallel are defined without any arguments 
because the datatype rbd is not defined at this point.

We define a semantic function rbd _ struct (α event # α event event # (α event → real) → 
α rbd → α event) inductively over the rbd datatype. It extracts the corresponding event from 
the given RBD configuration as follows:

Definition 36.3: ⊢(∀p. rbd _ struct p (series []) = p _ space p) ∧

(∀ xs x p.
  rbd_struct p (series (x::xs)) =
  rbd_struct p x ⋂ rbd_struct p (series xs)) ∧
(∀ p. rbd_struct p (parallel []) = {}) ∧
(∀ xs x p.
  rbd_struct p (parallel (x::xs)) =
  rbd_struct p x ∪ rbd_struct p (parallel xs)) ∧
(∀ p a. rbd_struct p (atomic a) =  a)

The preceding function decodes the semantic embedding of an arbitrary RBD configura-
tion by extracting the corresponding reliability event, which can then be used to determine 
the reliability of a given RBD configuration. The function rbd _ struct takes an rbd-typed 
list identified by a type constructor series and returns the whole probability space if the 
given list is empty and, otherwise, returns the intersection of the events that is obtained after 
applying the function rbd _ struct on each element of the given list in order to model 
the series RBD configuration behavior. Similarly, to model the behavior of a parallel RBD 
configuration, the function rbd _ struct operates on an rbd-typed list encoded by a type 
constructor parallel. It then returns the union of the events after applying the function 
rbd _ struct on each element of the given list or an empty set if the given list is empty. 
The function rbd _ struct returns the reliability event using the type constructor atomic.

In the subsequent sections, we present the HOL formalization of RBDs on any reliability 
event list of arbitrary length [24,25]. The notion of reliability event is then incorporated in 
the formalization while carrying out the reliability analysis of a real railway system, as it 
will be described in Section 36.6.
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36.5.2 � Formalization of Series Reliability Block Diagrams

The reliability of a system with components connected in series is considered to be reliable 
at time t only if all its components are functioning reliably at time t, as depicted in Figure 
36.2a. If Ai(t) is a mutually independent event that represents the reliable functioning of the 
ith component of a serially connected system with N components at time t, then the overall 
reliability of the complete system can be expressed as [33]

	

R t Pr A t R ti
ii

N

i
ii

N

series( ) ( ) ( ).=








 =

== ==
∏

11 11
 	 (36.3)

Now using Definition 36.3, we can formally verify the reliability expression, given in 
Equation 3, for a series RBD configuration in HOL as follows:

Theorem 36.1: ⊢ ∀ p L. prob space p ∧

¬NULL L ∧ (∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧
mutual_indep p L ⇒
(prob p (rbd_struct p (series (rbd_list L))) =
 list_prod (list_prob p L))

The first assumption, in Theorem 36.1, ensures that p is a valid probability space based 
on the probability theory in HOL [10]. The next two assumptions guarantee that the list 
of events L, representing the reliability of individual components, must have at least one 
event and the reliability events are mutually independent. The conclusion of the theorem 
represents Equation 36.3. The function rbd _ list generates a list of type rbd by map-
ping the function atomic to each element of the given event list L to make it consistent 
with the assumptions of Theorem 36.1. It can be formalized in HOL as

∀ L. rbd_list L = MAP (λa. atomic a) L.

The proof of Theorem 36.1 is primarily based on mutual independence properties and 
some fundamental axioms of probability theory.

36.5.3 � Formalization of Parallel Reliability Block Diagrams

The reliability of a system with parallel connected submodules, depicted in Figure 36.2b, 
mainly depends on the component with the maximum reliability. In other words, the sys-
tem will continue functioning as long as at least one of its components remains functional. 
If the event Ai(t) represents the reliable functioning of the ith component of a system with 
N parallel components at time t, then the overall reliability of the system can be math-
ematically expressed as [33]

	

R t Pr A t R ti

i

N

i

i

N

parallel( ) ( ) ( )=








 = − −( )

= =1 1

1 1
 ∏∏ . 	 (36.4)
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Similarly, by following the formalization approach of series RBD mentioned earlier, we 
can formally verify the reliability expression for the parallel RBD configuration, given in 
Equation 36.4, in HOL as follows:

Theorem 36.2: ⊢ ∀ p L.

prob_space p ∧ (∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧
¬NULL L ∧ mutual_indep p L ⇒
 (prob p (rbd_struct p (parallel (rbd_list_L))) =
 1 - list_prod (one_minus_list (list_prob_p L)))

The preceding theorem is verified under the same assumptions as Theorem 36.1. The 
conclusion of the theorem represents Equation 36.4, where the function one _ minus _
list accepts a list of real numbers [x1, x2, x3, …,  xn] and returns the list of real numbers 
such that each element of this list is 1 minus the corresponding element of the given list, 
i.e., [1 − x1, 1 − x2,  1 − x3,…, 1 − xn].

The preceding formalization described for series and parallel RBD configurations builds 
the foundation to formalize the combination of series and parallel RBD configurations. The 
type constructors series and parallel can take the argument list containing other rbd 
type constructors, such as series, parallel, or atomic, allowing the function rbd _
struct o yield the corresponding event for an RBD configuration that is composed of a 
combination of series and parallel RBD configurations.

36.5.4 � Formalization of Series–Parallel Reliability Block Diagrams

If in each serial stage the components are connected in parallel, as shown in Figure 36.2c, 
then the configuration is termed as a series–parallel structure. If Aij(t) is the event corre-
sponding to the proper functioning of the jth component connected in an ith subsystem at 
time index t, then the reliability of the complete system can be expressed mathematically 
as follows [33]:

	

R t Pr A tij
i jj

M

i

N

series parallel−
= ===

=



( ) ( )

1 111
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ij

j

M

i

N

R t( ) . 	 (36.5)

By extending the RBD formalization approach, presented in Theorems 36.1 and 36.2, 
we formally verify the generic reliability expression for series-parallel RBD configuration, 
given in Equation 36.6), in HOL as follows:

Theorem 36.3: ⊢ ∀ p L. prob _ space p ∧

(∀z. MEM z L ⇒ ¬NULL z) ∧
(∀x’. MEM x’ (FLAT L) ⇒ x’	∈ events p) ∧
 mutual_indep p (FLAT L) ⇒
  (prob p
     (rbd_struct p ((series of (λa. parallel (rbd_list a))) L)) =
(list_prod of
  (λa. 1 - list_prod (one_minus_list (list_prob p a)))) L)
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The first assumption in Theorem 36.3 is similar to the one used in Theorem 36.2. The 
next three assumptions ensure that the sublists corresponding to the serial substages are 
not empty, and the reliability events corresponding to the subcomponents of the parallel–
series configuration are valid events of the given probability space p and are mutually 
independent. The HOL function FLAT is used to flatten the two-dimensional list, i.e., to 
transform a list of lists, into a single list. The conclusion models the right-hand side of 
Equation 36.5). The function of is defined as an infix operator [30] in order to connect the 
two rbd-typed constructors by using the HOL MAP function and thus facilitates the natural 
readability of complex RBD configurations. It is formalized in HOL as follows:

⊢ ∀ g f. f of g = (f o (λa. MAP g a))

36.5.5 � Formalization of Parallel–Series Reliability Block Diagrams

If Aij(t) is the event corresponding to the reliability of the jth component connected in a ith 
subsystem at time t, then the reliability of the complete system can be expressed as follows:
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Similarly, the generic expression of the parallel–series RBD configuration, given in 
Equation 36.6, is formalized in HOL as follows:

Theorem 36.4: ⊢ ∀ p L. prob _ space p ∧

(∀z. MEM z L ⇒ ¬NULL z) ∧
(∀x’. MEM x’ (FLAT L) ⇒ x’ ∈ events p) ∧
 mutual_indep p (FLAT L) ⇒
(prob p
  (rbd_struct p ((parallel of (λa. series (rbd_list a))) L)) =
1 - (list_prod o (one_minus_list) of
  (λa. list_prod (list_prob p a))) L)

The assumptions of Theorem 36.4 are similar to those used in Theorem 36.3. The conclu-
sion models the right-hand side of Equation 36.6.

To verify Theorems 36.3 and 36.4, it is required to formally verify various structural 
independence lemmas, for instance, given the list of mutually independent reliability 
events, an event corresponding to the series or parallel RBD structure is independent, in 
probability, with the corresponding event associated with the parallel–series or series–
parallel RBD configurations.

36.6 � Traction Drive System of High-Speed Trains

In order to illustrate the practical effectiveness of the RBD-based formal reliability analysis 
using theorem proving, we consider a multivoltage railway system, specifically designed 
for the Italian high-speed railways [11]. The overall railway system consists of three identical 
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modules, i.e., A, B, and C, as depicted in Figure 36.3. Each module represents a traction drive 
system and two boogies that are composed of two bearings and one reduction gear. The 
most critical part in the railway system is the traction drive system because a slight mal-
functioning in its key components may lead to train delay, affect the operation order, and 
endanger the safe operation of the train. A traction drive system in each module consists of 
a transformer, a filter, an inverter, two four-quardent converters and four induction motors 
that are connected with two boogies. The RBD diagram of the overall railway system is 
shown in Figure 36.3. The HOL formalization of the given train RBD is as follows:

Definition 36.4: ⊢ ∀ p T1 FQC1 FQC2 F1 I1 IM1 
IM2 B1 IM3 IM4 B2 T2 FQC3 FQC4

F2 I2 IM5 IM6 B3 IM7 IM8 B4 T3 FQC5 FQC6 F3 I3 IM9 IM10 B5 IM11 IM12
B6.
 railway_RBD p T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2 T2 FQC3 FQC4
F2 I2 IM5 IM6 B3 IM7 IM8 B4 T3 FQC5 FQC6 F3 I3 IM9 IM10 B5 IM11 IM12
B6 =
 rbd_struct p (parallel
  [MA_RBD T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2;
   MB_RBD T2 FQC3 FQC4 F2 I2 IM5 IM6 B3 IM7 IM8 B4;
   MC_RBD T3 FQC5 FQC6 F3 I3 IM9 IM10 B5 IM11 IM12 B6])
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FIGURE 36.3
Railway system RBD.
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where MA _ RBD, MB _ RBD, and MC _ RBD are RBDs corresponding to the train modules 
A, B, and C, as depicted in Figure 36.3. For instance, the HOL formalization of MA _ RBD 
is as follows:

Definition 36.5: ⊢ ∀ T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2.

MA_RBD T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2 =
series
 [atomic T1; parallel [atomic FQC1; atomic FQC2];
  series [atomic F1; atomic I1];
  parallel
   [series [atomic IM1; atomic IM2; atomic B1];
    series [atomic IM3; atomic IM4; atomic B2]]]

where T1, FQC1, FQC2, F1, I1, IM1, IM2, IM3, IM4, B1, and B2 are the events correspond-
ing to transformer, four-quadrant converter, filter, inverter, induction motors and boogies, 
respectively.

In the same way, we can formalize the functions MB _ RBD and MC _ RBD in HOL, and 
the formal definitions can be found in the study by Ahmed [34]. It can be observed that 
the railway _ RBD does not seem to be directly mapping to any of the commonly used 
RBDs, which are described in Section 36.5. However, we can mathematically verify that 
this configuration is equivalent to one of those generic RBDs, i.e., the parallel–series RBD 
configuration in this case. The following lemma formally describes this relationship:

Lemma 36.1: ⊢ ∀ p T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2 T2

FQC3 FQC4 F2 I2 IM5 IM6 B3 IM7 IM8 B4 T3 FQC5 FQC6 F3 I3 IM9 IM10 B5
IM11 IM12 B6.
 railway_RBD p T1 FQC1 FQC2 F1 I1 IM1 IM2 B1 IM3 IM4 B2 T2 FQC3
FQC4 F2 I2 IM5 IM6 B3 IM7 IM8 B4 T3 FQC5 FQC6 F3 I3 IM9 IM10 B5
IM11 IM12 B6 =
 rbd_struct p ((parallel of (λa. series (rbd_list a)))
[[IM1; IM2; B1; T1; F1; I1; FQC1];
 [IM1; IM2; B1; T1; F1; I1; FQC2];
 [IM3; IM4; B2; T1; F1; I1; FQC1];
 [IM3; IM4; B2; T1; F1; I1; FQC2];
 [IM5; IM6; B3; T2; F2; I2; FQC3];
 [IM5; IM6; B3; T2; F2; I2; FQC4];
 [IM7; IM8; B4; T2; F2; I2; FQC3];
 [IM7; IM8; B4; T2; F2; I2; FQC4];
 [IM9; IM10; B5; T3; F3; I3; FQC5];
 [IM9; IM10; B5; T3; F3; I3; FQC6];
 [IM11; IM12; B6; T3; F3; I3; FQC5];
 [IM11; IM12; B6; T3; F3; I3; FQC6]])

Each component of a railway system is exponentially distributed, as described by Dazi 
et al. [11], so we can express the reliability of the railway system, as shown in Figure 36.3, 
mathematically as follows:
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In order to formally verify the preceding equation, we first formalize the notion of expo-
nentially distributed random variable in HOL as follows:

Definition 36.6: ⊢ ∀ p X c. exp _ dist p X c =

∀ t. (CDF p X t = if 0 ≤ t then 1 - exp (-c * t) else 0)

The function exp _ dist guarantees that the CDF of the random variable X is that of an 
exponential random variable with a failure rate c in a probability space p. We classify a list 
of exponentially distributed random variables based on this definition as follows:

Definition 36.7: ⊢ (∀ p L. exp _ dist _ list p L [] = T) ∧

∀ p h t L. exp_dist_list p L (h::t) =
        exp_dist p (HD L) h ∧ exp_dist_list p (TL L) t

where the symbol T stands for logical True. The function exp _ dist _ list accepts a list 
of random variables L, a list of failure rates and a probability space p. It guarantees that all 
elements of the random variable list L are exponentially distributed with the correspond-
ing failure rates, given in the other list, within the probability space p. For this purpose, it 
utilizes the list functions HD and TL, which return the head and tail of a list, respectively.

By using the definitions mentioned earlier, we can formally verify the reliability expres-
sion of the railway system, given in Equation 36.7, in HOL as follows:
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Theorem 36.5: ⊢ ∀ p X _ T1 X _ FQC1 X _ FQC2 X _ F1 X _ I1 ​
X _ IM1 X _ IM2 X _ B1 X _ IM3 X _ IM4

X_B2 X_T2 X_FQC3 X_FQC4 X_F2 X_I2 X_IM5 X_IM6 X_B3 X_IM7 X_IM8 X_B4 X_T3
X_FQC5 X_FQC6 X_F3 X_I3 X_IM9 X_IM10 X_B5 X_IM11 X_IM12 X_B6 C_FQC1 
C_FQC2
C_F1 C_I1 C_IM1 C_IM2 C_B1 C_IM3 C_IM4 C_B2 C_T2 C_FQC3 C_FQC4 C_F2 C_I2
C_IM5 C_IM6 C_B3 C_IM7 C_IM8 C_B4 C_T3 C_FQC5 C_FQC6 C_F3 C_I3 C_IM9 
C_IM10
C_B5 C_IM11 C_IM12 C_B6.
(A1): 0 ≤ t ∧ (A2): prob_space p ∧
(A3): in_events p [X_T1; X_FQC1; ⋯; X_B6] t ∧
(A4): mutual_indep p
     (rel_event_list p [X_T1; X_FQC1; ⋯; X_B6] t)) ∧
(A5): exp_dist_list p
     [X_T1; X_FQC1; ⋯; X_B6] [C_FQC1; C_FQC2; ⋯; C_B6] ⇒
  (prob p (railway_RBD p (rel_event p T1 t) (rel_event p FQC1 t)
    (rel_event p FQC2 t) ⋯ (rel_event p B6 t)) =
  1 - (list_prod o one_minus_list of
  (λa. list_prod (exp_func_list a t)))
   [[C_IM1;C_IM2;C_B1;C_T1;C_F1;C_I1;C_FQC1];
   [C_IM1;C_IM2;C_B1;C_T1;C_F1;C_I1;C_FQC2];
   [C_IM3;C_IM4;C_B2;C_T1;C_F1;C_I1;C_FQC1];
   [C_IM3;C_IM4;C_B2;C_T1;C_F1;C_I1;C_FQC2];
   [C_IM5;C_IM6;C_B3;C_T2;C_F2;C_I2;C_FQC3];
   [C_IM5;C_IM6;C_B3;C_T2;C_F2;C_I2;C_FQC4];
   [C_IM7;C_IM8;C_B4;C_T2;C_F2;C_I2;C_FQC3];
   [C_IM7;C_IM8;C_B4;C_T2;C_F2;C_I2;C_FQC4];
   [C_IM9;C_IM10;C_B5;C_T3;C_F3;C_I3;C_FQC5];
   [C_IM9;C_IM10;C_B5;C_T3;C_F3;C_I3;C_FQC6];
   [C_IM11;C_IM12;C_B6;C_T3;C_F3;C_I3;C_FQC5];
   [C_IM11;C_IM12;C_B6;C_T3;C_F3;C_I3;C_FQC6]])

In the preceding theorem, we have replaced the events that are associated with the rail-
way components in function railway _ RBD with their corresponding random variable 
form by using Definition 36.1. It allows us to assign the exponential failure distribution 
with the random variables that correspond to the railway components. The assumptions 
A1 and A2 ensure that the time index must be positive, and p is a valid probability space. 
The assumptions A3 and A4 guarantee that the events associated with the railway com-
ponents are in events space p and mutually independent in the probability space p. The 
predicate in _ events takes a probability space p, a list of random variables, and a time 
index t and makes sure that each element in the given random variable list is in event 
space p. The last assumption (A5) ensures that the random variables that are exponentially 
distributed are assigned the corresponding failure rates. The conclusion of Theorem 36.5 
models Equation 36.7. The proof of Theorem 36.5 utilizes Theorem 36.4, Lemma 36.1, and 
some fundamental axioms of probability theory.

The distinguishing features of the formally verified Theorem 36.5, compared to 
simulation-based reliability analysis of the railway system [11], include its generic nature 
and guaranteed correctness. All variables in Theorem 36.5 are universally quantified and 
can thus be specialized to obtain the reliability of any railway system for any given failure 
rates. The correctness of our results is guaranteed thanks to the involvement of a sound 
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theorem prover in their verification, which ensures that all required assumptions for the 
validity of the results are accompanying the theorem. Unlike the work presented by Dazi 
et al. [11], the formally verified reliability result of Theorem 36.5 is sound and obtained 
through a rigorous reasoning process during the mechanization of their proofs. To the best 
of our knowledge, the benefits mentioned earlier are not shared by any other computer-
based railway system reliability analysis approach.

36.7 � Conclusion

The safe operation of high-speed trains has been the highest priority of railway companies 
around the world. However, their reliability analysis has been carried out using informal 
system analysis methods, such as simulation or paper-and-pencil, which do not ensure 
accurate results. The accuracy of the reliability results for railway systems is very critical 
since even minor flaws in the analysis could lead to the loss of many human lives or cause 
heavy financial setbacks. In order to achieve this goal and overcome the inaccuracy limita-
tions of the traditional reliability analysis techniques, we propose to build upon the recent 
formalization of RBDs to formally reason about the reliability of high-speed railway sys-
tems using HOL theorem proving. As an application, we formally verified the reliability 
expressions of the a railway system designed for the Italian high-speed  railways.
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