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Abstract. In this paper, we report our first experiments in using
learning-assisted automated reasoning for the formal analysis of phys-
ical systems. In particular, we investigate the performance of automated
proofs as compared to interactive ones done in HOL for the verification
of ray and electromagnetic optics. Apart from automation, we also pro-
vide brief initial exploration of more general issues in formalization of
physics, such as its presentation and foundations.

1 Introduction: Formalization, Automation and Physics

Twenty years after the QED Manifesto [1], there is an encouraging progress in
building computer-understandable and formally verified mathematical corpora.
Large projects in mathematics include the completed formal proofs of the Kepler
conjecture (Flyspeck) [8], the Odd Order theorem [7], the Four Color theorem [6],
and verification of more than a half of the Compendium of Continuous Lattices
textbook [3]. Verification of the seL4 kernel [15] and the CompCert compiler [17]
show comparable progress in full-scale verification of complicated software. Such
projects are often linked to advances in verification technology, and in particu-
lar to strong automation [9,11,16] that allows less verbose formal proofs and
increases the general understanding intelligence of the formal proof assistants.

This ongoing progress brings closer the possibility of eventually expressing
in a computer-understandable form all of today’s scientific knowledge, and in
particular the vast knowledge accumulated by exact sciences such as physics.
Such a Formalization of Physics (FOP) project raises a number of interesting
issues, ranging from philosophical and theoretical to very practical ones, on a
scale that may eventually dwarf the current applications of formal verification.
Just optical components are today a basis of a growing multi-billion business,
technologies involving quantum-level phenomena become more and more impor-
tant, the safety of space/air flight and other means of transport (particularly
self-driving) may greatly benefit from formal treatment, and perhaps even more
some of the big and dangerous “prides” of modern physics such as nuclear power
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plants, tokamaks, and large hadron colliders. An interesting multidisciplinary
problem is the formal analysis of engineering systems which requires formalized
theories of Physics, Probability and Information Theory.

One of the first practical hurdles in FOP is the unfamiliarity with theo-
rem proving in the Physics community. An attractive step that may reduce this
gap is to wrap the internal complexities of tactical theorem proving systems
in powerful high-level automation, user-friendly interfaces, collaborative reason-
ing platforms and proof advice systems. The main concrete contribution of this
paper is to describe the first experiments in deploying and using such strong
automation – the HOLyHammer system [12] – over the first formal physics devel-
opments. Section 2 briefly describes such projects in the area of Formal Optics
(Formalization of Physics) and Sect. 3 describes first steps and experiments in
using HOLyHammer for these developments. This initial experience leads us to
discuss in Sect. 4 some wider and more concrete issues related to the present and
future FOP project(s).

2 Formal Optics

Optical systems are becoming increasingly important by resolving many bot-
tlenecks in todays communication, aerospace and biomedical systems. However,
given the continuous nature of optics, the inability to efficiently analyze opti-
cal system models using traditional paper-and-pencil and computer simulation
approaches sets limits especially in safety-critical applications.

In 2009, a project1 was started at the Hardware Verification Group (HVG) of
Concordia University in order to build a comprehensive framework for the formal
analysis of optical systems. The project can be divided into three sub-projects:

– Formalization of Ray Optics in which light is considered as a ray, i.e., a simple
geometrical line.

– Formalization of Electromagnetic Optics in which light is characterized as
electromagnetic waves.

– Formalization of Quantum Optics in which light is characterized as a stream
of photons.

Currently, fundamentals of ray optics, electromagnetic optics and quantum
optics have been formalized [14] in HOL Light. This allowed the formal veri-
fication of some interesting and safety-critical optical systems such as optical
resonators [19], laser resonator [13] and optical quantum flip gate [18]. In the
sequel, we explore automation and presentation issues of these projects.

3 HOLyHammer and Formal Optics

HOLyHammer [12] is a recently developed online AI/ATP system for assisting
formal (computer-understandable) verification done in HOL Light. The service
1 http://hvg.ece.concordia.ca/projects/optics/.

http://hvg.ece.concordia.ca/projects/optics/
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allows its users to upload and automatically process an arbitrary formal devel-
opment (project) based on HOL Light, and to attack arbitrary conjectures that
use the concepts defined in some of the uploaded projects. The service uses sev-
eral automated theorem provers (ATPs) combined with several premise selec-
tion methods trained on all the project proofs. The ITP (interactive theorem
prover) and ATP proof data and theorems from different (possibly incompatible)
projects and their versions are pooled together using a recursive content-based
(MD5) naming of symbols and theorems, providing a large base of proofs to learn
from. Authorized users can upload a new project against an arbitrary existing
project (saved as standard and proof-recording checkpointed images), allowing
fast processing of HOL Light projects that import large libraries such as the
Multivariate Analysis. The system also provides version control and heuristic
HTML-ization (cross-linking) of the uploaded projects. Users can ask parallel
asynchronous queries to the service either from its web interface or directly from
the HOL Light mode for Emacs. Below we describe the steps to deploy and test
HOLyHammer for Formal Optics.

3.1 Deployment

We have streamlined the HOLyHammer installation and deployed it on a faster
dedicated machine with 12 hyperthreading 2.6 GHz Xeons in Canada (U. of
Alberta), which was serving so far the users of the similar online service for
Mizar [9]. The HVG members were given access rights to upload their devel-
opments there, to update them, and their Emacs mode was configured to ask
queries to this server. Such a dedicated/local HOLyHammer installation is now
quite easy and we hope that more users will use this option and we will even-
tually build a network of such online “hammer” installations that will further
synchronize between them their proof data, projects, CPU-load, etc., in the spirit
of large distributed formal wikis [2].

3.2 Experiments with Complete Automation

We have measured the strength of the HOLyHammer automation on the Ray (Ray
Optics) and EMF (Electromagnetic Optics) formalizations. These two projects
are both based on HOL Light’s Complex Multivariate Analysis, and they together
contain 482 proved toplevel theorems and 125 definitions.2 Table 1 shows the
performance of 11 ATPs in proving the 482 theorems from their recorded HOL
Light dependencies, and Table 2 shows the performance of various strategies that
combine the three best ATPs with premise selection using learning from previous
proofs3. The learning method used in all cases was distance-weighted k-nearest
neighbor with IDF-weighted normalized term-based features [10]. The results
are encouraging: the combined strength of the methods reaches nearly 50 % (239

2 Many definitions are just abbreviations introducing proper physics terminology.
3 The complete set of ATP inputs generated by HOLyHammer and the corresponding
ATP outputs are available at http://cl-informatik.uibk.ac.at/∼cek/cicm15/data.tgz.

http://cl-informatik.uibk.ac.at/~cek/cicm15/data.tgz
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problems solved) in the first scenario when the premises are chosen by the user.
236 of these problems are already solved by one of the best three ATPs (Epar,
Vampire 3.0, and Z3 4.0). The performance is 45 % (217 problems solved) in
the fully automated mode when the relevant premises are chosen automatically
by machine learning, and seven different combinations of premise selection and
ATPs are needed for this. Note that there are 105 problems that Paradox found
counter-satisfiable. This means that the incompleteness of the currently used
HOL-to-FOL translation shows quite considerably on these problems, making
more complete encodings an interesting problem to address in this context.

Table 1. ATP re-proving with 300 s time limit on the 482 Emf and Ray top-level
problems

Prover Theorem (%) CounterSat (%)

Epar 219 (45.436) 0

Vampire 3.0 210 (43.568) 0

Z3 4.0 210 (43.568) 0

CVC4 1.3 201 (41.701) 0

Vampire 2.6 198 (41.079) 0

E 1.8 189 (39.212) 0

SPASS 3.5 154 (31.950) 0

Metis 2.3 152 (31.535) 0

iProver 1 116 (24.066) 0

Prover9 09.11a 114 (23.651) 0

Paradox 4.0 0 (0.000) 105 (21.784)

any 239 (49.585) 105 (21.784)

A brief review of the fully automatically solved problems shows that
HOLyHammer is particularly useful in automating proofs about complex vec-
tors (used in the representation of planar waves) in Electromagnetic Optics, for
example the following relation4 between collinearity and orthogonality of com-
plex vectors is proved by Epar using 17 other previous theorems:

∀x y:complex^N.

collinear_cvectors x y ∧ ¬(x=cvector_zero) ∧ ¬(y=cvector_zero)
=⇒ ¬(corthogonal x y)

An example of a fully automatically proved lemma in Ray Optics is a statement5

about the stability of an optical resonator (represented by its ray transfer matrix)
under certain conditions. In this case the AI/ATP found a relevant special lemma
where most of the hard proving work was done, and which together with six
auxiliary lemmas can be used to automatically prove the more general statement:
4

http://mizar.cs.ualberta.ca/hh/ses/Emf202/cvectors.html#CORTHOGONAL COLLINEAR
CVECTORS.

5
http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html#STABILITY LEMMA GENERAL
SYM.

http://mizar.cs.ualberta.ca/hh/ses/Emf202/cvectors.html#CORTHOGONAL_COLLINEAR_CVECTORS
http://mizar.cs.ualberta.ca/hh/ses/Emf202/cvectors.html#CORTHOGONAL_COLLINEAR_CVECTORS
http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html#STABILITY_LEMMA_GENERAL_SYM
http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html#STABILITY_LEMMA_GENERAL_SYM
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Table 2. ATP proving with k-NN premise selection and 300 s time limit on the 482
Emf and Ray top-level problems

Prover Premises Theorem (%)

Epar 1024 170 (35.565)

Epar 128 155 (32.158)

Vampire 3.0 128 121 (25.104)

Vampire 3.0 1024 119 (24.895)

E 1.8 128 104 (21.577)

Z3 4.0 128 103 (21.369)

Epar 32 102 (21.162)

Vampire 3.0 32 92 (19.087)

E 1.8 32 91 (18.880)

Z3 4.0 32 89 (18.465)

E 1.8 1024 68 (14.226)

Z3 4.0 1024 64 (13.389)

any 217 (45.021)

∀ (M:real^2^2) xi thetai.

(det (M) = &1) ∧ ( −&1 < (M$1$1 + M$2$2) / &2) ∧ (M$1$1 + M$2$2)/&2 < &1

=⇒ ∃(Y:real^2). ∀n.
abs (((M pow 2) pow n ** vector [xi; thetai])$1) ≤ Y$1

∧ abs (((M pow 2) pow n ** vector [xi; thetai])$2) ≤ Y$2

3.3 Linking to Informal Physics Explanations

Formal mathematics as a science enjoys a remarkable property: it is in some
sense fully “understood” by machines. Computers can correctly parse the for-
mal definitions and statements, verify the proofs, and sometimes even find proofs
independently of humans, regardless of any possible motivation and underlying
intuition ivolved in proposing the definitions, theorems, proofs and theories. In
this sense, formal mathematics is completely self-explanatory. While (physical)
intuition may play varied part in formulation of various theories, such theories
as formal mathematical objects are independent and decoupled from their (pos-
sible) underlying intuition. It is not unusual that for some abstract theory a new
application is found, which has very little in common with the original intuition.
Similarly, the popular term “abstract nonsense” refers to abstract arguments
(e.g., in category theory) which are hard to link to any particular intuition.
While some physicists (notably Feynman) criticized such decoupling from phys-
ical intuition as harmful, it is a fact that many mathematicians (to say nothing
about computers) do mathematics without such links.

We believe that here is a real difference between (formal/abstract) mathemat-
ics and physics, and this difference really needs to be addressed by appropriate
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tools assisting formalization of physics. In physics, there is always first some
underlying intuition about (part of) the real world, and this intuition is more or
less perfectly captured by various abstract mathematical models. An important
part of physics is the informal understanding of the (intended) correspondence
between the physical phenomena and their formal models. This understanding
however is not (yet) part of the actual formal code. In particular, those of us who
are not experts in optics have found it significantly harder to understand some
of the formal definitions modelling the physical systems and phenomena. While
abstract concepts like sets, quasigroups, categories and topological spaces are
acceptable to mathematicians as just such abstract concepts described by their
formal definitions, taking an “optical resonator” to be just its formal definition
does not seem to be right, because it forgets the “real” physical phenomenon
that is linked to (and motivating) the particular choice of the formal model.

A solution that does not require much work from the formalizers (and which
can even be done later by others) is to allow special comments in the formal text,
that are during the HTML-ization turned into cross-links to informal explana-
tions, in our case to Wikipedia. Such cross-links can be also harvested from
the formalizations, thus providing an informal overview (and in some sense also
high-level semantic anchors) of the physics topics dealt with in the formal code.
About 20 such Wikipedia annotations have been inserted into the Ray Optics
formalization,6 making the resulting HTML presentation considerably easier to
understand for some of us. Another very interesting informal resource that could
provide such semantic anchors are the three volumes of Feynman’s lectures that
have been recently published online in a form that makes use of state-of-the-art
informal presentation technologies such as MathJax.7

4 Some Issues and Considerations in Formal Physics

The tighter link between the formal mathematical theory and its underlying
(physical) intuition is likely just one of several interesting differences between
formalization of physics and formalization of mathematics. Clearly, the most
obvious theoretical issue is whether it is possible to consistently formalize the
whole of physics at all, and what should be the ultimate foundational framework
for such formalization. For example, Beeson in [4] briefly derives (what he calls) a
contradiction between quantum theory and general relativity that is apparently
well-known to physicists, and which can perhaps be understood as quantum
physics breaking some of the assumptions of general relativity about all possible
worlds being regular solutions to Einstein’s equations. There are probably several
answers to this famous problem by current theoretical physics, the best-known
involving various string and superstring theories for which we still lack enough
experimental evidence.

This however just brings up the main issue with physics: it is about mod-
elling the real world “well enough” which we do not fully know and probably
6 See, e.g., http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html.
7 http://www.feynmanlectures.caltech.edu/.

http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html
http://www.feynmanlectures.caltech.edu/
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never will. As already the several approaches to the formalization of optics show,
there are typically several models of the same phenomena. These models will
often be “almost compatible” in terms of their predictions when used on their
intended domain, e.g., the more complicated electromagnetic optics model will
largely agree with the simpler ray optics model on an important class of optics
problems. As one goes farther away from this class of problems, the predic-
tions of these two models will disagree more and more. Some models designed
for very different phenomena, such as the quantum-theoretical and relativistic,
might quickly yield hard contradictions as soon as one tries to use both of them
at once. A proper foundational framework should make such relations between
the models as explicit as possible (e.g., by theorems exhibiting the asymptotic
relations between the models and/or their incompatibilities and scope, perhaps
enhancing by such explicit relations formalization frameworks such as Little The-
ories and Realms [5]), so that one can consistently and automatically combine
the knowledge contained in them in the same way as the current large-theory
AI/ATP methods do over large mathematical corpora.

An interesting related issue is to what extent such careful “theory engineer-
ing” could assist, emulate, or even replace “proper” mathematical solutions to
inconsistencies in physics, such as the Dirac delta “function” (made consistent
later by Schwartz’s distributions), the physics way of treating the infinitesimals
(made consistent by Robinson’s ultraproduct models) or various approaches to
counting with infinities (regularization, renormalization) in Feynman’s diagrams.

There are also many practical issues and tasks that are already visible in our
experiments. Physics is a heavy user of computation, and the pragmatic app-
roach used sometimes by the HVG group is to just trust the results of computer
algebra systems (e.g., using Mathematica to compute the numerical eigenvalues
of the waveguide when there is no closed form solution [14]), temporarily adding
them as axioms [14]. This is going to be a rich source of research problems for
Calculemus-style projects, SMT solving, systems like MetiTarski, etc. In short,
we suggest FOP as a rather exciting and very large and rewarding research topic
whose automation, foundations and presentation issues will keep the formaliza-
tion community busy in the next years, hopefully greatly expanding its current
borders and methods.
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