q

Check for
updates

HOL4PRS: Proof Recommendation
System for the HOL4 Theorem Prover

Nour Dekhil®) @, Adnan Rashid®, and Sofiéne Tahar

Department of Electrical and Computer Engineering, Concordia University,
Montreal, QC, Canada
{n_dekhil,rashid,tahar}@ece.concordia.ca

Abstract. Interactive theorem provers have emerged as powerful tools
for formal verification, aiding in the rigorous verification of mathematical
proofs and software correctness. However, the process of constructing and
manipulating proofs within these systems can be complex and labor-
intensive, often requiring significant expertise and time investment. In
this work, we explore the integration of deep learning techniques to assist
users of interactive theorem provers by recommending proof steps, aiming
to enhance their productivity and efficiency. We develop a tailored tool
designed to assist users of the HOL4 theorem prover, providing expert
recommendations on the best tactics to employ based on the current
state of a proof using a transformer-based model.

1 Introduction

Interactive theorem proving (ITP) is a widely used formal method, which is based
on developing a computer-based mathematical model of a system using higher-
order logic and rigorously analyzing the properties of the underlying system using
deductive reasoning. It has been widely used for developing mathematical proofs,
verification of hardware, and software systems. Despite its significance, I'TP faces
various challenges, such as laborious proof writing, managing extensive reposi-
tories and efficiently navigating various tactics for verification tasks. Integrating
deep learning assistance into ITP tools offers an opportunity to streamline the
interactive proof process by providing personalized guidance and recommending
optimal proof steps based on the current state of the proof.

HOLA [1] is one of the widely used higher-order-logic (HOL) interactive the-
orem provers. However, the process of writing formal proofs and navigating the
extensive repositories of theorems within HOL4 requires a solid understanding
of logic, mathematical reasoning, and the proof development process, which is
quite laborious and time-consuming. In the recent past, various artificial intel-
ligence based efforts have been done for assisting users towards the automa-
tion of the HOL4 proof development process. For instance, tools like Tactic-
Toe [2] and TacticZero [3] have made significant contributions in aiding proof
search using techniques such as reinforcement learning and k-Nearest Neigh-
bors (k-NN), respectively. Despite these advancements, TacticToe’s reliance on
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supervised learning may constrain its efficiency when faced with new complex
theorems that require advanced reasoning. Similarly, the agent trained in Tac-
ticZero may struggle to adapt to new complex theorems, potentially leading to
a decrease in performance. Deep learning techniques, such as transformer-based
models have a potential to overcome the above-mentioned challenges with I'TP
by capturing semantic relationships and patterns in proofs. To our knowledge,
these techniques have not been explored within HOLA4.

In this paper we present a new tool HOL4PRS (HOL4 Proof Recommen-
dation System) that employs advanced deep learning models, such as BERT,
RoBERTa, and T5, to assist the theorem proving tasks within the HOL4 theo-
rem prover. These advanced models have demonstrated exceptional capabilities
in natural language processing, understanding intricate patterns in text data,
and generating contextually relevant outputs. By integrating these sophisticated
models, HOL4PRS offers users highly accurate guidance, as demonstrated by
evaluation results (presented in Sect. 4) showing accuracies of 77.3%, 89.8%, and
93.7% for the top 3, 7, and 10 proof step recommendations, respectively. The
current version of HOL4PRS is available at [4], which can be used for experi-
mentation and further development.

The rest of the paper is structured as follows: Sect. 2 presents an overview of
our proposed methodology, outlining the key steps and techniques employed in
our approach. In Sect. 3, we provide the process of the dataset creation from a
number of HOLA4 libraries alongside the deep learning models used in HOL4PRS.
Section 4 presents the experimental results and evaluation of the performance
of the tactic recommendation models. In Sect. 5, we discuss related work. We
conclude the paper in Sect. 6 with hints to future work directions.

2 Proposed Methodology

Figure 1 depicts a workflow for HOL4PRS. It accepts a HOL4 proof state as an
input (given in the right upper half of the figure), which contains a sequence
of tactics (in our case, a minimum of three) that have been applied so far in
an attempt to construct a proof within the HOL4 theorem prover. Advanced
analysis techniques are then employed to dissect this proof state, identifying
patterns and potential strategies for further progression. Based on extensive pre-
training on diverse datasets, we generate a tailored list of recommended tactics
relevant to the given proof state for a theorem. These recommendations aim to
assist users in their proof process, potentially enhancing efficiency and efficacy.

We initiate the development of HOL4PRS by constructing a dataset tailored
to our objectives. For this purpose, we selected 6 HOL4 libraries (as given in
the left upper half), through which we iterated the proof scripts (sml files) to
extract the complete proofs of theorems and lemmas. As the process of achiev-
ing a complete proof involves various states, we identified these proof states
and their relevant subsequent steps for further progression. At this stage, spe-
cific preprocessing tailored to the model comes into play, involving tasks, such
as tokenizing the files, specifying the numerized vocabulary to the model, and
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splitting the available data into testing and training sets. With the dataset pre-
pared for training, we fine-tune the selected models, considering hyperparameter
tuning, a process that resulted in multiple trained model instances. We conclude
the experiments by evaluating the trained models and selecting the one with the
highest accuracy.
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Fig. 1. Workflow Illustration for the HOL4PRS Tool.

We believe that the proposed workflow of HOL4PRS is generic enough to
be applicable to a variety of other provers such as HOL Light, Coq, PVS, etc.
We provide more details about these blocks of the HOL4PRS workflow in the
subsequent sections.

3 Dataset and Deep Learning Models
In this work, we constructed our own HOL4 dataset from five HOL4 theories!
developed at the Hardware Verification Group (HVG) of Concordia University,
enabling us to gather a diverse corpus of proofs. The sixth theory is about
real arithmetic and is available in HOL4? Here, we briefly present the dataset
construction process and the data prepossessing involved in HOL4PRS.

We initiated the dataset construction process by gathering all proof scripts
(sml file) from the selected libraries. Next, for each sml file, we systematically

! Dataset 1: https://hvg.ece.concordia.ca/projects/prob-it/pr9
Dataset 2: https://hvg.ece.concordia.ca/projects/prob-it/wsn
Dataset 3: https://hvg.ece.concordia.ca/projects/prob-it/pr10
Dataset 4: https://hvg.ece.concordia.ca/projects/prob-it/pr5
Dataset 5: https://hvg.ece.concordia.ca/projects/prob-it/pr7

2 Dataset 6: https://dLacm.org/doi/10.1145/3341105.3373917
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list every available lemma and theorem. Subsequently, a script was executed to
extract the proof steps (tactics) employed to verify each lemma and theorem.
This procedure resulted in a file containing a list of proof sequences detailing all
proof steps employed to prove all theorems and lemmas available in the relevant
library.

We aim to improve theorem proving efficiency by predicting the next proof
step (tactic) based on a current proof state, which consists of a sequence of
tactics already utilized in the proof. Employing language models, we approach
this task as a multi-label classification problem. This classification approach
acknowledges the inherent complexity and uncertainty in theorem proving tasks,
where multiple tactics can lead to a successful proof. To prepare the dataset for
the multi-label classification, we restructure the initial dataset composed of the
complete proof sequence by generating pairs of current proof states and future
tactics. Here, a proof state is an instance, where a certain number of tactics
have been applied in the proof process. In our case, for each sequence of n
tactics in the initial dataset that are required to prove a theorem, we created
n — 4 instances, considering sequences with a minimum history of three tactics.
This enables recording all possible proof states of varying lengths and associating
each state with its subsequent tactic. Additionally, instances with similar tactic
histories but different future tactics were included, thereby facilitating multi-
label classification. Table 1 summarizes details of our datasets from various HOL4
libraries including Dataset 7, which is a combination of all other six datasets.

Table 1. Summary of the used Datasets

Dataset 1| Dataset 2 | Dataset 3 | Dataset 4 | Dataset 5 | Dataset 6 | Dataset 7
Distinct Tactics | 115 132 26 44 32 89 162
Proofs 1,873 2,475 153 295 61 279 5,136
Proof States 43,167 57,602 2,973 7,371 1,784 3,259 116,156

Having access to rich datasets from various HOL4 libraries, we experiment
with three different transformer-based models [5]. Based on most recent work [6]
on text classification and related work [7] that used T5, we choose BERT,
RoBERTa, and T5. BERT (Bidirectional Encoder Representations from Trans-
formers) [8] utilizes bidirectional transformers to capture contextual information
from words in a sentence, aided by positional encoding. RoBERTa (Robustly
optimized BERT approach) [9] extends BERT’s architecture with dynamic mask-
ing during pre-training and longer training periods on larger data batches for
improved performance. T5 (Text-To-Text Transfer Transformer) [10], built upon
the Transformer architecture, features self-attention mechanisms enabling pre-
cise weighing of word importance, facilitating seamless transfer learning by pre-
training on extensive text corpora.
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4 Experimental Results

We implement the selected models using the PyTorch Lightning [11] library.
To optimize the training, we conducted experiments with varying batch sizes,
learning rates, and weight decay parameters, aiming to minimize the training
loss function. Each model undergoes training for 10 epochs and we preserve
the model instance yielding the highest testing accuracy. Moreover, the dataset
partitioning allocated 90% for training and 10% for testing. These experiments
were executed on GPUs provided by the Digital Research Alliance of Canada®.

Given that there are multiple potential future steps at every proof state, we
recommend more than one proof step. To assess the accuracy of the recommenda-
tions, we employ the n-correctness rate as an evaluation metric, which represents
the probability that a correct tactic from the testing dataset is included among
the top-n recommended tactics. Here, n denotes the number of recommended
tactics considered for evaluation against the correct tactic.

Table 2 presents the evaluation results for tactic recommendation across six
datasets using our selected models. Notably, the table illustrates that the higher
the value of n tactics considered, the higher the n-correctness rate, which is intu-
itive. However, for an efficient recommendation tool, it is preferable to provide
fewer but more confident recommendations. Interestingly, for the same value of
n and model, the correctness varies across different datasets, influenced by the
quality and patterns of proofs in the dataset. Therefore, a dataset with more
proofs containing repetitive patterns and a narrower space of tactics leads to
better model performance. For instance, consider Datasets 3 and 6, which have
a comparable number of proof states. However, Dataset 3 features a smaller num-
ber of distinct tactics. Upon comparing their results across the three models, we
notice that dataset 3 exhibits higher accuracy.

To provide the models with a broader view of proof styles, we merged the six
different theories of proof into a single dataset and conducted a new round of
training. Our findings indicate that RoOBERTa consistently outperformed other
models in most scenarios. RoOBERTa demonstrated exceptional adaptability and
generalization despite potential variations in the nature of proofs from different
theories. In comparison to related works, where accuracies range from 50%-70%
for the top 3-5 recommendations in [7], 87% for the top 3 in [12]|, and 54.3%
for the top 10 in [13], our model exhibits a notable improvement. Achieving
accuracies of 77.3%, 89.88%, and 93.7% for the top 3, 7, and 10 recommenda-
tions, respectively. Our model surpasses most related work, marking a significant
impression in recommending correct tactics for proof generation in HOLA4.

5 Related Work

In recent years, significant research efforts have been done to employ artifi-
cial intelligence to streamline the process of verification using HOL theorem
provers. The objective of aiding practitioners in writing proofs in theorem provers

3 https://alliancecan.ca.
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Table 2. Performance Evaluation of Tactic Recommendation Models

Datasets T5 BERT RoBERTa

Top3 [Top 7 |Top 10| Top 3 |Top 7 |Top 10| Top 3 |Top 7 | Top 10
Dateset 1 | 51.3% |68.7% |76.4% |52.7% |71.9% |79.9% | 54.5% |73.6% |93.7%
Dateset 2 | 60.4% |75.5% |80.5% |60.5% |78.9% |86.3% |59.7% |79.5% |85.8%
Dateset 3 |69.8% |93.4% |95.4% | 76.1% |93.9% '97% 78.4% |94.4% | 97.5%
Dateset 4 | 77.3% |95.3% | 97.2% |87.3% 97.0% |98.5% |89.5% |97.8% |98.8%
Dateset 5 | 76.6% |97.6% | 98.2% |76.6% 97.6% |98.2% |76.6% |97.6% |97.6%
Dateset 6 | 39.9% |55.2% 61.9% |45.1% 65.4% |72.7% |43.4% |64.3% |73.8%
Dataset 7| 72.9% | 85.6% 87.8% | 75.4% | 88.7% 92.3% | 77.3% | 89.8%  93.7%

has been approached through various avenues, including proof step generation,
premise selection, and proof search.

Proof Step Generation involves providing guidance on the most suitable proof
steps or tactics to use within a specific proof context. For instance, Gauthier et
al. [2] developed a tool TacticToe that uses k-NN to predict the most suitable
HOL4 tactics for each proof situation, achieving an overall success rate of 66.4%
on 7,164 theorems of the HOL4 standard library. In a somehow similar work for
HOL4, Wu et al. [3] developed a tool, called TacticZero, that uses reinforcement
learning for predicting most suitable tactics in the proof process of a theorem
from scratch, the authors used a dataset of 1,342 theorem for training and testing.
In [12], Blaauwbroek et al. introduced a tactic proof search framework for the
Coq theorem prover that leverages machine learning to identify a correct tactic
23.4% of the time for a given proof state. Similarly, Luan et al. [13] utilized
the Long Short-term Memory (LSTM) model to automate the proof process in
Coq by predicting the next tactics, and achieved an impressive 87% accuracy in
predicting the top 3 tactics. More recently, Yeh et al. [7] developed CoProver, a
system based on transformers, enabling learning from historical proof steps to
predict the next steps in the PVS theorem prover, with top 3/5 recommended
proof steps yielding accuracies of 50%/70% on the validation set.

Premise Selection focuses on identifying useful theorems that are crucial for
successful proof progression. For example, Alemi et al. [14] proposed a tool to
predict the most relevant premises in the E Prover using Convolutional Neural
Networks (CNN), achieving success rates ranging from 78.4% to 80.9%. Similarly,
Kaliszyk et al. [15] employed K-NN and Naive Bayes to select the most relevant
premises (theorems) likely to aid in proving mathematical conjectures within
the Flyspeck project in the HOL Light theorem prover. The authors presented
the HOL(y)Hammer system that has been able to achieve a success rate of
39% in proving 14185 theorems in the same project. This work was followed by
an adaptation of the HOL(y)Hammer system for HOL4 [16], providing premise
selection and automated reasoning capabilities to enhance the proof process in
HOL4 using k-NN.
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Proof Search aims to learn from existing proofs to generate potential proof
paths for given theorems. For instance, First et al. [17] utilized beam search to
automatically generate complete Coq proof scripts for proving the target the-
orem. The authors have been able to successfully prove 12.9% of the testing
theorems. Also the tool TacticToe [2] combines Monte Carlo tree search and
supervised learning algorithms to guide proof search, resulting in a high success
rate for proving HOL4 theorems. Finally, the tool TacticZero [3] uses a reinforce-
ment learning environment to guide an agent in predicting complete proofs by
navigating through a series of tactic applications and proof steps towards the
final theorem.

In this paper, we used more recent deep learning models to generate proof
step recommendations for HOL4 proofs. Our research builds on the significant
efforts made in related work by investigating the potential of transformer-based
models, which are renowned for their capability to discern patterns in contextual
data. We trained these models on project-specific proof scripts authored by a
single individuals, as these scripts often exhibit higher levels of repetitiveness and
distinct patterns. This approach contrasts with prior studies on HOL4, which
have not explored the use of transformers or application-specific proofs, typically
relying on the HOL4 standard library.

By incorporating transformer models, our objective is to enhance the pre-
cision and effectiveness of recommending proof steps for the HOL4 theorem
prover. The selection of transformer-based models was influenced by their abil-
ity to effectively capture long-range dependencies in sequences, which is crucial
for understanding the context and patterns in sequences of tactics used in theo-
rem proving. We conducted experiments with models such as BERT, RoBERTa,
and T5 to determine the most suitable model for our datasets. After evalua-
tion, RoOBERTa demonstrated strong performance in predicting the next tactic
in the Proof Recommendation System for the HOL4 Theorem Prover, achieving
correctness rates ranging from 64.3% to 97.8% across various datasets.

6 Conclusion

HOL4PRS introduces a novel tool tailored to enhance the HOL4 theorem proving
through the integration of a RoOBERTa model. Specifically, the tool operates by
receiving a sequence of tactics (minimum three in our case) already employed in
the proof process, which we refer to as the current proof state, and providing rec-
ommendations for the optimal next proof step. The RoBERTa model employed
in this context builds upon the Transformer architecture which is renowned for
its advanced contextual understanding and proficient text generation capabili-
ties. Future work could focus on expanding HOL4PRS to include more HOL4
theories and enhancing its interfacing with HOL4. Furthermore, investigating the
HOL4PRS potential to autonomously generate complete proofs could streamline
the theorem proving process.
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