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Abstract. Photonic signal processing is an emerging area of research,
which provides unique prospects to build high-speed communication sys-
tems. Recent advancements in fabrication technology allow on-chip man-
ufacturing of signal processing devices. This fact has lead to the
widespread use of photonics in industrial critical applications such as
telecommunication, biophotonics and aerospace. One the most challeng-
ing aspects in the photonics industry is the accurate modeling and anal-
ysis of photonic devices due to the complex nature of light and optical
components. In this paper, we propose to use higher-order-logic theo-
rem proving to improve the analysis accuracy by overcoming the known
limitations of incompleteness and soundness of existing approaches (e.g.,
paper-and-pencil based proofs and simulation). In particular, we formal-
ize the notion of transfer function using the signal-flow-graph theory
which is the most fundamental step to model photonic circuits. Conse-
quently, we formalize and verify the important properties of the stability
and the resonance of photonic systems. In order to demonstrate the ef-
fectiveness of the proposed infrastructure, we present the formal analysis
of a widely used double-coupler double-ring (DCDR) photonic processor.

Keywords: Photonic signal processing · Signal-flow-graph · Theorem
proving · HOL light

1 Introduction

Recent advances in communication technology resulted in the development of so-
phisticated devices such as multifunction routers and personal digital assistants
(PDAs); which brought additional challenges of high-speed, low power and huge
bandwidth requirements. However, traditional electronic communication has al-
ready reached a point where such issues cannot be addressed. On the other hand,
photonics technology offers promising solution to resolve these bottlenecks and
provides the better convergence of computation and communication, which is
a key to cope with future communication challenges. Although, the complete
replacement of existing communication systems is not possible at this point, fu-
ture communication systems will be based on electronic-photonic convergence
as mentioned in the MIT’s first Communications Technology Roadmap (CTR)
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[7]. Moreover, some feasibility studies have been conducted to demonstrate the
realization of large scale (100,000-node) photonic networks which indicate that
photonics has the capabilities to interconnect thousands of computing nodes
with an ultimate goal of building Exaflops/second links [19]. The main require-
ment of designing such systems is to process light waves (counterpart of elec-
tronic signals) to achieve the desired functionality such as light amplification,
filtering and ultrashort pulse generation. Photonic signal processing (PSP) [5]
is an active area of research which offers an efficient framework to process high
bandwidth signals with low power consumption. The demand of miniaturized
communication devices and recent advances in fabrication technology resulted
in the development of very large scale integrated (VLSI) photonic circuits [10].
One of the core steps in photonic systems development life cycle is the physical
modeling of fundamental building-blocks such as photonic filters and amplifiers
[5]. A significant portion of time is spent finding bugs through the validation of
such models in order to minimize the failure risks and monetary loss. In par-
ticular, this step is more important in industrial applications, where failures
directly lead to safety issues such as in aerospace and biomedical devices. For
example, the mission management system of Boeing F/A-18E is linked using a
photonic network [25]. In general, there are several aspects of light-wave systems
which need to be analyzed; however, the focus of this paper is photonic signal
processing which forms the core of modern communication devices.

The first step to analyze the behavior of PSP systems is to obtain the transfer
function which relates the input and output signals (light-waves). Consequently,
the test for the stability (which ensures that the system output is always finite)
and resonance (which ensures the oscillation of light waves at certain frequen-
cies) conditions of the photonic circuit can be identified which are the foremost
design criterion. One primary analytical approach is to compute the transfer
function by explicitly writing node and loop equations which can further be
utilized to analyze some physical aspects (e.g., transfer intensity and dispersion
[9]) of photonic systems. Recently, however, the signal-flow graph (SFG) the-
ory (originally proposed by Mason [17]) has been extensively used to compute
the transfer function of PSP systems. The main motivation of this choice was
inspired by its successful applications in electrical and control systems. Indeed,
the problem of finding the transfer function reduces to the computation of the
forward paths and loops which further can be plugged into the Mason’s gain
formula (MSG) [17] (which provides an easy way to find the transfer function).
The analysis of complex photonic systems using paper-and-pencil based proofs
[5] and computer algorithms [11] is not rigorous and sound and thus cannot be
recommended for safety critical applications. We believe that there is a dire need
of an accurate framework to build high assurance photonic systems.

The main focus of this paper is to formalize the signal-flow-graph theory
along with the Mason’s gain formula and strengthen the formal reasoning sup-
port in the area of photonic signal processing. Indeed, our current work is at
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the intersection of two ongoing projects12, i.e., the formalization of different
theories of optics and the formal analysis of signal processing systems. As a
first step towards our ultimate goal, we present in this paper the higher-order
logic formalization of signal-flow-graph theory and Mason’s gain formula for the
computation of transfer functions in HOL Light theorem prover [12]. Next, we
formalize the notion of stability and resonance along with the formal verification
of some important properties such as the finiteness and the cardinality of the
set of poles (complex-valued parameters at which the system becomes unstable)
and zeros (parameters which determine the resonance condition in the system).
In order to show the practical utilization of our work, we formally verify the
transfer function of a double-coupler double-ring (DCDR) circuit [5], which is
a widely used photonic signal processor. Consequently, we derive the general
stability and resonance conditions (for both coherent and incoherent operation
[5]), which greatly simplifies the verification for any given DCDR configuration.
The rigor of higher-order-logic theorem proving allows us to unveil all the hidden
assumptions in the paper-and-pencil based approach reported in [5]. Moreover,
we also found some incorrect stability conditions and we formally prove that
these conditions lead to an unstable operation of the DCDR circuit. The source
code of our formalization is available for download [3] and can be utilized by
other researchers and engineers for further developments and the analysis of
more practical systems.

The rest of the paper is organized as follows: we highlight the most relevant
work about the formal analysis of optical and photonic systems in Section 2.
Some fundamentals of signal-flow-graph theory and the Mason’s gain formula
are reviewed in Section 3. We present the formal analysis framework for the
photonic signal processing systems along with highlights of our higher-order
logic formalization in Section 4. We describe the analysis of the DCDR photonic
processor as an illustrative practical application in Section 5. Finally, Section 6
concludes the paper and provides hints for some future directions.

2 Related Work

In the last decade, formal methods based techniques have been proven to be
an effective approach to analyze physical, hybrid and digital engineering sys-
tems. Here, we describe the most relevant works for analyzing optical systems
using theorem proving. The pioneering work about the formal analysis of opti-
cal waveguides has been reported in [13]. However, this work is primarily based
on real analysis in HOL4 which is insufficient to capture the dynamics of the
real photonic systems which involve complex-valued electric and magnetic fields.
In [20], a preliminary infrastructure has been developed in HOL Light to ver-
ify some fundamental properties (e.g., ray confinement or stability) of optical
systems based on ray optics which can only be used when the size of involved
optical components is much larger than the wavelength of light. However, the

1 http://hvg.ece.concordia.ca/projects/optics/
2 http://hvg.ece.concordia.ca/projects/signal-processing/

http://hvg.ece.concordia.ca/projects/optics/
http://hvg.ece.concordia.ca/projects/signal-processing/
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physical meaning of stability considered in [20] and in the current paper are
totally different, as the first is related to the ray confinement conditions inside
a cavity and later deals with the finite output response. In [22], a preliminary
formalization of photonic microresonators has been reported which is only fo-
cused towards the transmission and reflection properties of light-waves. This
work cannot be used to analyze many signal processing properties of optical
systems particularly stability and resonance. A more recent work about quan-
tum formalization of coherent light has been reported in [15], with potential
applications in the development of future quantum computers. Other interesting
works are the formalization of Laplace transform [23] and Z-transform [21] in
the HOL Light. Both of these transformations are less popular in the photonic
community due to the additional overhead of transforming back-and-forth from
time to frequency domain. On the other hand, most PSP systems can directly
be described using the SFG theory where properties of interest (such as stability
and resonance) can be analyzed [5]. This is the main motivation of choosing the
signal-flow-graph approach to model photonic processing systems in our work.

3 Signal-Flow-Graph Theory and Mason’s Gain Formula

A signal-flow graph (SFG) [17] is a special kind of directed graph which is widely
used to model engineering systems. Mathematically, it represents a set of linear
algebraic equations of the corresponding system. An SFG is a network in which
nodes are connected by directed branches. Every node in the network represents
a system variable and each branch represents the signal transmission from one
node to the other under the assumption that signals flow only in one direction.
An example of an SFG is shown in Figure 1 consisting of six nodes. An input
(source node) and an output (sink node) are those which only have outgoing
branches and incoming branches, respectively (e.g., node 1 and node 6 in Figure
1). A branch is a directed line from node i to j and the gain of each branch is
called the transmittance which is represented by tij as shown in Figure 1. A path
is a traversal of connected branches from one node to the other and if no node is
crossed more than once and it connects the input to the output then the path is
called forward path otherwise if it leads back to itself without touching any node
more than once it is considered as a feedback path or a loop. The loop containing
only one node is called self loop and any two loops in the SFG are said to be
touching loops if they have any common node. The total gain of forward path
and a loop can be computed by multiplying the transmittances of each traversed
branch.

In the analysis of practical engineering systems, the main task is to char-
acterize the relation among system input and output which is called transfer
function. The total transmittance or gain between two given nodes (usually in-
put and output) describes the transfer function of the corresponding system.
Mason [17] proposed a computational procedure (also called Mason’s gain for-
mula) to obtain the total gain of any arbitrary signal-flow-graph. The formula
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is described as follows [16]:
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∑

k
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Δ
(1)
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∑

m

Pm2 −
∑

m

Pm3 + . . .+ (−1)n
∑

. . . (2)

where Δ represents the determinant of the graph, Δk represents the value of Δ
for the part of graph that is not touching the kth forward path and it is called the
cofactor of forward path k, Pmr is the gain product of mth possible combination
of r non-touching loops. The gain of each forward path is represented by Gk.

4 Proposed Formal Analysis Framework

The proposed framework for the analysis of photonic signal processing systems,
given in Figure 2, outlines the necessary steps to encode theoretical fundamen-
tals in higher-order logic. In order to represent a given system in HOL, the first
step is the formalization of the signal-flow-graph theory which consists of some
new type definitions and the implementation of an algorithm which computes all
the elementary circuits (i.e., forward paths and loops). Consequently, this can be
used to formalize the Mason’s gain formula. The next step is the formalization of
the transfer function and its corresponding properties describing different situa-
tions such as systems with no forward paths or no touching loops, etc. In order
to facilitate the formal modelling of the system properties and reasoning about
their satisfaction in the given system model, the last step is to provide the nec-
essary support to express system properties in HOL, i.e., their formal definitions
and most frequently used theorems. These system properties are stability, which
ensures the finite behavior of the system, resonance, which provides the basis to
derive the suitable parameters at which the photonic circuit can resonate, and
frequency response, which is necessary to evaluate the frequency dependent sys-
tem response such as group delay. Finally, we apply the above mentioned steps
to develop a library of frequently used photonic signal processing components,
such as the double-coupler double-ring [5] or the add-drop filter [26].
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Fig. 2. Proposed Analysis Framework for Photonic Signal Processing Systems

4.1 Formalization of Signal-Flow-Graphs and Mason’s Gain

In this section, we only present a brief overview of the formalization developed
in our framework (Figure 2). A more detailed description can be found in [4].

We model a single branch as a triplet (a, tab, b), where a, tab and b represent
the start node, the transmittance and the end node, respectively. Consequently,
a path can be modeled as a list of branches and furthermore an SFG can be
defined as a composition of a path along with the information about the total
number of nodes in the circuit, sink and source nodes at which we want to
compute light amplitudes. As mentioned in Section 3, nodes and transmittance
represent the system variable and gain, respectively. These parameters are indeed
complex valued, i.e., a, tab, b ∈ C in the context of photonic systems. However,
the information about the nodes is just used to find properties of signals (light-
waves) transmission and they do not appear in the gain and transfer function
computation using Mason’s gain formula. So, we adopted the same approach
as proposed by Mason [17], where nodes of an SFG are represented by natural
numbers (N). In order to simplify the reasoning process, we encode the above
information by defining three type abbreviations in HOL Light3, i.e., branch,
path and signal-flow-graph as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)

new type abbrev ("path", ‘:(branch)list‘)

new type abbrev ("sfg", ‘:path × N × N × N‘)

where branch represents a triplet (a, tab, b). The second element of sfg represents
the total number of nodes whereas the third and fourth elements represent the
input and output nodes of a signal-flow-graph, respectively.

3 Note that throughout this paper, we used minimal HOL Light syntax in the pre-
sentation of definitions and theorems to improve the readability and for a better
understanding without prior experience of HOL Light notations.
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Our main task is to find all the forward paths and loops from the source node
to the sink node given by the user. We implemented a procedure to extract this
information which is mainly inspired from the method proposed in [24]. Briefly,
we take an SFG and generate a matrix in which nodes are arranged in the first
column and each row represents the branches of the node under consideration.
In elementary circuits (loops) extraction, we start the process by the first node
of the SFG and go through all possible paths which start from the node under
consideration and test for each path whether it is a loop or not. In the next
iteration, we go to the next node of the graph and repeat the same process. For
forward circuits (forward paths) extraction, we repeat a similar process, but we
only consider the paths starting from the source node rather than exploring all
the nodes. For the sake of conciseness, we give the following two main definitions
of our formalization where more details can be found in [3].

Definition 2 (Elementary Circuits).
� ∀(system : sfg). EC system = if (fst of four system = [ ]) then [ ]

else all loops (EC MAIN system) system

Here, the function EC MAIN accepts an SFG, (system : path × N× N× N) and
returns the list of loops in which each loop is represented as a list of nodes only,
and all loops takes the result of EC MAIN and an SFG (system) and returns
the list of loops in the standard format where each branch represents a triplet.
Finally, the main function EC returns an empty list if the system has no branches
otherwise it gives the list of all loops in the system.

Definition 3 (Forward Circuits).
� ∀(system : sfg). FC system = if (fst of four system = [ ]) then [ ]

else forward paths (FC MAIN system) system

where the function FC MAIN accepts an SFG (system) and returns the list of
forward paths in which each forward path is considered as a list of nodes. Then
the function forward paths takes the result of FC MAIN and system and returns
the list of forward paths, such that each forward path is a list of branches.

Finally, we utilize above described definitions to formalize the Mason’s gain
formula given in Equation 1, as follows:

Definition 4 (Mason’s gain formula).
� ∀(system : sfg). Mason Gain system =

product gain det (EC system) (FC system)

determinant (EC system)

where the function Mason Gain accepts an SFG (system, which is a model of the
given system in our case) and computes the Mason’s gain as given in Equation 1.
Note that the function product gain det accepts the list of loops (Definition 2)
and forward paths (Definition 3) in the system and computes

∑
k∈system

GkΔk,
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where Gk and Δk represent, respectively, the product of all forward path gains
and the determinant of the kth forward path considering the elimination of all
loops touching the kth forward path as described in Section 3. The function
determinant takes the list of loops and gives the determinant of the system as
given in Equation (2).

We developed some simplification tactics for the loops and forward paths ex-
traction and Mason’s gain computations. For example, MASON SIMP TAC accepts
a list of theorems (or definitions) and automatically proves or simplify the goal
(more details can be found in the source code [3,4]). Next, we present the for-
malization of the transfer functions which is the second part of the proposed
framework (Figure 2).

4.2 Formalization of the Transfer Function

In practice, the physical behavior of any photonic signal processing system is
described by the transmittance of each path (or a single branch) involved in
the signal-flow-graph. We can consider each path as a system component which
processes the input light signal to achieve the desired functionality such as am-
plification, attenuation or delay [5]. The general expression for the photonic
transmittance is given as follows:

Ti = taiGiz
mi (3)

where i corresponds to the ith path, tai is the transmission coefficient for each
path expressed as the same path ta, the parameter Gi is the optical intensity
gain factor and mi is the delay factor of the ith path described as the power of
complex-valued parameter z. Note that the parameters tai and Gi are constants
whereas z is a variable quantity in the system. Indeed, the signal-flow-graph of
the given photonic system is expressed as function of z and we need to consider
this physical aspect in the formalization of the transfer function which describes
the overall behavior of the system. It is mentioned in Section 3 that the Mason’s
gain formula describes the total gain between the input and the output of the
system and hence it can be used to describe the transfer function of the photonic
system provided the given signal flow graph can be described as a function of a
complex parameter (z). We use the Mason’s gain formalization and the above
description to formalize the transfer function of a photonic system as follows:

Definition 5 (Photonic System Transfer Function).

� ∀system. transfer function system = Mason Gain (λz. system z)

where the function transfer functionaccepts a systemwhich has typeC → sfg

and returns a complex (C) quantity which represents the transfer function of the
photonic system(system).Next,wedefine the following twohelper functionswhich
simplify the formalization of the stability and resonance.

� ∀sys. numerator sys = product gain det (EC sys) (FC sys)
� ∀sys. denominator sys = determinant EC sys
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Finally, we verify that any photonic transfer function can be described in
terms of the numerator and denominator as follows:

Theorem 1 (Transfer Function).

� ∀system z. transfer function (system z) =
numerator (system z)

denominator (system z)

4.3 Formalization of System Properties

To this point, we covered the two components of the proposed framework (Fig-
ure 2) which concern the process of formal modeling of the photonic system
description provided by the physicists or optical system designers. In order to
verify that the given model meets its specification, we need to build the foun-
dations based on which we can formally describe the main system properties
(i.e., stability, resonance and frequency response) in HOL. Physically, the sta-
bility and resonance are concerned with the identification of all values of z for
which the system transfer function becomes infinite and zero, respectively. In
the signal processing literature, these values are called system poles and system
zeros which can be computed by the denominator and numerator of the transfer
function, respectively. Furthermore, all poles and zeros need to be inside the
unit circle which means that their magnitude should be less than 1. The fre-
quency response of the system can be computed by considering the parameter
z as a complex exponential exp(jw), where exp, j and w represent the base of
logarithm, the imaginary unit

√−1 and the angular frequency, respectively. We
formalize the above mentioned informal description of the system properties in
HOL as follows:

Definition 6 (System Poles).

� ∀system. poles system = {z | z �= 0 ∧ denominator (system z) = 0}
� ∀system. zeros system = {z | z �= 0 ∧ numerator (system z) = 0}
where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Note that we do not consider the case
z = 0 because it leads to unconditional stable or resonant system (i.e., 0 is always
inside the unit circle). Next, we formalize the notion of stability and resonance
as follows:

Definition 7 (System Stability and Resonance).

� ∀system. is stable psp system ⇔
∀p. p ∈ (poles system) =⇒ ‖ p ‖< 1

� ∀system. is resonant psp system ⇔
∀z. z ∈ (zeros system) =⇒ ‖ z ‖< 1

where the predicate is stable psp accepts the photonic system (system) and
verifies that the magnitude (norm of a complex number, ‖ pi ‖) of each element
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pi of the set of poles {p0, ..., pn} is smaller than 1. The function is resonant psp

is defined in a similar way by considering the zeros of the system.
Next, we verify two important theorems which describe that if the denomina-

tor or the numerator of the transfer function is a polynomial of order n, it will
always have a finite number of poles or zeros and the cardinality of the set of
poles and zeros can only be equal or less than n.

Theorem 2 (Finiteness and Cardinality of Poles).

� ∀n c system. ¬(∀i. i ∈ {0, 1, ..., n} ⇒ c i = 0)∧
(∀z. denominator (system z) =

∑
i∈{0,1,...,n}(λi. c i ∗ zi)) =⇒

FINITE (poles (system z)) ∧ CARD (poles (system z)) ≤ n

where n represents the order of the complex polynomial function c. The function∑
s takes two parameters, i.e., s which specifies the set over which the summation

occurs and an arbitrary function f : (A → RN). The functions FINITE and CARD,
represent the finiteness and cardinality of a set, respectively. We also prove the
same theorem for the set of zeros of a system, where more details can be found
in [3]. We formalize the frequency response of a photonic system, group delay
and dispersion [8] in terms of the transfer function where more details can be
found in [3].

5 Application: Analysis of Photonic Signal Processors

Photonic signal processors process light-waves to achieve different functionali-
ties such as switching, filtering and amplification. In practice, photonic signal
processors are of two types (coherent and incoherent) depending upon the na-
ture of light source used in the system. In incoherent photonic processors, the
coherence time (i.e., the interval within which the phase of light signal can be
predictable) [5] of the light source is much shorter than the unit time delay (or
sampling period). On the other hand, coherent processors require the coherence
time of the light source to be much longer than the basic time delay to achieve
coherent interference of the delayed signals. Both types of photonic processors
have wide application domains, e.g., incoherent systems are more stable and
mostly used as light amplifiers, whereas coherent integrated optical processors
are used in microwave communication systems [5]. The design and analysis of
photonic processors mainly involves three steps, i.e., specification of the desired
properties of the system, modeling using transfer function and the realization of
overall structure (parallel, cascaded, etc.). Given the processor specifications in
terms of nature of light sources, transmission powers and optical intensity, the
first step is to represent the system as an SFG, the identification of all forward
paths and feedback loops and then to compute the system transfer function.
Consequently, stability, resonance and frequency response analysis and architec-
tural optimization (possibility of reducing the total number of involved system
components) can be performed based on the given specifications. Our proposed
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framework (Figure 2) allows us to perform these steps (for both coherent and
incoherent signal processing) within HOL Light.

The double-coupler double-ring (DCDR) [5] is a widely used processor in the
domain of photonics due to its unique features such as compact size, low cost
and better compatibility with fiber communication devices. It also has many
important physical characteristics due to which it has been used as a photonic
filter [5], interferometer [6] and photonic switch [5]. Generally, a DCDR is com-
posed of two main components: (1) Optical directional coupler which are optical
devices that transfer the maximum possible optical power from one or more op-
tical devices to another one in a selected direction; and (2) Microring (or cavity)
which consists of a fiber ring and confine the light in a very small volume to
perform different operations such as light amplification and wavelength filtering.

Using the proposed framework, we formally analyze the DCDR circuit as both
coherent and incoherent signal processor. However, we present the analysis of
incoherent case while more details about the coherent case can be found in [3].
The schematic diagram of the DCDR circuit is shown in Figure 3 which consists
of two directional couplers interconnected with three optical fiber forward and
feedback paths. The fiber paths 3 - 6 and 4 - 5 are the forward paths of the
circuit while the path 7 - 2 is the feedback path of the circuit. The parame-
ters (k1, k2), and (T1,T2,T3) represent the power coupling coefficients of the two
couplers and the transmission functions of the forward paths, respectively. The
photonic transmittance can be expressed as Ti = taiGiz

mi for the ith forward
path as described in Section 4.2. The parameters (k1, k2) are the deciding factor
whether the processor is coherent or incoherent. Typically, for incoherent sys-
tems, k1 = 1− k2 and for coherent systems k1 =

√
1− k and k2 = −j

√
k, where

k is the intensity coupling coefficient [5].
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Fig. 3. Double-Coupler Double-Ring Schematic Architecture
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The SFG representation of the DCDR circuit is shown in Figure 4 which
consists of the same number of nodes as in the block diagram representation
in Figure 3. Our main interest is to evaluate the circuit behavior at the output
node which is represented by node 8 , when the signal is applied at the input,
i.e., node 1 . We keep all above mentioned parameters in general form which
further can be used to model different DCDR configurations. We formally define
the SFG of the DCDR as follows:

Definition 8 (DCDR Model).

� ∀T1 T2 T3 k1 k2 ∈ C.

DCDR model T1 T2 T3 k1 k2 = [(1, 1− k1, 3); (3, T1, 6); (6, 1− k2, 8); (1, k1, 4);

(4, T2, 5); (5, k2, 8); (6, k2, 7); (7, T3, 2); (2, k1, 3); (2, 1− k1, 4); (5, 1− k2, 7)], 8, 1, 8

where DCDR model accepts complex-valued transmittances and coupling coeffi-
cients, and returns the signal-flow-graph which has a total number of 8 nodes,
where 1 and 8 represent the input and output nodes as shown in Figure 3.

1 5 8 

2 7 

4 

1-k1 

T1 

T2 

3 6 

1-k1 

k1 

k2 k1 

k2 

1-k2 1-k2 
T3 

Fig. 4. Signal-Flow-Graph Model of the DCDR

Next, we verify the transfer function of the DCDR circuit as follows:

Theorem 3 (Transfer Function of DCDR).

� ∀T1 T2 T3 k1 k2 ∈ C.

transfer function (DCDR model T1 T2 T3 k1 k2) =

(1− k1) ∗ (1 − k2) ∗ T1 + k1 ∗ k2 ∗ T2 − (1 − 2 ∗ k1) ∗ (1− 2 ∗ k2) ∗ T1 ∗ T2 ∗ T3
1− k1 ∗ k2 ∗ T1 ∗ T3 − (1 − k1) ∗ (1− k2) ∗ T2 ∗ T3

The proof of this theorem is mainly based on the extraction of forward paths and
loops in the circuit and then using Mason’s gain formula. In fact, we developed
some simplification tactics [4] which can find elementary and forward circuits
to automate the parts of the proof in HOL Light. The transfer function veri-
fied in Theorem 3 can be used to analyze four different configurations of DCDR
as given in Table 1. One of the most widely used case is when every path has
unity delay. Such DCDR circuits are usually used as data processing elements
in the photonic communication. The second case of Table 1 describes the condi-
tions when one of the paths in the circuit (Figure 3) amplifies the light signals.
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The DCDR circuit operates in passive mode when there is no light amplification
in the circuit. Finally, the last case describes the circuit operation when each
path can have different delays.

Table 1. DCDR Configurations (parameters Gi and mi correspond to Eq. 3)

DCDR Configuration Parameters

Active DCDR Circuit with Unit Delay m1 = m2 = m3 = 1

Optical Amplifier in the Fiber Path (m1 = m2 = m3 = 1) ∧ (Gi > 1)

Passive DCDR Circuit G1 = G2 = G3 = 1

DCDR with Multiple Delay mi can have different combinations

In the case of unit delay, the denominator of transfer function of the DCDR
can be represented as a second order polynomial which leads to the useful infor-
mation that the DCDR can have 2 poles at maximum according to Theorem 2.
Next, we present the verification of the stability conditions of the DCDR circuit
under unit delay conditions as follows:

Theorem 4 (Stability Conditions for Incoherent DCDR).

� ∀G1 G2 G3 k1 k2 ∈ C.
‖ √

k1 ∗ k2 ∗ G1 ∗ G2 + (1− k1) ∗ (1 − k2) ∗ G2 ∗ G3 ‖≤ 1 ∧
(k1 ∗ k2 ∗ G1 ∗ G2 + (1 − k1) ∗ (1− k2) ∗ G2 ∗ G3) �= 0

=⇒ is stable psp (λz. DCDR (G1 ∗ 1
z
) (G2 ∗ 1

z
) (G3 ∗ 1

z
) k1 k2)

where ‖ . ‖ and
√
. represent the complex norm and complex square root, respec-

tively. The first assumption ensures that both poles are inside the unit circle,
whereas the second assumption is required to prove that the poles are indeed
valid. Similarly, we verify the second important result, i.e., the resonance condi-
tion for the DCDR circuit as follows:

Theorem 5 (Resonance Conditions for Incoherent DCDR).

� ∀G1 G2 G3 k1 k2 ∈ C. ‖
√

((1−2∗k1)∗(1−2∗k2)∗G1∗G2∗G3)
((1−k1)∗(1−k2)∗G1+k1∗k2∗G2) ‖≤ 1 ∧

((1 − 2 ∗ k1) ∗ (1− 2 ∗ k2) ∗ G1 ∗ G2 ∗ G3) �= 0 ∧
(1− k1) ∗ (1− k2) ∗ G1 + k1 ∗ k2 ∗ G2) �= 0

=⇒ is resonant psp (λz. DCDR (G1 ∗ 1
z
) (G2 ∗ 1

z
) (G3 ∗ 1

z
) k1 k2)

where all assumptions in this theorem are required to ensure that zeros of the
DCDR are valid and inside the unit circle.

Similarly, we verify the stability and the resonance conditions of the other
DCDR configurations as described in Table 1. One of the main strengths of
theorem proving based approach is to unveil all the assumptions under which
a theorem can be verified. For example, the second assumption of Theorem 4,
and the last two of Theorem 5 are not mentioned in the paper-and-pencil based
approach reported in [5]. However, without these assumptions Theorems 4 and
5 cannot be verified. Moreover, our results are verified for universally quantified
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parameters and the problem of finding the stability and resonance conditions
reduces to just ensuring that the values of the system parameters satisfy both
assumptions. In an effort to validate the stability results provided in [5], we
discovered that both given values of poles cannot satisfy the stability conditions.
We formally proved the instability of the DCDR in case of passive operation (i.e.,
G1 = G2 = G3 = 1) with k1 = k2 = 0.9 as follows:

� unstable psp (λz. DCDR 1
z

1
z

1
z
0.9 0.9 [0.905539;−0.905539])

where unstable psp sys = ¬(is stable psp sys) as described in Definition 7.
This demonstrates the importance of using higher-order-logic theorem proving
to unveil such discrepancies. In fact, incorrect stability conditions can lead to
the instability of the photonic processor which is hazardous in industrial critical
systems which are related to both cost and human safety.

This completes our formal analysis of the DCDR which is a practical photonic
processor with vast industrial applications in photonic and microwave communi-
cation systems. The stability and resonance conditions have been verified under
the general parameters of the DCDR circuit (e.g., k1, k2) which is not possible
in the case of simulation [5], where these properties are verified for the particular
values of k1 and k2. Note that the signal-flow-graph model of the DCDR proces-
sor involves 8 nodes, however, our formalization is general and can be applied
for an arbitrary number of nodes. For example, we formally verified the transfer
function of a quadruple optical ring resonator based filter which consists of 20
nodes and 14 complex-valued parameters [8]. We also formalized and verified
another important photonic processor namely the add-drop filter [26] which is
widely used as a filtering element in biosensors and wavelength division mul-
tiplexing (WDM). Some remarkable features of our formalized libraries of SFG
and corresponding properties are the generic nature and reusability as the formal
specification and verification of above mentioned case studies require minimal
efforts. Moreover, we have also made efforts to provide effective automation us-
ing derived rules and tactics, so that the application to a particular system does
not involve the painful manual proofs often required with interactive (higher-
order logic) theorem proving. The source code of the add-drop filter and the
quadruple optical ring resonator specification along with their analyses in HOL
Light is available at [3]. A brief summary of developed tactics can be found in
the Appendix I of [4].

We believe that the formal analysis of above mentioned real-world photonic
processors provides two main insights: theorem proving systems have reached to
the maturity, where complex physical models can be expressed with less efforts
than ever before; and formal methods can assist in the verification of futuristic
photonic processors in particular and quantum computers in general. However,
the utilization of higher-order-logic theorem proving in industrial settings (par-
ticularly, physical systems) is always questionable due to the huge amount of
time required to formalize the underlying theories. Another, important factor is
the gap between the theorem proving and engineering communities which limits
its usage in industry. For example, it is hard to find engineers (or physicists)
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with theorem proving background and vice-versa. On the other hand, the use of
formal methods for safety-critical systems is recommended by different industrial
standards like IEC 61508 [14] for electrical and electronics systems, or DO178-B
[18] for aviation. In the last decade, some major iconic companies (e.g., Intel
[2] and IBM [1]) have established research centers to build revolutionary future
computing and communication systems based on the recent advancements in
silicon photonics. We believe that applying formal methods to certify photonic
designs will be an interesting and challenging future research direction for the
formal methods community. Our reported work can be considered as a one step
towards an ultimate goal of using theorem provers as a complementary tool in
the field of photonics which is one of the rapidly growing high-tech industries in
the world today.

6 Conclusion

In this paper, we reported a new application of formal methods in the domain
of photonic signal processing. We presented a formal analysis framework based
on higher-order logic which provides the required expressiveness and soundness
to formally model and verify physical aspects of photonics. In particular, we
formalized the signal-flow-graph theory along with Mason’s gain formula and
transfer functions. Consequently, we presented the formalization of the properties
of photonic signal processing systems (such as stability, resonance and frequency
response). Finally, we described the formal analysis of the stability and resonance
conditions of the double-coupler double-ring photonic processor.

Our immediate future work is to explore the formal relation among the signal-
flow-graph representation and the Z-transform [21]. A potential utilization of our
formalization and developed automation tactics is to build a framework to certify
the results produced by informal tools such as MATLAB based SFG analysis
program (available at [11]). Other interesting directions are the application of
the current work to formally verify control and digital signal processing systems
which are usually modeled as signal-flow-graphs.
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