
A Machine Learning based Load Value Approximator guided by
the Tightened Value Locality

Alain Aoun
a_alain@ece.concordia.ca
Concordia University
Montréal, Canada

Mahmoud Masadeh
mahmoud.s@yu.edu.jo
Yarmouk University

Irbid, Jordan

Sofiène Tahar
tahar@ece.concordia.ca
Concordia University
Montréal, Canada

ABSTRACT
This paper addresses two essential memory bottlenecks: 1) memory
wall, and 2) bandwidth wall. To accomplish this objective, we pro-
pose a machine learning (ML) based model that estimates the values
to be loaded from the memory by a wide range of error-resilient
applications. The proposed model exploits the feature of tightened
value locality, which consists of a periodic load of few unique values.
The proposed ML-based load value approximator (LVA) requires
minimal overhead as it relies on a hash that encodes the history
of events, e.g., history of accessed addresses, and values that can
be extracted from the load instruction to be approximated. The
proposed LVA completely eliminates memory accesses, i.e., 100% of
accesses, in runtime and thus addresses the issue of memory wall
and bandwidth wall. Compared to related work, our LVA delivers a
maximum accuracy of 95.16% while offering a higher reduction in
memory accesses.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Hardware
→ Memory and dense storage; Emerging architectures.

KEYWORDS
Approximate Computing, Approximate Cache, Approximate Mem-
ory, Approximate Load Value, Machine Learning
ACM Reference Format:
Alain Aoun, Mahmoud Masadeh, and Sofiène Tahar. 2023. A Machine Learn-
ing based Load Value Approximator guided by the Tightened Value Locality.
In Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23),
June 5–7, 2023, Knoxville, TN, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3583781.3590207

1 INTRODUCTION
Approximate Computing (AC) has reemerged as an alternative to
exact computation in error-resilient applications. AC or inexact
computing offers an erroneous output for savings in area, power,
and delay [8]. AC can be applied to many existing applications such
as machine learning, multimedia applications and search engines.
These applications tolerate errors due to the lack of a golden answer,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590207

noisy and redundant input data, imperfect perception in the human
sense of a noisy output, and implementation algorithms with error
attenuation patterns. Most of the research in the area of AC has
focused on the arithmetic units such as the work in [6]. Approxi-
mate arithmetic units are beneficial for computation-intensive ap-
plications. Nonetheless, deploying approximate arithmetic units in
memory-intensive applications where errors are tolerated, e.g., deep
learning, results in minimal performance gain due to the memory
wall [12]. Therefore, in this work, we aim to approximate the mem-
ory access process for load instructions by substituting traditional
memory accesses with a machine learning-based predicted value
as a way to address this challenge.

Related work targeted memory wall with the investigation of
process-in-memory, load value speculation and approximate mem-
ory, among other techniques. The first approach, i.e., process-in-
memory, moves a redundant computational operation, e.g., multiply
and accumulate (MAC), from the CPU and place it in the memory
or near the memory [7]. On the other hand, load value speculation
does not introduce fundamental modifications to the Von Neumann
architecture but rather adds a unit in the processor that estimates
the value when a load occurs [3, 10, 14]. In case of a wrong specu-
lation, the CPU rolls-back to pre-load, i.e., flushing all instructions
executed following a wrong speculation and restoring register val-
ues. This idea has been extended to load value approximation where
the estimated value is accepted regardless of its correctness, i.e., er-
ror distance, such as the work in [15] and [18]. Another approach
of introducing approximation to address the memory bottleneck is
the work in [11] which introduced an approximate memory. The
proposed memory reduces energy of the dynamic random access
memory (DRAM) and offers the possibility of loading the most sig-
nificant bits only. All previous approaches to hide memory latency
require access to the memory for quality control.

Machine Learning (ML) has been widely exploited in recent years
in various applications. ML can be effective when a given outcome
occurs following a series of sequential events [9]. Given the prin-
ciple of locality in computers, the occurrence of a series of events
that potentially result in the same (or a similar) effect has a high
probability. The spacial and temporal localities have been widely
exploited in computers. On the other hand, the authors of [10]
introduced value locality where recently accessed values are corre-
lated. The authors suggest that value locality is similar in concept
to branch prediction where the outcome of subsequent branches
can be correlated to the previous branch outcomes. Subsequently,
we investigate the prediction of load values using ML, where we
exploit the feature of value locality.

In this paper, we propose a ML-based load value approxima-
tor (LVA) with the aim of addressing the memory wall. The ML

679

https://orcid.org/0000-0001-9038-5335
https://orcid.org/0000-0001-7447-1276
https://orcid.org/0000-0002-5537-104X
https://doi.org/10.1145/3583781.3590207
https://doi.org/10.1145/3583781.3590207
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590207&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Alain Aoun, Mahmoud Masadeh, & Sofiène Tahar

model uses the program counter (PC) of the instruction, the effec-
tive memory address of a load, and multiple values that encode
information about the history of stores and loads as predicates to
predict the load value. From our investigations, we found out that
Decision Forests (DF) showed superiority to other models such as
Neural Networks (NN) and Decision Trees (DT). The tested model
achieved a maximum accuracy of 95.25% and a minimum root mean
squared error of 19.18.

In the rest of the paper, we will discuss related work in Section 2.
In Section 3 we will display observed behaviors when executing
load instructions followed by the presentation of the proposed
methodology in Section 4. Thereafter, we dedicate Section 5 to
analyze the performance of the proposed LVA. We conclude the
paper in Section 6.

2 RELATEDWORK
Many articles in the open literature have suggested methods to alle-
viate the memory bottleneck. We will restrict the discussion in this
section to those methods that are most relevant to our work. In the
sequel, we will present work related to: 1) Load Value Speculation,
2) Load Value Approximation, and 3) Approximate Memory.

2.1 Load Value Speculation
Load value speculation (load value prediction) aims to hide the
memory latency by speculating the value to be loaded. One of
the earliest works in this area is given in [10] where the authors
introduced the idea of value locality. The authors suggest that values
stored in adjacent memory addresses are comparable in magnitude.
For instance, the adjacent pixels of an image stored in memory are
alike in value. Subsequently, the authors present a dynamic lookup
table that speculates the value of a load with the aim of hiding the
memory access latency. In case of wrong speculation, the processor
rolls back and flushes the pipeline. Moreover, the lookup table
is updated after every memory access. This concept was widely
investigated by implementing other speculation techniques such
as the work in [3] and [14]. Moreover, all load value speculation
techniques access the memory to confirm the correctness of the
speculation and roll-back in case of wrong speculation.

2.2 Load Value Approximation
Since roll-backs are expensive in terms of hardware requirement
and loss in clock cycles, some researchers have proposed the idea
of load value approximation. These techniques speculate a value
without a roll-back in case of a wrong prediction which results
in approximation. For instance, the work in [15] proposed a load
value approximation which relies on a dynamic predictor. The
accuracy of the predictor can be improved by providing the value
of the recent loads. The proposed model saves in bandwidth and
energy for a cost in quality. The work in [18] is another approach
to achieve load value approximation where the authors propose a
model targeting GPU architecture. Both load value approximation
techniques require access to the memory in order to reduce the
error.

2.3 Approximate Memory
As an alternative to load value approximation, other researchers
have investigated so called, approximate memory, in order to save

energy and bandwidth. For example, the work in [11] proposes the
implementation of a DRAMwhere data is stored in a transpose fash-
ion. This would allow each row to have a different refresh ratewhere
rows storing the most significant bits (MSBs) are refreshed more
frequently. Moreover, storing the data in a transpose fashion allows
reading the MSB of multiple values by a single load. For instance, if
a row is 32-bit then executing 22 load instructions would allow the
load of the 22 MSBs of 32 values and truncating the other least sig-
nificant bits. Another example of approximate memory is the work
presented in [13] where the authors propose the compression of
error-tolerant data in the DRAM. The compression and decompres-
sion of different regions of the memory define different accuracy
levels. The authors of [13] used a software-hardware integration
where the software controls the quality, i.e., compression and de-
compression of regions. However, both approaches still require
access to the memory and thus the memory wall is not fully ad-
dressed.

3 PRELIMINARIES
As mentioned earlier, the authors of [10] introduced the concept
of value locality. They suggested that the values loaded by subse-
quent load instructions are correlated. In this paper, we examine
the behavior of loaded values to identify trends other than the com-
monly known localities, i.e., spatial, temporal and value locality. To
this aim, we propose to instrument the loaded values in a range
of applications and kernels from the PARSEC benchmark suite [2].
In the instrumentation, we used blackscholes, bodytrack, canneal,
ferret, fluidanimate and swaptions benchmarks with the “simlarge”
input [2]. The instrumentation is performed using the GNU Project
Debugger (GDB) [5]. Table 1 shows the number of load instructions
instrumented per benchmark when executed for the same period.
We will base our analysis on the 15,180,241 load instructions gath-
ered from these various benchmarks. In the rest of this section, we
limit the investigation to the least significant byte of a loaded value
as it is common among various load instructions, i.e., loading 8,
16, 32 or 64 bits. It is noteworthy that the trends presented in the
sequel are also observed in the other bytes.

Table 1: Count of Instrumented Loads from Various Bench-
marks

Benchmark # of Instrumented Loads
blackscholes 3,457,447
bodytrack 1,364,347
canneal 4,069,024
ferret 2,896,804

fluidanimate 558,147
swaptions 2,834,472
Total 15,180,241

Figure 1 depicts the scatter plot of the loaded values from the
memory for the least significant byte (LSB) of the first 200,000 load
instructions in the blackscholes benchmark.We notice that the value
of the least significant byte for the first 12,000 load instructions
is incorporating all values in the range, i.e., values from 0 to 255,
and a trend cannot be identified. We recognize this portion of the

680

A Machine Learning based Load Value Approximator guided by the Tightened Value Locality GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Figure 1: The Value of the Least Significant Byte over Time when Instrumenting blackscholes

Figure 2: Normalized Cumulative Occurrence for the Most
Occurring Values in Various Benchmarks

benchmark as the cold start. However, the values of the subsequent
load instructions follow a repetitive tendency where we can iden-
tify crowded regions, e.g., values between 100 and 125. Moreover,
we can notice values that occur with high frequency, i.e., values
with scatter plots resembling a straight horizontal line, such as the
value of 180. In addition, we can detect a periodic trend in values,
e.g., “almost vertical” lines appearing periodically. The periodic
trend and high frequency of occurring values are observed through-
out the instrumented load instructions in blackscholes, i.e., beyond
the first 200,000 load instructions. Moreover, the aforementioned
trends in blackscholes are also detected in all other benchmarks
covered in this paper, i.e., bodytrack, canneal, ferret, fluidanimate
and swaptions.

In order to comprehend the behavior of values in a program,
we calculate the occurrence of a loaded value. Figure 2 shows the
normalized cumulative occurrence for the most values loaded from
the memory. We can notice that a single value in fluidanimate
was loaded by 66.93% of the executed load instances, i.e., the first
most occurring value. Alternatively, swaptions shows the lowest
percentage for the first most occurring value with only 12.46%. From
Figure 2, we can notice that the minimum normalized cumulative

occurrence for the top three values is 29.08%, i.e., almost a third
of the load instructions will retrieve one of three unique values.
Moreover, the average normalized cumulative occurrence for the
top 3 values is 43.71%. On the other hand, the top 10 most occurring
values in canneal consist of 98.29% of the load instructions. Hence,
all the other 246 possible values will be loaded 1.71% of the time. It
must be noted that the most occurring values are not unique among
all tested benchmarks. For instance, in our instrumentation, the top
10 most occurring load values among the 6 benchmarks consisted
of 40 unique values.

Based on the aforementioned observations, we realized that the
value of load instructions in a program is periodic and belong to
a set of few unique values. We call this concept as tightened value
locality as it goes beyond the value locality proposed in [10] where
the authors suggested that a program will load values that are close
in magnitude but not unique nor periodic. Subsequently, we suggest
building a machine learning-based load value predictor that exploits
the tightened value locality and hence simplifies its implementation
and enhances its quality.

4 PROPOSED METHODOLOGY
Related work has focused on implementing a dynamic predictor
where the quality is controlled by increasing the number of effec-
tive loads, i.e., actual memory accesses, in order to improve the
quality of prediction. On the other hand, given the idea of tight-
ened value locality, a conscientiously trained machine learning (ML)
model can have the capability of predicting the load values with
high accuracy. The ML model can be static and thus eliminates all
accesses to the memory in real-time. Since ML models can suffer
from overfitting problem [4], i.e., the ML model is trained to include
the noise in the training data and thus results in low quality when
using a new testing data, a good ML model is expected to deliver
high accuracy but with an acceptable level of error. Thus, the pro-
posed ML-based predictor can be implemented in error-tolerant
applications (such as image processing or search engines) where an
inexact value can be accepted as is and does not require the CPU to

681

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Alain Aoun, Mahmoud Masadeh, & Sofiène Tahar

Figure 3: Proposed Methodology to develop the ML-based LVA

roll-back. Subsequently, the proposed ML-based load value predic-
tor is classified as a Load Value Approximator (LVA). The proposed
LVA can be developed using the three main steps shown in Fig-
ure 3, namely, 1 application profiling, 2 verifying the existence
of tightened value locality, and 3 building a load value predictor
using Decision Forests (DF).

The LVA proposed in this paper requires minimal resource usage
to predict a load value, i.e., using either information from the cur-
rent load instruction or a value encoding history information. The
proposed implementation eliminates the use of large tables to store
history information. Towards achieving a minimalist predictor, in
step 1 we profile the targeted application in order to generate
training data. For every load instruction, the profiling will record
the program counter (PC), the effective memory address, and the
loaded value. The PC and effective memory address are needed to
differentiate the various load instructions and hence provides the
predictor with a local context. The loaded value is needed in order
to train the DF model.

During the profiling process, we record the store instructions,
where the store address and the stored values are extracted from
the instructions and then used to form four hash values. The used
hashing is an exclusive OR (XOR) operation. The hash of the store
instructions is needed for a static predictor as they provide infor-
mation about potential changes to the memory and thus allowing
a more accurate prediction. The first two hashes are used for lo-
cal context and computed by XORing the store instances since
the last load. For instance, we compute the local Hash Store Ad-
dress (𝐻𝑆𝐴𝐿) of the 𝑖 store instructions that occurred since the
last load as 𝐻𝑆𝐴𝐿 = 𝐴𝑑𝑑𝑟𝑒𝑠𝑠1 ⊕ 𝐴𝑑𝑑𝑟𝑒𝑠𝑠2 ⊕ ... ⊕ 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 . Simi-
larly, we compute the local Hash Store Value (𝐻𝑆𝑉𝐿), which equals
𝑉𝑎𝑙𝑢𝑒1⊕𝑉𝑎𝑙𝑢𝑒2⊕ ...⊕𝑉𝑎𝑙𝑢𝑒𝑖 .𝐻𝑆𝐴𝐿 and𝐻𝑆𝑉𝐿 are classified as local
identifiers as they exclusively encode recent memory modifications
that occurred since the last load.

The second set of hashes is global 𝐻𝑆𝐴 and 𝐻𝑆𝑉 , i.e., 𝐻𝑆𝐴𝐺 and
𝐻𝑆𝑉𝐺 , which are computed by XORing all store instances since
the start of the program. 𝐻𝑆𝐴𝐺 and 𝐻𝑆𝑉𝐺 provide a global context
as they encode information related to memory modification since
the beginning of the program. On the other hand, providing the
LVA with the history of accessed memory addresses, i.e., addresses
accessed by previous load instructions, can enhance the decision of
the predictor. Thus, we generate a hash by XORing the accessed
memory addresses since the beginning of the program. Moreover,
we save the address of the last accessed memory. We call the global
Hash Load Address and the Last Accessed Address 𝐻𝐿𝐴𝐺 and 𝐿𝐴𝐴,
respectively. Subsequently, the generated training data will have
one entry for every load instruction where each entry contains six
arguments encoding history information, i.e., 𝐿𝐴𝐴, 𝐻𝐿𝐴𝐺 , 𝐻𝑆𝐴𝐺 ,
𝐻𝑆𝐴𝐿 , 𝐻𝑆𝑉𝐺 and 𝐻𝑆𝑉𝐿 , along with information about the cur-
rent load instruction, i.e., PC, the effective load address and the
loaded value.

In step 2 , the generated training data is analyzed in order to
identify if the application incorporates a tightened value locality.
This feature is detected by looking for a trend in the values loaded
from the memory over time, then loading a few unique values with
high frequency (such as the example shown in Figure 2). This step is
important while implementing the proposed LVA as it enforces the
model to remain relatively simple while delivering high accuracy.
An application that does not have tightened value locality can poten-
tially complicate the ML model. Subsequently, an LVA built based
on an application that does not have this property would require
high resource usage, e.g., computation power, and thus outlying
the benefits of AC.

Finally, in step 3 we train an ML model to construct the LVA.
The six arguments encoding history along with the PC and effective
memory address are used as predicates in the ML to predict the
loaded value. We use ML as it can detect trends in the dataset
and generate a model to forecast the outcome when provided a
new input data [9]. The the LVA is a static model that eliminates
memory access in real-time and can be reused as-is in the repetitive
execution of the same application. Neural Networks (NN), Decision
Forests (DF) and Decision Trees (DT) techniques are commonly
used for ML. Therefore, we limit our discussion to them.

We exhaustively investigated the implementation of these three
models and DFwas found to be the most suitable for this task. In our
analysis, the training of an NN-based model diverged in multiple
instances even when using state-of-the-art activation techniques
such as the rectified linear unit [1]. Thus the generation of an NN-
based predictor may require intensive exploration before finding a
suitable model. When deploying the proposed methodology, build-
ing an NN-based predictor in real-time might require extensive
time and thus outbalance the gains from the implementation of the
proposed methodology. On the other hand, since DF is an ensemble
of trees and given the natural complexity of the task, DF is expected
to outperform DT. This perception was confirmed in our investiga-
tion while analyzing the three techniques. The DF-based predictor
can be a regression or a classification task when predicting small
values, e.g., 8-bit values. For instance, if the prediction is applied to
the least significant byte, the classification is achievable since the
number of classes is manageable, i.e., 256 classes. However, when
building a predictor to predict large values, e.g., predicting the least
significant 32-bits, the classification may not be possible and only
regression models can be built.

5 EXPERIMENTAL ANALYSIS
We assess the proposed methodology using a range of applications
and kernels, namely, blackscholes, bodytrack, canneal, ferret, fluidan-
imate and swaptions from the PARSEC benchmark suite [2]. The
training of decision forests (DF) is performed using TensorFlow

682

A Machine Learning based Load Value Approximator guided by the Tightened Value Locality GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Decision Forests version 0.2.5 [17]. Moreover, the application pro-
filing and quality testing are performed on a machine with Intel(R)
Xeon(R) Silver 4116 CPU @ 2.10GHz running on Ubuntu 20.04.
The proposed methodology is applied using various configurations
of the DF, e.g., random and gradient DF. The quality of the built
LVA is measured in terms of accuracy and the root mean squared
error (RMSE). In order to investigate the scalability of the proposed
methodology, we generated different LVA models by profiling one
application at a time as well as multiple applications. The performed
quality analysis is measured for all load instructions while disre-
garding if the loaded value is part of the control flow of the program.
We adopt this approach in order to present the quality of the pro-
posed LVA models when implemented in an environment where
the goal is reducing the memory access, e.g., memory bandwidth,
to the lowest possible level. In this study, we explored the option
of building an LVA with a task of classification and regression.
Moreover, in our analysis, we explored the implementation of the
LVA as a random and gradient DF. Both DF models resulted in a
similar quality. However, we realized that random DF outperforms
the gradient DF in terms of training time and size of the model.
Thus, we limit the experimental analysis of the proposed LVA to
random DF.

We use nine training sets to train 18 DF models to study various
quality aspects of the proposed methodology. The first six training
sets are generated by profiling each of the six applications sepa-
rately. Two training sets are generated by profiling two groups of
applications, namely, I canneal, ferret and fluidanimate; and II
blackscholes, bodytrack and swaptions. The two groups are chosen
based on the observation in Table 1 where groups I and II per-
formed a similar number of memory accesses over the same period
of time. Thus, we project the memory accesses to be performed by
the two sets of applications to be equal in their execution. Using two
groups of applications with a similar number of memory accesses
provides a more comprehensive analysis of the proposed LVA.

Finally, we construct one training set by profiling all six applica-
tions, i.e., the combination of groups I and II . Each of the nine
training sets is used to train two DF models, namely, Random For-
est Classification and Random Forest Regression. The DF models
are trained with 300 trees and a maximum depth of 16. Table 2
summarizes the quality achieved for each of the 18 DF models in-
vestigated in this paper. From the results shown in Table 2, we can
note that when achieving a better accuracy the measured RMSE in-
creased, i.e., lower quality. Similarly, with a smaller value of RMSE
the accuracy decreased. Nonetheless, this behavior can be deemed
acceptable in approximate computing as the quality is bounded by
the rule of fail small or fail rare. Furthermore, in our investigation,
we tested advanced training settings in TensorFlow such as using
random seed and best first global growing strategy [16]. However,
the advanced training settings offered minimal quality gains and
increased the size of the model.

5.1 LVA based on One Application
Using the training sets generated by profiling a single application,
we trained various DF models. From Table 2 we can note that
the best accuracy was 95.25% and achieved using ferret. Similarly,
the lowest RMSE was achieved using ferret with a value of 19.68.

Moreover, we can note that the models based on ferret, fluidanimate
and swaptions achieved an acceptable quality with a minimum
accuracy of almost 70% when using random forests with a task
of classification. On the other hand, the regression-based models
achieved a low accuracy with a smaller value of RMSE. Similar to
the classification-based models, ferret, fluidanimate and swaptions
achieved the best quality with a maximum of 34.93 and an average
of 25.04. The models based on blackscholes, bodytrack and canneal
failed to achieve an acceptable quality in terms of accuracy and
RMSE.

5.2 LVA based on Multiple Applications
Using multiple applications in profiling to build an LVA can be
beneficial as the predictor can be used by multiple applications and
thus covers a wider spectrum. From Table 2 we can notice that
combining multiple applications achieves an acceptable quality.
The Random Forest Classification based on group I achieved an
accuracy of 83.41%. Furthermore, the Random Forest Regression
predictor for the same group achieves an RMSE of 20.26. The classi-
fication and regression achieved an acceptable quality in accuracy
and RMSE, respectively. However, the two models resulted in a
degraded quality when considering the other metrics. On the other
hand, we can note from Table 2 that combining applications ran-
domly may not result in an acceptable quality. For example, the best
quality achieved by the models based on group II is almost half the
quality when applications are combined in group I . From Table 2,
we notice the quality achieved by the DF model based on group I
is almost the average of the quality achieved by the DF models
based on individual applications in the group. However, the quality
achieved by group II is less than the quality of all DF models that

Table 2: Quality of the LVAwhenusingVariousApplication(s)

Application Task Accuracy RMSE
Classification 61.57% 144.77blackscholes Regression 5.96% 56.56
Classification 53.54% 101.98bodytrack Regression 7.36% 48.23
Classification 36.57% 135.69canneal Regression 7.01% 59.41
Classification 95.16% 169.70ferret Regression 0.12% 19.18
Classification 69.14% 110.29fluidanimate Regression 7.17% 33.98
Classification 81.75% 60.31swaptions Regression 3.59% 20.48
Classification 83.41% 143.30* Group I Regression 5.7% 20.26
Classification 44.63% 117.95§Group II Regression 9.58% 42.12
Classification 44.65% 117.95

Groups I & II Regression 7.53% 32.00
Minimum 0.12% 19.18
Maximum 95.16% 169.70

*Group I consists of canneal, ferret and fluidanimate
§Group II consists of blackscholes, bodytrack and swaptions

683

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Alain Aoun, Mahmoud Masadeh, & Sofiène Tahar

are based on individual applications in this group. Furthermore,
based on the Table 1, we notice that canneal has the highest num-
ber of load instructions when compared to other applications in
group I . Thus, we conclude that the quality of the load values
in canneal were predicted more accurately when combined with
other applications. Additionally, combining all applications tested
in this paper, i.e., groups I & II , did not achieve a substantial gain
in quality. Based on these experiments, we notice that combining
multiple applications has the potential of improving the quality
while in others cases it can deteriorate the quality.

5.3 Comparison with Related Work
Previously investigated implementations of load value approxima-
tion required constant access to thememory in order to update/train
the predictor with the most recent contexts and hence predicting a
more accurate value. Subsequently, the accuracy will potentially
decrease when reducing the number of memory accesses, i.e., drop-
ping more load instructions. For instance, the authors of [15] ex-
perimented with dropping, respectively, 0%, 66.67%, 80.00%, 88.89%,
94.12% of the load instructions that are matching the same entry
in the proposed dynamic predictor. Similarly, the work in [18] in-
vestigated dropping, respectively, 12.5%, 25%, 50%, 60%, 75%, 80%
and 90% of the load instructions. In general, a higher drop rate
of load instructions resulted in a lesser quality in the instances
presented in [15, 18]. In contrast, our proposed LVA eliminates
100% of memory accesses in runtime, e.g., 15,180,241 bytes were
predicted in runtime without accessing the memory while deliver-
ing an acceptable quality. For instance, 2,986,804 load instructions
are predicted in real-time when executing ferret where the average
accuracy is 95.16%. Compared to the work in [15], for various drop
rates, the error exceeded 20% when the proposed predictor was
used to predict the loaded values when executing ferret. Further-
more, to showcase the potential of the proposed LVA, the model
based on the profiling of the applications in group I resulted in
the elimination of 7,523,975 memory accesses while delivering an
average accuracy of 83.41%.

6 CONCLUSION
In this paper, we investigated a machine learning-based load value
approximator (LVA) with the objective of addressing the memory
wall and bandwidth wall bottlenecks. The proposed LVA eliminates
100% of the memory accesses in runtime. The presented method-
ology profiles a given error-tolerant application(s) to obtain the
needed training data. Thereafter, the training data is checked to
verify the existence of tightened value locality. If the property exists
in the training data, then it is used to build the LVA. The proposed
LVA demands minimal overhead as the predicates are single val-
ues that encode relevant history, i.e., hash value, and information
extracted from the current load instruction. The encoding of the
history provides the predictor with local and global contexts of the
program. The hash values also encode information related to store
instructions executed since the last load and program start. The
proposed LVA was tested using 8 error-tolerant applications where
a maximum accuracy of 95.16% was achieved. Moreover, out LVA
can be trained by profiling multiple applications while achieving

an acceptable quality. However, not all applications can be grouped
as it can result in significant quality degradation.

In future work, we plan to identify the criteria for combining
multiple applications to build a LVA with high accuracy. Moreover,
we plan to investigate the prediction of load values in fragments
to improve quality. For instance, loading 32-bits can be predicted
by calling the predictor various times, e.g., prediction in 8/8/16-bit
portions. Finally, while the investigation presented in this paper
was performed using a x86 processor, i.e., CISC architecture, we
plan to extend the analysis to the RISC architecture such as RISC-V
or ARM processors.

ACKNOWLEDGMENTS
This research was enabled in part by support provided by Cal-
cul Québec (calculquebec.ca) and the Digital Research Alliance of
Canada (alliancecan.ca)

REFERENCES
[1] Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units

(ReLU). arXiv Computing Research Repository abs/1803.08375 (February 2018).
arXiv:1803.08375

[2] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph. D. Dissertation.
Princeton University, USA.

[3] Luis Ceze, Karin Strauss, James Tuck, Josep Torrellas, and Jose Renau. 2006. CAVA:
Using checkpoint-assisted value prediction to hide L2 misses. ACM Transactions
on Architecture and Code Optimization 3, 2 (June 2006), 182–208.

[4] Tom Dietterich. 1995. Overfitting and undercomputing in machine learning.
ACM computing surveys 27, 3 (September 1995), 326–327.

[5] GDB developers. 2023. GDB: the GNU project debugger. https://www.sourceware.
org/gdb/, Last accessed April 3, 2023.

[6] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy.
2012. Low-power digital signal processing using approximate adders. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 1
(January 2012), 124–137.

[7] Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. 2018. HMC-MAC:
Processing-in Memory Architecture for Multiply-Accumulate Operations with
Hybrid Memory Cube. IEEE Computer Architecture Letters 17, 1 (January-June
2018), 5–8.

[8] Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu, and
Jie Han. 2020. Approximate arithmetic circuits: A survey, characterization, and
recent applications. Proceedings of the IEEE 108, 12 (December 2020), 2108–2135.

[9] Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspec-
tives, and prospects. Science 349, 6245 (July 2015), 255–260.

[10] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. 1996. Value
locality and load value prediction. In International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 138–147.

[11] Duy Thanh Nguyen, Nguyen Huy Hung, Hyun Kim, and Hyuk-Jae Lee. 2020. An
approximatememory architecture for energy saving in deep learning applications.
IEEE Transactions on Circuits and Systems I: Regular Papers 67, 5 (May 2020), 1588–
1601.

[12] Geraldo F Oliveira, Juan Gómez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu. 2021.
DAMOV: A new methodology and benchmark suite for evaluating data move-
ment bottlenecks. IEEE Access 9 (September 2021), 134457–134502.

[13] Ashish Ranjan, Arnab Raha, Vijay Raghunathan, and Anand Raghunathan. 2017.
Approximate memory compression for energy-efficiency. In International Sym-
posium on Low Power Electronics and Design. IEEE/ACM, 1–6.

[14] Glenn Reinman and Brad Calder. 1998. Predictive techniques for aggressive load
speculation. In International Symposium on Microarchitecture. IEEE, 127–137.

[15] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load value
approximation. In International Symposium on Microarchitecture. IEEE/ACM,
127–139.

[16] TensorFlow. 2023. API Reference Random Forest Model. https://www.tensorflow.
org/decision_forests/api_docs/python/tfdf/keras/RandomForestModel, Last ac-
cessed April 3, 2023.

[17] TensorFlow. 2023. Tensorflow Decision Forests. https://www.tensorflow.org/
decision_forests, Last accessed April 3, 2023.

[18] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Es-
maeilzadeh, Onur Mutlu, and Todd C Mowry. 2016. RFVP: Rollback-free value
prediction with safe-to-approximate loads. ACM Transactions on Architecture
and Code Optimization 12, 4 (January 2016), 1–26.

684

https://www.calculquebec.ca
https://alliancecan.ca/en
https://arxiv.org/abs/1803.08375
https://www.sourceware.org/gdb/,
https://www.sourceware.org/gdb/,
https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/RandomForestModel,
https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/RandomForestModel,
https://www.tensorflow.org/decision_forests,
https://www.tensorflow.org/decision_forests,

	Abstract
	1 Introduction
	2 Related Work
	2.1 Load Value Speculation
	2.2 Load Value Approximation
	2.3 Approximate Memory

	3 Preliminaries
	4 Proposed Methodology
	5 EXPERIMENTAL Analysis
	5.1 LVA based on One Application
	5.2 LVA based on Multiple Applications
	5.3 Comparison with Related Work

	6 Conclusion
	Acknowledgments
	References

