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Abstract—Approximate computing (AC) has gained traction as
an alternative computing method for energy-efficient processing.
This paper proposes the exploitation of AC to address the
memory wall. The proposed model predicts the load value using
machine learning (ML). Subsequently, the ML model is a load
value approximator (LVA) where the generated value is accepted
as-is. The proposed LVA was tested under various approximate
conditions, where 50% to 95% of the load instructions were
approximated using multimedia applications. The peak signal-
to-noise ratio (PSNR) exceeded 100 dB in several scenarios.
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I. INTRODUCTION

Approximate Computing (AC), also known as inexact com-
puting, has gained renewed interest as an alternative to ex-
act computation in error-resilient applications. AC provides
inaccurate outputs to save area, power, and delay [1]. AC
is applicable in domains where errors are acceptable due to
factors such as the absence of a definitive answer, noisy input
data, imperfect human perception of noisy output, and algo-
rithms with error attenuation patterns, e.g., machine learning,
multimedia, and search engines. While existing AC research
has mainly concentrated on arithmetic units, e.g., approximate
full adders (FAs) [2], we focus in this paper on approximating
the memory access process. This involves replacing traditional
memory accesses with a machine learning-based predicted
value to tackle the challenges posed by the memory wall in
memory-intensive applications such as deep learning [3].

Existing efforts to overcome the memory wall include
process-in-memory, load value speculation, approximate mem-
ory, along other techniques. Process-in-memory relocates re-
dundant computational operations, e.g., multiply and accumu-
late, from the CPU to the memory or its proximity [4]. Load
value speculation adds a unit in the processor that estimates the
value when a load occurs without altering the Von Neumann
architecture significantly [5]-[7]. In case of incorrect specula-
tion, the CPU rolls back to the pre-speculation state and flushes
the pipeline. Load value approximation extends this concept
by accepting the estimated (speculated) value regardless of
its correctness, as explored in [8]-[10]. Another approach to
address the memory bottleneck is approximate memory, as ex-
plored in [11], where the authors proposed an energy-efficient
dynamic random access memory (DRAM) with various refresh
rates, reducing energy consumption and enabling concurrent
loading of the most significant bits of multiple values.
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Machine Learning (ML) finds broad application across
domains, especially in scenarios when outcomes follow a
sequence of events [12]. Exploiting the principle of locality
in computers, both spatial and temporal localities, have been
extensively utilized as well as the concept of value locality
introduced in [5]. The authors of [5] posit that value locality
is similar to branch prediction, where subsequent branch
outcomes correlate with previous outcomes. This paper delves
into load value approximation using ML, capitalizing on the
value locality feature.

In the remainder of this paper, we present a literature review
in Section II. We describe the proposed model of load value
approximation in Section III and the experimental results in
Section IV. We conclude this paper in Section V.

II. RELATED WORK

Numerous publications in the literature have proposed
strategies to alleviate memory bottlenecks. In this section, we
will discuss methods that are most pertinent to our research,
focusing on: 1) Load Value Speculation, 2) Load Value Ap-
proximation, and 3) Approximate Memory.

A. Load Value Speculation

Load value speculation (or prediction) involves speculating
the value to hide memory latency. The work in [5] introduced
value locality, suggesting comparable magnitudes in neighbor-
ing memory locations, exemplified by adjacent image pixels.
The authors of [S5] proposed a dynamic lookup table for load
value speculation, aiming to conceal memory access latency. In
case of incorrect speculation, the processor initiates a rollback
and flushes the pipeline. The lookup table undergoes updates
after each memory access. This concept is extensively inves-
tigated, with alternative techniques explored in the literature
such as [6] and [7]. All load value speculation methods consist
of hiding the memory access latency where memory accesses
are required to verify speculation correctness.

B. Load Value Approximation

To circumvent the hardware and clock cycle costs asso-
ciated with rollbacks, some researchers explored load value
approximation (LVA) strategies. These techniques speculate
values and eliminate rollbacks in the event of incorrect predic-
tions, resulting in approximations. For instance, the approach
in [8] suggests LVA based on a dynamic predictor. Predictor
accuracy is enhanced by learning from recent load values.
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Fig. 1. Proposed Memory Load Value Approximation

This model trades bandwidth and energy for reduced quality.
Another approach for LVA is delineated in [9], presenting a
model tailored for GPU architecture. Both LVA techniques
mandate memory access to minimize errors and require a
hardware overhead to implement the predictor. Alternatively,
the work in [10] eliminates all memory accesses in real-time
execution. The authors of [10] proposed the profiling of an
error-tolerant application to instrument load accesses and load
context. Thereafter, the instrumented data is checked for the
existence of value locality and in case of presence, the data is
used to train a machine learning (ML) model which serves as
a load predictor in real time.

C. Approximate Memory

As an alternative to LVA, researchers explored approximate
memory concepts to save energy and bandwidth. In [11], the
focus was on implementing DRAM with transposed data stor-
age, allowing diverse refresh rates for rows. Rows containing
the least significant bits (LSBs) are refreshed less frequently,
reducing energy consumption. Storing data in a transposed
manner allows the reading of the most significant bits (MSBs)
of multiple values with a single load. Another approach of
approximate memory in [13] proposes the compression of
error-tolerant data in DRAM. Compression and decompression
in distinct memory regions define varying accuracy levels,
controlled by a software-hardware integration.

III. PROPOSED METHODOLOGY

The implementation methods of load value approxima-
tion (LVA) proposed in [8] and [9] require a hardware over-
head, e.g., lookup tables, in addition to continuous memory
access to update the predictor and thus maintain an acceptable
quality level. On the other side, the work of [10] proposes a
static predictor that eliminates all memory accesses in real-
time. However, the work of [10] has the drawback of the
computation overhead to evaluate and store the hash values
encoding history of execution required by the ML-based
LVA. Furthermore, the method proposed in [10] is hardware-
specific since the ML-based LVA is trained on a given set of
program counter and memory address values. Subsequently,
when implemented on a new hardware the model will have
to be reconfigured. With the aim of alleviating the challenges
of existing methods, in this paper, we propose an LVA that

combines the advantages of previously proposed approaches.
The key benefits of this LVA are static predictor, quality/energy
control in real-time, and simple predictor requiring minimal
overhead. The LVA we propose in this paper is beneficial when
the same multimedia is used repetitively, e.g., a video game
where the same objects are used repetitively.

The proposed LVA consist of two steps as shown in Fig. 1.
The proposed LVA requires three inputs: /) Multimedia, e.g.,
images or audio; ii) Error-Tolerant Application; and iii) Ap-
proximate Level (n). The multimedia is used by the error-
tolerant application and the proposed LVA. The error-tolerant
application is an assembly program while the approximation
level defines the ratio of approximated load instructions. Based
on these three inputs, the LVA produces an approximate exe-
cution of the provided application. The proposed LVA consists
of data preprocessing in step (1) which will generate a training
database as shown in Fig. 1. In step (2), the database is used
as a training data for machine learning (ML) where a value
predictor is produced that serves as an LVA in the proposed
model. Subsequently, the value predictor, i.e., the ML-based
LVA, is used in the memory access to predict the load values.
The portion of memory accesses that are approximated is
defined by the approximate level (n). The approximate level (1)
replaces n out of n + 1 load instructions with a call to
the ML-based LVA. For example, for n = 19, the LVA will
consist of 1 exact load followed by 19 approximate load
instructions, i.e., 1 out of 20 load instructions is exact. Thus
for n =19, we perform a 95% approximation. The execution of
the error-tolerant application using the methodology shown in
Fig. 1 results in an approximate execution of the application
where some of the load instructions are approximated. The
multimedia when loaded in an “approximate memory access”
fashion results in approximate execution of the application
and hence approximate results while when loaded in the
conventional form, i.e., “exact memory access”, will produce
exact results. The proposed ML-based LVA must have the
same multimedia in the training and in the real-time, i.e., in
the approximate execution. Subsequently, it is only beneficial
to use the proposed ML-based LVA if the multimedia is used
repetitively, e.g., in a video game.

The advantage of the proposed model is the usage of a static
predictor, i.e., memory accesses can be eliminated. Further-
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more, the approximation level is adjustable and hence with
more approximation, the energy consumption is reduced and
potentially affects the quality. The ML-based predictor used
in this paper exploits the principle of value locality [5], where
the subsequent value is predicted by knowing the previous
value, i.e., previously used value either fetched from memory
or generated by the ML-based predictor. To measure the qual-
ity of the proposed methodology, we tested it using a variety
of multimedia applications as described in the next section.

IV. EXPERIMENTAL RESULTS

In this section we will apply the proposed LVA methodology
on three multimedia applications that we test for a range of
approximate levels (n) varying from 1 to 19. The applications
are tested when training the ML-based LVA using two multi-
media only, e.g., two images, and the same multimedia is then
used in the experiment to measure the quality. Before that, we
need to select the most suitable ML model for the proposed
LVA. Our experiments were executed in Python 3.8.10 using
a machine with Intel Xeon 4116 CPU running Ubuntu 20.04
with 192GB of RAM.

A. ML Technique Selection

We identify the most suitable machine learning (ML)
technique by training various classification and regression
models available in the Scikit-Learn (sklearn) library [14].
For instance, we evaluated 41 classification and 41 regression
models by training on combinations of two unique images
at a time using benchmark images known as “Set5” (with
5 images) and “SetlI4” (with 14 images) [15]. This resulted
in 101 sets of training data, with 10 and 91 sets generated
using Set5 and Setl4, respectively. Each of the classification
and regression models was trained and tested 101 times on
the generated sets. The classification accuracy did not surpass
10%, while some regressors achieved an average root mean
square error (RMSE) of 43.49. Considering the prediction is
applied to one byte, ranging from 0 to 255, comparing the
average RMSE (43.39) with the maximum possible value (255)
deems the regression-based ML technique as the most suitable
for Load Value Approximation (LVA).

We measured four metrics during the training of the var-
ious regressors, namely, training time, mean absolute er-
ror (MAE), mean squared error (MSE) and root mean square
error (RMSE). We included the training time in the measure-
ments as it indicates the model complexity, i.e., for two models
with the same accuracy, the one with less training time is most
suitable. The average of the four metrics for the 41 regressors
that were selected are summarized in Table I. We can notice
that four models achieved the best quality in terms of MAE,
MSE and RMSE, namely, Decision Tree [16], Extra Tree [17],
Extra Trees [18] and Random Forest [19]. On the other hand,
when factoring the training time to select the best training
model, we notice that the Extra Tree requires an average
training time of 482 ms and hence outperforms the other three
regression models. In the sequel of this section, the Extra Tree
will be used to experiment with our proposed methodology.

B. Image Blending

In the first experiment, we test the quality of the methodol-
ogy on an image blending application. All images in Set5
are colored images while only 13 are colored images in
Setl4. Since image blending consists of multiplying each of
the red-green-blue (RGB) pixels with its corresponding RGB
in the second image, we were able to use 13 images only.
Subsequently, we were able to blend 10 and 78 combinations
using Set5 and Set14, respectively. The 88 combinations were
tested for n = 1 to n = 19, i.e., 50% to 95% approximation.

The quality of the resulting images is assessed using PSNR,
MAE, MSE and RMSE. The average, maximum and minimum
for each of the metrics are depicted in Fig. 2. From Fig. 2(a)
we can notice that for n = 19, i.e., 95% approximation, the
lowest PSNR is 67.24 dB. In multimedia applications, a PSNR
greater than 40 dB is normally considered as very good [20].
Subsequently, at an approximation of 95%, the proposed LVA
was able to achieve an acceptable quality. Furthermore, from

TABLE I
TRAINING OF VARIOUS REGRESSORS
[ Model | Training Time | MAE [ MSE [ RMSE |
ARD 112ms 37.07 | 2,354.90 47.23
Ada Boost 25s 361ms 38.90 | 2,321.16 47.15
Bagging 146ms 32.72 | 1,997.03 43.49
Bayesian Ridge 133ms 37.07 | 2,354.90 47.23
CCA 178ms 37.29 | 2,932.34 52.27
Decision Tree Is 259ms 32.72 | 1,996.93 43.49
Dummy 13ms 58.75 | 4,727.59 68.41
Elastic Net 71ms 37.07 | 2,354.90 47.23
Elastic Net CV 5s 822ms 37.08 | 2,354.90 47.23
Extra Tree 482ms 32.72 1,996.93 43.49
Extra Trees 41s 441ms 32.72 1,996.93 43.49
Gradient Boosting 1Im 8s 246ms 33.31 2,026.65 43.84
Hist Gradient Boosting | 4s 473ms 32.93 2,010.08 43.64
Huber 5s 422ms 35.47 | 2,429.47 47.98
Isotonic 620ms 3446 | 2,134.20 44.96
KNeighbors Im 17s 637ms 35.01 2,379.33 47.48
Linear SVR 3m 7s 531ms 35.84 | 2,643.08 50.07
Lars 84ms 37.07 | 2,354.90 47.23
Lars CV 274ms 37.07 | 2,354.90 47.23
Lasso 65ms 37.07 | 2,354.90 47.23
Lasso CV 5s 441ms 37.08 | 2,354.90 47.23
Lasso Lars 45ms 37.07 | 2,354.90 47.23
Lasso Lars CV 237ms 37.07 | 2,354.90 47.23
Lasso Lars IC 220ms 37.07 | 2,354.90 47.23
Linear 67ms 37.07 | 2,354.90 47.23
Matching Pursuit 32ms 37.07 | 2,354.90 47.23
PLS Canonical 110ms 37.29 | 2,932.34 52.27
PLS 105ms 37.07 | 2,354.90 47.23
Passive Aggressive 2s 218ms 57.78 | 8,339.24 | 75.60
Poisson Is 242ms 39.18 | 2,545.69 49.66
RANSAC 346ms 36.24 | 2,823.08 51.43
Radius Neighbors 3m 18s 551ms 33.53 | 2,052.20 44.13
Random Forest Im 2s 529ms 32.72 1,996.93 43.49
Chain 9m 9s 537ms 52.68 | 5,444.58 71.60
Ridge 59ms 37.07 | 2,354.90 47.23
Ridge CV 217ms 37.07 | 2,354.90 47.23
Stacking 11m 52s 746ms | 32.76 | 2,001.55 43.54
Theil Sen 6m 18s 380ms 35.51 | 2,568.31 49.29
Transformed Target 66ms 37.07 | 2,354.90 47.23
Tweedie 456ms 37.07 | 2,354.90 47.23
Voting Im 11s 636ms 33.92 | 2,077.84 44.37
Minimum 13ms 32.72 | 1,996.93 43.49
Maximum 11m 52s 746ms | 58.75 | 8,339.24 75.60
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the MAE, MSE and RMSE shown in Fig. 2 we can notice
that the values are in an acceptable range where the average
MAE, MSE and RMSE for n = 19 are 35.01, 2182.27 and
45.24, respectively. In addition, we can note that a higher
approximation will not always result in a reduced quality. For
example, from Fig. 2(d) we can see that for an approximate
level of 19, i.e., n = 19, the average RMSE was 35.01 com-
pared to 35.13 and 35.36 for n =17 and n = 18, respectively.
On the other hand, assessing the quality subjectively, i.e., by

visual inspection, we can notice from Figs. 5(a) and 5(b) that
the difference is barely noticeable for a 50% approximation,
i.e., approximate level of 1, when compared to the exact result.
Furthermore, for a 90% approximation, the main features of
the resulting image are still identifiable.

C. Sobel Filter

In the second experiment, the quality is measured in terms
of edge detection using the Sobel filter where we use six
benchmark images, namely, “barb”, “bikesgray”, ‘“‘camera-
man”, “lena”, “mandrill’, and “peppers”. Similar to image
blending, four error metrics were measured when testing the
proposed methodology for edge detection using the Sobel
filter. The four error metrics for n varying from 1 to 19 are
summarized in Fig. 3. The lowest PSNR achieved in this
test was 62.52 dB which is acceptable for multimedia pro-
cessing. Furthermore, at an approximate level of 1, i.e., 50%
approximation, the average, maximum and minimum PSNR
were 73.71, 76.32 and 70.75 dB, respectively. The average
MAE, MSE and RMSE varied from 16.66 to 54.31, 1858.85 to
8972.86 and from 42.00 to 92.51, for the various approximate
levels, respectively. Moreover, similar to image blending an
increase in approximation did not always result in a decrease
of quality. For instance, from Fig. 3(c) we can notice that the
average MSE went down from 8,285.26 to 7,987.98 when the
approximate level was increased from 14 to 15.

When assessing the quality subjectively, as shown in Fig. 6,
we can notice that at 50% approximation of load instructions,
the quality was barely affected. Furthermore, at an approx-
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imation of 90%, the main features of the images are still
detected. For example, the edges of the scarf, hands and legs
of the lady were successfully detected. Consequently, we can
deem the quality at 90% approximation to be acceptable when
examining the results subjectively.

D. Audio Blending

Finally, in the third experiment, i.e., audio blending, we
use five credit musical sounds from “Babylon 57, namely,
“s2cred”, “s3cred”, ‘“sdcred”, “sScred” and “‘spocred’ as
archived on the website of the University of Wyoming [21].
The retrieved audio files are in 8-bit wav format. The 10 com-
binations resulting from the five audio files retrieved from [21]
were used. The PSNR, MAE, MSE and RMSE of the audio
blending of these 10 combinations are shown in Fig. 4. From
Fig. 4(a) we can note that the PSNR exceeded 100 dB in some
cases and the lowest PSNR at 95% approximation was more
than 83 dB. The average MAE, MSE and RMSE were in the
range of 1.93 to 9.07, 13.15 to 153.10 and 3.53 to 12.18,
respectively. Since the audio files are 8-bit, the maximum
MAE and RMSE can be 255 while the MSE can be a
maximum of 65025. Thus, for an approximate implementation,
the measured errors were extremely low.

V. CONCLUSION

Approximate computing (AC) has gained traction as an
alternative computing technique that offers savings in area and
power consumption. Previously, explorations of AC techniques
have focused on arithmetic operations which are beneficial for
computation-intensive tasks. However, for memory-demanding
applications, the memory wall would still curb the perfor-
mance. To address this challenge, we proposed in this paper
a load value approximator (LVA) that predicts the value using
machine learning (ML) and requires minimal overhead. Unlike
previously proposed ML-based LVA techniques, the model
we proposed is architecture and machine independent. The
proposed model was evaluated using three multimedia appli-
cations, i.e., image blending, edge detection using the Sobel
filter, and audio blending, for various approximate levels (n),
ie., 50% to 95% of load instructions were approximated.
The lowest value of peak signal-to-noise ratio (PSNR) in
all the conducted experiments was 64.69 dB. This value of
PSNR is deemed acceptable for multimedia applications. Since
the proposed model was able to achieve a decent quality
when 95% of the load instructions were approximated, we
consider the proposed ML-based LVA as an efficient technique
to be used when processing multimedia applications. The ML-
based LVA we proposed in this paper is beneficial when the
same multimedia is used repetitively, otherwise the training
overhead outweighs the benefits.

As a future work, we plan to experiment with the proposed
methodology using a variable approximate level (n) in a
dynamic fashion for quality/energy trade-off. Furthermore, we
plan to analyze the performance gain and energy saving when
implementing the proposed methodology in hardware.
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