
Energy-Efficient Approximate Squaring Unit
Mahmoud Masadeh1, Alain Aoun2, and Sofiène Tahar2

mahmoud.s@yu.edu.jo, a alain@ece.concordia.ca, tahar@ece.concordia.ca
1Computer Engineering Department, Yarmouk University, Irbid, Jordan

2 Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada

Abstract—The squaring circuit is an essential computational
element of Digital Signal Processing (DSP) designs that directly
affect their area, speed and power consumption. Various DSP
applications have noisy and redundant input data. Thus, im-
plementing an approximate squaring function will cause minor
quality degradation with a significant reduction in hardware
costs. In this paper, we design various energy-efficient array-
based approximate squaring units. The proposed designs are 8-
bit, and have a reduced area, power, and delay compared to the
exact array squarer, with an average of 14%, 6%, and 12%,
respectively

Keywords-Approximate Computing, Squaring Unit, Energy
Efficiency

I. INTRODUCTION

A large number of battery-powered Internet of Things (IoT)
sensors perform data acquisition, which provides noisy input
data for real-time digital signal processing (DSP) applications.
Such battery-powered sensors should have a reduced footprint,
small delay, and reduced power consumption where a degraded
accuracy of the final results is acceptable [1]. DSP applica-
tions efficiently manipulate noisy inputs. Thus, exact results
could be sacrificed for fast calculations with reduced power
consumption.

Arithmetic modules define the performance of computing
systems where the squaring function is a widely-used arith-
metic operation in multimedia and DSP applications [2]. The
parameters of the DSP module depend on the number and per-
formance of various adders, multipliers, and squaring designs
used. The squaring function is used extensively in various
applications [3], e.g., object tracking, adaptive filtering, pattern
recognition, and motion estimation.

DSP units with a parallel architecture are appropriate for
high-performance applications. However, they have a large
design area and power consumption. On the other hand, DSP
units with a recursive architecture are suitable for small and
low-power IoT nodes, which often have limited memory stor-
age and operand size. This paper explains how an array-based
exact squaring function can be approximated systematically.
Then, we use a set of existing approximate full adders (FAs)
to design an array-based approximate squaring units.

The rest of this article is organized as follows. Section II
explains the design of an exact array multiplier and its simpli-
fication into exact array squarer. Section III introduces related
work on designing approximate squaring circuits. Section IV
explains the proposed squaring designs and discusses their
accuracy and resource usage. The performance of the proposed
squarers is analyzed with a real-time application in Section V
and Section VI concludes the paper.

II. ACCURATE ARRAY MULTIPLIER & SQUARING CIRCUIT

This section describes an 8-bit exact array multiplier and
an 8-bit unsigned exact squaring function where the design is
based on array-based multiplication with two identical inputs.
The approximation procedure is generic and can be applied to
any N × N array multiplier.

A. Accurate Array Multiplier

An n-bit array multiplier is composed of n2 AND gates
for partial products (PP) generation, and n − 1 n-bit adders
for partial products accumulation [4]. An array multiplier has
a simple design and a regular structure. Thus, it is suitable
for multiplying small numbers, e.g., microcontrollers for IoT
devices [5]. Due to its importance and applicability in various
applications, there are multiple designs of approximate array
multipliers, where they replace the exact FAs with approximate
ones (e.g., [6], [7], [8]). They differ in the type of the used FAs,
the amount of approximation and approximation structure,
i.e., replacing arrows or columns in the partial product array.

As shown in Fig. 1, an 8-bit array multiplier includes
64 partial products generated by 64 AND gates. A8 to
A1 represent the “multiplicand”, B8 to B1 represent the
“multiplier”, B1A1 denotes the first partial product, B8A8
represents the last partial product, while P15 to P0 represent
the final “product” [9]. As shown in Fig. 2, partial product
accumulation requires 7 carry-ripple adders each of size 8-bit.
Thus, 56 FAs are required, where eight FAs are replaced by
half-adders (HAs) since the third input is zero. The HAs are
highlighted in blue color in Fig. 2.

Multiplicand A8 A7 A6 A5 A4 A3 A2 A1
Multiplier B8 B7 B6 B5 B4 B3 B2 B1

B1A8 B1A7 B1A6 B1A5 B1A4 B1A3 B1A2 B1A1

B2A8 B2A7 B2A6 B2A5 B2A4 B2A3 B2A2 B2A1

B3A8 B3A7 B3A6 B3A5 B3A4 B3A3 B3A2 B3A1

B4A8 B4A7 B4A6 B4A5 B4A4 B4A3 B4A2 B4A1

B5A8 B5A7 B5A6 B5A5 B5A4 B5A3 B5A2 B5A1

B6A8 B6A7 B6A6 B6A5 B6A4 B6A3 B6A2 B6A1

B7A8 B7A7 B7A6 B7A5 B7A4 B7A3 B7A2 B7A1

B8A8 B8A7 B8A6 B8A5 B8A4 B8A3 B8A2 B8A1

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Fig. 1: Partial Products of an 8-bit Array Multiplier

B5A4

B1A1B1A2B1A3B1A4B1A5B1A6B1A7B1A8
B2A1B2A2

FA

B2A7

FA

B2A8

B3A7

FA

FAFA

B3A8

FAFA FAFA FA HA

B3A1

HA

B2A3

B3A2

FA

B2A4

B3A3

FA

B2A5

FA

B2A6

B3A4B3A5B3A6

HAFAFAFAFAFAFA

HAFAFAFAFAFAFAFA

B4A1

FA

B4A7

FAFA HAFAFA

B4A5

FA

B4A6

FA

FAFA

B4A2B4A3B4A4

FA

B4A8

B5A1B5A2B5A5

HA

B5A7
B5A8

HA

B7A2

B6A3

FAFAFA

B6A1

B7A1

B8A1

B6A2

B5A2

B8A2

B5A3

B7A3

B8A3

B6A4

B8A4

FA

B7A4

B8A5

FA

B5A6

B6A5

B8A6

FA

B7A5

B6A6

B7A6B7A7

B8A7

B6A8

B7A8

B8A8

P0P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15

HA

FAFAFAFA

B6A7

FA

FA

Fig. 2: Structure of Partial Product Accumulation and Sum-
mation for an 8-bit Array Multiplier

2024 International Conference on Microelectronics (ICM)

979-8-3503-7939-6/24/$31.00 ©2024 IEEE

B. Accurate Array Squaring Circuit

Fig. 1 shows that the partial products are symmetrical
around the diagonal. Fig. 3 shows the simplified exact partial
product tree of an 8-bit exact unsigned array squaring circuit
with 28 partial products generated by 28 AND gates which
is greatly simplified compared to an 8-bit array multiplier.
Moreover, Fig. 4 shows that 21 FAs and 7 HAs are required.
As shown in Fig. 1, the height of the partial products array is
N for an N-bit multiplier. However, the height of the squarer
is reduced to ⌊ N/2 ⌋ + 1, which significantly decreases the
hardware complexity and delay.

A8 A7 A6 A5 A4 A3 A2 A1
A8 A7 A6 A5 A4 A3 A2 A1

A1A8 A1A7 A1A6 A1A5 A1A4 A1A3 A1A2 A1A1

A2A8 A2A7 A2A6 A2A5 A2A4 A2A3 A2A2 A2A1

A3A8 A3A7 A3A6 A3A5 A3A4 A3A3 A3A2 A3A1

A4A8 A4A7 A4A6 A4A5 A4A4 A4A3 A4A2 A4A1

A5A8 A5A7 A5A6 A5A5 A5A4 A5A3 A5A2 A5A1

A6A8 A6A7 A6A6 A6A5 A6A4 A6A3 A6A2 A6A1

A7A8 A7A7 A7A6 A7A5 A7A4 A7A3 A7A2 A7A1
A8A8 A8A7 A8A6 A8A5 A8A4 A8A3 A8A2 A8A1

A7A8 A6A8 A5A8 A4A8 A3A8 A2A8 A1A8 A1A7 A1A6 A1A5 A1A4 A1A3 A1A2 A1

A8 A6A7 A5A7 A4A7 A3A7 A2A7 A2A6 A2A5 A2A4 A2A3 A2

A7 A5A6 A4A6 A3A6 A3A5 A3A4 A3

A6 A4A5 A4
A5

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Fig. 3: Partial Products of an 8-bit Array Squaring Circuit

A10

A2FAHAFA FAFA FAFA FAFA FAFAFA

FAHAHAFAFA FAFA FAFA FA

FAFA

A1A2A1A3A1A4A1A5A1A6A1A7A1A8A2A8A3A8A4A8A5A8A6A8A7A8
A2A3A2A4A2A5A2A6A2A7A3A7A4A7A5A7A6A7A8

A3

A3A4A3A5A3A6A4A6

A4

A5A6A7

A6 A5

A4A5

P0P1P2P3

P4P5

P6P7

P8

P9P10

P11P12

P13P14P15

FA

FA HA

HAHA

HA

Fig. 4: Structure of Partial Product Accumulation and Sum-
mation for an 8-bit Array Squaring Circuit

C. Hardware Metrics

In order to show the benefits of simplifying the design of
the squaring function compared to standard multiplication, we
analyze various design metrics, i.e., area, power, and delay. We
synthesized these designs using Cadence Innovus [10]. The
synthesis uses a Cadence generic process design kit (GPDK)
based on the 45nm CMOS technology node. Table I shows
the 8-bit exact array multiplier characteristics and squaring
designs. The squarer unit offers a reduction of 50.2%, 69.1%,
and 30.2% in area, power, and delay respectively, compared
to the array multiplier.

TABLE I: Area, Power, and Delay for the Exact Array
Multiplier and Exact Squaring Function

Design Area (µm2) Power (µW) Delay (ps)
Array Multiplier 363.89 14.14 1,060

Squaring Unit 181.26 4.37 0.74

III. RELATED WORK

Previous work on the approximation of the squaring func-
tion is based on various techniques including lookup table-
based solutions [11], linear interpolation of the squaring
function [12], simplification of the squaring algorithm [13],
and simplified combinational logic for logarithmic design

[14]. Another technique of developing approximate designs,
while having full-bit width results, is utilizing approximate
building blocks. Accordingly, different designs of approximate
arithmetic units have been investigated, e.g., [15] [16] .

Traditional ROM-based look-up tables (LUT) are restricted
to applications with small bit-size operands. For applications
with large bit-size operands, the increase in the size of the
look-up table is preventive [11]. In [12], the authors presented
a linear approximation for the squaring function. They used
shift, concatenation and addition operations instead of using
multipliers and LUTs. Moreover, some compensation tech-
niques were used to reduce the maximum relative errors.

The authors of [13] presented two simple combinational
logic designs for bit-parallel approximate squarers, which
are based on simplified combinational logic. The obtained
hardware elements grow linearly with the width of input bits.
However, the proposed designs are mainly suitable for LUT-
based field-programmable gate array (FPGA) implementations
only. The authors of [14] proposed an approximate squaring
design utilizing simple algorithmic interpolation, where the
proposed design is based on shift and subtract operations.

IV. PROPOSED SQUARING FUNCTION

Squaring a number could be performed by multiplying
the number by itself utilizing regular multipliers. Thus, ap-
proximate squaring could be evaluated by using approximate
multipliers. However, a dedicated squaring design is efficiently
simplified due to the similarity of the bits in multiplicand
and multiplier numbers [17]. An accurate squaring design
as shown in Fig.4 can be transformed into an approximate
design by replacing the exact FAs with approximate ones,
either horizontally, vertically, or diagonally.

We approximate the conventional structure of the array-
based squaring circuit by vertically replacing the conventional
FAs with their approximate counterpart. For that, we use five
well-known approximate FAs, i.e., approximate mirror adders,
known as AMA1, AMA2, AMA3, AMA4, and AMA5 [18],
that show superiority compared to others [16].

Fig. 5: Different configurations for “Columns of Approximate
FAs” of the AAS

In this section, we illustrate various designs of an 8-
bit approximate array squaring (AAS) function. We propose
to replace the FAs of each column with approximate ones
gradually. For efficiency of reference, the vertical replacement
of FAs, i.e., the level of approximation, is referred to as
V1 to V7 as highlighted in Fig. 5. With seven levels of
approximation and five well-known FAs, we generated 35
approximate squaring designs.

2024 International Conference on Microelectronics (ICM)

A. Accuracy of the Proposed Designs

We implemented all designs in MATLAB [19] to assess
their accuracy. The accuracy of the designs are for the entire
8-bit input domain. The quality analysis of the approximate
designs is performed using various error metrics proposed
in the literature [20]. Namely, error rate (ER), mean error
distance (MED), normalized mean error distance (NMED),
mean relative error distance (MRED), and mean square error
(MSE). The ER, NMED and MRED metrics range from 0 to
1 where the closer the value to zero, the lower the error. If the
value of ER is closer to 1, i.e., 100%, this means the error
is very frequent. On the other side, for the metrics MED,
NMED, MRED and MSE, the larger the value the greater
the magnitude of the error. Additionally, the values of MED
and MSE for an 8-bit squaring unit logically range from 0 to
65,025 and 0 to 4,228,250,625, respectively. As shown in Fig.
6, the ER of AMA1-based designs ranges from 25% to 96%
with an average of 72%. The average ER for AMA2-based
designs is 85% while it is 92% for AMA3-based designs. The
designs based on AMA4 and AMA5 have an ER of 72% and
61%, respectively. The average ER for the 35 AMA-based
designs is 77%. The ER of AMA1 and AMA4-based designs
are overlapped in Fig. 6.

Figure 7 shows the MED of various proposed designs. The
MED for the 35 designs ranges between 1 and 721, averaging

Fig. 6: Error Rate (ER) of the Various Proposed Designs

Fig. 7: Mean Error Distance (MED) of the Various Proposed
Designs

91. The MED for AMA1-based designs ranges from 1 to 231,
and from 2 to 405 for AMA2-based designs. AMA3-based
designs have the highest MED which is 721. The designs
based on AMA4 and AMA5 have a minimum MED of 1 and a
maximum of 216 and 183, respectively. As shown in Fig. 8, the
NMED for the 35 designs ranges from 1.5×10−5 to 1.1×10−2

with an average of 1.3×10−3. Both AMA1- and AMA4-
based designs have an NMED that ranges from 1.5×10−5 to
3.56×10−3 with an average of 9.8×10−4. The NMED for
AMA2-based designs ranges from 3.1×10−5 to 6.2×10−3

with an average of 1.6×10−3. AMA3-based designs have the
highest NMED which ranges from 4.6×10−5 to 1.1×10−2

with an average of 2.7×10−3. The designs based on AMA5
have an NMED that ranges from 1.5×10−5 to 2.8×10−3 with
an average of 7.4×10−4.

Regarding MRED, the 35 designs have an average of
9.3×10−1 and ranges from 2.4×10−3 to 1.3×101, as shown in
Fig. 9. The designs based on AMA1 have an average MRED
of 5.8×10−2 that ranges from 4.8×10−3 to 1.7×10−1. The
MRED of AMA2-based designs ranges from 3.4×10−2 to
5.5 with an average of 1.4. The designs based on AMA3-
AMA5 have a minimum value of 3.8×10−2, 4.8×10−3, and
2.4×10−3, respectively. Similarly, these designs have maxi-
mum values of 1.3×101, 1.1×10−1, and 6.2×10−2, respec-

Fig. 8: Normalized Mean Error Distance (NMED) of the
Various Proposed Designs

Fig. 9: Mean Error Relative Distance (MRED) of the Various
Proposed Designs

2024 International Conference on Microelectronics (ICM)

TABLE II: Power, Area and Delay for Various Approximate Squaring Designs

Design Area (µm2) Power (µW) Delay (ns)
AMA1 AMA2 AMA3 AMA4 AMA5 AMA1 AMA2 AMA3 AMA4 AMA5 AMA1 AMA2 AMA3 AMA4 AMA5

V1 176.13 179.55 176.81 177.50 177.50 4.30 4.36 4.36 4.37 4.37 0.72 0.74 0.72 0.72 0.72
V2 171.00 177.84 171.68 172.37 173.74 4.39 4.29 4.38 4.25 4.40 0.69 0.73 0.69 0.69 0.70
V3 164.50 175.10 165.87 166.21 163.48 4.59 4.38 4.47 4.26 4.27 0.68 0.74 0.68 0.66 0.66
V4 158.00 172.37 159.37 154.58 153.22 4.65 4.57 4.59 4.08 4.06 0.66 0.72 0.68 0.60 0.61
V5 152.53 168.61 150.82 146.03 136.46 4.47 4.55 4.58 3.74 3.48 0.66 0.70 0.68 0.56 0.55
V6 147.06 164.84 141.59 123.80 119.70 4.12 4.71 4.07 3.16 3.10 0.63 0.71 0.66 0.50 0.51
V7 145.01 160.06 123.80 100.55 97.81 3.84 4.52 3.24 2.46 2.36 0.58 0.68 0.63 0.43 0.43

Fig. 10: The Mean Square Error (MSE) of the Various Pro-
posed Designs

tively. The average MRED of these designs is 3.1, 4.1×10−2,
and 2.2×10−2, respectively. As shown in Fig. 9 the MRED of
AMA1, AMA4, and AMA5 designs have the same magnitude
(10−2 or 10−3) for the configuration from V1 to V7.

The MSE of the 35 designs ranges from 4 to 6.4×105 with
an average of 3.9×104. The minimum MSE of AMA1-AMA5
based designs are 4, 8, 12, 4, and 4, respectively. On the other
hand, the maximum MSE of AMA1-AMA5 based designs
are 8.5×104, 2.2×105, 6.4×105, 7.8×104, and 5.7×104, re-
spectively. The average MSE is 1.6×104, 4.1×104, 1.1×105,
1.4×104, and 1.1×104, for AMA1-AMA5, respectively.

Since approximate computing is bounded by the concept of
fail small or fail rare, we can notice that the proposed approx-
imate squaring designs in general fail small. Additionally, for
small levels of approximation, e.g., V1 and V2, the error was
small and rare, i.e., failing small and rare.

B. Hardware Metrics

We implemented all of the approximate squaring designs in
VHDL, where we used Siemens QuestaSim [21] for functional
verification. On the other hand, the synthesis is performed
using the Cadence Innovus tool [10] with 45nm GPDK.

Fig. 11 shows the areas of the proposed designs which
range from 97.81µm2 to 179.55 µm2 with an average of
156.16µm2. Thus, these designs have an average reduction of
14% and 57% compared to the exact squarer and multiplier,
respectively. Fig. 12 shows the proposed designs’ power,
ranging from 2.36µW to 4.71µW with an average of 4.11µW.
Thus, these designs have an average reduction of 6% and 57%
compared to the exact squarer and multiplier, respectively. Fig.
13 shows the delay of the proposed designs which ranges from
0.43ps to 0.74ps with an average of 0.65ps. Thus, these designs
have average reductions of 12% and 39% compared to the
exact squarer and multiplier, respectively.

Fig. 11: Area of the Various Proposed Designs

Fig. 12: Power of the Various Proposed Designs

Fig. 13: Delay of the Various Proposed Designs

V. APPLICATION

To assess the performance of the proposed approximate
squaring designs, their quality is analyzed using averaged root
mean square of gray-scale images. An 8-bit gray-scale image
(X) can be represented as a two-dimensional array of unsigned
integers in image processing applications. Each pixel x(i, j)
has a value that ranges from 0 to 255, where i = 1,..., r
and j = 1, ..., c are the coordinates of the pixel in an r × c

2024 International Conference on Microelectronics (ICM)

Fig. 14: Average Root Mean Square (ARMS) for 50 Images
Evaluated using the Various Proposed Designs

image. The measure of information provided by an image is
called image energy, which is quantified by calculating the root
mean square (RMS) of image pixels as given in Eq. (1). Thus,
the energy evaluation requires a large number of squaring
operations. Image energy represents the rate of change in
the color, brightness or magnitude of the pixels over limited
ranges, which is used in various image processing algorithms
[14], e.g., image segmentation, classification, fusion, and im-
age distance measure. In Eq. (1), the total number of pixels
is represented by n = r × c. For a set of images, the average
RMS is calculated by Eq. (2), for m images.

RMS =
1

n

√∑
i,j

x2(i, j) (1)

ARMS =
1

m

m∑
k=1

RMSk (2)

We calculated the RMS for a set of fifty 8-bit gray-scale
images, each of size 256 × 256 pixels. Fig. 14 shows the
values of ARMS for the images evaluated using various
squaring designs. The ARMS for an exact design is 0.40, and
we consider a value of 0.40±threshold as acceptable. For a
threshold of 0.05, we have all 35 designs with an acceptable
ARMS, i.e., 0.45 ≥ ARMS ≥ 0.35.

VI. CONCLUSION

Approximate computing reduces execution time and energy
consumption of error-resilient applications, e.g., digital signal
processing, by slackening the quality requirements. In this
paper, we have investigated and proposed various designs of
an 8-bit array-based approximate squaring function that can be
implemented with numerous levels of accuracy by changing
the level of approximation, i.e., the number of approximate
basic blocks. The proposed designs are examined by changing
the number of columns with approximate full adders. The
detailed analysis confirmed that the proposed designs have
optimized results for both hardware and accuracy parameters,
i.e., the proposed designs have reduced areas, powers, and
delays compared to the exact array squarer, with an average
of 14%, 6%, and 12%, respectively. Finally, the efficiency of
the proposed designs is verified by employing them in a real-
world application, i.e., averaged root mean square of gray-
scale images. The obtained results verified its effectiveness

and showed promising results. In approximate computing, the
final application quality depends on the applied individual
inputs, where for some values the output accuracy could be
degraded significantly. Therefore, as a future direction, we
will investigate the design of a run-time adaptive squaring
function, based on the applied inputs. Moreover, we will
explore designing circuits with different configurations, e.g.,
larger operands, targeting more applications.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, pp. 1–33, 2016.

[2] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Princi-
ples, Algorithms, and Applications. Prentice Hall, 2007.

[3] J. W. Leis, Communication Systems Principles using MATLAB. John
Wiley & Sons, 2018.

[4] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits. Prentice Hall Englewood Cliffs, 2002.

[5] V. Muralidharan and N. S. Kumar, “Design and implementation of low
power and high speed multiplier using quaternary carry look-ahead
adder,” Microprocessors and Microsystems, vol. 75, p. 103054, 2020.

[6] B. Shao and P. Li, “Array-based approximate arithmetic computing: A
general model and applications to multiplier and squarer design,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 4,
pp. 1081–1090, 2015.

[7] P. Balasubramanian, R. Nayar, and D. L. Maskell, “Approximate array
multipliers,” Electronics, vol. 10, no. 5, p. 630, 2021.

[8] T. Yamamoto, I. Taniguchi, H. Tomiyama, S. Yamashita, and Y. Hara-
Azumi, “A systematic methodology for design and analysis of approx-
imate array multipliers,” in Asia Pacific Conference on Circuits and
Systems. IEEE, 2016, pp. 352–354.

[9] M. Masadeh, Y. Elderhalli, O. Hasan, and S. Tahar, “A Quality-Assured
Approximate Hardware Accelerators–Based on Machine Learning and
Dynamic Partial Reconfiguration,” Journal of Emerging Technologies in
Computing Systems, vol. 17, no. 4, 2021.

[10] Cadence, “Innovus Implementation System,” 2024.
[Online]. Available: https://www.cadence.com/ko KR/home/tools/
digital-design-and-signoff/soc-implementation-and-floorplanning/
innovus-implementation-system.html

[11] C.-L. Wey and M.-D. Shieh, “Design of a high-speed square generator,”
IEEE Transactions on Computers, vol. 47, no. 9, pp. 1021–1026, 1998.

[12] I.-C. Park and T.-H. Kim, “Multiplier-less and table-less linear approxi-
mation for square-related functions,” IEICE Transactions on Information
and Systems, vol. E93.D, no. 11, pp. 2979–2988, 2010.

[13] J. Langlois and D. Al-Khalili, “Carry-free approximate squaring func-
tions with O(n) complexity and O(1) delay,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 53, no. 5, pp. 374–378,
2006.

[14] A. Avramović, Z. Babić, D. Raič, D. Strle, and P. Bulić, “An approx-
imate logarithmic squaring circuit with error compensation for DSP
applications,” Microelectronics Journal, vol. 45, no. 3, pp. 263–271,
2014.

[15] M. Masadeh, O. Hasan, and S. Tahar, “Input-Conscious Approximate
Multiply-Accumulate (MAC) Unit for Energy-Efficiency,” IEEE Access,
vol. 7, pp. 147 129–147 142, 2019.

[16] M. Masadeh, O. Hasan, and S. Tahar, “Comparative study of approxi-
mate multipliers,” in Great Lakes Symposium on VLSI. ACM, 2018,
pp. 415–418.

[17] T. C. Chen, “A binary multiplication scheme based on squaring,” IEEE
Transactions on Computers, vol. C-20, no. 6, pp. 678–680, 1971.

[18] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2012.

[19] Mathworks, “MATLAB,” 2024. [Online]. Available: https://www.
mathworks.com/products/matlab.html

[20] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-
proximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, no. 9, pp. 1760–1771, 2012.

[21] Siemens Digital Industries Software, “Questa Advanced Simulator,”
2023. [Online]. Available: https://eda.sw.siemens.com/en-US/ic/questa/
simulation/advanced-simulator/

2024 International Conference on Microelectronics (ICM)

