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Abstract—In the healthcare context, remote monitoring based
on the Internet of Things (IoT) technology is a widespread
application. Underlying entities are interacting to bring up
various services, so that their communication has to be ensured
without defects such as deadlocks. The correct validation of these
IoT applications is a major concern because of their distributed
and concurrent features, as well as, the safety-critical nature
of the health context. In this paper, we show how we use a
model checking approach to accurately validate the behavior of
an IoT-based healthcare application. We then focus on verifying
three important classes of properties namely safety, liveness, and
absence of deadlock. The verification is guaranteed by means of
the UPPAAL model checker.

Index Terms—Remote Monitoring System, IoT, Model Check-
ing, UPPAAL

I. INTRODUCTION

The healthcare domain has benefited from the technolog-
ical Internet of Things (IoT) advancements [1] and their
combination is nowadays a reality. Remote monitoring is
considered one of the most common e-health application [2].
This kind of monitoring generally relies upon a Wireless
Body Sensor Network (WBSN) [2] designed to collect vital
signs, such as heart rate and body temperature. Such IoT-based
monitoring can have many purposes like personal healthcare
and fitness.IoT systems are usually built upon many distributed
entities, that are completely concurrent bringing up various
services, and communicating over potential faulty channels.
Specifying such complex systems, can be thus error-prone.
Nevertheless, in a safety-critical context like healthcare, the
correct operation of controlling software is primordial, and any
misfunctionality can cause serious losses in money, time and
even lives [3]. It is imperative to ensure that systems meet all
expected requirements, especially for the critical components
of the system. There is thus an urgent need for efficient
validation approaches that can effectively detect defects at all
stages of the life cycle of the system since its specification.

For validation purposes, simulation-based testing has been
heavily conducted for many kinds of healthcare systems [4],
and in particular concurrent software. Simulation is consid-
ered as well-established and practical, but it suffers from
many shortcomings. For example, it is almost unbelievable
to achieve an exhaustive testing, while covering all possible
scenarios for complex systems. A complete set of input cases

is impossible to test. Consequently, many defects can be left
undetected. In addition, simulation can be also error-prone.

To cope with all these issues, more rigorous design tools
are required to enhance the safety of IoT-based applications
in general, and checking their functional correctness prior to
execution. Formal methods [5] have been highly recommended
as an efficient solution to ensure the analysis and correctness
of concurrent software at different levels of its life cycle,
improving the satisfaction of the requirements that can impact
the quality of the service delivery. Research in formal methods
is constantly growing leading to the development of various
verification techniques with powerful support tools for an early
detection of defects. Model checking [6] is one of the most
powerful formal methods for verifying the logical correctness
of such concurrent systems. Based on a solid mathematical
foundation, efficient formal support is applied to find out
potential problems at the design stage and catch up errors.
Classical as well as advanced properties can be thus validated.

In this paper, we show how we use a model checking
approach to validate the correctness of an IoT-based healthcare
application deployed in smart spaces. The application provides
a classical service of data collection for single values. The
presented application offers a service of data aggregation,
combining values from monitored people and environment.
Both monitored sides are seamlessly integrated into a single
unit, where data can be extracted from. Our approach will
check if the system behaves according to its specification.
The verification is achieved in UPPAAL ; a tool for formal
verification of real-time systems using timed automata [7].

The remainder of this paper is organized as follows. Section
II is dedicated to review some related work. We overview
the required preliminaries in Section III. In Section IV, a
global presentation of the verified application. In Section V,
we describe the formalized IoT system in terms of finite state
automata within UPPAAL. Thereafter, the main verification
results are discussed in Section VI. Section VII concludes the
paper and points directions to future work.

II. RELATED WORK

Over the years, a large body of work has been achieved
for formally verifying various aspects of e-health systems.
Chen et al. [8] studied the verification of an IoT system for
elderly health cabin within UPPAAL by verifying the correct
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activities of the system in terms of deadlock, functionalities,
and timeliness. In [9], a formal approach for analyzing ambient
assisted living solutions, is proposed using both exhaustive
and statistical model checking. Recently, the authors of [10]
assessed the correctness of patient activity in medical games.
The system behavior is modelled as discrete-time Markov
chains enriched with event occurrence probabilities within the
PRISM and Storm frameworks. In [11], the authors provided
an interesting approach to achieve accurate predictions about
viral infection based on statistical model checking.

There exist also other similar related work to the above
ones that use various approaches to validate several kinds
of healthcare systems, by checking target properties using
dedicated tools. In general, it has be noticed that while
healthcare systems, based on IoT technology, can be saftey-
critical, they occupy a major part of our living without an
important focus on their verification.

III. PRELIMINARIES

In this section, we introduce model checking, as well as,
the UPPAAL model checker.

A. Model Checking

Model checking [6] is one of the most widely used tech-
nique for system verification. Model checking has a pure
behavioral view of the system. The main idea is to build a
state-based model of the target system, and to translate various
properties into formulas in a given logic. The verification is
achieved by an exhaustive checking of all pathways of an
executable specification. In case the property is not satisfied, a
counter-example is displayed. The system model can be more
or less complex, depending on the abstraction level, but finite.
Model checking outperforms simulation and testing providing
larger coverage and more quality assurance. Model checking
has the ability to easily deal with various properties such as
deadlock, safety, and liveness. Nevertheless, the technique is
subject to limitation regarding the state space explosion due
to the system complexity.

B. The UPPAAL Tool

UPPAAL is a mature tool providing an accurate modeling
and checking of real-time systems [7].The tool includes two
parts, a graphical user-interface and a verification engine based
on model-checking. Finite state automata are used to model
the system behavior. In UPPAAL, the finite state automata
communicate through channels.

Here are some of the most used notations in UPPAAL.
• ch?: there is a receive operation on channel ch
• ch!: there is a send operation on channel ch
• The start state is represented by a location with a circle
• The committed state is represented by a location with the

letter c
A checking formula in UPPAAL is a combination of the

following ‘operators’ [12]: E, A, <>, and [ ]. If p is the
property to be checked, then the common formulas are:

• E<> p: there exists a path where p eventually holds.

• E[ ] p: there exists a path where p always holds.
• A[ ] p: for all paths p always holds.
• A<> p: for all paths p will eventually hold.
• p → q: whenever p holds q will eventually hold, where

p and q are logical expressions.
UPPAAL supports the verification of various properties

expressed in Computational Tree Logic (CTL), namely [7]:
• Reachability: this property checks if a certain state

can be reached or not. The deadlock in the system is
expressed through this property.

• Safety: it always prevents the system from the occurrence
of “something bad”, i.e., something good is always true.

• Liveness: UPPAAL checks if “something good eventu-
ally happens”. A typical example is a request that will be
at least satisfied once during the system execution.

IV. OVERVIEW OF THE MONITORING APPLICATION

A. Architecture

The studied application is an e-health application in smart
spaces based on a WSN [13]. The system architecture is
presented in Figure 1. There are mainly three subsystems:
the operator, the Wireless Sensor Network (WSN), and the
Body Area Network (BAN). The operator is making requests
through the base station, the WSN is responsible of the
communication part and is routing the requests, as well as,
the responses, and the BAN is composed of the wearable
devices monitoring the user body conditions. The WSN is
mainly made of many nodes covering the monitored area and
measuring several context parameters, such as temperature and
humidity. The WSN is usually put in a hierarchical way so that
nodes can have different functionalities: broker, orchestrator,
and measurement nodes. Finally, the BAN, built upon the user,
is a network composed of several wearable devices and a
bridge sensor node. The monitoring motes should be able to
interact with the WSN. The BAN can be used for coaching
routines or vital signal monitoring. The user makes interaction
with the BAN using different devices, such as smart phones,
smart watches and tablets.

Fig. 1: The Application Architecture

B. Services

The application is designed to simultaneously monitor the
user conditions, as well as the environment, offering two main
services. The application provides a service of data collection
for simple parameters. These simple parameters are extracted
from the user environment, such as temperature or humidity,
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or from a wearable device, that monitors the user physiological
conditions (breathing rate, heart rate, body temperature) from
a smart device (e.g. smart watch). The second service is the
result of a data aggregation. This kind of service is also named
as composed service. In this case, the system cannot deliver
responses to the user, unless it communicates with other
parties. The two data values collected from both the monitored
context and the user are merged, and a representative message
is displayed for the operator.

A typical scenario, given in [13], consists in a real ap-
plication including a sportsman in a gymnasium. The basic
service of data collection is to check the performance of the
sportsman by measuring his physiological conditions through
some wearable devices, and then suggest suitable coaching
exercises. The second service of data aggregation consists in
controlling the temperature conditions of the sportsman and
the context simultaneously. The obtained data is evaluated
according to the fixed thresholds, then a response about the
temperature level is provided.

C. The Roles

Next, we focus on the roles implied to ensure both services
of data collection (simple or aggregated). There are five roles:

• The operator: it is a surveillance officer equipped with
a system capable to make requests from a web browser
of any system (PC, laptop) or a Graphic User Interface
(GUI) on a given device (smartphone, tablet).

• The base station: the main functionality of a base station
is to establish a connection between the system making
requests, i.e., the operator and the monitoring network.
A base station works like a gateway, but it is not a real
node with data storage capacities.

• The broker agent: the broker agent has usually the
responsibility to forward the request to the node able to
deliver the response. Once the request is received, the
broker agent will send it either to the suitable data node
or to the orchestrator.

• The orchestrator agent: The orchestrator handles a
composed request by separately sending each of the
simple request to the agents able to respond. Similar to
the broker, the orchestrator should not measure anything.

• The data agent: it is usually a simple mote able to deliver
the requested data.

D. The Flow

We provide a brief explanation of the procedure of how
to retrieve the data for a data aggregation service, namely
the interactions between the roles described above. When the
operator sends a request to the WSN, it is first received by the
broker agent. In the case of a data aggregation request, the
broker will not transmit the request directly to the monitoring
node, but it will forwarded it to the orchestrator agent. Indeed,
the orchestrator has an idea about which nodes are able to
respond the request and which data is needed. The orchestrator
will thus decompose the current request into two simple

services. Then, it will transfer the simple request one by one
to the broker. The original composed request is handled as
two simple service requests in a sequential manner. Once the
simple request received by the broker, it will communicate
with the suitable data agent in order to get the requested data.
The data agent will send back the response to the broker,
which in turn to the orchestrator. As soon as the required data
aggregated, an evaluation is achieved using different levels.
These levels are set according to given thresholds. If there are
issues at any level, error messages are displayed and default
values are used. A more detailed explanation of the flow of
the present application can be found in [13].

V. MODELLING IN UPPAAL

Our goal is to achieve a formal verification of the IoT-
based application, presented above, using the UPPAAL model
checker. To achieve the invocation of UPPAAL, we first need
to build the system model as finite-state machines and specify
then the requirements to be verified in the target temporal
logic. The main focus is to model the functionalities for the
data aggregation service.

The model consists of five state machines, one for each
of the roles described earlier. Figures 2 and 3 represent the
orchestrator and the broker, respectively. Below, we provide a
brief explanation of the models. The data agent model has been
omitted for space constraints. Once a request is received from
the user, the base station side will switch it to the monitoring
network through the broker agent on the channel req BS Br.
The broker receives the main request from the base station
on channel req BS Br. Through a Boolean value named
CreqBr, the broker has first to check if it is a service requiring
data aggregation or a simple service. In case CreqBr is true,
the broker forwards the request to the orchestrator on channel
Creq AvT Br Orch. The orchestrator will thus decompose
the aggregation request and sends each simple service to the
broker. Indeed, the orchestrator has an idea about the required
data, and the nodes from where to get the response. But, as
we mentioned before, the orchestrator should not make any
measurements by itself. From now, the initial request of data
aggregation is handled as two simple services, performed in
a sequential manner by the orchestrator instead of the human.
The broker hence initiates a simple service to the suitable data
agent, requesting the required data for each simple service.
Afterwards, the data agent proceeds to submit the collected
data to the broker on channel DATA DA Br.

Once data is received, the broker sends it to the orchestrator
on channel DATA Br Or, and enters in a wait state. Based
on a Boolean value named req, the orchestrator checks if the
required data has been gathered. In case the required data is
not yet collected, the orchestrator launches the second simple
request towards the broker over the channel req Or Br.
Within the orchestrator automata (Figure 2), this corresponds
to the transition with the guard (req >= 1). Otherwise, the
orchestrator evaluates the collected values over a threshold
and then communicates the appropriate message to the broker
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agent on channel Dataok Or Br. The resulting message will
be displayed on the final user screen.

The flow described above is the common normal behavior of
the system. Nevertheless, once one of the required conditions
is not satisfied, the system fails to evolve leading to situations
modeled as transitions to failure states. For example, if there
is any problem with the request, an error message will be
issued to the broker, who in turn informs the base station and
then the user on the channel Err BS User. Another example
of failure scenario is when the data cannot be retrieved,
prompting the broker to send the default data in response.

Fig. 2: The Orchestrator Automata

VI. VERIFICATION IN UPPAAL
Once the finite automata developed in UPPAAL, we proceed

with the verification of some interesting properties. Three
kinds of properties were specified and formulated using propo-
sitional temporal logic [7]. Below, we provide explanations
about these properties along with their UPPAAL formulas.

Deadlock-Freedom: This property guarantees that the
developed models are all deadlock free. This means that the
system never reaches a state where it cannot progress.
A[] not deadlock

Safety: This type of property ensures that whether or not
something bad will happen. In the sequel, we specify various
safety properties (SP-1-5) of our model.

SP1: The property verifies that the system is launched only
if the user demands a service from the base station.
A<> (User.start imply BS.start) and
(BS.start imply Broker.start) and
(Broker.start imply Orchestrator.start) and
(Broker.start imply DataAgent.start)

SP2: The data aggregation request, received by the broker,
is always forwarded to the orchestrator for execution.
A[] (Broker.Creq_recv == true) imply
(Orchestrator.start == true)

SP3: A request for data aggregation is decomposed into two
simple requests only once.

A[] (Broker.Creq_av imply (CreqBr == false))

SP4: The orchestrator is invoked if the variable (req ≤ 2).
A[] (Orchestrator.start == true) imply
(req <= 2)

SP5: Once the required data for a composed request is
gathered, the variable req is automatically reinitialized.
A[] Orchestrator.Data_gatherY imply
(req == 0)

Liveness: This kind of property ensures that “something good
eventually happens”. In following we describe several relevant
liveness properties (LP1-5) to verify our system.

LP1: This property verifies that there exists at least one path
in which the node enters the final state after the user requests
the BS service in the start state. This ensures that there is at
least one path along which the user request is successful.
E<> (User.start imply BS.success) and
(User.start imply Broker.success) and
(User.start imply Orchestrator.success) and
(User.start imply DataAgent.success)

LP2: When the Broker reaches the state Serv Av, the
value of the Boolean variable controlling the availability of
the composed request is always true.
A[] (Broker.Creq_av == true) imply
(avcreqBr == true)

LP3: When the user reaches the state success, there are no
issues from the orchestrator side, and the value of the Boolean
variable controlling the composed request is true.
A[] (User.success == true) imply
(avcreqBr == true) and (issuesOr == false)

LP4: When the user reaches the state success, there is are
no issues encountered from the orchestrator and the data agent.
A[] (User.success == true) imply (issuesOr ==
false) and (issuesDA == false)

LP5: If there are any problems for getting data from the
agent node, a default value is displayed.
A[] ((avsreqBr == false) or (issuesDA ==
true)) imply (DataAgent.get_Def == true)

We have successfully verified each of the above properties
on our health monitoring IoT model. The verification by model
checking has been conducted in UPPAAL version 4.1.24,
running in Windows 10 OS on an Intel(R) Core(TM) i5-8250U
CPU with 8 GB of RAM. Experimental results showed an
average memory consumption of 38 MB per property, while
the whole verification consumed 4744 MB of RAM. In terms
of CPU time, UPPAAL reported an average of 1.2 sec. per
property, which is more than 10 folds faster than comparative
experimental results based on verification by simulation [14].

In general, IoT-based solutions for healthcare are theoreti-
cally studied, then experimental evaluation through simulation
is achieved.
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Fig. 3: The Broker Automata

Indeed, our study of related work, showed that paper-
and-pencil analysis together with simulation are the most
commonly used approach for the performance analysis of IoT-
based e-health monitoring systems [15], [14]. Compared to
these traditional techniques, our work uses formal verification,
which provides a more generic and exhaustive validation while
providing a more accurate behavioral view of the considered
IoT application. In particular, we used model checking as a
sound formal technique that automatically searches the entire
state space in order to find out errors at an early stage of
the IoT system development. In a summary, the evaluation
under UPPAAL shows how the proposed formal verification
technique outperforms standard validation approaches by en-
suring an exhaustive verification of accurately specified system
behaviors and hence providing more trust in the design of such
safety-critical IoT-based healthcare application.

VII. CONCLUSION

Today, health infrastructure is able to provide high quality
healthcare services, and health surveillance is considered as
one of the most common applications. In the current work,
we have presented an approach for the formal analysis of
an IoT-based healthcare application deployed in smart spaces.
We have been able to check the correctness of many safety-
critical properties, within the UPPAAL model checker. The
user friendly nature of UPPAAL leads to an attractive ver-
ification experiment. The proposed approach can be useful
for the system developer in achieving better quality in the
specifications and implementations. In addition, such approach
can be adopted to verify various kinds of IoT-based systems
in the healthcare context. As part of our future work, we plan
to examine other services such as alarm activation.
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