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Abstract—Field Programmable Gate Arrays (FPGAs) are
widely used in many safety-critical applications mainly due to
their high computational efficiency and dynamic reconfiguration.
Although dynamic reconfigurability is often leveraged upon to
attain further flexibility and reliability, it comes with an area
overhead. In this paper, we provide a methodology to analyze the
trade-off between reliability and area in dynamically reconfigured
FPGA systems. We mainly aim to find the lowest area overhead
for a given fault recovery rate in different system modules. For
this purpose, we provide a generic model for system reliability
using Dynamic Fault Trees (DFTs) that considers partially
reconfigurable fallback units. The experiments are performed
on a fail safe Electronic Control Units (ECUs) based automotive
system. We use the FPGA partial reconfiguration to replace the
faulty ECU functionality. The results show that by setting a
suitable threshold for the reliability enhancement, the minimum
number of fallback units can be determined. This leads to an
enhanced system reliability with the most optimal area overhead.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have been exten-

sively used as an alternative to Application Specific Integrated

Circuits (ASICs) for embedded applications, due to their

high computational power, flexibility and low non-recurring

engineering costs [1]. However, the Static Random Access

Memory (SRAM) based technology, employed by most FPGAs,

increases their susceptibility to different types of faults [2],

especially Commercial Off-The-Shelf (COTS) FPGAs that are

not radiation hardened. For many embedded systems in domains

like aerospace and automotive, reliability is a very important

aspect. Thus, self healing and fault recovery techniques are

required to increase the reliability of those mission and safety

critical systems. A wide range of fault detection and correction

techniques [3], as well as fault tolerant methods analysis

are available for FPGAs [4]. Moreover, many works have

investigated methods for increasing the reliability and fault

tolerance of FPGAs [5], [6].

Dynamic Partial Reconfiguration (DPR) technology offers a

great flexibility of reconfiguring certain FPGA partitions at run-

time [7]. This feature can also be used for fast and autonomous

fault recovery of transient [8] and permanent faults (e.g. [9],

[10]) through swapping the functionality to other partitions.

This recovery provides higher availability and increased system

lifetime. However, the fact that DPR can tolerate faults at run-

time by providing spare Reconfigurable Partitions (RPs) that

can take over the faulty functionality is accompanied by an

increased FPGA resource utilization. Although FPGAs are

getting larger, area is still a great limitation specially when

the design cost is to be reduced. Moreover, the increased

resource utilization leads to higher power consumption and

longer reconfiguration time. Thus, enhancing the reliability of

limited size FPGAs is still a challenge.

Optimizing reliability enhancement techniques to decrease

the generated area overhead (FPGA resource utilization) is

addressed in the literature in various ways (e.g., [11], [12]). In

this paper, we propose to address this problem in a novel way

using dynamic fault trees (DFTs) models. A DFT is a reliability

model that can effectively capture the failure behavior of spare

parts in a given system. We develop DFT models and derive

a generic reliability expression to determine the number of

fallback partitions to be included in the design. We optimally

enhance the overall system reliability with the least possible

area overhead. This allows us to properly model the fallback

units of the system as spare parts and thus truly capture the

system behavior for any number of main and fallback units.

As a case study, we use a fail safe electronic control unit

(ECU) based automotive system to demonstrate the proposed

model. In such systems, it is possible to build optimized nodes

that combine ECUs and network controllers on a single FPGA

chip with low power consumption and small area [13]. The

system is composed of a number of ECUs, a Motor Control Unit

(MCU), a Throttle Sensor (THS) and a number of Fall Back

Units (FBUs). The overall system reliability is evaluated for the

case of single ECU and single FBU, single ECU and multiple

FBUs (with different failure rates), then for multiple ECUs and

multiple FBUs. We use the generic reliability expression to

evaluate the reliability enhancement for these different system

configurations. A trend can be observed for the number of

fallback units that can be added to enhance the system reliability.

We notice that adding additional units has a positive impact on

the reliability. However, the percentage of enhancement lowers

as additional components are added. Therefore, we propose



Fig. 1. Fault Tree Gates: (a) AND, (b) OR (c) PAND (d) FDEP (e) Spare

to set a threshold for the required enhancement, based on the

system requirement, to minimize the number of fallback units.

The state-of-the-art literature shows that DPR was used

in different ways to provide fault tolerance and enhance

the reliability of FPGA based systems, also compromising

reliability enhancement against area and power is a prominent

problem. However, considering the interaction between system

components including partially reconfigurable fall back units

(replacing faulty modules) in calculating and enhancing the

overall reliability is considered a novel approach.

II. RELATED WORK

The state-of-the-art shows that FPGAs with their DPR

technology are widely used for automotive ECU systems.

An ECU using a fault tolerant communication controller was

presented in [14], where Partial Reconfiguration (PR) is used

to dynamically reconfigure a faulty controller. The authors

in [15] presented an architecture for implementing a fail-safe,

safety-critical ECU system on FPGAs. The FPGA is configured

to monitor the control circuits and detect faults. When a fault

is detected, the FPGA is dynamically reconfigured to replace

the faulty modules. Partial reconfiguration was also used in

other automotive technologies, like driver assistance systems

presented in [16]. A scheme for implementing safety-critical

ECU systems on reconfigurable hardware was proposed in [17].

Employing DPR and a custom network controller, the authors

of [17] presented a scheme that is adaptable to implement an

isolated fault-tolerant node or a back-up node to take over the

functionality of multiple failing nodes. A short recovery time

was achieved but with some area overhead. Another FPGA-

based ECU system was proposed in [13] for compute-intensive

non-critical functions, such as driver assistance for automotives.

The literature also investigated fault tolerance techniques for

FPGA based systems through DPR, trying to optimize the area

overhead and recovery time. A methodology exploiting DPR

to relocate faulty modules at run-time was presented in [18]

proposing a partitioning method as a solution to maximize the

number of permanent faults the system can tolerate, through an

algorithm that partitions the FPGA into tiles depending on the

logic resources required by each tile. The number of required

recovery tiles is equal to the maximum number of faulty tiles.

The algorithm decreases the area overhead and increases the

number of tolerable faults but with an increased computational

complexity where scalability is not possible. An Algorithm

Based Fault Tolerance (ABFT) approach was implemented in

[19] for fault recovery using DPR and a quantitative analysis

of the overheads was presented. The area overhead was shown

to be 10% with an execution time penalty of 24% over the

unprotected design in fault free situations.

The Maximum Empty Rectangle (MER) technique with

adjacency heuristic was presented in [11], where tasks are

allocated in DPR systems providing higher area utilization,

higher task acceptance ratio and lower fragmentation ratio. A

design flow was proposed in [6] employing a mechanism to

detect and recover from permanent faults reducing the number

of RPs with better utilization of FPGA resources. The design

flow methodology enables relocating modules on different RPs

without the need for multiple partial bitstreams. A new aging

sensor was deployed adding an aging effects mitigation unit.

The aforementioned techniques use DPR for enhancing the

reliability. They mostly investigate partitioning algorithms for

decreasing area overhead and fast recovery through smaller

reconfiguration time, but are in most cases accompanied with

high computational complexity and accordingly are not scalable

for larger or more complex systems.

An approach for defining the suitable number of spare units

needed by a system is studied in [12], where reliability and

performability modeling are carried out based on Markov

models. Power consumption is used as the penalty, showing

that an increase in the number of spares increases the system

reliability but on the other hand, leads to a poorer performability.

The presented method also lacks scalability as the complexity

of the Markov models significantly increases with the number

of system modules. DFT models have also been used in

the analysis of automotive systems. For example, in [20],

DFTs are used in the Safety analysis of vehicle guidance

systems. Furthermore, in [21], DFTs have been successfully

used in the analysis of a drive-by-wire system with brake and

throttle control units. However, to the best of our knowledge,

DFTs have not been used in minimizing the area overhead

incurred by adding redundant spare units. The novelty of

this work lies mainly in considering the relationship between

interacting system components and the effect of faulty elements

on the overall system reliability to be used in determining the

appropriate number of spare units for least area overhead.

III. DYNAMIC FAULT TREES

Reliability expresses the probability of continuing to provide

a reliable and correct service over a given period of time [22].

Several models are developed to capture the system reliability,

which vary depending on the properties that they capture.

Traditionally, Fault Trees (FTs) [23] and Reliability Block

Diagrams (RBDs) [24] are used to model the system failure

and reliability, respectively. However, these models cannot

capture the failure dependencies and spares that exist in real-

world systems. Dynamic reliability models, on the other hand,

are introduced to model the sequences of failure and spares

that affect the reliability of a given system, such as DFTs [23].

A DFT graphically models the failure behavior of a given

system [23]. The modeling starts by a top event that represents

the failure of a system or a sub-system. The DFT inputs

represent the basic events that model the failure of the

system components. The failure relationships between these

components are captured using DFT gates. These gates allow

capturing the failure dependencies that cannot be modeled



using the traditional fault trees. The AND gate (Figure 1(a)) is

a traditional gate, where its output fails with the failure of both

inputs. The output of the OR gate (Figure 1(b)) fails when at

least one of the inputs fail. The Priority-AND (PAND) gate

(Figure 1(c)) models the failure sequences, where its output

fails when both inputs fail in sequence. Failure triggers are

modeled using the Functional DEPendency (FDEP) gate of

Figure 1(d)). The spare gate, Figure 1(e), is used to model

spare parts in a given system. For example, after the failure

of the main part Y of Figure 1(e), the spare part X will be

activated to replace the main part. The spare part can have

three variants (hot, warm and cold) depending on its failure

behavior in the dormant state. The hot spare (HSP) has the

same failure behavior in both the dormant and active states,

while the cold spare (CSP) cannot fail in its dormant state. The

warm spare (WSP) is the general case, where the spare part

can fail in its dormant state with a certain dormancy factor.

DFTs can be analyzed qualitatively to identify the sources

and sequences of failure of the basic events that lead to the

failure of the top event. A quantitative DFT analysis can also

be conducted to express and evaluate the probability of failure

of the top event. These analyses provide deep insights about

the failure behavior of a given system and allow devising some

strategies to enhance the system reliability when conducted at

an early stage in the design process.

IV. PROPOSED METHODOLOGY

In this paper, we aim to minimize the number of fallback

units that can be added, and thus the overall area, to enhance the

system reliability. Therefore, we consider modeling the reliability

of the given FPGA based system using DFTs to study the effect

of the number of spare components on the system reliability.

An FPGA system mainly consists of main units with dedicated

functionality and fallback units that can be partially reconfigured

to replace one of the main parts after failure. First, we assume

a simple system with three main units (U1 − U3) and a single

fallback unit (FBU ). The DFT of this system can be modeled

using HSP gates, as shown in Figure 2. After the failure of

one of the main parts, FBU can be reconfigured to replace

the functionality of the failed main part. The system fails when

at least two units fail (including the FBU ). This behavior is

equivalent to a 2 out of 4 voting gate, where its output fails with

the failure of at least two inputs. In other words, the system

continues to work if 3 out of 4 components are working. Thus,

the reliability of this system can be expressed as:

RelQ(t) =

4∑
i=3

(
4

i

)
×Ri(t)× (1−R(t))4−i (1)

where Q is the output of the DFT in Figure 2, R(t) is the

reliability of a single component until time t.

We extend this model to capture the possibility of having

m main units with n available FBUs, as shown in Figure 3.

We need m out of m + n units to be working. We express the

Fig. 2. DFT Model with Three Main Parts and One Spare

Fig. 3. Generic DFT Model

reliability of this system as:

RelQ(t) =

m+n∑
i=m

(
m+ n

i

)
×Ri(t)× (1−R(t))m+n−i (2)

For a given number of main units, we evaluate the reliability

enhancement by first finding the average system reliability with

a varying number of fallback units, over a given period of time.

For instance, consider the generic model of Figure 3, we first

fix the number of main units, and then we calculate the average

reliability with one, two, three, and so on fallback units. With

each additional iteration, we calculate the reliability enhancement

of the two consecutive averages. The problem lies in knowing

when to stop adding more fallback units. Thus, we propose to

set a threshold for the reliability enhancement and determine the

number of units that led to this enhancement. This means that

adding additional units beyond this number will not have any

significant impact on the reliability. The procedure to accomplish

the proposed methodology is described in Algorithm 1.

Algorithm 1 Finding the Number of Fallback Units

1: n ← 1
2: t ← [0, l]
3: th ← threshold
4: Relenhancement ← ∞
5: while Relenhancement > th do
6: AvgReln−1

=
∑

i∈t Reln−1(i)/l
7: AvgReln =

∑
i∈t Reln(i)/l

8: Relenhancement =
AvgReln−AvgReln−1

AvgReln−1

9: n++
10: end while
11: return n

We first start by setting the number of fallback units n to 1
and assigning a time period [0, l] over which we are interested

in finding the reliability of the system. Then, we decide the

threshold that will be used to determine when to stop adding spare



parts. The reliability enhancement is first set to a big value, i.e.,

∞, which allows us to enter the while loop for at least one time

unit. We continue adding more units as long as the improvement

in the reliability exceeds the threshold. After exiting the loop, n
will have the number of additional units that satisfy the condition.

In the following section, we describe how the proposed algorithm

can be used to minimize the number of additional fallback units

of a fail safe ECU based automotive system.

V. CASE STUDY: ECU BASED AUTOMOTIVE SYSTEM

Modern Automotive systems are complex distributed cyber-

physical systems handling critical and non-critical functions.

These system are based on distributed ECUs integrating process-

ing elements and peripherals to implement a variety of functions.

The complexity of modern automotive systems requires an

increased number of ECUs and extensive in-vehicle network

communication. Reliability of these systems is a prominent

problem and is usually handled through incorporating redundant

units increasing area and power. Accordingly we consider an

ECU based automotive system as relevant use case to show

how our approach can enhance the reliability with minimum

redundant area overhead.

A. Case Study Description

The use case system consists of three regular separate control

units connected through a communication link, as shown in

Figure 4. The operating scenario reads a throttle position and

controls the engine. The ECU is responsible for gathering the

throttle position data, measured and provided by the THS. Then,

the ECU converts the throttle position data into engine control

data, and forwards this data to the MCU, which is responsible

for controlling the engine. A fourth unit acts as a fallback unit

FBU in case of a failure of one of the regular control units.

This fallback unit-FBU is realized by using DPR. The size of

the reconfigurable block used for the fall back unit supports

resources to replace any of the other control units. Figure 5

shows a sequence diagram for the normal scenario. In this case,

the FBU does not have to perform any active functionality,

and it is only passively monitoring the data transfer on the

communication link to detect possible errors.

The FBU has to monitor all transferred data on the bus

and detect any failures (e.g., timeout, error flags, etc). In this

system we assume fail silent as the system units are either

Fig. 4. Basic Concept for Failsafe ECU

Fig. 5. Sequence Diagram for Normal Operation

functioning correctly or they stop producing output. So the

bus monitor module implemented inside the FBU monitors the

signal activity on the bus and can recognize a faulty module.

Once an error is detected, partial reconfiguration is triggered

by the bus monitor module. After the reconfiguration is done,

the fallback unit completely takes over the functionality of the

faulty component. Due to the fail silent assumption, the faulty

device will not affect the behaviour of the system. Figure 6

shows a sequence diagram including a faulty MCU. The bus

monitor detects that the MCU is running into a timeout and

triggers a DPR to take over its functionality. After finishing the

reconfiguration, normal operation takes over again (see Figure

5), but the fallback unit serves as MCU now.

Fig. 6. Sequence Diagram for MCU Failure



The use case was implemented on a Zedboard, Zynq

7000 Evaluation Board and the ECUs are based on ARM

Cortex-M1/M3 controller which is suitable core for ECU

implementation due to the possibility of streamlined software

development. We consider the case of 1 ECU, 1 THS, 1

MCU and 1 FBU. The design utilizes around 11% of the

Zynq available hardware resources with the detailed resource

utilization key provided in Table I.

In order to minimize the number of fallback units of the

system, depicted in Figure 4, we need to create its DFT model.

We first use the model of Figure 2, where the system has an

ECU, MCU and THS with a single FBU. Then, according to our

proposed algorithm, with each iteration we add an additional

FBU. The system continues to work as along as there are three

functioning components. These components can be the main

parts, i.e., ECU, MCU and THS or their FBU replacements.

We compute the reliability for up to 100 iterations, assuming

exponential distributions with the same failure rate of 1×10−3

for all components, as shown in Figure 7(a). The reliability is

enhanced with each additional component (iteration), but it is

evident that this enhancement does not increase significantly

when more units are added. We change the failure rates of

the components to 3 × 10−3 and repeat the analysis for 50

iterations to ensure that this trend is independent of the failure

rate, as shown in Figure 7(b). Clearly, the reliability trend is

similar to the one of Figure 7(a), which means that with each

additional spare unit the reliability improves.

We also consider the possibility of having more than three

main units with multiple FBUs, i.e., several ECUs. Thus, we

use the generic DFT of Figure 3 to model the system reliability.

Figure 7(c) depicts the reliability of the system with five main

units (3 ECUs, 1 MCU and 1 THS) and one FBU up to

100. We use the same failure rates as of Figure 7(a). It is

noticed that the reliability of the system is lower than that of

Figure 7(a), i.e., with only one ECU. Thus, this system requires

more FBUs in order to guarantee a certain level of reliability

enhancement. Therefore, as mentioned previously, we need to

determine the number of components to be added at which the

reliability enhancement will not be improved significantly. It is

worth mentioning that such generic results cannot be obtained

using Markov chains based tools, where the state space grows

exponentially with the number of system components.

The second phase of the algorithm is to calculate the reliability

enhancement with each iteration. We consider several variations

of the system, i.e., for different numbers of ECUs (4 to 8

TABLE I
RESOURCE UTILIZATION, POST-IMPLEMENTATION

Type Used Available Percent [%] used
LUT 4827 53200 9.07
LUTRAM 289 17400 1.66
FF 4832 106400 4.54
BRAM 16 140 11.42
DSP 3 220 1.36
IO 25 200 12.50
BUFG 3 32 9.37
MMCM 1 4 25.00

Fig. 7. System Reliability for Different Scenarios: a) Three Main Units and
up to 100 FBUs with Failure Rate of 1× 10−3 b) Three Main Units and up
to 50 FBUs with Failure Rate of 3× 10−3 c) Five Main Units and up to 100
FBUs with Failure Rate of 1× 10−3

ECUs). Based on Algorithm 1, we need to calculate the reliability

enhancement with each additional FBU (each iteration). Figure 8

shows the reliability enhancement calculated using the average

reliability. We notice that the enhancement drops significantly

with each added component and thus, adding more redundant

components to the system can have a negligible effect on the

reliability. According to the proposed algorithm, we need to set

a threshold for the enhancement. If we assume that our target

reliability enhancement threshold is 0.04, then, based on Figure 8,

we need 13.75 ≈ 14 FBUs to achieve the target reliability

enhancement. It can be noticed that increasing the number of

main components in the system requires adding more FBUs to

achieve the same target reliability enhancement.



Fig. 8. Reliability Enhancement with Three Main Units and up to 100 FBUs

VI. CONCLUSION

In this paper, we presented a methodology to minimize

the number of redundant fallback units (FBUs), i.e., spare

units, in an FPGA system using dynamic fault tree (DFT)

models. These FBUs replace the main faulty units in the

system using FPGA dynamic partial reconfiguration. We

proposed a generic DFT model that allows expressing the

reliability of a given FPGA system with generic numbers

of main and spare components. We proposed an algorithm

that can be used to calculate the required number of FBUs

based on a certain reliability enhancement threshold. This

enables analyzing several scenarios to minimize the number of

additional FBUs. We illustrated the efficiency of our proposed

methodology using a fail safe electronic control units (ECUs)

based automotive system. We showed that our DFT models

can be used to calculate the reliability enhancement of several

variations of the system, i.e., different numbers of ECUs and a

large number of FBUs. We minimized the number of required

FBUs to achieve a certain reliability enhancement. These results

cannot be obtained using Markov chains tools, where the

state space grows exponentially with the number of system

components. The novelty of this work lies mainly in considering

the relationship between interacting system components and

the effect of faulty elements on overall system reliability. The

developed reliability expression can be integrated into the

partitioning algorithm by including the developed reliability

calculations in partitioning to optimally divide the FPGA

resources among the FBUs. As a future work, we plan to

improve the developed reliability expression to adapt different

failure rates of the system components.
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