
Formal Verification of Rewriting Rules
for Dynamic Fault Trees

Yassmeen Elderhalli1(B), Matthias Volk2, Osman Hasan1,
Joost-Pieter Katoen2, and Sofiène Tahar1

1 Electrical and Computer Engineering, Concordia University, Montréal, Canada
{y elderh,o hasan,tahar}@ece.concordia.ca

2 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
{matthias.volk,katoen}@cs.rwth-aachen.de

Abstract. Dynamic Fault Trees (DFTs) model the failure behavior of
systems dynamics. Several rewriting rules have been recently developed,
which allow the simplification of DFTs prior to a formal analysis with
tools such as the Storm model checker. To ascertain the soundness of the
analysis, we propose to formally verify these rewriting rules using higher-
order-logic (HOL) theorem proving. We first present the formalization in
HOL of commonly used DFT gates, i.e., AND, OR and PAND, with an
arbitrary number of inputs. Then we describe our formal specification of
the rewriting rules and the verification of their intended behavior using
the HOL4 theorem prover.

Keywords: Dynamic Fault Trees · Rewriting rules ·
Theorem proving · HOL4

1 Introduction

Dynamic Fault Trees (DFTs) graphically model the dynamically changing failure
dependencies between system components [15,16]. The modeling starts by a top
event that represents an undesired event, like the failure of a system or sub-
system. Then, the different relationships between the system basic events that
lead to the failure of the top event are modeled using DFT gates. DFTs are more
suitable to model real-world situations that cannot be captured using static fault
trees (SFTs). For example, DFTs models have been used to provide the safety
analysis for autonomous cars [8].

DFTs are directed acyclic graphs (DAG) with typed nodes (AND, OR, etc.).
Successors of a node v in the DAG are inputs of v. Some commonly used DFT ele-
ments are shown in Fig. 1. Nodes without inputs are basic events (BE, Fig. 1(a))
that represent atomic components, which can fail according to a failure distribu-
tion. Special cases of BEs are constant failed elements (CONST(�), Fig. 1(b)),
which are always failed and constant fail-safe elements (CONST(⊥), Fig. 1(c)),

This work is partially supported by the DFG RTG 2236 UnRAVeL.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 513–531, 2019.
https://doi.org/10.1007/978-3-030-30446-1_27

y_elderh@ece.concordia.ca



514 Y. Elderhalli et al.

(a) BE

�

(b) CONST(�)

⊥

(c) CONST(⊥) (d) AND (e) OR

k/n

(f) VOT (g) PAND

Fig. 1. Some DFT elements

which can never fail. DFT gates are nodes with inputs and are used to model
the state dependencies and redundancies among system components. Some com-
monly used DFT gates include SFT gates (AND, OR and VOT-gates) as well
as the Priority-AND (PAND) DFT gate. The output event of the AND-gate
(Fig. 1(d)) fails when both input events fail. The OR-gate (Fig. 1(e)) requires
that at least one of its input events fails for the output event to fail. The output
of the VOTk-gate (k out of n gate) (Fig. 1(f)) fails when at least k out of the
n inputs fail. The PAND-gate (Fig. 1(g)) acts in a similar way to the AND-gate,
i.e., it requires that both input events fail. However, an additional condition
is needed, where the inputs should fail in sequence, usually from left to right.
There are also other DFT gates that are used to model the dynamic behavior in
systems, like the Functional-DEPendency (FDEP) and spare gates. In this paper,
we only consider DFTs with AND, OR, VOT and PAND-gates.

Traditionally, DFTs are analyzed quantitatively by converting the given DFT
model into a Markov chain (MC) [1,3,17], where the latter can be analyzed
analytically or using simulation. Recently, an algebra has been proposed to pro-
vide the analysis of DFTs analytically without the need to use MC models
[12]. In the algebraic approach, temporal operators are defined to capture the
failure dependency between system components. The DFT gates are modeled
using these temporal operators and their probabilities of failure are expressed
based on these operators. Moreover, the DFT algebra provides several simplifi-
cation properties that allow reducing the structure of a given DFT for a simpler
analysis.

In order to ensure a complete and sound analysis, formal methods have
also been explored for analyzing DFTs. Probabilistic model checkers, such as
Storm [2], have been used for the probabilistic analysis of DFTs via MCs.
For example, Storm supports the analysis of DFTs, among other probabilistic
models, and allows the verification of the probability of failure and the Mean-
Time-To-Failure (MTTF) of the top event of a given DFT. The scalability of
this analysis can be significantly improved by DFT rewriting rules [10] that facil-
itate simplifying a DFT before analysis. Simplification of the DFT is achieved
by transforming the underlying graph of the DFT according to the rewrite rules.
Experimental evaluation in [10] showed that rewriting heavily improves the per-
formance of the DFT analysis. For example, while originally 68% of the 183 DFTs
in [10] could be solved within 2 h, applying the rewriting beforehand allowed to
solve 95% of the DFTs. Moreover, the total analysis time was reduced from
41 h to 18 h when using rewriting. Simplifying DFTs by rewriting enables the

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 515

analysis of DFTs that could not be analyzed before, and can lead to speed-ups
and memory savings of up to two orders of magnitude [10].

The rewrite rules are generic for n-ary gates and can be implemented in any
tool that supports DFT analysis. Proving the correctness of the rewrite rules
as done in [11] is an involved manual and error-prone process. To the best of
our knowledge, a rigorous, mechanically checkable proof of correctness of these
rewriting rules has not been done. Thus, their usage in a formal analysis raises
soundness concerns especially when dealing with the analysis of safety-critical
systems, like transportation or healthcare. On the other hand, higher-order logic
(HOL) theorem proving has been recently used to formalize DFT gates and oper-
ators [6] based on the algebra presented in [12]. Several simplification theorems
are formally verified using the HOL4 theorem prover [9], which enable formally
verifying a reduced form of a DFT. Moreover, the probabilistic behaviors of DFT
gates are formally verified based on the HOL4 probability and Lebesgue integral
theories [13,14]. However, this formalization does not support n-ary gates, which
are required to model generic failure scenarios. In addition, the VOT-gate has
not been formalized in HOL.

In this paper, we propose to use the recent HOL DFT formalization to verify
the DFT rewriting rules of [10] using the HOL4 theorem prover. This requires
extending the DFT gates definitions in [6] for an arbitrary number of inputs and
defining the VOT-gate. Our main contributions are summarized as follows:

– Higher-order logic formalization of AND, OR, PAND and VOTk (k out of n)
gates for arbitrary number of inputs. This allows a formal reasoning about
generic DFT constructs.

– A mechanized verification in HOL4 of the correctness of the DFT rewrite rules
of [10] that are concerned with DFTs with AND, OR, VOT and PAND-gates.
This proves that all these rules preserve reliability and MTTF.

These contributions provide the assurance of correctness of the rewrite rules and
thus adds the confidence to tools, that exploit these rules in their DFT analysis.

The rest of the paper is structured as follows: Sect. 2 describes the DFT
rewrite rules. We review the HOL4 DFT theory (library) in Sect. 3. In Sect. 4,
we present the HOL formalization of n-ary gates. The formal verification details
of the rewrite rules are presented in Sect. 5. Finally, we conclude the paper in
Sect. 6.

2 DFT Rewrite Rules

In the following, we recap the rewrite rules for DFTs as presented by Junges
et al. [10]. The simplification of DFTs is performed by graph rewriting [4] on
the underlying graph of the DFT. We represent a DFT as a labelled graph by
extending the induced graph with labels encoding the type of the DFT element
and the ordering of the inputs. The graph transformation on the labelled graph
is performed by applying a chain of rewrite rules.

y_elderh@ece.concordia.ca



516 Y. Elderhalli et al.

2.1 Rewrite Framework

A rewrite rule is specified by two (sub-)DFTs: the left-hand side capturing the
(sub-)DFT before applying the rewrite rule and the right-hand side depicting
the resulting (sub-)DFT after the graph rewrite. An example of a rewrite rule is
given in Fig. 2. The rule depicts the subsumption of OR-gates by AND-gates.

A

B

C D

A′

B′

C ′ D′

Fig. 2. Subsumption of OR-gates by AND-gates [10, Rewrite rule 8]

T

A E

B

FDC

(a) Original DFT

T

A E

B

FDC

(b) DFT after rewrite step

T

E

FDC

(c) Final DFT

Fig. 3. Example application of rewrite rule (Color figure online)

A rewrite rule can be applied whenever a (sub-)DFT can be matched with
the left-hand side of the rule. Elements represented by a triangle in the rewrite
rule match every gate type. Matched elements might have additional ingoing
and outgoing edges not matched by the rewrite rule. These edges are retained
during the rewriting step. Applying a rewrite rule replaces the matched part with
the right-hand side of the rule. All non-matched parts remain unchanged during
the rewriting step. Note that in general, rewrite rules might lead to inconsistent

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 517

graphs with dangling edges or DFTs that are no longer well-formed (e.g., cyclic
DFTs). In these cases, the rewrite rule cannot be applied. It is important to note
also that most of the rewrite rules can also be applied from right to left.

A

AND,OR,PAND �

C1

. . .

CmB

Tp(A)

. . .

D1 Dk

A′B′

C ′
1

. . .

C ′
mD′

k

. . .

D′
1

Fig. 4. Left-flattening of gates [10, Rewrite rule 5]

An example application of the given subsumption rule is depicted in Fig. 3.
Figure 3(a) depicts the original DFT used as input. The subsumption rule from
Fig. 2 can be applied and the matched sub-DFT is highlighted in blue. Applying
the rule removes the connection between AND-gate A and OR-gate B and yields
the rewritten DFT in Fig. 3(b). Further simplification by applying additional
rewrite rules results in the final DFT in Fig. 3(c). Using the rewrite rules leads
to a simpler DFT, which is considerably smaller—and easier to understand.

During rewriting multiple rules might be applicable for the current DFT or
different sub-DFTs match the left-hand side of a rewrite rule. The sequence of
rewrite steps is chosen by a rewrite strategy. As the rewrite framework is not
confluent, the strategy heavily influences the size of the resulting DFTs and a
heuristic approach is used. For further details, see [10].

2.2 Rewrite Rules

In the following we consider 22 rules of the 29 rewrite rules given in [10]. Of the
remaining 7 rules, one rule gives the Shannon expansion for VOTk-gates, which
deals with variables as Boolean, whereas generally DFTs, as formalized in HOL,
treat variables as real numbers representing time to failure functions. The other
6 rules apply to FDEPs and SPAREs; both gate types are not considered here.
We recap a selection of the rewrite rules and use the same rule enumeration as
in [10, Sect. 5.3].

General Rewrite Rules. The first rewrite rules 1–7 consider structural identi-
ties such as commutativity of static gates, removal of gates with a single successor
or no predecessor, and left-flattening of gates. As an example, the rewrite rule for
left-flattening is given in Fig. 4. The rule can only be applied if the top element of
the (sub-)DFT is an AND-, OR- or PAND-gate, and the first input is of the same

y_elderh@ece.concordia.ca



518 Y. Elderhalli et al.

gate type as the top element (Tp(B) = Tp(A)). Applying the left-flattening rule
adds the inputs of B as first inputs of A. Gate B is not removed as it might still
have connections to other parts of the DFT.

Rules 8–10 capture standard axioms from Boolean algebra on the static gates
such as subsumption of OR-gates by AND-gates (cf. Fig. 2).

DFTs containing constant failed CONST(�) or constant fail-safe CONST(⊥)
events can lead to large simplifications as often complete sub-DFTs can be eval-
uated to constant. Rules 11–14 specifically consider constant elements and we
exemplary present the rewrite rule for AND-/PAND-gates with CONST(⊥) inputs
in Fig. 5. If at least one of the inputs of an AND-/PAND-gate is fail-safe, it is
impossible for the gate to fail and therefore it can be set to fail-safe as well.

Encoding of VOT-gates by OR-/AND-gates is given in rewrite rules 15–16.

Rewrite Rules for PAND-gates. So far, the rewrite rules mostly captured
simplifications of static gates, which are based on the corresponding properties
in Boolean algebra. The remaining rules 18–23 consider PAND-gates where the
order of failures is crucial. As an example, consider the rewrite rule for conflicting
PAND-gates with independent successors in Fig. 6. PAND-gate D1 requires that
input B fails strictly before C or simultaneously with C. If C fails strictly before
B, D1 becomes fail-safe. D2 requires the opposite behavior. If both elements B
and C are independent, they will not fail simultaneously. Thus, either PAND-
gate D1 or D2 will become fail-safe. As the PAND-gates can never both fail, A
is fail-safe and can be replaced by CONST(⊥).

Note that the rewrite rule can only be applied if B and C are independent—
and at most one input is CONST(�). Otherwise, a common cause failure can
let both B and C fail simultaneously, both PAND-gates fail and A fails as well.
The independence assumption in this rewrite rule is a context restriction, which
prevents the application of the rule for certain DFTs.

2.3 Non-structural Rules

There are two additional rules that are not present in the rewrite framework as
they go beyond structural rules and are not captured by graph transformations.

Removing BEs. The BEs that have no connection to other DFT elements (and
are not the top level element) are called dispensable. Dispensable BEs can be
removed from the DFT as they do not influence the analysis results. An example
is given in Fig. 7. In the original DFT in Fig. 7(a), BE C is dispensable and can
be removed yielding the DFT in Fig. 7(b).

Merging BEs. In our analysis we are only interested in the reliability or MTTF
of the top level element. The state of other elements is not important for this
analysis. Thus, we can simplify a DFT by merging multiple BEs into a single BE.
Consider the example DFT in Fig. 7(b). Both BEs A and B have an exponen-
tial failure distribution with failure rates λA and λB , respectively. The failure

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 519

A

AND,PAND �

. . .

C1 Cm

⊥

B

⊥

A′

. . .

C ′
1 C ′

m

Fig. 5. AND-/PAND-gate with CONST(⊥) successor [10, Rewrite rule 13]

A

D1 D2

B C

⊥

A′

B′ C ′

Fig. 6. Conflicting PAND–gates with independent successors [10, Rewrite rule 19]

T

A

λA

B

λB

C

λC

(a) Original DFT

T

A

λA

B

λB

(b) DFT after removal of BE C

T

A

λA + λB

(c) DFT after merging of BEs

Fig. 7. Example application of non-structural rules

distribution of an OR-gate is the minimum over its inputs and is exponentially
distributed as well. Thus, we can replace multiple BEs A1, . . . , An under an OR-
gate by a single BE A′ with failure rate λA′ =

∑n
i=1 λAi

. In our example, merging
both BEs leads to the final DFT in Fig. 7(c). The resulting OR-gate with a single
input can be simplified further by applying the rewrite framework.

After presenting the details of DFT rewrite rules, in the sequel, we present
our efforts in formally verifying them using HOL theorem proving. For some
of these rules, such as Rule 5, it is required to formally model DFT gates for
arbitrary number of inputs. In the next sections, we first review the DFT theory
developed in HOL4 and then introduce the new HOL definitions of n-ary gates.

y_elderh@ece.concordia.ca



520 Y. Elderhalli et al.

3 DFT Theory in HOL4

DFTs have been formalized using the HOL4 theorem prover [6] based on the
algebra presented in [12]. In this algebra, gates are modeled based on the time of
failure of their outputs. Inputs of a DFT represent the time-to-failure functions
of systems components. Therefore, in the DFT formalization, these functions
are defined as lambda abstracted functions that allow them to be treated later
as random variables for conducting the probabilistic analysis of DFTs. Identity
elements and temporal operators are introduced to allow expressing and manip-
ulating the structure function of the top level element of a given DFT. Their
mathematical expressions and HOL formalization are presented in Table 1, where
PosInf is the HOL4 representation of +∞.

The Always identity element is used to model an event that fails from time
0, whereas the Never element models an event that fails at +∞, i.e., it can never
fail. These two elements are necessary in the simplification process of DFTs,
when there are input events that are fail-safe (CONST(⊥)) or have already failed
(CONST(�)). Therefore, these functions that represent the inputs and outputs of
DFT gates return extended-real numbers (HOL4 extreal theory), which are real
numbers and ±∞. Three temporal operators are introduced in [12] to model the
failure dependency among system components. The Before operator (�) models
a situation where one system component fails before the other. This operator
accepts two inputs and its output fails when the first input fails before the
second, otherwise it can never fail. The Simultaneous operator (Δ) requires that
both inputs fail at the same time for its output to fail. If this condition does
not hold, then the output of this operator fails at +∞. Finally, the output of
the Inclusive Before operator (�) fails when the first input fails before or at the
same time of the second input, otherwise it does not fail.

The AND (·) and OR (+) gates are similar to the ones used in SFTs. However,
it is required to define them in a way compatible with the rest of the definitions
of DFT gates. Table 2 [6] lists the formal definitions of these gates, where max
and min are HOL4 functions that return the maximum and minimum values of
their input arguments, respectively. The output of the AND-gate (Fig. 1(d)) is
modeled using the maximum (max) time of failure of the inputs. The OR-gate

Table 1. Definitions of identity elements and temporal operators

Element/Operator Mathematical expression Formalization

Always element d(ALWAY S) = 0 � ALWAYS = (λs. (0:extreal))

Never element d(NEV ER) = +∞ � NEVER = (λs. PosInf)

Before d(A � B) =

{
d(A), d(A) < d(B)

+∞, d(A) ≥ d(B)

� ∀ A B. D BEFORE A B =

(λs. if A s < B s then A s else PosInf)

Simultaneous d(AΔB) =

{
d(A), d(A) = d(B)

+∞, d(A) �= d(B)

� ∀ A B. D SIMULT A B =

(λs. if A s = B s then A s else PosInf)

Inclusive Before d(A � B) =

{
d(A), d(A) ≤ d(B)

+∞, d(A) > d(B)

� ∀ A B. D INCLUSIVE BEFORE A B =

(λs. if A s ≤ B s then A s else PosInf)

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 521

Table 2. DFT gates

Gate Mathematical expression Formalization

AND d(A · B) = max(d(A), d(B)) � ∀ A B. D AND A B = (λs. max (A s)(B s))

OR d(A + B) = min(d(A), d(B)) � ∀ A B. D OR A B = (λs. min (A s)(B s))

PAND d(QPAND) =

{
d(B), d(A) ≤ d(B)

+∞, d(A) > d(B)

� ∀ A B. PAND A B =
(λs. if A s ≤ B s then B s else PosInf)

(Fig. 1(e)) requires that at least one of its input events fails. Therefore, the time
of failure of its output is modeled using the minimum (min) time of failure of
its inputs. The PAND-gate (Fig. 1(g)) is modeled using the extreal compar-
ison operator (≤) and if statements. The time of failure of its output equals
the time of the second input if the first input fails before or at the same time
of the second input, otherwise, the output can never fail (PosInf). It is worth
mentioning that the DFT gates accept inputs that are time-to-failure functions,
which allows constructing complex DFT models. The structure function of a
given DFT can be expressed using the AND, OR and temporal operators. For
example, the PAND-gate can be expressed as: Y · (X �Y ). Several simplification
properties are introduced in [12] that allow simplifying the structure function of
a given DFT in order to facilitate the analysis, such as the commutativity and
idempotence properties of the OR and AND-gates. These simplification proper-
ties are formally verified using HOL4 [7], which ensures their correctness. The
verification of these properties is based mainly on the definitions of the operators
and the properties of extreal numbers. For example, D OR X X = X, is verified
based on the definition of the OR gate and the properties of the extreal min
function. However, since the DFT operators of this algebra are binary operators,
the simplification properties cannot support rewriting DFTs with n-ary gates.
Thus, they cannot support the simplification of generic DFTs, which is the scope
of the current work.

4 HOL Formalization of n-ary DFT Gates

In order to verify the DFT rewriting rules, presented in [10], we need to handle
DFT gates with an arbitrary number of inputs. Therefore, we extend the defi-
nitions of DFT gates of [6]. In these definitions, we utilize lists to represent the
arbitrary number of inputs. In other words, the input of an n-ary gate is a list of
arbitrary size of time-to-failure functions that represent inputs of a DFT gate.

We formally define the n-ary AND-gate as:

Definition 1. � ∀L. n AND L = FOLDR (λ a b. D AND a b) ALWAYS L

where FOLDR is used to apply a binary (2-input) function over a list from right
to left. The function in our case here is the binary D AND that accepts two inputs
and returns their result of the DFT AND operation between them. FOLDR requires
including an element that is used to apply the function to the last element of the

y_elderh@ece.concordia.ca



522 Y. Elderhalli et al.

input list. We use ALWAYS in this case as it is the identity element of the AND
and does not affect its behavior. L represents the list of inputs to be ANDed. For
example, n AND [X; Y; Z] equals D AND X (D AND Y (D AND Z ALWAYS)).

In a similar manner, we formally define the n-ary OR as:

Definition 2. � ∀L. n OR L = FOLDR (λ a b. D OR a b) NEVER L

D OR is the function used with FOLDR in this definition. We use NEVER in
this case as it is the identity element for the OR, i.e., NEVER will not affect the
behavior of the OR-gate. It is worth mentioning that FOLDL can be used with
these definitions as well, since the order of applying the OR and AND-gates does
not matter if it starts from the left or from the right.

We formally define the n-ary PAND-gate as:

Definition 3. � ∀L. n PAND L = FOLDL (λ a b. P AND a b) ALWAYS L

This is similar to the previous definitions. However, since the PAND-gate
requires that the input events fail from left to right, we use FOLDL in this case.
We use ALWAYS as it does not affect the behavior of the PAND-gate, i.e., for any
input X that is greater than or equal to 0, PAND ALWAYS X = X.

The VOTk (k out of n) gate can be defined using the n OR and n AND gates.
Firstly, we need to get the combinations that lead to the failure of the VOT-gate.
For example, a (2/3) VOT-gate requires having all possible pairs out of the three
inputs. Therefore, we first need to get all the possible k elements of the input
list. We define k out that accepts a list and a number k, which identifies the
number of elements to be retrieved from the input list.

Definition 4. � ∀k L. k out k L = {s| s ⊆ (set L) ∧ (CARD s = k)}
where set L returns a set with the elements in list L, and CARD is a HOL function
that returns the cardinality (number of elements) of a given set. This definition
basically returns a set of sets, where the inner sets are subsets of set L. This
means that these inner subsets contain elements from the input list L. The added
condition is that the cardinality of each of these sets equals k. As a result, we
get all possible combinations of the input list that have k elements.

We use k out to define the VOT-gate by ANDing the elements of each inner
set, then ORing the result of this ANDing. We need to recall that the n AND and
n OR accept inputs as lists not sets. Therefore, we apply a function that converts
a set into a list (SET TO LIST). We formally define the VOT-gate as:

Definition 5. � ∀k L. k out n gate k L =

n OR (MAP (λa. n AND (SET TO LIST a)) (SET TO LIST (k out k L)))

where SET TO LIST is a HOL4 function that accepts a set and returns a list of
the elements of this set. MAP is used to map a function over a list and returns a
list of the mapped elements. In this definition, we first convert the outer set of
k out to a list using SET TO LIST (k out k L). Then, we apply n AND to each
element of this list using MAP and convert each inner set to a list. Finally, the

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 523

n OR is applied to the result of the MAP, i.e., the result will be the OR of ANDs
and each AND has only k elements of the input list. We verify several properties
for k out and the VOT-gate, such as the finiteness of the inner and outer sets,
besides other properties that are useful in the verification of the DFT rewriting
rules. The HOL4 script can be accessed from [5].

5 Formal Verification of Rewriting Rules

We list the verification details of some of the rewrite rules described in Sect. 2.
The details of verifying the rest of the rules can be accessed from [5].

General Rewrite Rules. The structural rewrite rules 1–5 and 7 are verified
based on the definitions of n-ary gates and some list and extreal number theories
properties, whereas rule 6 is implemented implicitly in the DFT formalization.

Commutativity of static gates (Rule 1)

Theorem 1. � ∀L1 L2. PERM L1 L2 ⇒ (n AND L1 = n AND L2)

Theorem 2. � ∀L1 L2. PERM L1 L2 ⇒ (n OR L1 = n OR L2)
Theorem 3. � ∀L1 L2 k.

PERM L1 L2 ⇒(k out n gate k L1 = k out n gate k L2)

The commutativity property indicates that the order of the inputs of any
static gate will not affect its behavior, i.e., the time of failure for the output of
the gate remains the same. We use the permutation of two lists (PERM L1 L2) to
add the condition that L1 and L2 have the same inputs but with different orders.
We verify the commutativity of the n AND and n OR gates using induction, FOLDR
definition and some properties of the 2-input AND and OR-gates, defined in
Sect. 3, such as associativity and commutativity. The proof of the commutativity
property for the VOT-gate is mainly based on the following lemma:

Lemma 1. � ∀L1 L2 k. PERM L1 L2 ⇒ (k out k L1 = k out k L2)

which states that the sets returned by k out are the same for two lists that have
the same elements with different orders.

Gate with a single successor (Rule 3)

Theorem 4. � ∀x. rv gt0 [x] ⇒ (n AND [x] = x)

Theorem 5. � ∀x. n OR [x] = x
Theorem 6. � ∀x. rv gt0 [x] ⇒ (k out n gate 1 [x] = x)

Theorem 7. � ∀x. rv gt0 [x] ⇒ (n PAND [x] = x)

For the static gates and the n PAND gate, if the input list consists of only one
element, then the output fails once the single input fails. The function rv gt0
ensures that the inputs of the gates are greater than or equal to 0, which is valid
as we are dealing with time-to-failure functions. We recursively define rv gt0 as:

y_elderh@ece.concordia.ca



524 Y. Elderhalli et al.

Definition 6. rv gt0
(rv gt0 [] = T) ∧ (∀h t. rv gt0 (h::t) = (∀s. 0 ≤ h s) ∧ rv gt0 t)

For n AND and n OR, rule 3 is verified based on some properties of the D AND
and D OR gates. For VOT-gate, we use the VOT (1/n) property (Theorem 25)
that replaces the VOT-gate with the n OR gate. Finally, we verify rule 3 for
n PAND using its definition and some list and extreal numbers properties.

Left-flattening of AND-/OR-/PAND-gates (Rule 5)

Theorem 8. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (n AND L2::L1) = n AND (L2 ++ L1))
Theorem 9. � ∀L1 L2. n OR (n OR L2::L1) = n OR (L2 ++ L1)
Theorem 10. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n PAND (n PAND L2::L1) = n PAND (L2 ++ L1))

In order to verify Theorem 8, we first verify the n AND append property that
would split the AND of two appended lists as:

Lemma 2. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (L1 ++ L2) = D AND (n AND L1)(n AND L2))

where ++ is a list operator used to append two lists. We verify Theorem 8 by first
rewriting n AND L2::L1 as [n AND L2]++L1, where :: is a list operator used to
add an element to a list, which in the considered case is n AND L2. Then, we use
Lemma 2 to rewrite the left hand side of Theorem 8 to D AND (n AND [n AND
L2])(n AND L1) and use Theorem 4 to verify Theorem 8. In a similar way, we
verify Theorem 9 by verifying a lemma for appending two lists with n OR as:

Lemma 3. � ∀L1 L2. n OR (L1 ++ L2) = D OR (n OR L1)(n OR L2)

For the left-flattening property of the n PAND gate, we first verify a lemma
that rv gt0 L⇒ ∀s. 0 ≤ n PAND L s, which states that the output of the
n PAND gate is greater than or equal to 0 if the inputs follow the same con-
dition. Theorem 10 is then verified based on the previous lemma, induction on
the list argument and some P AND and list properties.

Identical leftmost successors of AND, OR or PAND (Rule 7)

Theorem 11. � ∀x L. n AND (x::x::L) = n AND (x::L)

Theorem 12. � ∀x L. n OR (x::x::L) = n OR (x::L)
Theorem 13. � ∀x L. rv gt0 [x] ⇒ (n PAND (x::x::L) = n PAND (x::L))

Theorems 11 and 12 are verified based on the definitions of n AND and n OR
with the associativity and idempotence of D AND and D OR gates. Theorem 13
requires verifying that the output of a 2-input PAND-gate (P AND defined in
Sect. 3) with an input that already failed (ALWAYS) as the left input fails with
the failure of the second (right) input.

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 525

Lemma 4. � ∀X. (∀s. 0 ≤ X s) ⇒ (P AND ALWAYS X = X)

Finally, we verify the idempotence property of the P AND gate.

Lemma 5. � ∀X. P AND X X = X

Subsumption of OR-gates by AND-gates (Rule 8)

Theorem 14. � ∀X Y. D AND X (D OR X Y) = X

Subsumption of AND-gates by OR-gates (Rule 9)

Theorem 15. � ∀X Y. D OR X (D AND X Y) = X

Distributing OR-gates over AND-gates (Rule 10)

Theorem 16. � ∀X Y Z. D OR (D AND X Y)(D AND Y Z) = D AND (D OR X Z) Y

We verify the rules 8–10 that are concerned with the standard axioms of
Boolean algebra based on basic properties of D AND and D OR gates, such as the
commutativity and distributivity of the AND over the OR.

OR-gates with fail-safe (NEVER) successors (Rule 11)

Theorem 17. � ∀L1 L2. n OR (L1 ++ [NEVER] ++ L2) = n OR (L1 ++ L2)

OR-gates with already failed (ALWAYS) successors (Rule 12)

Theorem 18. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n OR (L1 ++ [ALWAYS] ++ L2) = ALWAYS)

Rewrite rules 11–14 deal with scenarios that include fail-safe (NEVER) or
CONST(⊥), and failed (ALWAYS) or CONST(�).

For Theorem 17, we use Lemma 3 and the definition of n OR with the property
stating that ∀X. D OR X NEVER = X. We verify Theorem 18 based on Lemma 3
and the definition of n OR along with the following lemma:

Lemma 6. � ∀X. (∀s. 0 ≤ X s) ⇒ (D OR X ALWAYS = ALWAYS)

Then, we verify that the output of the n OR is greater than or equal to 0 if
the inputs are all greater than or equal to 0. Theorem 18 is then verified using
the previous lemmas and some properties of the D OR gate.

AND-gate with a fail-safe (NEVER) successor (Rule 13)

Theorem 19. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n AND (L1 ++ [NEVER] ++ L2) = NEVER)
Theorem 20. � ∀L. rv gt0 L ⇒ (n PAND (L ++ [NEVER]) = NEVER)

Theorem 21. � ∀L. rv gt0 L ⇒ (n PAND (NEVER::L) = NEVER)
Theorem 22. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n PAND (L1 ++ [NEVER] ++ L2) = NEVER)

y_elderh@ece.concordia.ca



526 Y. Elderhalli et al.

We verify Theorem 19 using Lemma 2 and some properties for the D AND,
such as the commutativity property and ANDing with NEVER.

We verify this rule for PAND-gate by verifying two cases. Firstly, we verify
that the output of the PAND cannot fail if the NEVER input is the rightmost input
(Theorem 20). This is mainly verified based on some list properties to manipu-
late rv gt0 along with the left flattening property of the PAND (Theorem 10).
Similarly, we verify the second case when the left most input of the PAND-gate is
fail-safe (Theorem 21). Finally, we verify a generic property, where the fail-safe
input can be at any position (Theorem 22).

AND-gate with a failed (ALWAYS) element as successor (Rule 14)

Theorem 23. � ∀L. rv gt0 L ⇒ (n AND (ALWAYS::L) = n AND L)

Theorem 24. � ∀L. rv gt0 L ⇒ (n PAND (ALWAYS::L) = n PAND L)

Theorem 23 is verified using the definition of the n AND gate with the property
that the output of the gate is greater than or equal to 0 if the inputs satisfy the
same condition. We verify Theorem 24 based on the definition of the n PAND and
the idempotence property of the PAND-gate.

The VOT-gate can behave as an OR-gate, when k = 1 (Rule 15), and as an
AND-gate, when k equals the number of its inputs (Rule 16). The verification
details of these rules are listed below.

Voting (1/n) is an OR-gate (Rule 15)

Theorem 25. � ∀L.
ALL DISTINCT L ∧ rv gt0 L ⇒ (k out n gate 1 L = n OR L)

As mentioned previously, the voting gate is defined as the OR of a list and
each element in the list is the AND of another list of k elements. In order to verify
Theorem 25, we need to use the commutativity property of the n OR gate (Theo-
rem 2), i.e, we need to verify that the list of the n OR in the voting gate definition
(MAP (λa. n AND (SET TO LIST a))(MAP (λa. {a}) L)) and the input list L
possess the permutation property when k = 1. Therefore, we first verify that
the list generated from k out 1 L is the permutation of the list MAP (λa. {a})
L. We need to recall that MAP (λa. {a}) L generates another list that has all
elements from the input list L but as sets. Then, we verify that the list generated
from applying the n AND to the list of k out 1 L is the permutation of applying
n AND to MAP (λa. {a}) L. We also verify the following property:

Lemma 7. � ∀L. rv gt0 L ⇒
PERM (MAP (λa. n AND (SET TO LIST a)) (MAP (λa. {a}) L)) L

Finally, we use these verified properties of permutation and the commutativ-
ity property of n OR to verify Theorem 25.

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 527

Voting (n/n) is an AND-gate (Rule 16)

Theorem 26. � ∀L.
ALL DISTINCT L ⇒ (k out n gate (LENGTH L) L = n AND L)

Theorem 26 is used when k equals the length of the input list (LENGTH L),
i.e., VOT (n/n), and n is the number of inputs of the gate. In this case, the
VOT-gate acts as an AND-gate. We verify this by first rewriting using the VOT-
gate and k out definitions. Then, we verify that {s| s ⊆ set L ∧ (CARD s
= LENGTH L)} = {set L}. This way the original expression of the VOT-gate
can be reduced to n OR [n AND (SET TO LIST (set L))]. Then, we verify that
PERM L (SET TO LIST (set L)), which means that the original list and the list
generated from the set of the original list are the permutation of each other. This
is a consequence of using set L in the formal definition of the VOT-gate, which
requires the added condition that the elements in the original list are distinct,
i.e., they are not equal or repeated. This condition is added using the HOL pred-
icate ALL DISTINCT L. Finally, we verify Theorem 26 using the commutativity
property of the AND (Theorem 1) and the definition of n OR.

Rewrite Rules for PAND-gates. Rules 18–23 deal with PAND-gates that
require considering the order of the inputs.

Representing AND-gate using OR- and PAND-gates (Rule 18)

Theorem 27. � ∀X Y. D AND X Y = D OR (P AND X Y) (P AND Y X)

Conflicting PAND-gates with independent successors (Rule 19)

Theorem 28. � ∀X Y.

(∀s. ALL DISTINCT [X s; Y s]) ⇒ (D AND (P AND X Y) (P AND Y X) = NEVER)

We verify Theorems 27 and 28 based on the definitions of D AND, D OR and
P AND gates and some properties of the extreal numbers. Note that the added
condition for rule 19 is that the inputs are distinct (ALL DISTINCT), i.e., they
cannot fail simultaneously. This results from the fact that the inputs are indepen-
dent (there is no common cause of failure) and they possess continuous failure
distributions. Therefore, rule 19 cannot be applied unless this context restriction
is ensured using this assumption.

PAND-gate with a PAND-successor (Rule 20)

Theorem 29. � ∀B C1 C2 L. rv gt0 (L ++ [B; C1; C2])⇒
(n PAND ([B; P AND C1 C2] ++ L) =
D AND (P AND C1 C2) (n PAND ([B; C2] ++ L)))

We verify Theorem 29 based on manipulating the input lists and the PAND
appended with a single element lemma, which we verify as:

y_elderh@ece.concordia.ca



528 Y. Elderhalli et al.

Lemma 8. � ∀x L. rv gt0 L ⇒ (n PAND (L ++ [x]) = P AND (n PAND L) x)

Based on Lemma 8 and list induction and manipulation, we verify that
the left-hand-side of Theorem 29 equals: P AND(D AND(P AND C1 C2)(n PAND
(B::C2::L))) x, where x is the additional element generated through induc-
tion. Then, we verify a property stating that the time of failure of the PAND-gate
should be greater than or equal to the failure time of any of its inputs, since it
is required that the failure to occur from left to right.

PAND-gate with a first OR-successor (Rule 21)

Theorem 30. � ∀X Y L. rv gt0 [X; Y] ⇒
(n PAND (D OR X Y::L) = D OR (n PAND (X::L)) (n PAND (Y::L))

To verify Theorem 30, we first apply induction to the input argument and
rewrite using the rule of n PAND with a single successor. Then, we use the def-
initions of the P AND, n PAND and some simplification theorems, such as P AND
ALWAYS X = X. Using some list properties, such as applying a function to two
appended list using FOLDL (we need to recall that the definition of n PAND is
based on FOLDL), we reach a point where the whole goal is similar to and can be
verified using the following lemma:

Lemma 9. � ∀X Y Z. P AND (D OR X Y) Z = D OR (P AND X Z)(P AND Y Z)

PAND-gate with ALWAYS as non-first successor (Rule 23)

Theorem 31. � ∀L1. L1 	= [] ∧ (∀x. MEM x L1 ⇒ ∀s. 0 < x s) ⇒
∀ L2. n PAND (L1 ++ [ALWAYS] ++ L2) = NEVER

Theorem 31 shows that if the inputs to the left of the input that already failed
(ALWAYS) do not fail from the beginning, i.e., their time of failure is greater than
0, then the output of the n PAND can never fail. Therefore, we add the condition
that the inputs to the left (list L1) are greater than 0 using ∀x. MEM x L1 ⇒
∀s. 0 < x s. We verify Theorem 31 using induction over list L1. After some
basic list and extreal theory based reasoning, we reach the step for the left-
hand-side:
FOLDL (λa b. P AND a b)

(P AND (FOLDL(λa b. P AND a b) h L1) ALWAYS) L2

where h is the appended element that results from induction. We verify that
P AND (FOLDL(λa b. P AND a b) h L1) ALWAYS = NEVER, which can be done
if the first input of the P AND is greater than 0. We verify the following property:

Lemma 10. � ∀s L. (∀x. MEM x L ⇒ ∀s. 0 < x s) ⇒
∀h. 0 < h s ⇒ 0 < FOLDL (λa b. P AND a b) h L s

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 529

This lemma basically means that if we have a list of inputs and an additional
element, h, that are greater than 0, then the result of applying P AND using
FOLDL is also greater than 0. Using this lemma, the left hand side is reduced to
FOLDL (λa b. P AND a b) NEVER L2. Finally, we use the following lemma to
verify the Theorem 31.

Lemma 11. � ∀L. FOLDL (λa b. P AND a b) NEVER L = NEVER

This lemma indicates that if we apply P AND to a list of inputs with an
element NEVER at the beginning, then the output equals NEVER

Non-structural Rules. The BEs that are not connected to the given DFT
can be safely removed. This is already implicitly embedded in the current DFT
formalization, as we are verifying the rewrite rules by proving that the time of
failure before and after rewriting remains the same. Therefore, if the BEs are not
connected to the DFT, this means that they are not affecting the time of failure
of the top element and thus they can be removed in the verification process. Since
DFT gates are modeled as time-to-failure functions, merging BEs is also already
embedded in the DFT formalization. For example, the OR-gate is modeled using
the min function. This means that the inputs of the OR-gate are merged and the
output of the OR-gate can be replaced with the min function.

We illustrate the usage of the verified rules on the example of Fig. 3:

Theorem 32. � ∀.c d f

P AND (D AND c (D OR c d))(D AND d f) = P AND c (D AND d f)

In this section, we presented the formal definitions and proofs of the rewriting
rules in [10], which we believe is a novel contribution as details about how to
mathematically conduct these proofs are not available in [10]. In fact, in [10], the
correctness of the rewrite rules is described inexplicitly based on the behavior of
DFT gates rather than their formal mathematical models as presented in this
paper. It is worth noting that our formal definitions and verified lemmas allowed
verifying several DFT rewriting rules that can be used with tools that simplify
DFTs prior to the analysis. In addition, verifying these rules represent the first
step towards formally verifying tools, such as Storm, that support DFT analysis
and use these rewriting rules. The HOL4 script for these rules and their lemmas
is comprised of about 1500 lines and required about 80 h to develop. The script
is available at [5].

6 Conclusions

In this paper, we provided the formal verification of DFT rewriting rules using
the HOL4 theorem prover. These rules enable simplifying DFTs before per-
forming the analysis through tools, such as the Storm model checker. In order
to verify the rules, we formally defined n-ary gates, such as AND, OR, PAND
and VOT-gates and verified several lemmas based on these definitions and the

y_elderh@ece.concordia.ca



530 Y. Elderhalli et al.

available DFT theory in HOL4. We mainly verified DFT rules that deal with
the static gates (AND, OR & VOT-gates) and the PAND-gate. The rules include
some known properties, such as the commutativity of the static gates. Moreover,
we verified some more complex rules that deal with PAND with different input
scenarios. The formal verification of the rewriting rules in the DFTs analysis
adds the confidence level of the results of the tools that use them. We plan to
extend this work to verify rewriting rules that include Functional DEPendency
(FDEP) and Spare gates as well. This work can be considered as a first milestone
for formally verifying automated DFT analysis tools such as Storm.

Acknowledgments. The authors would like to thank Sebastian Junges, from RWTH
Aachen University, for the discussions and comments on the rewrite rules.

References

1. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: Proceedings of DSN, pp. 708–717.
IEEE (2007)

2. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

3. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
Proceedings of RAMS, pp. 286–293 (1990)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

5. Elderhalli, Y.: DFT rewriting rules: HOL4 script, Concordia University, Mon-
treal, QC, Canada (2019). http://hvg.ece.concordia.ca/code/hol/DFT-rewrite/
index.php

6. Elderhalli, Y., Ahmad, W., Hasan, O., Tahar, S.: Probabilistic analysis of dynamic
fault trees using HOL theorem proving. J. Appl. Log. 6, 467–509 (2019)

7. Elderhalli, Y., Hasan, O., Ahmad, W., Tahar, S.: Formal dynamic fault trees
analysis using an integration of theorem proving and model checking. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 139–156.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 10

8. Ghadhab, M., Junges, S., Katoen, J., Kuntz, M., Volk, M.: Safety analysis for
vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186,
37–50 (2019)

9. HOL4 (2019). https://hol-theorem-prover.org/
10. Junges, S., Guck, D., Katoen, J., Rensink, A., Stoelinga, M.: Fault trees on a

diet: automated reduction by graph rewriting. Form. Asp. Comput. 29(4), 651–
703 (2017)

11. Junges, S.: Simplifying dynamic fault trees by graph rewriting. Master thesis,
RWTH Aachen University (2015)

12. Merle, G.: Algebraic modelling of dynamic fault trees, contribution to qualitative
and quantitative analysis. Ph.D. thesis, ENS Cachan, France (2010)

y_elderh@ece.concordia.ca



Formal Verification of Rewriting Rules for DFTs 531

13. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 387–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14052-5 27

14. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 233–248. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22863-6 18

15. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

16. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and
Mission Assurance (2002)

17. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

y_elderh@ece.concordia.ca


