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Abstract—Electrical circuit networks consist of various elec-
trical components connected in different arrangements that are
used to process electrical signals, such as voltages and currents.
Moreover, they are widely used in many engineering and physical
systems, such as control, embedded and communication systems.
In this work, we propose to use higher-order-logic theorem
proving for formally analyzing electrical circuit networks using
network topology matrices. In particular, we formalize in the Is-
abelle/HOL theorem prover incidence and circuit (loop) matrices,
which are widely used topology matrices. Our formalization is
based on modeling the system as a network using the notion of
directed graphs that are algebraically represented by matrices.
Next, we use this formalization to formally analyze various
network topologies, such as ∆-Y and Π-L topologies, where we
perform Kirchhoff’s current and voltage laws based analysis in
a generic way.

Index Terms—Electrical Network Topology, Matrix Theory,
Graph Theory, Theorem Proving, Isabelle/HOL

I. INTRODUCTION

Electrical circuit networks are composed of various electri-
cal components, such as resistors, capacitors, inductors and
current/voltage sources, and are used to process electrical
signals, such as voltages and currents. They can take different
forms/configurations based on a specific arrangement of these
network components and their interconnection. Some of these
well-known topologies are ∆, Y , ∆-Y and Π-L topologies [1].
Moreover, these electrical circuits are considered as an integral
part of many engineering and physical systems, such as control
systems (e.g., to design controllers), embedded systems (e.g.,
to design integrated networks) and communication systems
(e.g., to design analog to digital converters). Due to their
usage in safety-critical applications, their accurate analysis is
of utmost importance.

The analysis of an electrical network is mainly based
on constructing its equivalent mathematical model by using
system governing laws. In particular, we need to model the cur-
rents and voltages passing through the electrical components
and their interactions in the corresponding electrical network
using the Kirchhoff’s laws, such as Kirchhoff’s current law
(KCL) and Kirchhoff’s voltage law (KVL) [2]. In this regard,
we need to apply KCL and KVL at each node of a network to

obtain a set of equations providing a relationship of voltages
and currents across its various components. However, model-
ing and solving these equations easily become cumbersome
when dealing with complex electrical circuit networks. In
addition, there is also a chance of missing some nodes or
electrical components during this kind of analysis. Therefore,
we need some alternate approach that can be used to analyze
electrical circuit networks.

Network topology [3] enables the depiction of relationships
among different components in an electrical network through
the use of graphs consisting of nodes and edges, and can be
considered as an alternate to the above-mentioned approach.
Here, edges of the graph represent the direction of the flow of
current through electrical components and nodes capture their
interconnections in an electrical network. Moreover, linear
algebraic methods, particularly matrix algebra [4], form one
basis for analyzing these electrical networks, where the graph
representations of these systems are transformed into vari-
ous matrix-based representations. Matrices allow representing
large and complex graphs more compactly and efficiently than
a visual representation, which further motivates the need for
algebraic foundational development in network theory. Some
of the widely used topological matrices are the incidence and
the circuit (loop) matrices [3]. For instance, the incidence
matrix provides a relationship between the nodes and edges
of the systems, while the circuit matrix shows the relationship
between circuits and edges. By analyzing these matrices, we
can verify the accuracy of the system model based on the topo-
logical characteristics such as the number of nodes, edges, and
closed-loops. Furthermore, we only need to analyze matrix-
based representations rather than solving a set of equations
providing a relationship of voltages and currents. Therefore,
this approach is quite effective and efficient particularly for
large electrical networks.

In this work, we propose to use higher-order-logic (HOL)
theorem proving for formally analyzing electrical circuit net-
works using the network topology matrices. In particular, we
formalize the incidence and the circuit matrices based on the
network modeled as a directed graph in Isabelle/HOL [5]. The
main motivation for considering directed graph-based models
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is their generic nature compared to undirected graphs. More-
over, directed graphs are suitable for representing the network
topologies, where the directed edges capture the direction of
the current flowing through an electrical component [6]. Next,
we use our formalization of the network topology matrices for
formally analyzing various network topologies, such as ∆-Y
and Π-L with an aim to construct a comprehensive library of
formal electrical circuit network analysis in Isabelle/HOL. We
start our proposed formalization by modeling the network inci-
dence system based on the incidence structure between nodes
and edges of the directed graph representation, which is further
used to formalize the incidence matrix and to formally verify
its classical properties in Isabelle/HOL. Next, we formalize
the network circuit system on top of the network incidence
system to model circuit matrices and formally verify related
properties. Moreover, we formalize the generic representations
of KVL and KCL, which can be used to analyze an electrical
circuit network of any size. Finally, we use our formalizations
of the network topology matrices, and KVL and KCL to
formally analyze various electrical circuit network topologies
using Isabelle/HOL. One of the primary reasons for choosing
Isabelle/HOL for the proposed formalization is the availability
of extensive reasoning support for graphs and matrices.

The rest of the paper is structured as follows: Section II
overviews the related work regarding the formalization of
networks and graphs. We provide formalizations of incidence
and circuit matrices in Sections III and IV. Section V presents
the formal analysis of various network topologies using Is-
abelle/HOL. Section VI provides some discussion while high-
lighting the usefulness of the proposed approach. We conclude
the paper in Section VII with some future directions.

II. RELATED WORK

HOL theorem proving has been used for formally analyzing
the electrical networks. For example, Zaki et al. [7] used the
HOL4 theorem prover for formally verifying the continuous
models of analog circuits. In particular, the authors developed
a basic library of analog circuit analysis in HOL4, where they
have been able to successfully apply their proposed framework
to formally analyze an RLC (resistor, inductor and capacitor)
network and a delta-sigma modulator. Similarly, Taqdees et
al. [8] used the HOL Light theorem prover for formally veri-
fying the transfer functions of linear analog filters, such as first
and second-order Sallen-Key low-pass filters. Later, Rashid et
al. [9] formally analyzed a 4-π soft error crosstalk model using
HOL Light, which is widely used in integrated circuits. More
recently, Rashid et al. [10] proposed a framework, FASiM,
which enable an automatic formal analysis of the Simulink
models of linear analog circuits using HOL Light. However,
all these research contributions are able to analyze a certain set
of electrical circuits only and do not provide any verification
of the electrical networks topologies.

Networks and graphs have also been formalized in many
HOL theorem provers, such as Isabelle/HOL, Coq, Lean and
Mizar. For instance, Noschinski [11] formally developed a
general graph theory emphasizing on the basics of directed

graphs using Isabelle/HOL structures such as records. Sim-
ilarly, Lammich et al. [12] proposed another directed graph
formalization based on sets and formally verified various
network flow algorithms in Isabelle/HOL. However, these
formalizations mainly focus on either the general concept
of networks and graphs without considering incidence struc-
tures/topology matrices or verifying network flow algorithms.

Similarly, there are only a few formalizations of incidence
matrices available in the literature that represent combinatorial
structures, such as designs and graphs [13]. For instance,
Heras et al. [14] formalized the incidence matrix using the
Coq/SSReflect theorem prover and used it to formally analyze
2D digital image processing systems. More recently, Edmonds
et al. [15] used Isabelle/HOL to formalize Fisher’s inequal-
ity, which is based on developing incidence matrices over
rings as a linear algebraic representation of designs, using
the linear algebraic proof approach [16]. However, both of
the preceding contributions only provide the formalization of
simple incidence matrices having entries as 0 and 1 only, i.e,
modeling undirected graphs under some conditions. Moreover,
these contributions do not consider directed graphs for the
formalization of the incidence matrix, which incorporates the
direction aspect and considers the entries of the matrix as 0,
1 and −1. Also, the network topology matrices are not used
for formally analyzing electrical networks topologies, which
is the main scope of the current paper.

III. FORMALIZATION OF INCIDENCE MATRICES

A. Incidence Matrices

Incidence matrices provide algebraic representations of net-
works captured by directed graphs and describe the relation-
ship between nodes and edges through the incidence structures.
They are mathematically defined as follows [17]:

Definition 1. Incidence Matrix of a Network
Consider a network with m nodes, n edges, and no self-loops.
An incidence matrix A = [aij ] is defined as an m× n matrix
for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, such that

aij =

 1 if edge j is positively incident with node i
−1 if edge j is negatively incident with node i
0 otherwise

where an edge is said to be positively incident with a node if
the direction of the edge is away from the node. Similarly, an
edge is negatively incident with a node if the edge is directed
to the node.

Figure 1 depicts a directed graph corresponding to a net-
work, and its incidence matrix representation. The graph in
Figure 1(a) has 4 nodes and 6 edges, where every edge is
represented by a pair of nodes. The entries in the matrix are
determined by the incidence relationship between nodes and
edges. For instance, edge E5 is represented by (n2,n4), which
is positively incident with node 2 and negatively incident with
node 4. The matrix elements for this relation are given as
a25 = 1 and a45 = −1 as shown in Figure 1(b).



(a) (b)

Fig. 1: (a) Directed Graph Representation of a Network; (b)
Incidence Matrix [17]

B. HOL Formalization of Incidence Matrices

We use Isabelle’s module system, locales [18], to model
directed graph-based network systems, and to construct equiv-
alent matrix representations. Locales are often used for al-
gebraic structures with parametrization. They can also be
extended hierarchically, allowing us to combine existing lo-
cales into a new locale with new parameters and assumptions.
To formalize incidence matrices, we first formally define a
network system as a locale module comprising the main
components of a network: a list of nodes is formalized as a
type of list, a list of edges is formalized as a pair list, and their
relationship as well-formed assumptions1. The locale ensures
that all edges consist of distinct nodes and the network has
no self-loops and multi-edges. Here, we use lists instead of
sets for the formalization of the network system since we
need an ordering structure that allows us to efficiently define
a relationship of edges with their respective nodes.

locale network_system =
fixes nodes_list :: ′a nodes (Ns)
and edges_list :: ′a edges (Es)
assumes network_wf: e ∈ set Es=⇒ fst e ∈ setNs ∧

snd e ∈ setNs ∧ fst e ̸= snd e

assumes distincts: distinct Ns distinct Es

where the function set accepts a list and returns a set.
Similarly, the function distinct takes a list and ensures that
elements of the list are disjoint. Furthermore, the assumption
network_wf ensures that the network has no self-loop.

To obtain a valid network system that can be converted
into its algebraic representation, we define a new locale
with non-empty edge lists. This locale is combined with
finite_netw_sys locale built on top of network_system

locale, which assumes that the sets of edges and nodes are
finite.
locale nonempty_network_system = finite_netw_sys +

assumes edges_nempty: Es ̸= [ ]

Next, we need to define the positive and negative incidence
by incorporating the direction of edges. To formalize the
positive incidence, we first define a set IP, whose elements
are pairs of nodes and edges, with the first element being a
node and the second element its edge directed away from the
node.

1We abbreviate ′a as ′a node, ′a list as ′a nodes, ′a× ′a as ′a edge,
and (′a× ′a) list as ′a edges for a better readability.

definition IP ≡ {(v,e). e ∈ set Es ∧ fst e = v}

Thereafter, we formalize a predicate pos_incident, which
ensures that the node v is positively incident to the edge e if
their pair is in the set IP.

definition pos_incident v e ≡ (v,e) ∈ IP

Similarly, we formalize negative incidence using a set IN as:

definition IN ≡ {(v,e). e ∈ set Es ∧ snd e = v}

definition neg_incident v e ≡ (v,e) ∈ IN

We now formalize an incidence matrix (Definition 1) as:

definition incidence_matrix ::
′a nodes ⇒ ′a edges ⇒ (′b :: field_char_0 mat) where
incidence_matrix Ns Es ≡
mat (length Ns) (length Es) (λ(i,j).
if (fst (Es!j) ̸= snd (Es!j) ∧

(Ns!i) = fst (Es!j)) then 1 else
if (fst (Es!j) ̸= snd (Es!j) ∧

(Ns!i) = snd (Es!j)) then -1 else 0)

where the function length accepts a list and provides
the number of elements of the list. Moreover, the func-
tion incidence_matrix generates a matrix providing re-
lationships between all nodes and edges of the directed
graph. Note that this function is defined outside the locale
to be equivalent for an arbitrary network system consist-
ing of a list of nodes and edges. Therefore, the condition
fst (Es!j) ̸= snd (Es!j) is added to ensure that the def-
inition is free of self-loops. Moreover, the axiomatic type
field_char_0 is chosen for the matrix elements. This type
can easily be rendered into the real field, where the incidence
matrix can be algebraically defined over the real field [19].
Additionally, the type’s properties like 1 ̸=−1 allow an easy
use for proving lemmas and efficient computations. More
details about the incidence matrix formalization and properties
verified in Isabelle/HOL can be found in [20].

IV. FORMALIZATION OF CIRCUIT MATRICES

A. Circuit Matrices

For a directed graph with l circuits and n edges, a circuit
matrix is mathematically expressed as [17]:

Definition 2. Circuit Matrix of a Network
Consider a network with m nodes, n edges, and l circuits.
The circuit matrix C = [ckj ] is an l × n matrix, where k ∈
{1, 2, . . . , l} and j ∈ {1, 2, . . . , n}, such that

ckj =


1 if edge j is in the circuit k, and the direction

of the edge j and the circuit k are the same
−1 if edge j is in the circuit k, and the direction

of the edge j and the circuit k are opposite
0 if edge j is not in the circuit k

where a circuit of a directed graph is defined as a closed path
represented by a finite sequence of distinct edges captured as
pairs of nodes as [(n1, n2), (n2, n3), . . . , (ni−1, ni)] for n ≥ 2
such that n1 = ni.



Figure 2 depicts a directed graph of a network with some
arbitrary circuits and its corresponding circuit matrix. Here,
the circuit matrix takes the set of circuits and the set all edges
as inputs, where each row of the circuit matrix corresponds to
the circuit in the graph, and each column represents an edge
in the graph. For L2 = [−E4, E6, −E5]2, the first element
of the circuit list, −E4, indicates that edge E4 is in the
circuit and its direction is opposite to the circuit’s orientation.
This is reflected in the matrix as c24 = −1, as depicted in
Figure 2(b). It is important to note that all circuits can have
two directions, either clockwise or counterclockwise, and the
direction of circuits are independent of the direction of edges.

(a) (b)

Fig. 2: (a) Some circuits in Directed Graph of Figure 1(a); (b)
Circuit Matrix

B. HOL Formalization of Circuit Matrices

To formalize a circuit matrix, we need to model a circuit and
incorporate it into the network system. A circuit of a directed
graph is formalized as follows:

definition circuit :: ′a edges⇒ bool where
circuit ps≡ (is_gen_closed_path (fst (hd ps))

ps (fst (hd ps))) ∧ length ps≥ 2

where is_gen_closed_path represents a distinct pair list of
closed train (walk). This is defined as a sequence of edges
where the first element of the head edge is the same as the
second element of the last edge in the list, and is obtained by
using the function pred_netw_dedge_seq that is formalized as:

fun pred_netw_dedge_seq ::
′a node⇒ ′a edges⇒ ′a node⇒ bool where

pred_netw_dedge_seq v1 [] vx = (v1 = vx) |
pred_netw_dedge_seq v1 (p1 # ps) vx =

(v1 = fst p1 ∧ fst p1 ̸= snd p1 ∧
pred_netw_dedge_seq (snd p1) ps vx)

In the next step, we incorporate the concept of the circuit
into the network system by defining a new locale, as follows:

locale circuit_system = nonempty_network_system +
fixes circuits_list :: ′a edges list (Ls)
assumes wellformed_1: ls ∈ setLs=⇒

set ls ⊆ symcl E ∧ length ls≤ length Es
assumes wellformed_2: ls ∈ setLs=⇒

circuit ls ∧ circuit (reverse ls)
and distinct: distinctLs

where symcl accepts a Cartesian set and guarantees that
this set contains elements with their reversed version. The

2The negative sign indicates the opposite direction of the edges with respect
to the orientation of the circuit, e.g., −E4 = (n2, n3).

assumption wellformed_1 ensures that every element of
the list of circuits Ls is a subset of the symmetric rela-
tion of edges and satisfies the condition that the size of
the circuit cannot be larger than the number of edges in
the graph. Similarly, wellformed_2 guarantees that every
element of the circuit list is a circuit and its reverse is
also a circuit. The assumption distinct ensures the non-
repetition of circuits in the circuit list. Additionally, we for-
mally define a nonempty_circuit_system locale on top of
the circuit_system, which ensures that the circuit system
has at least one circuit in the circuit list.

locale nonempty_circuit_system = circuit_system +

assumes circuits_list_nempty: Ls ̸= [ ]

Now, it is necessary to describe the directional relation
between circuits and the corresponding edges of the given
network. The circuit is said to be positively oriented with an
edge if the edge is in the circuit, while the circuit is negatively
oriented with the edge if the edge is in the reversed circuit. We
develop these definitions by explicitly indicating the direction
of the circuits while assuming each edge is positively directed.
For instance, the set of pairs whose elements are edges and
circuits, abbreviated as Lp, is used to designate the relation
between edges and circuits where edges are in positively
oriented circuits.

definition Lp ≡ {(x,es). x ∈ set Es ∧ es ∈ set Ls
∧ x ∈ set (circuit_list es)}

Similarly, we formalize a predicate for the relationship
indicating that an edge is in a negatively oriented circuit.

definition in_neg_circuit x es ≡ (x,es) ∈ Ln

where Ln is a set of pairs consisting of the edge and the circuit,
formally defined as follows:

definition Ln ≡ {(x,es). x ∈ set Es ∧ es ∈ setLs
∧ x /∈ set (circuit_list es)
∧ x ∈ set (reverse (circuit_list es)}

Here, the function reverse takes a pair list and reverses
its order by swapping the elements of each pair in the list.
Therefore, we obtain the concept of negatively oriented circuits
using the function reverse. It is important to highlight that
we assumed each circuit list as a subset of the set of edges
with symmetric relation in the circuit system environment.
By doing so, we are able to work with networks that have
both directed and semi-directed circuits [19]. Note that a
semi-directed circuit in a directed graph is a circuit in the
corresponding undirected graph. Now, the formalization of the
circuit matrix is given as follows:

definition circuit_matrix::
′a edges list ⇒ ′a edges ⇒ (′b :: field_char_0 mat)
where circuit_matrix Ls Es ≡

mat (length Ls) (length Es) (λ(k,j).
if (Es!j) ∈ set (circuit_list (Ls!k)) then 1 else

if (Es!j) ∈ set (reverse (circuit_list (Ls!k)))

then -1 else 0)



More details about the formalization of circuit matrices and
the verification of various classical properties in Isabelle/HOL
can be found in [20].

V. FORMAL ANALYSIS OF ELECTRICAL CIRCUIT
NETWORK TOPOLOGIES

We now use the formalization of the network topology ma-
trices, presented in Sections III and IV, for formally analyzing
various electrical circuit network topologies, such as ∆-Y and
Π-L topologies. Other sorts of topologies, such as the H, Box
or Bridge topologies [21], can be formalized in the same way.

A. Formal Analysis of the ∆-Y Network Topology

A ∆-Y network topology consists of a ∆ network connected
in parallel to a Y network [21]. Figure 3(a) depicts a ∆
network topology, which consists of three components C1,
C3 and C6, shown as rectangular boxes. These boxes can
represent any (one or more) of the electrical components, i.e.,
resistors, capacitors, inductors or current/voltage sources. For
example, for a choice of C1 as a current source, C3 as a resis-
tor and C6 as an inductor, the corresponding topology results
into an RL (resistor-inductor) circuit. Similarly, Figure 3(b) de-
picts a Y circuit topology comprising of three components C2,
C4 and C5, which can be any of the electrical components.
Moreover, a parallel connection of these topologies represents
a ∆-Y network topology, which is depicted in Figure 3(c).

We start the analysis of the ∆-Y network by applying KCL
on nodes n1, n2, n3 and n4 (Figure 3(c)), which results into
the following set of equations:

Node n1 : i2(t) + i3(t) = i1(t)
Node n2 : i2(t) + i4(t) = i5(t)
Node n3 : i4(t) + i6(t) = i3(t)
Node n4 : i5(t) + i6(t) = i1(t)

(1)

where i1(t), i2(t), i3(t), i4(t), i5(t) and i6(t) capture the
currents flowing through the electrical components C1 to C6,
respectively. Next, we apply KVL on the three circuits L1, L2

and L3 of the ∆-Y network topology (Figure 3(c)) to obtain
the following equations:

Circuit L1 : v1(t) + v2(t) = −v5(t)
Circuit L2 : v4(t) + v5(t) = v6(t)
Circuit L3 : v3(t) + v4(t) = v2(t)

(2)

where v1(t) to v6(t) capture the voltages across the electrical
components C1 to C6, respectively. Next, the matrix-based
representation of the KCL using the incidence matrix for the
∆-Y network is given as follows:

AI⃗ = 0⃗ (3)

where A represents the incidence matrix for the ∆-Y electrical
network, I⃗ models a vector containing the currents flowing
through all components of the network and 0⃗ captures a vector
with all of its entries as zeros. Similarly, the matrix-based

representation of the KVL using the circuit matrix for the ∆-
Y network is given as:

BV⃗ = 0⃗ (4)

where B models the circuit matrix for the ∆-Y network topol-
ogy and V⃗ provides a vector containing the voltages across all
components of the network. Now, in order to formally analyze
the ∆-Y network topology, we start with the formalization of
a general representation of KCL in Isabelle/HOL as follows:

definition KCL:: (real ⇒ real) list ⇒ real ⇒ bool

where KCL Is t ≡ (Σi∈{0..<length Is}. (Is!i) t = 0)

where the function KCL accepts a list of currents Is across the
components of a network and a time variable t, and returns a
predicate providing the KCL, which states that the algebraic
sum of all currents entering and leaving a node is equal to
zero. Now, the KCL implementation of the ∆-Y network
(Figure 3(c)) can be formally described as:

definition KCL_implem_delta_y where
KCL_implem_delta_y Is t≡ KCL [Is!1, Is!2, -(Is!0)] t ∧

KCL [Is!4, -(Is!1), -(Is!3)] t ∧
KCL [Is!3, Is!5, -(Is!2)] t ∧
KCL [Is!0, -(Is!4), -(Is!5)] t

where KCL_implem_delta_y accepts the list of currents and
applies KCL on nodes n1, n2, n3 and n4 of the ∆-Y
network. Moreover, the list index in Isabelle/HOL starts from
0. Therefore, the variables Is!0 to Is!5 represent the currents
passing through the components C1 to C6 of the electrical
circuit network, respectively. Next, we formally verify the
equivalence between the KCL implementation of the network
and its mathematical representation (Equation (1)) as the
following lemma in Isabelle/HOL:

lemma kcl_netw_eqs_delta_y:
KCL_implem_delta_y Is t←→ (Is!1) t + (Is!2) t = (Is!0) t ∧
(Is!1) t + (Is!3) t = (Is!4) t ∧ (Is!3) t
+ (Is!5) t = (Is!2) t ∧ (Is!4) t + (Is!5) t = (Is!0) t

We now formalize the incidence matrix for the ∆-Y network
(Figure 3(c)), which is further used to construct the matrix-
based representation of the implementation of KCL. We verify
the incidence matrix of the ∆-Y network as:

lemma incidence_matrix_delta_y:
assumes nodes: Ns = [n1,n2,n3,n4]
and edges: Es = [(n4,n1),(n1,n2),(n1,n3),

(n3,n2),(n2,n4),(n3,n4)]
shows incidence_matrix Ns Es = mat_of_rows_list 6

[[-1,1,1,0,0,0],[0,-1,0,-1,1,0],

[0,0,-1,1,0,1],[1,0,0,0,-1,-1]]

where the function mat_of_rows_list accepts an integer n,
capturing the number of columns, and a list of list with length
m, representing the number of rows, and provides a matrix of
order m × n. The verification of the above lemma is based
on the definition of the incidence matrix, properties of the
positive and negative incidences of the network system, the
introduction rule eq_matI, and properties of the indices of
the matrices alongside reasoning on lists and sets. Next, we



(a) (b) (c)

Fig. 3: (a) ∆ Network Topology; (b) Y Network Topology; (c) ∆-Y Topology

formalize the matrix-based representation of the Kirchhoff’s
Laws (KCL and KVL) using the network topology (incidence
and circuit) matrices as follows:

definition net_top_mat_implem where
net_top_mat_implem A X t ≡
(A *v (vecc X t)) = 0v (dim_row A)

where A is a real matrix (in our case, it is an incidence matrix
for a KCL implementation and a circuit matrix for a KVL
implementation), 0v (dim_row A) is a zero vector with a
size equal to the row dimension of the matrix A, and the
function vecc accepts the list X (list of currents and voltages
for KCL and KVL implementations, respectively) and the real
variable t and returns the vector of each list element at t.
Now, we formally verify the equivalence of the mathematical
representation of KCL (KCL applied on each node) and its
matrix-based representation based on the incidence matrix in
Isabelle/HOL as:

theorem KCL_implem_eq_inci_mat_rep_delta_y:

assumes nodes:Ns = [n1,n2,n3,n4]
and edges: Es = [(n4,n1),(n1,n2),(n1,n3),

(n3,n2),(n2,n4),(n3,n4)]
shows net_top_mat_implem (incidence_matrixNs Es)

[Is!0,Is!1,Is!2,Is!3,Is!4,Is!5] t ←→
KCL_implem_delta_y [Is!0,Is!1,Is!2,Is!3,Is!4,Is!5] t

The verification of the above theorem starts by splitting the
equality in the goal into two implications. The first implication
(−→) is verified by performing row manipulation on the matrix
representation of KCL to obtain the set of equations. The
second implication (←−) is simply verified by showing that the
set of equations from KCL_imp_delta_y is equal to the rows
of the incidence matrix. Similar to the KCL, we formalize the
generalized representation of KVL in Isabelle/HOL to ensure
that the algebraic sum of the voltages across any set of edges
in a closed loop is zero.

definition KVL:: (real ⇒ real) list ⇒ real ⇒ bool

where KVL Vs t ≡ (Σi∈{0..<length Vs}. (Vs!i) t = 0)

Now, the KVL implementation of the ∆-Y network toplogy
(Figure 3(c)) is formalized in Isabelle/HOL as:

definition KVL_implem_delta_y where
KVL_implem_delta_y Vs t≡ KVL [Vs!0, Vs!1, Vs!4] t ∧
KVL [Vs!3, Vs!4, -(Vs!5)] t ∧ KVL [Vs!2, Vs!3, -(Vs!1)] t

where KVL_implem_delta_y accepts the list of voltages and
applies KVL on the circuits L1, L2 and L3 of the ∆-Y
network. Next, we formally verify the equivalence between
the KVL implementation of the network topology and its
mathematical representation (Equation (2)) as the following
theorem in Isabelle/HOL.
lemma kvl_netw_eqs_delta_y:

KVL_implem_delta_y Vs t←→ (Vs!0) t + (Vs!1) t = -(Vs!4) t ∧
(Vs!3) t + (Vs!4) t = (Vs!5) t ∧ (Vs!2) t + (Vs!3) t=(Vs!1) t

Next, we formally verify the circuit matrix of the ∆-Y
network depicted in Figure 3(c) and derive the matrix-based
representation of Kirchhoff’s Voltage Law (KVL) using this
circuit matrix. Finally, the equality between the equation-based
representation of KVL and its circuit matrix-based represen-
tation is verified as the following theorem in Isabelle/HOL.

theorem KVL_implem_eq_circuit_mat_rep_delta_y:
assumes circuits: Ls = [[(n4,n1),(n1,n2),(n2,n4)],

[(n3,n4),(n4,n2),(n2,n3)],

[(n1,n3),(n3,n2),(n2,n1)]]
and edges: Es = [(n4,n1),(n1,n2),(n1,n3),

(n3,n2),(n2,n4),(n3,n4)]

shows net_top_mat_implem (circuit_matrixLs Es)
[Vs!0,Vs!1,Vs!2,Vs!3,Vs!4,Vs!5] ←→

KVL_implem_delta_y [Vs!0,Vs!1,Vs!2,Vs!3,Vs!4,Vs!5] t

The proof process of the above theorem is very similar to
that of one verifying an equivalence relationship between KCL
equations and the network topology-based matrix representa-
tion of the ∆-Y network.

B. Formal Analysis of the Π-L Network Topology
Figure 4(c) depicts a Π-L network topology, which consists

of five components C1, C2, C3, C4 and C5, shown as
rectangular boxes. It is constructed by a series combination of
the Π (Figure 4(a)) and L (Figure 4(b)) topologies. Moreover,
a judicious selection of these components results into different
electrical networks required for performing different tasks.
For example, for a choice of C1 as a voltage/current source,
C2 as a resistor and C4 as a capacitor, the corresponding
Π topology results into an RC (resistor-capacitor) circuit or
RC filter, which is widely used to process the input signal by
allowing passage of only a certain range of frequencies.

We start the formal analysis of the Π-L network by formal-
izing its KCL implementation in Isabelle/HOL as:



(a) (b) (c)
Fig. 4: (a) Π Network Topology; (b) L Network Topology; (c) Π-L Topology

definition KCL_implem_pi_l where
KCL_implem_pi_l Is t≡ KCL [Is!1, -(Is!0)] t ∧

KCL [Is!2, -(Is!1), Is!3] t ∧ KCL [Is!4, -(Is!2)] t ∧
KCL [Is!0, -(Is!3), -(Is!4)] t

where KCL_implem_pi_l accepts a list of currents and applies
KCL on nodes n1, n2, n3 and n4 of the Π-L network. Next,
we formally verify the equivalence between the KCL imple-
mentation of the network and its mathematical representation
as the following lemma:

lemma kcl_netw_eqs_pi_l: KCL_implem_pi_l Is t←→
(Is!1) t = (Is!0) t ∧ (Is!2) t + (Is!3) t = (Is!1) t ∧
(Is!2) t = (Is!4) t ∧ (Is!3) t + (Is!4) t = (Is!0) t

Next, we formalize the incidence matrix for the Π-L net-
work (Figure 4(c)). Moreover, we formally verify the matrix-
based representation of the KCL using this incidence matrix.
Then, we formally verify the equivalence of the mathematical
representation of KCL (KCL applied on each node) and its
matrix-based representation based on the incidence matrix as
the following lemma in Isabelle/HOL:
theorem KCL_implem_eq_inci_mat_rep_pi_l:

assumes nodes:Ns = [n1,n2,n3,n4]
and edges: Es = [(n4,n1),(n1,n2),(n2,n3),

(n2,n4),(n3,n4)]
shows net_top_mat_implem (incidence_matrixNs Es)

[Is!0,Is!1,Is!2,Is!3,Is!4] t ←→
KCL_implem_pi_l [Is!0,Is!1,Is!2,Is!3,Is!4] t

The verification of the above theorem is very similar to that of
theorem KCL_implem_eq_inci_mat_rep_delta_y verified
for the ∆-Y network topology. Next, the KVL implementation
of the Π-L network topology (Figure 4(c)) is formalized in
Isabelle/HOL as:
definition KVL_implem_pi_l where
KVL_implem_pi_l Vs t≡ KVL [Vs!0, Vs!1, Vs!3] t ∧

KVL [Vs!2, Vs!4, -(Vs!3)] t

where KVL_implem_pi_l accepts the list of voltages and
applies KVL on the circuits L1 and L2 of the Π-L network.
Next, we formally verify the equivalence between the KVL
implementation of the network topology and its mathematical
representation as the following lemma in Isabelle/HOL.
lemma kvl_netw_eqs_pi_l:

KVL_implem_pi_l Vs t←→ (Vs!0) t + (Vs!1) t = -(Vs!3) t ∧
(Vs!2) t + (Vs!4) t = (Vs!3) t

Based on the two circuits depicted in the Π-L network
(Figure 4(c)), we now formalize the corresponding circuit
matrix and formally verify the matrix-based representation of
the KVL. Thereafter, the equivalence between the equation-
based and circuit matrix-based representations of KVL is
formally verified as the following theorem in Isabelle/HOL.

theorem KVL_implem_eq_circuit_mat_rep_pi_l:
assumes networks: Ls = [[(n4,n1),(n1,n2),(n2,n4)],

[(n2,n3),(n3,n4),(n4,n2)]]
and edges: Es = [(n4,n1),(n1,n2),(n2,n3),

(n2,n4),(n3,n4)]

shows net_top_mat_implem (circuit_matrixLs Es)
[Vs!0,Vs!1,Vs!2,Vs!3,Vs!4]←→

KVL_implem_pi_l [Vs!0,Vs!1,Vs!2,Vs!3,Vs!4] t

The proof process of the above theorem is very similar to
that of one verifying an equivalence relationship between
KVL equations and the network topology-based matrix rep-
resentation of the ∆-Y network topology. To the best of
our knowledge, this is the first formal analysis of electrical
circuit network topologies based on the topological matrices
using HOL theorem proving. The Isabelle/HOL code for
formalization and verification efforts presented in this paper
are available at [20].

VI. DISCUSSION

Network topology matrices are an efficient tool for ana-
lyzing electrical circuit networks. Moreover, considering the
growing range of graph applications using matrices in many
areas, the formalization of mathematical foundations estab-
lishing a relationship between graphs and matrices is desired.
Therefore, we aim to build a formal library that integrates
between graph theory, matrix theory and electrical circuit
network theory. We have been able to successfully formalize
the widely used incidence and circuit matrices, which are
further used for analyzing various network topologies, as
illustrated in Section V of the paper. Another advantage
of our proposed formalization is the generic nature of the
formal analysis of electrical circuit networks. For example,
the formally verified properties, i.e., all lemmas regarding the
dimensions and indexing are verified for universally quantified
variables and functions that could further be specialized to
obtain results for a particular scenario. However, in the case



of traditional computer-simulation based analysis, we need to
model each circuit individually.

Similarly, all lemmas/theorems regarding the formal anal-
ysis of various network topologies are verified for generic
electrical components that could be replaced with any elec-
trical components, such as resistors, capacitors, inductors
and current/voltage sources in order to obtain results for a
particular circuit. For example, in Figure 3(c), by setting C1
as a current/voltage source, C3 and C4 as resistors, C5 and
C6 as inductors and C2 as a capacitor, the corresponding ∆-
Y network topology results into a widely used RLC (resistor,
inductor, capacitor) circuit network depicted in Figure 5. For
the analysis of this RLC circuit network, we only need to
specialize the current and voltage functions in the relevant
theorems regarding KCL and KVL implementations, presented
in Section V, with the currents and voltages across these
components, i.e., resistors, inductors and capacitors.

Fig. 5: An RLC Network

A further advantage of our proposed approach is the as-
surance of explicit presence of all required assumptions in
the definitions of the network incidence and circuit systems,
alongside the related lemmas that may get overlooked in tradi-
tional paper-and-pencil based proof methods. One of the main
challenges encountered during the proposed formalization is
the need to explicitly express various mathematical concepts,
such as the circuit formulation (cf. Sections IV) that are
presented in the literature somehow abstractly, in order to
make them amenable to the formalization in Isabelle/HOL.

VII. CONCLUSION

In this paper, we proposed to use higher-order-logic (HOL)
theorem proving for formally analyzing electrical circuit net-
works using network topology matrices. Firstly, we developed
the network incidence and the circuit systems with their
constraints using the locale modules of Isabelle/HOL. We
also verified related system properties within the locale. Next,
we formalized the respective system’s matrices of networks,
represented by directed graphs. Next, we used the formal-
ization of the topological matrices for formally analyzing
various electrical network topologies, such as the ∆-Y and
Π-L topologies. In future, we plan to formally analyze more
network topologies, such as H, Box and Bridge topologies [2]
to name a few, with an aim to build a comprehensive library
for electrical circuit networks analysis. Another direction can
be to extend our network topology system by formalizing other
topological matrices, like cutset and path matrices [3] and

verifying more properties on top of these matrices to facilitate
the analysis of safety-critical systems.
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