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Abstract—Ensuring the safety of autonomous systems is
paramount for their successful integration into real-world
transportation networks. Autonomous Vehicles and Machine
Learning-driven traffic management systems have the potential
to enhance efficiency and mobility. However, their deployment
presents significant safety challenges, particularly in managing
interactions between autonomous systems, human-driven vehi-
cles, and pedestrians. This paper addresses these challenges by
focusing on Reinforcement Learning (RL)-based traffic signal
control. It analyzes traffic safety using Time-To-Collision to
identify potential traffic conflicts between vehicle interactions
that could jeopardize safety. We propose a novel approach to
mitigate these conflicts by guiding the learning process under
a formally checked safety constraint. This approach leverages
Satisfiability Modulo Theories as a formal method for rigorous
verification to ensure that the RL agent’s decisions remain within
safe operational boundaries, even in dynamic and unpredictable
traffic conditions. Additionally, our approach incorporates dy-
namic speed adjustment mechanisms to address scenarios in
which safety constraints are violated. Through traffic simulations,
we evaluate the effectiveness of our approach in achieving a
balance between traffic signal optimization and traffic safety by
ensuring the safe operation of RL under a safety constraint and
demonstrate that this adaptive speed control strategy reduces
both the frequency and severity of traffic conflicts.

Index Terms—Autonomous vehicles, satisfiability modulo the-
ories, reinforcement learning, traffic safety, time-to-collision

I. INTRODUCTION

The widespread integration of Machine Learning (ML) tech-
nologies in autonomous systems, particularly in transportation,
has led to a growing reliance on ML-driven solutions to
automate tasks, optimize operations, and enhance decision-
making. However, with increased performance comes height-
ened complexity, impacting not only the efficiency and scala-
bility of autonomous systems but also their safety, reliability,
and overall trustworthiness. Ensuring the safety of autonomous
systems in dynamic, real-world environments has become a
critical challenge, as even small errors or failures in decision-
making can have significant consequences. Effectively manag-
ing this complexity is now a central focus in the development
of safe and reliable autonomous systems. In transportation,
ML applications are evident in two key instances: developing
Autonomous Vehicles (AVs) and enhancing infrastructure ef-
ficiency. This prompts the following question:

RQ: What are the implications of the deployment of AVs on
road safety?
Road safety has always been the concern of researchers and
car manufacturers, and it continues to be an ongoing endeavor
demanding persistent focus and dedication. For instance, de-
ploying AVs on the road and in mixed traffic, where they
interact with conventional human-driven vehicles, introduces
a new level of complexity that might affect the efficiency of
traffic management methods to optimize the use of transporta-
tion infrastructure. From this perspective, the infrastructure
must be enhanced to accommodate the introduced complexity,
which brings us to the second instance of ML applications that
enhance traffic infrastructure.

Intersections, as part of traffic infrastructure, are introduced
to facilitate the smooth traffic flow. Traffic Signal Control
(TSC) has emerged as a crucial strategy for tackling con-
gestion, queuing, pedestrian safety, and coordinating traffic
signals. [1]. Historically, the predominant approach to TSC
has been fixed time control [2], where the timing of signal
phases is predetermined and remains constant throughout
the day. Although fixed-time control offers simplicity and
predictability in signal operation, it may not be the most
efficient solution for accommodating the dynamic behavior of
AVs, necessitating substantial infrastructure upgrades. In this
context, Reinforcement Learning (RL) is defined as a branch
of ML where an agent learns to make sequential decisions
by interacting with an environment to maximize cumulative
rewards [3]. The application of RL in traffic signal control
offers a dynamic and adaptive approach by learning optimal
signal timing policies based on the feedback received from
a traffic environment. RL-based TSC can potentially optimize
traffic flow, reduce congestion, and improve overall transporta-
tion efficiency in urban areas. However, safety considerations
need to be addressed for widespread adoption.

Studies by the National Highway Traffic Safety Administra-
tion (NHTSA) [4] state that conflicts arising in intersections
are more likely to lead to crashes. For instance, according
to Transport Canada’s Road Safety report for 2011-2020 [5],
27% of fatalities occurred at intersections. Motivated by the
recent concerns with AVs safety and the need to achieve their
seamless and secure integration into modern transportation
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networks, one promising approach to enhancing confidence
in transportation systems is to combine simulation-based tools
with rigorous modeling and analysis techniques such as formal
methods [6]. By modeling system behaviors, constraints, and
requirements using formal languages and logical formulas,
formal methods enable exhaustive analysis and verification of
critical properties such as safety, correctness, and compliance
with regulations.

As a popular formal methods tool, Satisfiability Modulo
Theories (SMT) [7] is a type of constraint solving that
extends traditional Boolean satisfiability (SAT) solving to
handle constraints involving rich mathematical theories be-
yond propositional logic. In SMT solving, constraints are
expressed using a combination of first-order logic formulas
and specialized theories such as arithmetic and arrays. The
key idea behind SMT solving is to decide the satisfiability of
a logical formula with respect to a given theory. This involves
determining whether values are assigned to variables that
satisfy the formula while respecting the constraints imposed
by the underlying theory. SMT solvers use efficient algorithms
and decision procedures tailored to specific theories to solve
these constraint satisfaction problems.

The lining of vehicles waiting to proceed through a sig-
nalized intersection leads to the formation of a queue [8].
Queuing is a common traffic event characterized by stationary
or crawling vehicles, where the primary type of multi-vehicle
crash is the rear-end collision. To ensure traffic safety during
queuing, this paper involves studying traffic safety, specifically
during the implementation of RL-based TSC at intersections.
This entails analyzing how applying RL algorithms to control
traffic signals impacts safety within a queue at an intersection.
As a key aspect, the study focuses on analyzing traffic conflicts
that occur during queuing at intersections, with a specific
emphasis on using Time-To-Collision (TTC) as a primary
indicator of their occurrence. In this context, we introduce
a formal constraint-based approach to guide the RL process.
We define the safety constraint as TTC greater than 3 sec-
onds [9]. To ensure the consistency of this safety requirement,
we propose using the Z3 SMT solver [10] for satisfiability
checking [11]. Upon detecting violations of the constraint, we
conduct a thorough analysis of both the severity and frequency
of traffic conflicts by exploring different thresholds of TTC.
Subsequently, we implement a speed adaptation process to
dynamically adjust vehicle speeds in response to the severity of
conflicts and the original speeds of the vehicles involved. This
adjustment process operates concurrently with the ongoing
RL process. This study aims to achieve a trade-off between
traffic safety and RL-based TSC optimization by reducing the
severity and the number of conflicts and optimizing the waiting
time per lane.

The rest of the paper is structured as follows. Section II
presents prior work on RL in traffic signal control. In Sec-
tion III, we highlight the importance of traffic conflicts and
TTC in traffic safety analysis and provide an overview of
SMT. In Section IV, we provide an overview of the proposed
methodology, followed by a case study in Section V to

assess the safety constraint in a one-way traffic intersection
scenario. Finally, Section VI summarizes the study’s findings
and discusses future research directions.

II. RELATED WORK

Traditionally, traffic signal control operates based on fixed
timing plans, often not adapting to real-time traffic conditions.
However, machine learning introduces a data-driven approach
to dynamically adjust signal timings based on observed traffic
patterns. The advantages of employing machine learning for
optimizing signal timings are recognized across various as-
pects. For instance, the main focus of the study in [12] is on
reducing CO2 emissions and fuel consumption by employing
a Deep RL approach for traffic signal control. In [13], a case
study in New York City was conducted using federated RL
with the sole objective of reducing traffic congestion in urban
areas. To enable more effective, scalable, and stable learning
in complex adaptive traffic signal control environments, the
authors of [14] employ an attention RL–based strategy. This
approach aims to diminish computational complexity, stabilize
the training process, and ultimately lead to reduced congestion
levels and faster congestion recovery. The work of [15] aims
to improve urban traffic under partially observable and noisy
traffic information by employing Ontology-based Intelligent
Traffic Signal Control.

While these works make valuable contributions to enhanc-
ing traffic efficiency by optimizing queue length, delay, and
travel time, it is crucial to acknowledge that traffic safety,
particularly during queuing, remains a significant challenge
that requires careful consideration. In this context, some stud-
ies have addressed safety concerns using different methods.
For instance, the authors of [16] used a safety performance
function integrated into a RL algorithm, estimating conflicts by
analyzing shockwaves and queue length. While their approach
focuses on a macroscopic scale, treating vehicles as a singular
moving entity and approximating changes in relative density
and flow rates over time, it fails to consider the individual
spatial and temporal positioning of each vehicle within the
queue at a microscopic level. This finer-grained perspective
could offer a more precise method for tackling safety concerns.
Therefore, in this paper, we aim to address traffic safety
issues both during queuing at intersections and throughout the
RL process. Through analyzing vehicle-by-vehicle dynamics
using TTC and speed analysis, we define a TTC-based safety
constraint and check its satisfiability using formal methods.

The employment of formal methods in machine learning,
particularly in reinforcement learning (RL) has been gaining
traction in the last few years. For instance, in [17], the authors
generate adversarial agents to exhibit flaws in the agent’s
policy by presenting moving adversaries. Subsequently, they
employ reward shaping within the Q-Learning algorithm [18]
to improve the learned defense policy. To assess the profi-
ciency of their approach, the authors use the PRISM model
checker [19] to verify the agent’s reachability properties in
four different scenarios. A similar approach using the PRISM



model checker as well was presented in [20], where the coop-
erative multi-agent reinforcement learning (CMARL) agents
are formally checked in an adversarial CMARL setting to
guarantee that CMARL agents still comply with given safety
requirements. In [21], the authors propose the verification
of policies synthesized by RL to improve their safety. Their
approach entails a formal encoding of the policy using prob-
abilistic computational tree logic (PCTL) [22]. Based on this
encoding, they calculate the probability of reaching unwanted
states or of executing unwanted transitions to assess whether
safety requirements hold.

Given their fully automated capabilities, SMT solvers were
widely integrated by various works. In [23], the authors
propose a formal approach to ensuring the safety of RL-
based agents. To this end, they integrate RL, simulation and
formal analysis to train a real safety-critical RL-agents to learn
safe actions. By formulating safety properties as propositional
logic formulas, they check whether the action in the given
environment meets/violates these safety properties using SMT
solvers. In [24], the authors propose an RL framework to
execute autonomous driving tasks. Using Deep Q-Learning
Networks (DQN) [25] and Deep Deterministic Policy Gradient
(DDPG) [26], they train multiple RL agents on a generic set of
driving maneuvers to learn specific maneuvers. These agents
are then triggered once the maneuver learned and about to
be executed is deemed to be safe. This is achieved by a
structured program where safety specifications are defined as
Linear Temporal Logic (LTL) formulas [27] and embedded as
assertions. The verification process is carried by Nagini [28]
with the Z3 SMT solver [10] as the back-end solver.

These works primarily use formal methods reactively, ap-
plying them in the final stages to validate RL policies. Al-
though effective, this approach is limited as it verifies policy
correctness only for scenario-specific properties rather than
proactively guiding optimal policy learning. With safety now
becoming a fundamental requirement in system design, a
proactive approach is needed to integrate formal methods
throughout the development and testing of AVs. In this paper,
we embed formal verification early in the development process
to systematically address safety risks, enhancing the reliability
and trustworthiness of these advanced systems.

III. PRELIMINARIES
A. Time-To-Collision for Traffic Safety Assessment

Traffic conflicts, defined as “an observable situation in
which two or more road users approach each other in space
and time to the extent that there is a risk of collision if their
movements remain unchanged” [29], play a crucial role in
proactive road safety management systems. One key metric
for analyzing such conflicts is Time to Collision (TTC), which
measures the time remaining before two road users would
collide if they maintain their current speeds and trajectories.
By quantifying the imminence of potential collisions, TTC
provides valuable insights into the severity of traffic conflicts
and is widely used to assess safety levels and predict severe
situations. According to a study conducted by Daimler-Benz in

1992 [30], it was found that providing drivers with a warning
half a second before a rear-end collision could potentially
prevent 60 percent of such incidents. Moreover, by extending
the alert to a full second before the collision, up to 90 percent
of collisions could potentially be avoided. For instance, TTC
as a safety indicator in traffic flow has been widely studied
and has been shown to be effective in identifying potential
collisions.

TTC was first introduced by Hayward in 1971 as a temporal-
proximity measure that predicts the time it would take for two
vehicles to collide if no preventative measures are taken [31].
In a subsequent study by Hayward in 1972 [32], it was shown
that TTC has an impact on the speed of the vehicle and can
be used to prevent collisions by alerting drivers to potential
hazards. Based on a study conducted in 1994 [33], TTC has
been identified as the primary indicator used in designing
collision avoidance systems. This highlights the importance
of TTC in ensuring the safety of drivers and passengers on
the road and underscores its significance as a critical safety
indicator in traffic flow. In the study by Hirst et al. [9], a TTC
of 4 seconds was initially identified as indicating a conflict
situation for a vehicle. However, further analysis revealed that
TTC values between 4 to 5 seconds sometimes resulted in
false positives, suggesting potential collisions when a typical
braking maneuver would resolve the situation safely. As a
result, it was collectively decided that setting a TTC threshold
at 3 seconds is more accurate.

B. Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) [7], as an automated
theorem-proving technique, combines classical propositional
logic (SAT) with mathematical theories such as arithmetic,
arrays, and bit-vectors. In SMT, problems are expressed as
logical formulas involving variables and constraints. The goal
is to find an assignment of values to the variables that satisfy
the formula, considering the constraints imposed by the under-
lying theories. These formulas can include Boolean operators
and operations from various mathematical theories, such as
Boolean logic, linear integer arithmetic, or real-number arith-
metic. SMT solvers leverage efficient algorithms to determine
whether a given formula is satisfiable and, if so, to compute
valid assignments for the variables. Z3 [10], developed by
Microsoft Research, is one of the most widely used SMT
solvers. Z3 takes as input logical formulas involving variables
and constraints from different mathematical theories and finds
satisfying value assignments to the variables that meet the
given constraints. By applying a combination of techniques,
including satisfiability solving algorithms for the Boolean
parts of the formula and specialized decision procedures for
different theories, Z3 efficiently searches for a solution. Its
broad applicability makes it a powerful tool in formal verifi-
cation, program analysis, and constraint solving across various
domains. In this paper, we employ satisfiability checking
to determine whether a given set of logical constraints is
satisfiable, meaning that there exists an assignment of values
to the variables that satisfies all the constraints. Satisfiability



Fig. 1. Proposed Methodology for Formally-Constrained RL-based Traffic Signal Optimization

checking asks whether an interpretation (or assignment of
truth values) exists to the variables of a formula such that
the formula evaluates to true.

IV. PROPOSED METHODOLOGY

Traffic Signal Control (TSC) has emerged as a crucial strat-
egy for tackling congestion, queuing, pedestrian safety, and
coordinating traffic signals. [1]. The application of RL in traffic
signal control offers an adaptive approach by learning optimal
signal timing policies based on the feedback received from
a traffic environment. In this study, we introduce a formally
constrained RL process that aims to reach a compromise
between optimizing traffic signal timings and ensuring traffic
safety. This approach integrates formal constraints into the
RL framework to guide decision-making, prioritizing safety
and performance optimization. To achieve this, we exploit
an existing RL implementation for a single intersection as
described in [34] and leverage the integration of the traffic
simulator SUMO with RL, i.e., SUMO-RL environment [34],
to optimize traffic signal timings. Figure 1 illustrates the
proposed methodology for the formally constrained RL model
for traffic signal optimization, where traffic signal control
is achieved through a Q-learning algorithm [18]. We start
by identifying the safety conditions for the intersection by
considering the vehicle dynamics as well as the registered
values of TTC for each vehicle. By doing so, we establish
the safety constraint for this traffic scenario. Using Z3, we
validate the satisfiability of the established constraint, i.e.,
TTC > 3 seconds. As shown by Figure 1, we consider the
following sub-intervals: TTC ∈ ]0,1], ]1,1.5], ]1.5,2], ]2,2.5],
and ]2.5,3], to account for different levels of conflicts severity.
Subsequently, the formal constraint is explicitly incorporated
as a prerequisite for the learning process. The learning process

proceeds only if vehicles entering the intersection adhere to
the safety constraint. To perform a traffic safety analysis,
we focus on a lane within the intersection where vehicles
enter the queue, and monitor the vehicle dynamics at this
stage. Consequently, we identify several conflicts with TTC
values that fall between 0 and 3 seconds (excluding 0s). In
order to reduce traffic conflicts occurrences as well as their
severity, we initiate a speed adaptation mechanism to adjust
vehicle speeds in order to increase TTC, which allows vehicles
to better accommodate to the traffic flow ahead. The speed
adjustments are determined by both the TTC value and the
specific interval to which it belongs. By doing so, we achieve
two objectives: first, ensuring safe vehicle interactions during
intersection queueing and throughout the RL process, and
second, we optimize traffic flow by reducing congestion and
waiting time at intersections.

V. CASE STUDY

A. Reinforcement Learning-based Traffic Signal Control

To gain a comprehensive understanding of the research
presented in this paper, we provide a brief description of the
RL mechanism employed. We conduct our analysis over a
signalized single intersection, which serves as the agent under
training. As depicted by Figure 1, the traffic simulator SUMO
is utilized as the learning environment. The RL technique
implemented to optimize the signal timings is the Q-learning
algorithm, where the agent observes the current state of the en-
vironment (signal phase) and selects an action (e.g., adjusting
signal timings for different phases). The Q-learning algorithm
updates its Q-values by incorporating observed rewards from
the environment and the Q-value of the next state to represent
the expected cumulative reward for specific actions in given
states. In this context, the reward function computes the change



in cumulative vehicle delay in relation to the previous time
step, as given by Equation 1.

rt = Dat
−Dat+1

(1)

where Dat
and Dat+1

refer to the total delay (sum of the
waiting times of all approaching vehicles) at times t and
t + 1, respectively. By iteratively updating its Q-values, the
agent converges to an optimal policy that minimizes traffic
congestion and maximizes throughput at the intersection. This
learning process is guided by the following key hyperpa-
rameters: the learning rate (α = 0.1) determines how much
new information influences the updates, the discount factor
(γ = 0.99) prioritizes the long-term rewards, and epsilon
(ϵ = 0.05) balances the exploration and exploitation. For an in-
depth explanation of the RL environment, please refer to [34].

B. Mathematical Formulation of Time-To-Collision

The mathematical expression for TTC, as provided in Equa-
tion 2, is defined for a generic number of vehicles.

TTC =
xi − xi+1 − Li

vi+1 − vi
, vi+1 > vi (2)

where vehicles i and i+1 are the leading and following
vehicles, respectively, xi, xi+1, vi and vi+1 are the positions
and velocities of vehicles i and i+1, respectively, and L is
the length of vehicle i. This TTC formulation provides a
quantitative measure that considers both the distance between
the vehicles and their relative velocities, thereby offering
insight into the temporal proximity of a potential collision
based on these factors.

C. Traffic Conflicts Analysis

In order to illustrate the occurrence of traffic conflicts,
we monitor TTC values during the RL process to optimize
signal timings at a single intersection. During this process,
by analyzing TTC values, we identify traffic conflicts and
extract the improved waiting time. Using SUMO, we first
run the simulation to evaluate the improved waiting time per
lane and compare it with the number of traffic conflicts that
occur during the RL process. In this context, Figure 2 depicts
the improved waiting time per lane versus the rising number
of conflicts. While the RL process was effective in reducing
the waiting time per lane compared to the original values,
it overlooked safety at the individual vehicle level, leading
to an increase in traffic conflicts. The recorded TTC values
serve as indicators of the severity level of these conflicts.
For instance, lower TTC values indicate that a collision is
imminent, representing a high-severity conflict, as the time re-
maining before a potential collision is very short. Conversely,
higher TTC values suggest that a collision is less likely to
occur, representing a low-severity conflict, as there is more
time available to avoid a collision, making the situation less
critical. Considering the diverse range of TTC values, we
deduce that traffic conflicts during the learning process had
varying severity levels, spanning from very severe to less
severe. Hence, in our study, we examine various thresholds

Fig. 2. Waiting Time per Lane versus Traffic Conflicts Occurrence

Fig. 3. Number of Conflicts and Severity Levels

of TTC to account for different levels of conflict severity. A
closer examination of the TTC values for each vehicle with a
TTC of less than 3 seconds reveals varying levels of conflict
severity. To account for these differences, we focus on sub-
intervals of TTC across three distinct intervals, i.e., 0 < TTC
≤ 1, 1 < TTC ≤ 2, and 2 < TTC ≤ 3. In Figure 3, the TTC
distribution, extracted from the SUMO simulation, as well as
the registered number of conflicts in each one are illustrated.
We also consider three categories, namely extremely high (0
< TTC ≤ 1), high (1 < TTC ≤ 2) and significant (2 < TTC
≤ 3).

D. Encoding of Safety Constraint using Z3

The safety constraint is encoded in Z3 following the steps
in Algorithm 1. We begin by declaring variables of various
types, such as integers and real numbers. Here, N represents
the total number of vehicles within the flow. Subsequently,
x and v represent the positions and velocities of the vehicles,
respectively. In this context, the leading and following vehicles
are identified by i and j, respectively. Their positions and
velocities are denoted by x i, v i, x j, and v j, respectively.
To ensure the validity and relevance of TTC calculation, the
conditions defined by cond are essential. These conditions
specify that the velocity of the following vehicle (v j) must be
greater than the velocity of the leading vehicle (v i) and the
position of the first vehicle (x i) is greater than the position
of the second vehicle (x j).

In our encoding of TTC, we abstract the length of the
vehicle L given in Equation 2. In the mathematical formulation



of TTC, xi represents the position of the leading vehicle at
its front bumper. Therefore, we subtract the length L from
xi to accurately represent the distance between the vehicles.
However, due to our integration with SUMO, the TTC values
extracted from the simulation are determined from the rear-end
position of the leading vehicle to the front-end position of the
following vehicle. The safety constraint, i.e., safety constraint,
is defined to ensure a conflict-free traffic flow by estab-
lishing a threshold of 3 seconds. Consequently, we add the
conditions, i.e., cond, along with the safety constraint, i.e.,
safety constraint, to the solver that will attempt to find a
solution that satisfies both constraints simultaneously, if such
a solution exists. Once satisfied, we assign it as a constraint to
the learning process, where every TTC value extracted from
the simulation will then be checked against this constraint.

Algorithm 1 TTC-based Safety Constraint
1: N = Int(’N’) # Declare variables
2: N > 0
3: solver = Solver() # Create a solver instance
4: for i = 0 to N − 1 do # Define vehicles’ dynamics
5: x_i = Real(’x’.format(i)) # position of

leading vehicle i
6: v_i = Real(’v’.format(i)) # velocity of

leading vehicle i
7: x_j = Real(’x’.format(i+1)) # position of

following vehicle j
8: v_j = Real(’v’.format(i+1)) # velocity of

following vehicle j
9: cond = And(v_i >= 0, v_j >= 0, v_j >
v_i, x_i > x_j)

10: TTC = (x_i - x_j)/(v_j - v_i)
11: safety_constraint = TTC > 3 # Safety con-

straint
12: solver.add(cond) # Add constraints to the solver
13: solver.add(safety_constraint) #

Constraint must be satisfied
14: end for
15: if solver.check() == sat then
16: # Constraint is satisfiable
17: end if

E. Speed Adaptation Process

For the RL process to advance, it is crucial to satisfy
the safety constraint, i.e., TTC > 3 seconds. In situations
where this constraint is not upheld, i.e., TTC ≤ 3 seconds,
we propose a speed adaptation process that modifies the
speeds of vehicles with a TTC less than 3 seconds. However,
considering the severity level analysis outlined in Section V-C,
it is imperative to account for the varying severity levels when
implementing the speed adjustment. For example, conflicts
classified as extremely highly severe require a different ap-
proach than those categorized as highly severe. As an initial
step, we identify the stopping distance at which vehicles can
safely halt while maintaining a sufficient gap to ensure a TTC

of at least 3 seconds. In this context, we use a Python method
getStopSpeed(self, vehID, speed, gap) [35] that returns the
speed for stopping at the defined gap. To assign the stopping
speed, we use the Python method slowDown(self, vehID,
speed, duration) [35] that changes the speed smoothly to the
given value over the specified amount of time in seconds. As
a result, the stopping speed adjustment is achieved gradually
over a specified duration and based on the severity of the
conflicts.

F. Results and Discussion

a) Results: With the safety constraints in place, we run
the SUMO simulation, incorporating the RL process along
with the speed adjustments in the loop. In Figure 4, the
number of conflicts computed for TTC < 3 seconds, before
and after the speed adaption process is employed, is depicted.
The analysis considers the sub-intervals of TTC < 3 seconds to
account for different severity levels of the conflicts. As shown
by Figure 4, the speed adjustment resulted in a reduction of
the number of conflicts. For instance, for TTC < 1 second,
the registered decrease is by 28.5%, thereby minimizing the
severity level of the conflicts. However, this decrease came at
the expense of increasing the waiting time by 18.6%, as given
in Figure 5, representing the waiting time before and after the
speed update for TTC ∈ [0,1] seconds. Similarly, for TTC ∈
[1,1.5] and [1.5,2] seconds, the number of conflicts decreases
by 42.9% and 33.6%, respectively, causing a remarkable
decrease of the severity levels. Figure 6 represents the waiting
time per lane before and after the speed adjustment for 1
< TTC < 2 seconds, showing an increase by 6.4% as a
consequence of the speed adjustment. Figure 7 depicts the
waiting time per lane before and after the speed adjustment for
TTC ∈ [2,3] seconds. In the case of TTC ∈ [2,2.5] and [2.5,3]
seconds, we register an increase in the number of conflicts, as
shown by Figure 4, leading to an improvement in the waiting
time per lane as reflected by Figure 7. The increase of traffic
conflicts registered in this case is a consequence of reducing
the severity of the conflicts reflected by TTC ∈ [1,1.5] and
[1.5,2] seconds. This reduction is translated by an increase
in TTC values, which results in a revised value exceeding
the previous one, thus no longer in the categories of TTC
within [1,1.5] and [1.5,2] seconds. These results show that
the speed adjustment effectively reduces both the frequency
and severity of conflicts at an intersection queue during the
learning phase. However, this enhancement comes with the
trade-off of potentially compromising the efficiency of the Q-
Learning algorithm in achieving an optimal outcome. This is
shown by Figures 5 and 6, where the waiting time per lane
has increased as a result of our methodology. Nevertheless,
this increase remains acceptable, given our commitment to
ensuring traffic safety throughout the process.

b) Discussion: To determine the required duration for
assigning the stopping speed and evaluate its impact on traffic
flow, we conducted a speed analysis of vehicles with TTC less
than 3 seconds. Throughout this analysis, it became apparent
that the adjusted time-to-collision (TTC) value for vehicles



Fig. 4. Number of Conflicts Before and After the Speed Adjustment for a
Profiling of TTC ≤ 3 seconds

Fig. 5. Waiting Time per Lane Before and After the Speed Adjustment for
0 < TTC ≤ 1 seconds

initially with TTC less than 1 second deteriorates whenever the
change duration is a one-time step or more. On the contrary,
an instantaneous change, where the duration is equal to 0-
time steps, enhanced the TTC and consequently reduced the
severity level. We computed the delay for each vehicle to
determine the duration for vehicles with TTC less than 2 and
3 seconds. This delay is the difference in time between when
the vehicle entered the intersection and when it exited. This
duration enables vehicles to begin braking gradually, thereby
increasing the gap with following or leading vehicles until they
come to a complete stop or accelerate if the light is green.

The speed adaptation process this study uses is a centralized
computation that analyzes TTC values and dynamically adjust
vehicle speeds. By leveraging TTC and traffic flow data, the
system determines optimal speed adjustments in real time.
This practical solution works with existing sensor technolo-
gies, eliminating the need for additional infrastructure. In
contrast, Vehicle-to-Vehicle (V2V)-based systems [36] require
specialized hardware and widespread adoption. They also face
communication delays from network latency, packet loss, or
interference, which can compromise real-time safety decisions.

VI. CONCLUSION

To bolster trust in autonomous systems, ensuring safety
during their deployment is a critical prerequisite. This study
focuses on traffic safety at an intersection where Reinforce-
ment Learning (RL) is used to optimize traffic signal timings.
We propose a formally verified safety constraint that guides the

Fig. 6. Waiting Time per Lane Before and After the Speed Adjustment for
1 < TTC ≤ 2 seconds

Fig. 7. Waiting Time per Lane Before and After the Speed Adjustment for
2 < TTC ≤ 3 seconds

RL process, ensuring that the RL agent consistently operates
within safe temporal boundaries. To achieve this, we use
metrics such as Time-to-Collision (TTC) and set the safety
threshold at TTC greater than 3 seconds. This constraint
ensures that vehicles have adequate time to react and maneuver
safely within the intersection, mitigating the risk of collisions.
To confirm the validity of this constraint, we employed the
Z3 SMT Solver for satisfiability checking. Once the safety
constraint is verified, the learning process continues with TTC
values monitored against the constraint using SUMO. If the
safety constraint is unmet, a safety analysis is conducted using
interval profiling of TTC values below 3 seconds to assess
the severity and frequency of intersection conflicts. Based on
this analysis, a speed adaptation process is implemented to
dynamically adjust vehicle speeds while considering conflict
severity, allowing the RL algorithm to continue its operation.
The findings of this study demonstrate the feasibility as well as
the efficiency of the proposed approach in the case of traffic
intersections. The integration of formal constraints to guide
RL models showcased a significant improvement in decision-
making, reducing both the frequency and severity of traffic
conflicts, while improving the traffic flow.

To further study the efficiency of the proposed approach,
in an immediate future work, we aim to validate it over a
two-way intersection. Additionally, to ensure traffic safety at
intersections, we plan to formalize an intersection scenario
using Z3 and establish a formal traffic safety rule, defined
in [37], as a constraint. This rule combines metrics such
as Time-to-Collision, space headway, and shockwave speed



for an accurate safety analysis. In the pursuit of achieving
trustworthy AVs, we aim to embed formal safety constraints
directly into the objective function of Reinforcement Learning
algorithms to ensure that safety becomes an inherent aspect of
ML algorithms.
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