
Abstraction Based Verification of Analog Circuits
Using Computer Algebra and Constraint Solving

Mohamed H. Zaki1 Sofiène Tahar1 Guy Bois2

Abstract—Formal methods have been advocated for the
verification of digital designs where correctness is proved
mathematically. Unlike its digital counterpart, analog and
mixed-signal (AMS) systems verification is a challenging
and exhaustive task that requires lots of expertise and deep
understanding of their behavior. In this paper, we propose
an abstraction methodology for the verification of safety
properties of a class of non linear analog circuits described
by polynomial differential equations. The method is based
on combining techniques from constraint solving and com-
puter algebra. For illustration purposes, we have used the
computer algebra system Maple and the constraint solvers
RealPaver and Rsolver to analyze the behavior of a non
linear oscillator circuit.

I. Introduction

Formal methods like model checking have been advo-
cated for the verification of digital designs where their cor-
rectness is proved mathematically against some properties,
i.e., establishing whether the design meets the specifica-
tions. Unlike its digital counterpart, analog and mixed-
signal (AMS) systems verification is a challenging and ex-
haustive task that requires lots of expertise and deep un-
derstanding of their behavior. Traditionally, simulation
based techniques were complemented by symbolic tech-
niques where the effect of parameters variations on the
system behavior is analyzed. Although successful, chal-
lenging problems (like non linear effects) make these tech-
niques only suitable for simple designs. Researchers started
lately studying the applicability of formal methods for the
verification of AMS systems. A typical verification task
is to prove that a circuit behaves correctly for all possi-
ble input signals and initial conditions and that none of
them drives the system into a bad state. Among the most
important properties are those of safety and reachability
which are computationally hard even for the simplest AMS
systems. Hence, a direct application of model checking on
continuous systems is very difficult and abstraction tech-
niques are required in order to achieve this task. Among
them predicate abstraction, first developed in [15], is a
technique where the state space is divided into a finite set
of regions and a set of rules is used to build the transition
between the reachable states such that the generated state
transition system can be verified using model checking.

This paper describes a predicate abstraction methodol-
ogy to extract finite state models from non linear analog
circuits represented by polynomial differential equations by

1 Dept. of Electrical & Computer Engineering, Concordia Univer-
sity, 1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada,
Email: {mzaki,tahar}@ece.concordia.ca.

2 Genie Informatique, Ecole Polytechnique de Montreal, C.P. 6079,
succ. Centre-Ville, Montreal Quebec, H3C 3A7 , Canada. Email:
guy.bois@polymtl.ca

means of computer algebra and constraint solving. Con-
ventional model checking algorithms can then be applied to
verify safety properties on the generated models. Satisfac-
tion of the property in the finite state model guarantees its
satisfaction in the analog circuit-level model over a contin-
uous range of input conditions. For illustration purposes,
we have used the computer algebra system Maple [17] and
the constraint solvers RealPaver [11] and Rsolver [19] to
analyze the behavior of a non linear oscillator circuit.

The rest of the paper is organized as follows: We start
by discussing relevant related work in Section II, followed
by an overview of the verification methodology in Section
III. We proceed in Section IV by defining the analog sys-
tem model and explaining predicate abstraction, then we
introduce invariant theory in Section V. Abstract model
construction is developed in Section VI with illustrative
example shown in Section VII, before concluding with a
discussion in Section VIII.

II. Related Work

AMS formal verification: Several methods for ap-
proximating reachable sets for continuous dynamics have
been proposed for the verification of AMS systems. These
methods rely on the discretization of the continuous state
space and were pursued in [16] and [12]. For instance,
in [16], the authors tried to construct a finite-state dis-
crete abstraction of an electronic circuits by partitioning
the continuous state space representing the characteristics
of transistors into hypercubes using a fixed grid and com-
puted the reachability relations between these cubes us-
ing optimization techniques. In [12], the authors tried to
overcome the expensive computational method in [16], by
using discretization and projection techniques of the state
space, reducing the dimension of the state space. While
the approach is less precise due to the use of projection
techniques, it is still sound. Variant approaches of poly-
hedral based analysis were adapted in [8] and [13]. For
instance, the model checking tools d/dt [8] and Checkmate
[13] were used in the verification of a biquad low-pass fil-
ter [8], and tunnel diode oscillator and ∆ − Σ modula-
tor [13], respectively. Other computational techniques for
AMS verification can be found in [10]. For an overview and
comparison of the different projects related to the subject,
refer to [26].

Predicates abstraction [15] was used for the verifi-
cation of hybrid systems in [1], [5] and [22]. In [1], the
authors combined predicate abstraction with convex poly-
hedral analysis for the verification of reachability proper-
ties of linear hybrid systems. The authors of [22] proposed
a way to extract predicates from polynomial differential

equations by looking at higher derivatives. They used qual-
itative based reasoning techniques to describe the transi-
tion between abstract states. In order to enhance their
methodology, the authors in [23], proposed the use of com-
puter algebra techniques to generate invariance. In [21],
the authors presented an approach for generating polyno-
mial invariants for hybrid systems with general polynomial
dynamics where the invariant generation is turned into a
constraint solving problem on the coefficients of a template
polynomial. In the present paper, we followed the gen-
eral idea of this work, but we propose different abstraction
techniques. In the above mentioned works, the invariants
generation problem is analog to the first integrability prob-
lem which is usually very difficult to handle while in our
work we are only interested in second (Darboux) integrals
polynomial invariants which is simpler to find using com-
puter algebra algorithms and contains sufficient informa-
tion for the analysis. In addition, we are only interested
in invariants which can be qualitatively extracted from the
systems automatically providing useful information about
the behavior, avoiding the generation of redundant or hard
to interpret invariants. In addition, the generated invari-
ants are independent of the initial conditions making them
more general for the system analysis.

III. Verification Methodology

Figure 1 shows the methodology we propose for the veri-
fication of non-linear analog circuits. Based on nodal anal-
ysis techniques, a system of non-linear ordinary polyno-
mial differential equations (ODEs) is set up for the circuit
including the state variables representing the energy stor-
ing elements (voltages at capacitances, currents through
inductors). We use the set of ODEs along with the cir-
cuit properties described in computational temporal logic
(∀CTL) [6], to construct a finite abstract model of the cir-
cuit which can be verified using model checking. The ab-
stract model is constructed in successive steps. We start
by identifying the invariant regions for the system of equa-
tions using qualitative analysis based on Darboux theory
of integrability [14]. Qualitative and specification based
predicates are then provided such that for each invariant
region along with the set of associated predicates, we con-
struct the abstract state transition graph using constraint
solving techniques. Abstract states are formed by con-
junction of predicates and transition between the states
are constructed using a set of mathematical rules.

The novelty in this paper comes from using Darboux
polynomials as invariance predicates which helps avoid the
generation of an abstraction model for the whole state
space, while guaranteeing soundness of the abstraction
method.

IV. Preliminaries

A. System Description

We consider analog systems which can be modelled
by non linear polynomial ordinary differential equations
(ODEs). An analog system is a tuple CS = (X ,X0,P)

with X ⊆ Rd is the continuous state space, X0 ⊆ X is the
set of initial states and P : X → Rd is the continuous vector
field. The behavior of the system is governed by polyno-
mial differential equations of the form:

ẋk =
dxk

dt
= Pk(x1, . . . , xd) = a0 +

m∑

l=1

Pl,k(x1, . . . , xd)

With t is the independent real time, k = 1, . . . , d. Pk is
a polynomial of degree m, a0 is a constant and Pl,k is a
polynomial of degree l:

Pl,k =
∑

i1+...+id=l

ai1,...,id
xi1

1 . . . xid

d

Where ai1,...,id
is a constant. We assume that the differen-

tial equation has a unique solution for each initial value.
The semantics of an analog system CS = (X ,X0,P) over
a continuous time period (an interval) Tc = [τ0, τ1] ⊆ R+

can be described as trajectory Φx : Tc →X for x ∈ X0 such
that Φx(t) is the solution of ẋk = Pk(x1, . . . ,xd), with ini-
tial condition Φx(0) = x and t ∈ Tc, is a time point.

B. Predicate Abstraction

In the abstraction method, we start first by defining the
abstract states and the maps from concrete to abstract
states. An abstract transition system is then created by
constructing the abstract initial states and abstract tran-
sition relations. In order to fulfill these steps a sound rela-
tionship between the concrete and abstract domain should
be defined. Predicate abstraction [1] is a method where
the set of abstract states is encoded by a set of boolean
variables representing each a concrete predicate.

Based on [1], we define a discrete abstraction of the sys-
tem with respect to a given n-dimensional vector of predi-
cates Ψ = (ψ1, . . . ,ψn) ∈ (Ξ)n, where Ξ is the set of polyno-
mial predicates ψ : Rd → B, with B= {0,1}. A polynomial
predicate is of the form:

ψ(x) := Pk(x1, . . . , xd) ∼ 0

Where ∼∈ {<,>}. Hence, the infinite state space X of
the system is reduced to 2n states in the abstract system,
corresponding to the 2n possible boolean truth evaluates
of Ψ.

An abstract state transition system (ASTG) is a tuple
TΨ = (QΨ,→′,QΨ,0), where:
• QΨ ⊂ L × Bn is the abstract state space for a n-

dimensional vector predicates, where an abstract state
is defined as a tuple (l, b), with l ∈ L is a label and
b ∈ Bn.

• →′⊆QΨ×QΨ is a relation capturing abstract transi-
tion such that:

{b →′ b′|∃x ∈ ΥΨ(b), t ∈ R+ : x′ = Φx(t) ∈ ΥΨ(b′) ∧ x → x′}

Predicates

Specification

Nodal

Analysis

ODEs System

Properties

Temporal

Predicates

Abstraction Engine

+Qualitative
Analyzer Qualitative

and
Invariants

Predicates

Transition

Abstract State

Graph

CircuitAnalog

User−Supplied

Model Cheker

Verified Not Verified

Refine

Fig. 1. Verification Methodology for Analog Systems

Where the concretization function: ΥΨ : Bn → 2R
d

is
defined as

ΥΨ(b) := {x ∈ Rd|∀j ∈ {1, , . . . , n} : ψj(x) = bj}

• QΨ,0 := {(l, b) ∈ QΨ|∃x ∈ ΥΨ(b), x ∈ X0} is the set of
abstract initial states,

V. State Space Invariants

Usually, an abstract state transition system represent-
ing an over-approximation of the set of reachable states
is sufficient for the verification of different properties of
the system such as safety and invariant properties. How-
ever, finding invariant properties or invariant predicates is
itself a very difficult task and have been studied in the
context of programming languages [3] and hybrid systems
[23] [21]. The main principle for proving that a predicate
I is an invariant of some system is to prove that every
initial state s satisfies the predicate and such satisfaction
is preserved under all transitions [23] [21]. A function I
is called an invariant of a system CS such that P(x(0)) =
s |= I, P(x(ς)) = sς |= I and ∀t ∈ [0, ς],P(x(t)) |= I.

In the context of continuous systems, usually, the system
qualitative behavior varies in the different invariant regions
of the state space. While in general, it is very difficult to
identify such regions, successful algorithms have been de-
veloped recently based on the Darboux integrability theory
to deal with this problem for the class of polynomial dy-
namical systems. Darboux polynomials Ji (also known as
second integrals, invariant polynomials) have been investi-
gated in the qualitative and algebraic analysis of continu-
ous systems. Darboux polynomials split the phase portrait
into regions where the behavior is qualitatively different
(bound or unbound). These functions Ji provide the es-
sential skeleton for the phase space from which all other
behaviors can be qualitatively determined. They are go-
ing to be the bricks with which we will build the invariant
state space by constructing invariant regions used in the
abstraction methodology [14].

Given the system of ODEs dxk

dt = Pk(x1(t), . . . , xd(t)),
with k = 1, . . .d (dx

dt = P(x), x ∈ Rd and P = (P1, . . . ,Pd)),
we can define a corresponding vector field as

DP = P.∂x =
d∑

k=1

Pk
∂

∂xk

The correspondence between the system of ODEs and
the vector field DP is obtained by defining the time deriva-
tive of functions of x as follows. Let G be a function of x:
G : Rk → R, then

dG
dt

:= Ġ = DP(G) = P.∂xG

A Darboux polynomial is of the form J (x) = 0, when
DJ = KJ , with J ∈ R[x] and K = K(x) is a polynomial
called the cofactor of J = 0, with a degree of at most
M− 1.

The problem of finding the invariants is based on the
evaluation of the coefficients of the predefined forms of
Darboux polynomials J and their cofactors K by solving
the algebraic system obtained identifying to zero the coef-
ficients of the polynomials in state variables. In order to
satisfy the entire system of the algebraic equations, it is
necessary then to introduce the conditions on the param-
eters of the differential system.

Example V.1: Using MAPLE PSsolver [9], we extract
the invariants for the system [14]:

ẋ = 3(x2 − 4) and ẏ = 3 + xy − y2

and get three corresponding invariant polynomials

j1 = x2 − 4, j2 = y4 − 6y2 − 4xy − 3,

j3 = y4 + 2xy3 + 6y2 + 2xy + x2 − 3
Given the set of invariant polynomials, we can define a

set of predicates which can be used to construct the in-
variant regions. So in the context of abstraction, invariant
regions can be considered as abstract states and we obtain
the following theorem.

Theorem V.1: Let V = {x ∈ Rk|x |= Γ} be an invari-
ant region, where Γ is a conjunction of invariant predicates.
If x(0) is an initial state, then

V = V(x(0))

denotes an over-approximation of the set of states reach-
able from x(0).

Being inside an invariant regions means that the system
dynamics will always stay in this region. In order to en-
hance the precision of the generated model, each invariant
region can be subdivided into regions based on predicate
abstraction and hence an abstract state transition graph
can be constructed for each invariant region.

VI. Abstract Model Generation

In this section, we will describe how to generate the
abstract state transition model by constructing the ab-
stract state space and identifying transitions between the
abstract states.

A. Constructing Abstract States Using Constraint Solving

Constraint solving is the study of systems based on con-
straints (relation between the variables of the system). The
idea of constraint solving is to solve problems by stat-
ing constraints about the problem area and, consequently,
finding solutions satisfying all the constraints. If a value
is a feasible solution, this value is declared consistent with
respect to the constraint. We say a constraint solving prob-
lem is consistent if and only if it has at least one solution
otherwise it is inconsistent.

Two categories of constraint solvers are identified [25]:
• Satisfiability constraint solvers: When a constraint

solver pronounces the existence of a solution, the con-
straints are guaranteed to have a numerical solution.
In addition, if a solution is produced, then it is guar-
anteed that this solution satisfies the constraints. One
such solver is Rsolver [19].

• Unsatisfiability constraint solvers: If a constraint
solver pronounces the infeasibility of the input con-
straints, then this result is sound. If no solution is
produced, then this means that the system is unfeasi-
ble. Realpaver [11] is an example of this category.

In the remaining of this section, we will show how both
types of solvers can be used in the construction of the state
space.

User-Provided Predicates: One important issue
arise in the methodology presented in this paper is to asso-
ciate with each invariant region, the corresponding set of
user-provided predicates dividing the region into abstract
states. Let {Tk} ∈ 2Pre, k = 1, . . . , n, where Pre is the
set of available predicates. {Tk} is the set of predicates
associated with invariant region Vk, then

Tk = {p ∈ Pre|∃x ∈ Vk such that p(x) is True }
This can be achieved using unsatisfiability solvers which

can be used for refutation of some abstract state by pred-
icates elimination. RealPaver is able to solve nonlin-
ear equations or inequality constraints over real numbers,

where each domain is represented by a closed interval.
Given a system of constraints, RealPaver computes a union
of boxes that contains all the solutions satisfying these con-
straints, if no box is computed by RealPaver, then this
system is guaranteed to has no solution.

Qualitative Predicates: In addition to user provided
predicates, we propose using qualitative properties of the
system of ODEs to extract useful predicates. More specif-
ically, we propose using isoclines as predicates.

Isoclines are set of points where trajectories have the
same slope, hence they divide the state space into regions
with different behaviors. Finding different isocline predi-
cates within an invariant region can be achieved by solving
constraints on the parameters of predefined form of iso-
cline predicates. Any consistent solution define an isocline
predicate. To achieve our goal, we use the satisfiability
constraint solver Rsolver. Rsolver uses constraint satis-
faction techniques for solving first order system of equality
and inequalities over real domains by finding intervals that
enclose the solutions.

Example VI.1: Given the system:

ẋ1 = x2
1 and ẋ2 = x2(2x1 − x2)

Suppose we are looking for linear isoclines of the form

x2 = ax1 + b

with b = 0 for x > 0. We set

dx2

dx1
=

x2(2x1 − x2)
x2

1

= c

Where c ∈ R. Using Rsolver, we can define this problem
using quantified constraints as

∀x ∈ [0, x̂], [cx2 − ax(2x− ax) = 0]

Where x̂ is a predefined upper bound.

B. Computing Abstract Transitions

One main issue in constructing abstract state transition
systems is identification of possible transitions between the
states. In order to achieve this, usually information from
the solution of the ODEs is required to describe transitions
between abstract states (si). In this section, we show that
transitions can be identified using ideas inspired from qual-
itative reasoning [22].

Given a set of predicates P = {p1, ...,pn}, we state a set
of rules to identify the set of possible transitions T between
abstract states in the following way:
• ∃t := (s1, s2) ∈ T such that s0 |= (p1 = 0 ∧ p2 > 0)
∧s2 |= (p1 > 0∧ p2 > 0) ∧ ∃s3 such that s3 |= (p2 =
0∧ p1 > 0)

• ∃t := (s1, s2) ∈ T such that s0 |= (p1 = 0 ∧ p2 > 0)
∧s2 |= (p1 < 0∧ p2 > 0) ∧ ∃s3 such that s3 |= (p2 =
0∧ p1 < 0)

• ∃t := (s1, s2) ∈ T such that s0 |= (p1 = 0 ∧ p2 < 0)
∧s2 |= (p1 > 0∧ p2 < 0) ∧ ∃s3 such that s3 |= (p2 =
0∧ p1 > 0)

• ∃t := (s1, s2) ∈ T such that s0 |= (p1 = 0 ∧ p2 < 0)
∧s2 |= (p1 < 0∧ p2 < 0) ∧ ∃s3 such that s3 |= (p2 =
0∧ p1 < 0)

The above rules give an over-approximation of the tran-
sition system as no information about the vector field direc-
tion is used. In order to remove such redundant transitions
in region, we can use extended mean value theorem [20] as
a way to identify flow direction.

VII. Application

Consider the non linear circuit shown in Figure 2, where
the non linearity comes from the voltage controlled current
source i2. This circuit exhibits an oscillatory behavior for
specific initial capacitors’ voltages. We use the method-
ology described in this paper to show that such property
indeed exists. We start by extracting, using nodal analy-
sis techniques, the systems equations which are stated as
follows:

ẋ1 = x2 and ẋ2 = −x1 + x3
1

Where the state variables x1 and x2 represent the voltages
across capacitors c1 and c2, respectively.

c1 = 1

g1 = 1

g2 = 1

c2 = 1

x

3

x

1

2

i2 = − 2x +x1 1

1

i1= x

Fig. 2. Oscillating Circuit Example

Using MAPLE PSsolver [9] we identify the correspond-
ing invariants:

j1 = 1 +
√

2x2 − x2
1 and j2 = 1−

√
2x2 − x2

1

We form four invariant regions:

R1 = j1 > 0 ∧ j2 > 0 R2 = j1 > 0 ∧ j2 < 0

and

R3 = j1 < 0 ∧ j2 > 0 R4 = j1 < 0 ∧ j2 < 0

Suppose for the initial capacitors’ voltages

x1 ∈ [0, 01] and x2 ∈ [0.4, 0.8]

We want to verify the following ACTL property on the set
of trajectories:

∀¤(∀♦(x2 > x1)) ∧ ∀¤(∀♦(x2 < x1))

which can be understood as on every computation path,
whenever the voltage x2 will exceed voltage x1, it will
eventually decrease below x1 again and vise-versa. This

property checks for oscillation behavior of the circuit. We
supply the user-predicates

p1 := x2 − 0.5 ∼ 0, p2 := x2 + 0.5 ∼ 0

and

p3 := x1 − x2 ∼ 0, p4 := x1 ∼ 0, p5 := x2 ∼ 0

along with the isocline predicates

p6 := −x1 + x3
1 − x2 ∼ 0, p7 := −x1 + x3

1 + x2 ∼ 0

and

p8 := −x1 + x3
1 −

2
5
x2 ∼ 0, p9 := −x1 + x3

1 +
2
5
x2 ∼ 0

with ∼∈ {<,>}, (see Figure 3). Based on initial conditions
(initial voltages values), we only construct corresponding
abstract state transition graphs (ASTG) for regions R1,R2.
The ASTG for region R1 is shown in Figure 4. By applying
model checking (SMV [7] model checker in this paper), we
find that the circuit is oscillating only for region R1; ACTL
property is satisfied, while the property is violated in region
R2, hence the system is not oscillating in this region.

1 2

3

202122 19

18171615

14 13 12 11

10987

6 5 4

Fig. 4. ASTG of Region R1 for the Circuit in Figure 2

VIII. Conclusion

The lack of methods for computing reachable sets of con-
tinuous dynamics has been the main obstacle towards an
algorithmic verification methodology for continuous sys-
tems. Unlike conventional approaches which attempt to
find exact solutions and are thus limited by undecidability
of most non-trivial systems, we present a practical verifi-
cation approach which is based on an efficient method for
abstracting the continuous behavior using a combination
of techniques from predicate abstraction and invariance

−1.6

y

2.0

−0.8

1

1.6

1.2

−0.4

−2.0

−2

0.4

0 2

−1.2

0.0

0.8

−1

x

−1.5

x

1.0

−0.4

0.0 1.5

0.6

0.8

−0.2

0.2

−1.0

−0.5

−0.6

−1.0

1.0

0.4

0.0

−0.8

0.5

y

(a). Darboux Invariants (b). Abstract State Space

Fig. 3. Phase Portrait of Circuit in Figure 2

generation along with model checking to prove properties
about the systems. One advantage of our methodology is
the ability to avoid generating an abstraction for the whole
state space, meanwhile the soundness of the abstraction is
guaranteed. We have used packages in the computer al-
gebra system Maple along with constraint solving tools to
construct the abstract transition graph of continuous and
analog systems. Future work includes extending the pred-
icate abstraction to support hybrid systems, explore more
complex case studies especially, we are interested in the
verification of switched-capacitors based designs.

References

[1] R. Alur, T. Dang, F. Ivancic. Reachability Analysis Via Predi-
cate Abstraction. In Hybrid Systems: Computation and Control,
LNCS 2289, pp. 35-48. Springer-Verlag, 2002.

[2] R. Alur, T. Henzinger, G. Lafferriere, G. J. Pappas: Discrete ab-
stractions of hybrid systems, Proccedings of the IEEE, 88(2):971-
984, 2000.

[3] S. Bensalem, S. Graf, Y. Lakhnech: Abstraction as the Key for
Invariant Verification. International Symposium on Verification
celebrating Zohar Manna’s 64th Birthday, LNCS 2772, pp. 67-
99, Springer-Verlag, 2003.

[4] S.Gupta, B.H. Krogh, R.A. Rutenbar: Towards Formal Verifica-
tion of Analog Designs, IEEE/ACM International Conference on
Computer Aided Design, pp. 210 - 217, 2004.

[5] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Sturs-
berg, and M. Theobald. Abstraction and Counterexample-guided
Refinement in Model Checking of Hybrid Systems. International
Journal of Foundations of Computer Science, 14(4), pp. 583-604,
World Scientific, 2003.

[6] E. Clarke, O. Grumberg, D. E. Long. Model checking and abstrac-
tion. ACM Symposium on Principles of Programming Languages,
pp. 343 -354, 1992.

[7] E. Clarke, O. Grumberg , D.A. Peled. Model Checking. MIT
Press: Cambridge, MA, 1999.

[8] T. Dang and A. Donze : Verification of Analog and Mixed-Signal
Circuits Using Hybrid System Techniques. In Formal Methods in
Computer-Aided Design, LNCS 3312, Springer, pp. 14–17, 2004.

[9] L.G. Duarte, S.E. Duarte, L.A. da Mota, J.E. Skea: An Exten-
sion of the Prelle-Singer Method and a Maple Implementation.
Computer Physics Communications, Elsevier, 144:46-62, 2002.

[10] W. Hartong, R. Klausen and L. Hedrich: Formal Verification
for Nonlinear Analog Systems: Approaches to Model and Equiv-
alence Checking. Advanced Formal Verification, Kluwer, pp. 205-
245, 2004.

[11] L. Granvilliers. On the Combination of Interval Constraint
Solvers. Reliable Computing, 7(6):467-483, 2001

[12] M. R. Greenstreet, I. Mitchell. Reachability Analysis Using
Polygonal Projections. In Hybrid Systems: Computation and
Control, LNCS 1569, Springer. pp. 103-116,1999.

[13] S. Gupta, B. Krogh and R. Rutenbar, Towards formal verifica-
tion of analog designs, IEEE/ACM International Conference on
Computer Aided Design, pp. 210 - 217, 2004.

[14] A. Goriely. Integrability and Nonintegrability of Ordinary Dif-
ferential Equations, Advanced Series on Nonlinear Dynamics, Vol
19 World Scientific 2001.

[15] S. Graf and H. Saidi. Construction of abstract state graphs with
PVS. In Computer Aided Verification, LNCS 1254, Springer, pp.
72-83, 1997.

[16] R.P. Kurshan and K.L. McMillan. Analysis of digital circuits
through symbolic reduction. IEEE Trans. on Computer-Aided
Design 10:1350-1371, 1991.

[17] MapleSoft inc., www.maplesoft.com/
[18] M Prelle and M Singer, Elementary first integral of differential

equations. Transactions of the American Mathematical Society,
pp. 279-215 (1983).

[19] S. Ratschan. Continuous First-Order Constraint Satisfaction. In
Artificial Intelligence, Automated Reasoning, and Symbolic Com-
putation, LNCS 2385, pp. 181-195, Springer, 2002

[20] S. Ratschan, Z. She: Safety Verification of Hybrid Systems by
Constraint Propagation Based Abstraction Refinement. In Hy-
brid Systems: Computation and Control, LNCS 3414, pp.573-
589, Springer, 2005.

[21] S. Sankaranarayanan, H. Sipma, Z. Manna. Constructing Invari-
ants for Hybrid Systems. In Hybrid Systems: Computation and
Control, LNCS 2993, pp 539-554, Springer, 2004.

[22] A. Tiwari and G. Khanna. Series of abstractions for hybrid au-
tomata. In Hybrid Systems: Computation and Control, LNCS
2289, pp. 465-478, Springer, 2002.

[23] A. Tiwari and G. Khanna. Non-linear Systems: Approximating
Reach Sets. In Hybrid Systems: Computation and Control, LNCS
2993, pp. 600-614. Springer-Verlag, 2004.

[24] J. Vlach and K. Singhal. Computer Methods for Circuit Analysis
and Design. Van Nostrand Reinhold, New York, 1994.

[25] S. Xia, B. Divito, C. Munoz, Toward Automated Test Gen-
eration for Engineering Applications, IEEE/ACM International
Conference on Automated Software Engineering, pp. 283-286,
2005

[26] M. Zaki, S. Tahar, and G. Bois: Formal Verification of Ana-
log and Mixed Signal Designs: Survey and Comparison, IEEE
Northeast Workshop on Circuits and Systems, pp.281-284, 2006.

