
A Practical Approach for Monitoring Analog Circuits

Mohamed H. Zaki
Dept. of Electrical & Computer

Engineering, Concordia
University

1455 de Maisonneuve W.,
H3G 1M8

Montreal, QC, Canada

mzaki@ece.concordia.ca

Sofiène Tahar
Dept. of Electrical & Computer

Engineering, Concordia
University

1455 de Maisonneuve W.,
H3G 1M8

Montreal, QC, Canada

tahar@ece.concordia.ca

Guy Bois
Genie Informatique, Ecole
Polytechnique de Montreal

Pavillon Decelles, 5255
Avenue Decelles, H3T 2B1

Montreal, QC, Canada

guy.bois@polymtl.ca

ABSTRACT
Formal methods have been advocated for the verification of
digital design where correctness is proved mathematically.
In contrast to digital designs, the verification of analog and
mixed signal systems is a challenging task that requires lots
of expertise and deep understanding of their behavior. In
this paper, we present a run-time verification methodology
based on monitoring the behavior (solution flow) of analog
circuits. Monitors are deterministic timed automata that
can be synthesized from temporal properties. For illustra-
tion purposes, we applied our methodology on the verifica-
tion of the oscillation property of a tunnel diode oscillator.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Verification

General Terms
Verification

1. INTRODUCTION
The functionality of analog and mixed signal (AMS) cir-

cuits is defined directly in terms of continuous electrical
quantities and is usually sensitive to environment factors
like signal noise, current leakage, in addition to higher order
physical effects when designing in deep submicron. Tradi-
tionally, simulation was used, where the evaluation of the
results is often done manually or in an ad-hoc and informal
fashion. The search of the state space is not complete in non-
exhaustive methods. Simulation based techniques were then
complemented by symbolic techniques, where the effect of
parameters variations on the system behavior is analyzed.
Although successful, challenging problems (like non-linear
effects) make these techniques only suitable for simple de-
signs. Researchers started lately studying the applicability
of formal methods like model checking for the verification of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’06, April 30–May 2, 2006, Philadelphia, PA, USA.
Copyright 2006 ACM 1-59593-347-6/06/0004 ...$5.00.

AMS systems. However, a direct application of model check-
ing on continuous systems is very difficult and abstraction
techniques are usually required in order to achieve the ver-
ification task. Moreover, model checking (in particular in a
dense time domain) is computationally more expensive and
therefore suffers even more from the state-space explosion
problem that makes exhaustive verification very hard, and
limitations in memory and/or time resources make verifica-
tion practical for only small systems.

In order to cope with these problems, new methods were
developed. Among the most important ones are program
monitoring (run-time verification) which were initially devel-
oped to tackle the efficiency problems of verification tech-
niques mainly for large software with infinite state space,
where formal verification as well as exhaustive simulation
methods fail to achieve confidence requirements in the de-
velopment process. Run-time verification is a semi-formal
method that combines desirable properties from simulation
and formal verification while avoiding the undesirable ones.
No computational model needs to be generated prior to the
verification, avoiding state space explosion. By employ-
ing logical monitors, an efficient analysis of the results is
achieved, avoiding exhaustive inspection, by testing whether
a given behavior satisfies a property. This process can be
performed in two different fashions [15]: Offline monitoring

starts after the whole sequence is given. Online monitoring

is interleaved with the process of reading the sequence and
is similar to the way the sequence is read by an automaton.
Online monitors can detect violation or satisfaction as soon
as they happen.

In this paper, we propose an online monitoring method-
ology for continuous systems. The methodology is based
on monitoring solution flows (a set of solutions) of a sys-
tem of ordinary differential equations. The rest of the pa-
per is organized as follows: In Section 2, we present related
work. In Section 3, we give a brief overview of the proposed
methodology, followed by system description in Section 4.
The temporal specification is then described in Section 5.
The monitors description and construction are explained in
Section 6. Experimental results are shown in Section 7, and
finally, we conclude the paper with Section 8.

2. RELATED WORK
Moniroting based verification: Program monitoring

has been applied successfully for hardware and software anal-
ysis. Motivated with the success of PSL assertion language

330

[2] for hardware verification, Maler et. al [16] proposed a
simple methodology for offline monitoring the simulation of
continuous signals by extending the PSL logic to support
predicates over the reals (signals). The goal is to verify con-
tinuous and analog signals. Tan et. al [18] developed tools
for monitoring real-time and hybrid systems, where timed
and linear hybrid automata can be used to monitor real-
time and hybrid behavior, respectively. Monitors are not
built from formal logic properties, in addition only single
trajectories are monitored. Recently similar ideas using hy-
brid automata as monitors have been integrated with the
PHAVer hybrid system analysis tool [4]. This tool provides
sound verification results based on linear hybrid automata
approximations and was used to verify properties of piece-
wise models of oscillators like amplitude bounds and phase
jitter. In [4], the whole state space is considered as par-
titioning techniques are used to construct the flow, using
validated (Interval Arithmetics) method, which will gener-
ate only the reachable states reducing significantly the cost
of the whole discretization. Moreover, by using temporal
logic, more complex properties can be verified which in con-
trast to the case by case (template based) monitor building,
which becomes inefficient for complex designs.

AMS formal verification: Several methods for approx-
imating reachable sets for continuous dynamics have been
proposed for the verification of AMS systems. These meth-
ods rely on the discretization of the continuous state space.
In [13], the authors tried to construct a finite-state discrete
abstraction of an electronic circuits by partitioning the con-
tinuous state space representing the characteristics of tran-
sistors into hypercubes using a fixed grid and computed
the reachability relations between these cubes by optimizing
techniques. In [7], the authors tried to overcome the expen-
sive computational method in [13], by using discretization
and projection techniques of the state space, reducing the
dimension of the state space. While the approach is less pre-
cise due to projection, it is still sound. Variant approaches
of polyhedral based analysis were adopted in [3, 8]. For in-
stance, the model checking tools d/dt [3] and Checkmate
[8] were used in the verification of a biquad low-pass filter
[3], and tunnel diode oscillator and ∆ − Σ modulator [8],
respectively. Other computational techniques for AMS ver-
ification can be found in [9].

Interval Methods in AMS circuit design: Interval
and affine arithmetics have been used in the analysis of ana-
log circuits like in [10], where the authors presented an ap-
proach for equivalence checking of linear analog circuits with
parameter tolerances. The goal is to prove that an actual
circuit fulfills a specification in a given frequency interval for
all parameter variations. In [11], affine arithmetics was used
for helping in the circuit sizing.

3. VERIFICATION METHODOLOGY
Figure 1 depicts the online monitoring methodology we

propose for continuous systems. Given the system descrip-
tion and its specification described by non-linear differential
equations and timed computational temporal logic (T-CTL)
formulas [1], respectively, we build a monitor which can de-
tect bad behavior within a specified time period. During
the simulation, we essentially build a deterministic automa-
ton that incrementally monitors the prefix of state sequences
that has been simulated so far. If the prefix is such that the
execution can no longer lead to satisfaction of the property

(a bad prefix), then the simulation can be stopped demon-
strating that the property does not hold for the system.

Usually a simulation run explores a single execution of the
model. This makes it suitable for the verification of linear
temporal logic properties (expressing aspects of individual
executions) only. To be valid, a property should hold for all
executions of the system. Since this number can be large (it
is often infinite), it leads to extremely low coverage. A for-
mal candidate approach to obtain a flow (set of solutions) is
using validated methods (proposed by Moore in [17]), where
interval arithmetic analysis is used to guarantee the inclu-
sion of required solutions for a given set of initial conditions.
In this work, we chose the validated methods based AWA
tool developed by Lohner [12].

Several criteria affect the choice of the temporal specifi-
cation language. In thecontext of abstraction, where over-
approximations of the reachable states are explored (due to
interval based analysis in this paper), a variant of ∀CTL
logic can be chosen to ensure the soundness of the verifica-
tion results. In addition, as the execution of the system is
time bounded, the transitions can be incomplete. However,
by restricting the approach to bounded time, the soundness
of the approach can be achieved. Another criteria is the
possibility to synthesize a monitor from the given proper-
ties. Based on the deterministic subset identified by Maidle
[14], we use the common fragment of timed logic languages
T-CTL [1] and MITL [5], for which deterministic automata
can be generated.

4. SYSTEM DESCRIPTION
We consider continuous systems described by non-linear

ordinary differential equations (ODEs). A continuous sys-

tem is a triple CS = (X ,X0,P) with X ⊆ Rd is a contin-
uous state space, X0 ⊆ X is the set of initial states and
P : X → Rd is the continuous vector field. The behavior
of a continuous system is governed by the differential equa-
tions of the form ẋk = dxk

dt
= Pk(x1, . . . , xd), k = 1, . . . d, d

is the system dimension, t is the independent real time, Pk

is a vector field. We assume that the differential equation
has a unique solution for each initial value.

The semantics of a continuous system CS = (X ,X0,P)
over a continuous time period (an interval) Tc = [τ0, τ1] ⊆
R+ can be described as trajectory Φx : Tc → X for x ∈ X0

such that Φx(t) is the solution of ẋk = Pk(x1, . . . , xd) with
initial condition Φx(0) = x and t ∈ TC is a time point. An-
other representation of the behavior by means of a transition
system A = (Q, Q0, σ, L), where q ∈ Q is a configuration
(x, Γ). x ∈ X and Γ is a set of intervals, where ∪i≥0ti ⊆ R+,
ti ∈ Γ. We have t1, t2 ∈ Γ for Φx′(t1) = Φx′′(t2) = x and
x′, x′′ ∈ X0. q ∈ Q0, when t0 ∈ Γ and Φx(t0) = x and t0
is the singular interval, L is an interpretation function such

that L : Q → Rn × 2R+

. Finally, σ ⊆ Q × Q is a transition
relation such that (qn, qm) ∈ σ iff ∃tn ∈ Γn, ∃tm ∈ Γm.
tn < tm and limtn→tm

Φqn

x (tn) = Φqm

x (tm), x ∈ X0. A
run (trace) of the transition system can be a set of state
tuples µ =< x0, t0 >< x1, t1 >, . . . where xj is a valuation
(state) and ti ∈ Γj such that a transition exists between two
consecutive state tuples < xj , tj >< xj+1, tj+1 >. This cor-
responds to the timed word (see Section 6 for more details).

Computing the Solution Flow
Usually the analytic solution for the differential equation

331

Analog System

(ODEs)

Monitor Generation

(Temporal Logic)

Transformation

Monitoring Automata

Run−Time Verification

Good Run Bad Run

Parameters and Timing

Information

Interval Arithmetics

Tool

Property Specification

Figure 1: Verification Methodology for Continuous Systems

is not possible and approximate methods are used instead.
The notion of sufficient complete discretization must be de-
fined, which can be understood as sampling criteria that
captures all different states in the given continuous evolu-
tion. In order to achieve sound discretization, we use interval
arithmetics methods which are approximated methods that
enclose the original solution, starting from a set (closed in-
terval) of initial continuous states; i.e., the domain of execu-
tion is the interval domain I, which is a conservative domain
over-approximating the original one R.

Interval arithmetic [17] is an extension of real arith-
metic for real intervals which has its basic operators defined
together with their evaluation rules and algebraic properties.
Interval functions are introduced as the interval counter-
parts of real functions, which can be represented by means
of interval expressions. Basic interval arithmetic operators
can be defined as follows: Let I1 and I2 be two real intervals
(bounded and closed). The basic arithmetic operations on
intervals are defined by: I1ΦI2 = {r1Φr2|r1 ∈ I1 ∧ r2 ∈ I2}
with Φ ∈ {+,−, , /} except that I1/I2 is not defined if 0 ∈ I2,
with:

[a, b]ι , [a + b]

[a, b] +ι [a′, b′] , [a + a′, b + b′]

[a, b] −ι [a′, b′] , [a − b′, b − a′]

[a, b] ×ι [a′, b′] , [min(aa′, ab′, ba′, bb′),
max(aa′, ab′, ba′, bb′)]

1 ÷ι [a, b] , [1 ÷ b, 1 ÷ a]if 0 /∈ [a, b]

[a, b] ÷ι [a′, b′] , [a, b] × 1 ÷ [a′, b′]
In addition, other elementary functions (i.e., exp, ln, power,

sin, cos) can be included as basic interval arithmetic oper-
ators. For example, (exp) may be defined as exp([a, b]) =
[exp(a), exp(b)]. An interval function F maps an n-ary tuple
of real intervals (R-box) into the smallest real interval con-
taining all the real values that would be obtained for each
real valued combination within the interval domains of the
R-box. More formally, let F be the n-ary interval function
represented and B an n-ary R-box, the interval, denoted by
F(B), obtained by applying the interval function F to B,
is the smallest real interval containing the range f∗(B) of
the real function f over B; f∗(B) = {f(< r1, . . . , rn >)| <
r1, . . . , rn >∈ B} ⊆ F (B) ∧ ∀[a, b]f∗(B) ⊆ [a, b] → F (B) ⊆
[a, b]. This interval analysis property shows how interval

evaluation always gives a sound over-approximation of the
real analysis.

To enhance simulation based methods, interval approaches
for solving initial value problems were used by extending well
known approaches like Taylor series methods and Runge-
Kutta methods. The advantage of interval arithmetic is to
calculate each approximation step explicitly, keeping the er-
ror term within appropriate interval bounds. Discretiza-
tion and computational errors are thus encapsulated within
bounds of uncertainty around the true solution function pro-
viding guaranteed enclosures of the actual solution function
[17].

5. TEMPORAL SPECIFICATION: CT-CTL
We introduce a variant of temporal logic tailored for spec-

ifying desired properties of continuous systems. The logic is
based on a bounded subset of the realtime logic T-CTL,
augmented with a mapping from continuous domains into
propositions. T-CTL is a computational tree logic (CTL)
for the reasoning about real-time systems, where temporal
modalities are restricted to intervals of the form I = [a, b]
with 0 < a < b and a, b ∈ Q≥0. The use of bounded tem-
poral properties is to restrict the verification for a specific
time avoiding the non-termination. As we are interested in
system with real-valued state variables, we extended the T-
CTL language with predicates over real constants and real
variables. We call the new language CT-CTL (Continuous
Time CTL).

Syntax of CT-CTL. The basic formulae of the CT-CTL
are defined by the following grammar (note: we restrict our-
selves to the universal quantifier ∀): ϕ := λ(y1, . . . , yn)|
¬ϕ|ϕ1 ∨ ϕ2| ∀(ϕ1UIϕ2)|true, where λ belongs to a set of
predicates Pre and yi is a term (that is a constant or a vari-
able). From the basic CT-CTL operators, one can derive
other standard Boolean and temporal operators, in partic-
ular the time-constrained eventually and always operators.
∀3Iϕ , ∀trueUIϕ and ∀2Iϕ , ¬∃3I¬ϕ

Semantics of CT-CTL. Given a continuous system CS =
(X, X0, f), we define its Kripke structure which is the transi-
tion system A = (Q,Q0, σ, L), extended with an interpreta-
tion function J.K, written as K = (A, J.K). The semantics of
the language is provided by the interpretation J.K as follows:

332

• For a constant C, JCK is an element of R

• For a state variable y ∈ Y , (where Y is the set of state
variables) which can be considered as a function y, JyK
is a function R+ → R

• For n-ary predicate λ, n ≥ 1, the meaning JλK is a
function Rn → B.

The interpretation J.K extends to arbitrary terms, in-
ductively: Jλ(y1, . . . yn)K = JλK(Jy1K, . . . JynK). In ad-
dition, we have the concretisation function Υλ : B →

2Rn

such that λ ∈ Pre and Υ(Jλ(y)K) = Υλ(b) =
{y ∈ Rn|λ(y) = b}. Intuitively, Υλ is a set of states,
where λ holds with the condition Υλ ∩ Υ¬λ = ∅

A mapping function case can be described as follows:
ν : Rn → B, which is a function associating to each predi-
cate λ(y1, . . . yn) an atomic proposition P . Practically, this
mapping function can be used for a translation from CT-
CTL to T-CTL. The satisfaction relation s = (x,Γ) |= ϕ,
indicating that a state satisfies a property ϕ starting from
position τ , where τ = [τ , τ] and τ ∈ Γ is defined inductively
as follows:

• q |= true

• q |= λ(y1, . . . yn) iff LX(q) ∈ Υ(Jλ(y1, . . . yn)K)

• q |= ¬ϕ iff q 6|= ϕ

• q |= ϕ1 ∨ ϕ2 iff q |= ϕ1 or q |= ϕ2

• q |= ∀(ϕ1UIϕ2) iff for all paths of the transition sys-
tem; π = LX(q0), . . ., where q0 = q, starting from posi-
tion t, where t = [t, t] and t ∈ Γ, ∃t′ ∈ [t+a, t+b]. q |=
ϕ2 and ∀t′′ ∈ [t, t′]. q |= ϕ1

• q |= ∀3Iϕ iff for all paths of the transition system;
π = LX(q0), . . ., where q0 = q, starting from position
t, where t = [t, t] and t ∈ Γ, ∃t′ ∈ [t + a, t + b]. q |= ϕ

• q |= ∀2Iϕ iff for all paths of the transition system;
π = LX(q0), . . ., where q0 = q, starting from position
t, where t = [t, t] and t ∈ Γ, ∀t′ ∈ [t + a, t + b]. q |= ϕ

6. MONITORING AUTOMATA
In this section, we briefly give the description of the mon-

itors and how they can be used to detect properties of the
system. We also set the main requirement on the T-CTL
logic in order to construct deterministic timed automata.

A monitoring timed automata M is a tuple {S, S0, V, Q,
Θ, G, T, SC, C} where S is a finite set of locations, S0 ⊆ S is
the finite set of initial locations, V is a set of state variables,
Q : S → 2Σ is a labelling function assigning each location
a set of atomic propositions {p|p ∈ Σ} over state variables
vj , vj ∈ V . Θ is the set of clocks with time valuation (timer

assignment) δ : Θ → R. G : S → 2TC(Θ) assigns to each
location as set of timers constraints (TC) over the location
timers Θ. For example, the satisfaction of a timer constraint
x > 0 (where x ∈ Θ) by a timer valuation δ is defined as
follows: δ |= x > 0 iff δ(x) > 0. T ⊆ S × S is the set
of edges between locations and SC : T → 2X associates
with each edge a set of clocks that need to be set. The
automata is also extended with the acceptance set C, such
that s ∈ C ⊆ S if there is no path from s to any s′ ∈ B,
where B ⊆ S is the Buchi acceptance condition. A timed

automata is deterministic if being at a location si, only one
transition can be taken at a time.

A trace of monitoring timed automata M is a sequence
π = < s0, δ0, I0 > < s1, δ1, I1 > . . ., where δi are evaluations
of the clocks upon entering the location si, Ii is the time
interval representing the time spent at location Si. The
timer associated with each state is a decreasing timer such
that we have for each pair < si, δi, Ii > < si+1, δi+1, Ii+1 >,
e = (si, si+i), δi+1 = δi − |Ii| or δi+1(x) = t ∈ R for x ∈
SC(e) [18]. A timed word is a timed state sequence η =
{V0, I0}, {V1, I1}, . . ., where Ir

i = Il
i+1 and Vi(t) denotes

the evaluation of the state variables at time t ∈ Ii. We say
that monitoring automata M accepts a timed word η if M
has an accepting run for η, or more formally, a timed word
n = {V0, I0}, {V1, I1} . . . is accepted by an automata M if
there is a trace of M; π =< s0, δ0, I

′
0 >< s1, δ1, I

′
1 > . . .,

such that if t ∈ Ii, then there is an l such that t ∈ I′
l and

Vi(t) |= p, p ∈ Q(Sl(t)).
We say a trace is accepting a run of the Buchi timed au-

tomata if and only if the trace is infinite π and inf(π)∩B 6=
∅, where inf(π) is the set of locations, trace π visits infinitely
often. The monitoring automata accept finite words, which
implies the acceptance of a finite prefix of the timed word,
means that this trace will be rejected if the automata was a
Buchi automata (extended with the Buchi condition) [18].

Constructing the Monitor
The idea behind the construction is to create the on-

the-fly tableau automaton of the temporal logic formula φ,
but interprets it as an automaton on finite words. If we
would like to verify individual (prefixes of) timed state se-
quences that result for instance from a system simulation,
we need the observer automaton to be deterministic. How-
ever, the determinisation of timed automata is impossible in
general. Maidl [14] identified a common fragment of ∀CTL
and LTL formulae for which deterministic automata can
be constructed. We use time equivalent of the determin-
istic fragment identified by Maidl with restrictions of timed
modalities to intervals of the form [0.d] to obtain a deter-
ministic timed automata monitor. This recent restriction
was imposed by Geilen [6], to guarantee the deterministic
property while preserving the dense semantics of the logic.
The set of formulas of this fragment (we call it ∀C̃T-CTL)
is as following: ϕ := p| ¬ϕ|ϕ1 ∧ ϕ2|(p ∧ ϕ1) ∨ (¬p ∧ ϕ2)|
∀((p∧ϕ1)UI(¬p∧ϕ2))|true. For example, ∀(ϕ1UIp) can be

expressed in ∀C̃T-CTL as ∀((ϕ1 ∧ ¬p)UIp). The construc-
tion of the monitor follows directly form the decision proce-
dure developed by Geilen [6], where he used it for building
deterministic timed automata from the MITL logic. Hence,
we can state the following property. Let Aφ be an on-the-fly

tableau automata of ∀C̃TL formula φ, then L(φ) ⊆ L(Aφ).

7. APPLICATION: TUNNEL DIODE OSCIL-
LATOR

To illustrate our methodology, we consider the tunnel
diode oscillator (Figure 2), which has been used by many
researchers (e.g.,[4, 8, 9]) as benchmark. The tunnel diodes
exploit a phenomenon called resonant tunneling to provide
interesting forward-bias characteristics, due to its negative
resistance characteristic at very low forward bias voltages.
This means that for some range of voltages, the current de-
creases with increasing voltage. This is in contrast with

333

conventional diodes that have a non-linear I-V characteris-
tic, but the slope of the curve is always positive. This char-
acteristic makes the tunnel diode useful as oscillator. When
a small forward-bias voltage is applied across a tunnel diode,
it begins to conduct current. As the voltage is increased, the
current increases and reaches a peak value called the peak
current. If the voltage is increased a little more, the cur-
rent actually begins to decrease until it reaches a low point
called the valley current. If the voltage is increased further
yet, the current begins to increase again, this time without
decreasing into another valley.

V

V c

I
l

in

−

+

Figure 2: Tunnel Diode Oscillator

In following, we present experimental results from apply-
ing the verification methodology proposed in this paper on
the tunnel-diode oscillator circuit. We focus on the cur-
rent IL and the voltage VC across the tunnel diode in par-
allel with the capacitor of a serial RLC circuit (see Fig-
ure 2). The state equations of the circuits are given as

V̇ C = 1
C

(−Id(VC) + IL) and İL = 1
L

(−VC − 1
G

IL + Vin),
where Id(VC) describes the non-linear tunnel diode behav-
ior. We analyze the circuits in two modes. The first when
the circuit is in stable oscillation for a given set of parame-
ters, the other case when this oscillation dies out. The kind
of properties we are interested to verify can be for example:
The system behavior will be the same for the set of initial

condition, or, For which set of parameters values, circuit

oscillates? We chose these two different sets of parameters
values of the oscillator circuit {C = 1000e−12, L = 1e−6,
G = 5000e−3, V in = 0.3} and {C = 1000e−12, L = 1e−6,
G = 2000e−3, V in = 0.3} along with the set of initial val-
ues of voltages [0.8 V, 0.9 V] and currents 0.04 mA and the
analysis region of interest −1 V ≤ VC ≤ 1 V and 0.01 mA ≤
IL ≤ 0.9 mA. Suppose we want to verify the following prop-
erty on the set of trajectories [8]: ∀2[0,1e−6](∀3[0,6e−7](IL ≤
0.02)) ∧ ∀2[0,1e−6](∀3[0,6e−7](IL ≥ 0.06)), which can be

understood as within the time interval [0, 1e−6] on every
computation path, whenever the IL amplitude will reach
0.02, it will reach this value again within the time interval
[0, 0, 6e−7], the same goes for the IL amplitude 0.06. This
property checks for oscillation behavior of the circuit.

An efficient way to build observer automata for complex
properties (properties formed of the conjunction of simpler
ones) is to construct an automaton for sub-properties (see
Figure 3) and then use the synchronous product of these
automata, with a state being marked as final (indicating a
bad run).

Monitoring the interval based simulation, with the first
set of parameters, we can find out that the circuit is oscil-
lating for the given set of initial conditions (see Figure 4.a)
as all the runs are accepted by the timed automata. Hence
within the specified time interval, the property in verified.
By following the same procedure for the system with the
second set of parameters, but with the same initial condi-

tions, we can find out that the circuit is non oscillating and
the trace goes to an erroneous state (dashed state) of the
left automaton in Figure 3. As the run cannot be accepted
by the automata, which can be interpreted as once the trace
reaches a state, it remains deadlocked there during the veri-
fication period as no state is accepting its suffix. Physically,
when the circuit starts up, the energy of the system is lost
due to the positive circuit resistance. Starting from any
point in the analysis region, the oscillations die down to the
equilibrium point (see Figure 4.b).

8. CONCLUSION
The lack of methods for computing reachable sets of con-

tinuous dynamics has been the main obstacle towards an al-
gorithmic verification methodology for continuous systems.
Unlike conventional approaches which attempt to find exact
solutions and are thus limited by undecidability of most non-
trivial systems, we present a practical verification approach
based on an efficient method for monitoring the continu-
ous behavior using a combination of techniques from inter-
val based methods and automata theoretic approaches (the
construction of monitor automata) to prove properties about
the systems. Future work includes extending the monitoring
for more complex designs, verifying mixed signal and hybrid
systems, and exploring more complex case studies like phase
locked loop designs.

9. REFERENCES
[1] R. Alur, C. Courcoubetis, D. L. Dill. Model-checking

in dense realtime. Journal of Information and
Computation, 104(1):2–34, 1993.

[2] I. Beer, et. al. The Temporal Logic Sugar. In
Computer Aided Verification ,LNCS 2102, Springer,
2001, pp. 363-367

[3] T. Dang, A. Donze, O.Maler. Verification of Analog
and Mixed-signal Circuits using hybrid system
techniques. In Formal Methods in Computer-Aided
Design, LNCS 3312, Springer: 14-17, 2004.

[4] G. Frehse, B. Krogh, R. Rutenbar, O. Maler Time
Domain Verification of Oscillator Circuit Properties,
Workshop on Formal Verification of Analog Circuits,
April 9th, 2005, Edinburgh, UK.

[5] M. Geilen. An Improved On-The-Fly Tableau
Construction for a Real-Time Temporal Logic. In
Computer Aided Verification, LNCS 2725, Springer,
2003, pp. 394-406.

[6] M.C.W. Geilen. Formal Techniques for Verification of
Complex Real-time Systems, Ph.D. Thesis, Eindhoven
University of Technology, 2002

[7] M. R. Greenstreet, I. Mitchell. Reachability Analysis
Using Polygonal Projections. In Hybrid Systems:
Computation and Control, LNCS 1569, Springer.
1999, pp.103-116.

[8] S.Gupta, B.H. Krogh, R.A. Rutenbar. Towards
Formal Verification of Analog Designs, IEEE/ACM
International Conference on Computer Aided Design.
2004, pp.210 - 217.

[9] W. Hartong, R. Klausen, L. Hedrich. Formal
Verification for Nonlinear Analog Systems:
Approaches to Model and Equivalence Checking, In
Advanced Formal Verification, Kluwer, 2004, pp.
205-245.

334

y := 1e−6

y := 1e−6y := 1e−6

x := 6e−7

x := 6e−7

x := 6e−7x := 6e−7

y := 1e−6

−p

y := 1e−6

x > 0
−p

y > 0 y > 0

x > 0

−p

x > 0

x > 0
p

p

p

p

p

−p

−p

y := 1e−6y := 1e−6

0x

0y

0y

0y

y := 1e−6

y := 1e−6y := 1e−6

x := 6e−7

x := 6e−7

x := 6e−7x := 6e−7

y := 1e−6

−q

y := 1e−6

−q

x > 0
−q

y > 0 y > 0

x > 0

−q

x > 0

x > 0
q

q

q

q

q

−q

y := 1e−6y := 1e−6

0x

0y

0y

0y

(∀2[0,1e−6](∀3[0,6e−7](p = IL ≤ 0.02))) (∀2[0,1e−6](∀3[0,6e−7](q = IL ≥ 0.06)))

Figure 3: Monitor Automata

a. Oscillations b. No Oscillation

Figure 4: Oscillator Behavior

[10] L. Hedrich and E. Barke. A Formal Approach to
Verification of Linear Analog Circuits with Parameter
Tolerances. IEEE/ ACM Design, Automation and
Test in Europe, 1998, pp. 649-654.

[11] A. Lemke, L. Hedrich, and E. Barke, Analog Circuit
Sizing Based on Formal Methods Using Affine
Arithmetic. IEEE/ ACM International Conference on
Computer Aided Design, 2002, pp. 486-489.

[12] R. J. Lohner, Enclosing the solutions of ordinary
initial and boundary value problems, in Computer
Arithmetic: Scientific Computation and Programming
Language, Wiley-Teubner Series in Computer Science,
Stuttgart, 1987, pp.255-286

[13] R.P. Kurshan and K.L. McMillan. Analysis of digital
circuits through symbolic reduction. IEEE Transaction
on Computer-Aided Design 10:pp.1350-1371, 1991.

[14] M. Maidl. The Common Fragment of CTL and LTL.
Proc. Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, 2000,

pp.643-652.

[15] O. Maler, D. Nickovic, Amir Pnueli. Real Time
Temporal Logic: Past, Present, Future. In
International Conference on Formal Modelling and
Analysis of Timed Systems, LNCS 3829, Springer,
2005, pp.2-16

[16] O. Maler, D. Nickovic. Monitoring Temporal
Properties of Continuous Signals. In International
Conference on Formal Modelling and Analysis of
Timed System, LNCS 3253, Springer, 2004,
pp.152-166

[17] R. E. Moore, Methods and Applications of Interval
Analysis, Society for Industrial and Applied
Mathematics, 1979.

[18] L. Tan, J. Kim, I. Lee. Testing and Monitoring
Model-based Generated Program. In Proc. Run-time
Verification, Electronic Notes in Theoretical
Computer Science, 89(2), 2003

335

