
On the Formal Analysis of Analog Systems using

Interval Abstraction

Mohamed H. Zaki, Ali Habibi, Sofiène Tahar and Guy Bois §

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

§Genie Informatique, Ecole Polytechnique de Montreal
Pavillon Decelles, 5255 Avenue Decelles, Montreal, QC H3T 2B1, Canada

{mzaki,habibi,tahar}@ece.concordia.ca, guy.bois@polymtl.ca

Abstract. Formal methods have been advocated for the verification of
digital design where correctness is proved mathematically. In contrast
to digital designs, the verification of analog and mixed signal (AMS)
systems is a challenging task that requires lots of expertise and deep
understanding of their behavior. In this paper, we intend to present an
ongoing project for developing an approach for the analysis of analog
systems using formal methods. The proposed method is based on the
computation of finite-state conservative abstraction of the design. For
this purpose, we use abstract interpretation, which is a theoretical frame-
work for the analysis of infinite state systems and in this paper we choose
interval arithmetics as the basis of the abstraction. To test and validate
our methodology, we have used interval arithmetic tool AWA to describe
the behavior of tunnel diode oscillator.

1 Introduction

Formal methods have been advocated for the verification of digital design where
correctness is proved mathematically. In contrast to digital designs, the veri-
fication of analog and mixed signal (AMS) systems is a challenging task that
requires lots of expertise and deep understanding of their behavior. The func-
tionality of analog circuits is defined directly in terms of continuous electrical
quantities and is usually sensitive to environment factors like signal noise, cur-
rent leakage, temperature, etc, in addition to higher order physical effects when
designing in deep submicron. Traditionally simulation techniques have been used
as the main verification tool in the AMS design process, however the limitation
of simulation in terms of coverage affect the confidence in the verification re-
sults. Symbolic analysis have been developed as a complementary to numerical
simulation, where the effect of parameters variations on the system behavior
is analyzed. Although successful, challenging problems (like non linear effects)
make this techniques only suitable for simple designs.

The last decade saw the emergence of a new engineering field known as
hybrid system theory where researchers have developed formal techniques for
the design and analysis automation of systems with real time and continuous



behavior and which are described by a composition of continuous time systems
and discrete time systems. Model checking tools such as HyTech [3], CheckMate
[2] and d/dt [1] were successful in the verification of hybrid systems with different
degrees of complexity. Motivated by the success of the application of formal
verification methods for real-time and hybrid systems, researchers started in
recent years studying the applicability of such techniques for the verification of
analog and mixed signal systems. In this paper, we intend to present an ongoing
project for developing an approach for the analysis of analog systems using
formal methods. The proposed method is based on the computation of finite-
state conservative abstraction of the design. The methodology should guarantee
that the verification on the abstract model is conservative. For this purpose, we
use abstract interpretation, which is a theoretical framework for the analysis of
infinite state systems and in this paper we choose interval arithmetics as the basis
of the abstraction. In the hybrid system theory context, abstract interpretation
was only used with simple systems with linear dynamics while other heuristic
methods were applied for the abstraction of the nonlinear dynamics. In contrast,
we propose a methodology for abstracting nonlinear dynamics using abstract
interpretation, which will guarantee property preservation. To test and validate
our methodology, we have used interval arithmetic tool AWA [10] to describe
the behavior of tunnel diode oscillator.

The rest of the paper is organized as follows: In section 2, we give a brief
overview of the project, followed by some preliminaries definitions in section 3.
The abstraction methodology is described in section 4, with primary experimen-
tal results in 5. Related work is presented in 6 and finally, we conclude the paper
with section 7.

2 Methodology

We present in this section our methodology for modeling and verification of con-
tinuous time systems. The basic idea is to adopt a multi abstraction technique
in order to generate a compact model that can be automatically verified us-
ing model checking techniques, yet a conservative one as we need to guarantee
property preservation. We start by solving the system of differential equations
symbolically. As a start, we choose interval based methods proposed by Moore
[11] which was developed to guarantees solution inclusion for differential equa-
tions, and used by Cousot and Cousot in software execution analysis [7]. The
symbolic execution is monitored by temporal properties with predicates repre-
senting properties on the continuous state variables. These predicates form the
base of the abstract model which is generated at the back end. Each abstract
state is represented by region representing a conjunction of satisfied predicates.
The advantage of this method is the accuracy of the analysis as symbolic meth-
ods are more accurate than qualitative methods avoiding the imprecision of these
techniques. On the other hand, generation of the abstract model by monitoring
the solution, once proved sound and conservative, avoids the cost of expensive
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model checking of the whole discretized continuous behavior. Figure 1 gives an
overview about the methodology.
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Fig. 1. Proposed verification methodology for continuous systems

In this paper, we focus only on part concerning the solution of differential
equation using interval arithmetic. We demonstrate how to use this theory in
order to infer reachability properties of non linear dynamical systems.

3 Modeling Continuous Systems

In this section we describe the class of non linear continuous systems represented
by a system of ordinary differential equations. This modeling is suitable for
describing analog systems behavior.

Definition 1. A continuous dynamical system is a triple CS = (X, X0, f) with
X ⊆ Rn is the continuous state space, X0 ⊆ X and f : X→ Rn is the continuous
vector field.

The behavior of a continuous dynamical system is governed by the differen-
tial equation ẋ = f(x). We assume that the differential equation has a unique
solution for each initial value X(0) ∈ X0, where X0 ⊆ X is the set of initial
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continuous space. The continuous system is deterministic in the sense that from
a given point it generates a unique trajectory.

Definition 2. The semantics of a continuous dynamical system CS = (X, X0, f)
over a continuous time period (an interval) Tc = [τ0, τ1] ⊆ R+ can be described
as Trajectory. A trajectory of a continuous dynamical system is a continuous
behavior Φx : Tc → X for x ∈ X0 such that Φx(t) is the solution of equation
ẋ = f(x) with initial condition Φx(0) = x and t ∈ TC, is a time point and Tc is
the continuous time domain.

We can present the behavior of the continuous system by a transition system
as follows:

Definition 3. A dynamical continuous system can be considered as a transition
system Tc = (Q, Q0, σ, L) where:

– q ∈ Q is a configuration (x, Γ ), where x ∈ X and set of intervals Γ = {t0, . . .}
such that ∪i≥0ti ⊆ R+, where i ⊆ N∪{∞}. We have t1, t2 ∈ Γ for Φx′(t1) =
Φx′′(t2) = x and x′, x′′ ∈ X0 .

– q ∈ Q0, when t0 ∈ Γ and Φx(t0) = x and t0 is the interval [0, 0],

– L is an interpretation function such that L : Q→ R
n × 2R

+

.
– σ ⊆ Q × Q is a transition relation such that (qn, qm) ∈ σ iff ∃tn ∈ Γn,
∃tm ∈ Γm. tn < tm and limtn→tm

Φqn

x (tn) = Φqm

x (tm), x ∈ X0.

The set of reachable states of a continuous system can be defined as follows:

Definition 4. For a continuous dynamical system, the set of reachable states
Reach ∈ Γ can be defined as:

– Reach(0) := Q0

– Reach := {q′ ∈ Q|∃q ∈ Reach(0), t ∈ LΓ (q′), x′ = Lx(q′), x = Lx(q) such
that Φx(t) = x′}

Given a transition system C and a set of (un)safe states B ⊆ X, whether
Reach ∩B is empty or not.

Remark 1. We have considered Γ associated with each state, as a set of closed
time intervals and with a slight abuse of notations, we have referred to a trajec-
tory between two time points as

Φx : Ii → Rn

: [t1, t2] 7→ x

We can described a discrete system as a transition system as follows:

Definition 5. A transition system is a triple DS = (S, S0, σ) with S is the set
of states, S0 ⊆ S is the set of initial states and σ ⊆ S×S is a relation capturing
transitions.
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Definition 6. The semantics of discrete system can be defined as a set of traces,
where trace of a transition system DS = (S, S0, σ) is a sequence π : N→ S such
that π(0) ∈ So and ∀k ≥ 0 : (π(k), π(k + 1)) ∈ π and N is the natural number
domain.

Usually the analytic solution for the differential equation is not possible and
approximate methods are used instead. Given a CS with a configuration C; to
describe a correspondence between discrete evolution π : N → C and continu-
ous evolution Φ : [0,∞) → Q, Tiwari et.al [31] defined the notion of sufficient
complete discretization. This can be understood as sampling criteria that cap-
tures all the different states in the given continuous evolution. It can be formally
defined as follows:

Definition 7. A discrete evolution π : N → C is a sufficiently complete dis-
cretization of a continuous evolution Φ : [0,∞) → Q, if π(i) = Φq

x0
(ti) = x

where x = Lx(q) = Lx(c), q ∈ Q, c ∈ C, i ∈ LΓ (c), ti ∈ LΓ (q), x0 = LX(q0)
and q0 ∈ Q0, for all i ∈ N and

⋃

i≥0 ti = R
+

Note: Practically, discretization is based on choosing time steps △t, which
can be varied or fixed and can be chosen in domains other than N (e.g. values
of △t are in Q or rounded R)

4 Abstract Interpretation

Given the concrete D♭ and abstract D♯ semantics domains of the system un-
der analysis. A soundness relation σ is used to reason about the correspondence
between a concrete and abstract semantics. A soundness relation can be for-
mulated as σ ∈ ℘(D♭ ×D♯). We say there exists an abstract approximation if
we assume that for every concrete semantics we have an abstract approxima-
tion: ∀s ∈ D♭.∃t ∈ D♯ : (s, t) ∈ σ. More closely, to ensure the soundness of
the methodology, we use Galois connection between D♭ and D♯. By associating
partial order relation with the semantics domain (i.e. (D♭, ⊑), (D♯, �) which
are partial order set), we say (α, γ) is a Galois connection between D♭ and D♯,
iff α : D♭ → D♯, γ : D♯ → 2D♭ and∀s ∈ D♭, t ∈ D♯, α(s) � t ⇔ s ⊑ γ(t). To
build an abstract state space S♯, which is an overapproximation of the concrete
state space S♭, that is ∀s ∈ S♭.∃t ∈ S♯.t = α(s). As we build our abstraction, it
is essential that all transitions of the concrete system are preserved in the ab-
stract, but the concretization of abstract transitions does not result in spurious
transitions.

Note. Imposing the existence of Galois connection between concrete and
abstract domains is a tight requirement as sometimes it is not easy of even
impossible to find the abstract α function. Cousot [8], proposed relaxing this
requirement by only working with concretization function like in the case of
Interval domain as shown below.
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4.1 Abstraction

Definition 8. Let CS be a continuous dynamical system and DS be a discrete
transition system with configurations Q (with domain X) and A (with domain A)
respectively. We say DS is an abstraction for CS, if there exists a concretization
mapping γ : A→ 2Q, such that :

– A = (a, τ) is a configuration where a ∈ A and τ is the set of time intervals,
such that every interval is an increasing sequence of time steps during which
the state is not varied.

– A0 = {a ∈ A|∃x ∈ γ(a) ∧ x ∈ X0}, A0 = (a, τ) and t0 ∈ τ where t0 is the
singular interval.

– For every continuous evolution Φ, if π is a sufficiently discretization of α(Φ),
then π is a discrete trace of DS.

– σ ⊆ A × A is a relation capturing abstract transitions; {a →′ a′|∃x ∈
γ(a), t ∈ R : x′ = Φx(t) ∈ γ(a′) ∧ x→ x′}

Lemma 1. For a concrete transition system with transition relation → and a
corresponding abstract transition system with transition relation →

′

, we have
→⊆ γ(→′)

The set of successor states of a ∈ A is Post(a) = {a′ ∈ A|a→′ a′} and the set
of reachable states Reach of a transition system can then be defined as follow:

Definition 9. For a transition system, the set of reachable states AReach ⊆ A

is defined as:

– AReach(0) := A0

– AReachinc(i) := Post(AReach(i)), ∀i > 0
– AReach :=

⋃

i≥0 AReach(i)

The verification problem is stated as follows: Given a transition system DS
and a set of (un)safe states B ⊆ A, is there a trace starting from A0 that can
reach B; whether AReach ∩ B is empty or not. We say that AReach is an over
approximation of Reach

Lemma 2. Let CS be a continuous dynamical system and DS a discrete tran-
sition system as its abstraction, we have: Reach ⊆ {q ∈ Q |∃a ∈ AReach ∧ q ∈
γ(a)}

4.2 Interval Abstract Domain

In this paper, we choose intervals as the numerical abstract domains with which
we compute the abstract semantics of continuous systems. We will briefly outline
constructing the abstract domain by following the modular approach presented
by Mine in [9] were he propose starting from a basis representing abstraction of
state variables as well as basic operations and using lifting of the concretization
and abstraction functions to sets and functions representing expressions and
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transfer functions. The interval abstract domain Dι is based on the classical
concept of interval arithmetics [11] and was adapted by Cousot and Cousot in
[7].

The relation between the concrete and abstract domain can be described by

a partial Galois connection (℘(R),≤) −−−→←−−−α

γ
(B,⊑♯

B) with:
Interval Basis Bι. B is a set of intevals with bounds in R, where B :

{⊥ι
B} ∪ {[a, b]|a ∈ R∪ {−∞}, b ∈ R∪ {∞}, a ≤ b}. We say Bι contains [−∞,∞]

which denote the whole set R, the singletons [a, a], when a ∈ R, and the empty
interval denoted by ⊥ι

B.
Interval Basis Structure The partial order⊑ι

B is defined as [a, b]⊑ι
B[a′, b′] ,

a ≥ a′ and b ≤ b′ and ⊥ι
B is the smallest element. The basis concretization γι

B

is defined as γι
B ([a,b]) , {x ∈ R|a ≤ x ≤ b}andγι

B(⊥ι
B) , 0.

Interval Basis Operators. We define the required operators for a basis the
following way:

– ∪ι
B and ∪ι

B:

X♯∪ι
BY ♯ ,







[min(a, a′), max(b, b′)] if X♯ = [a, b]andY ♯ = [a′, b′]
X♯ ifY ♯ = ⊥ι

B

Y ♯ ifX♯ = ⊥ι
B

X♯∩ι
BY ♯ ,







[max(a, a′), min(b, b′)] if X♯ = [a, b] and Y ♯ = [a′, b′]
and max(a, a′) ≤ min(b, b′)

⊥ι
B otherwise

– In general, abstraction for arithmetics operators can be described as follows:
• ¬♯ :B → B such thatγι

B(¬♯X♯) ⊇ {¬x|x ∈ γι
B(X♯)}

• ♦♯ :B2 → B such thatγι
B(X♯ ♦♯Y ♯) ⊇ {x♦y|x ∈ γι

B(X♯, y ∈ γι
B(Y ♯)}

and ♦ ∈ {+,−,×,÷}
For interval arithmetics we have the following:

[a,b]ι , [a+b]

[a,b] +ι[a′, b′] , [a+a’, b+b’]

[a,b] -ι[a′, b′] , [a-b’, b-a’]

[a,b] ×ι[a′, b′] , [min (aa’, ab’, ba’, bb’), max (aa’, ab’, ba’, bb’)]

1 ÷[a, b] , [1 ÷b, 1 ÷ a] if 0 /∈ [a, b]

[a, b] ÷[a′, b′] , [a,b] ×1 ÷ [a′, b′]

Note We use αι and γι also to denote liftings of the functions αι
B and γι

B to
sets, relations and functions (e.g, expression evaluation, variables assignments,
etc. ).

Interval domain I is a conservative domain which overapproximate the origi-
nal one R. We can describe the discrete interval transition systems as following:
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Definition 10. A discrete interval transition system is a discrete transition sys-
tem Tc = (A, A0, σ, L) with domain I

n, where n is the dimension of the state
space, where:

– I = (a, τ) is a configuration where a ∈ I and τ is the set of time intervals,
such that every interval is an increasing sequence of time steps during which
the state is not varied.

– I0 = {a ∈ I|∃x ∈ γ(a)∧x ∈ X0}, I0 = (a, τ) and t0 ∈ τ where t0 is the initial
singular interval.

– σ ⊆ I×I is a relation capturing abstract transitions; {a→ a′|∃x ∈ γ(a), t ∈
R : x′ = Φx(t) ∈ γ(a′) ∧ x→ x′}

We can therefore deduce the following theorem:

Theorem 1. Let CS be a continuous system and DS be a discrete Interval Tran-
sition system, as defined above. Then DS is an abstraction for CS.

5 Application: Tunnel Diode Oscillator

Several interval arithmetic implementation for the the initial value problem have
been developed, see for instance [12] for an overview. We have used in this report,
AWA tool developed by Lohner [10], it has the advantage of efficiently dealing
with the wrapping effect (error resulting from enclosing non rectangular regions
by rectangular ones, which can lead to exponential growth in overapproximation,
hence reducing the precision). To illustrate our methodology, we used the tunnel
diode oscillator (see Figure2).

Tunnel diode oscillator circuit has attracted the interest of many researchers
working on the verification of AMS designs. See for instance [27, 23, 15]. This
is largely due to its wide usage in analog system designs (i.e.,the most com-
mon application of a tunnel diode is in high-frequency oscillator circuits) and
technically because of its non linear behavior from which several properties can
be deduced. Tunnel diodes exploit a phenomenon called resonant tunneling to
provide interesting forward-bias characteristics, due to its negative resistance
characteristic at very low forward bias voltages. That means that for some range
of voltages, the current decreases with increasing voltage. This is in contrast
with conventional diodes have a nonlinear I-V characteristic, but the slope of
the curve is always positive. This characteristic makes the tunnel diode useful as
oscillator. When a small forward-bias voltage is applied across a tunnel diode, it
begins to conduct current. As the voltage is increased, the current increases and
reaches a peak value called the peak current. If the voltage is increased a little
more, the current actually begins to decrease until it reaches a low point called
the valley current. If the voltage is increased further yet, the current begins to
increase again, this time without decreasing into another valley.

In this section, we present results from experiments with the tunnel-diode
oscillator circuit. We focus on the current IL and the voltage VC across the
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tunnel diode in parallel with the capacitor of a serial RLC circuit (see Figure 2).
The state equations of the circuits are given as follows:

V̇ C =
1

x
(−Id(VC) + IL) and İ =

1

L
(−VC −

1

G
IL + Vin)

V
V c

I l

in

−

+

Fig. 2. Oscillation

Where Id(VC) describes the non-linear tunnel diode behavior. We analyze
the circuits in two modes. The first when the circuit is in stable oscillation for a
given set of parameters, the other case when this oscillation dies out. The kind
of properties we are interested to verify can be for example: The system behavior
will be the same for the set of initial condition, or For which set of parameters
values, circuit oscillates?. In this paper, we limits ourself with properties of
the first type, similar to the one verified in [23, 15]. We use a variant of ACTL
temporal logic extended with predicates of Real and time intervals restricting
temporal operators, see [13] for more details.

We chose these two different set of parameters values of the oscillator circuit
{C = 1000e−12, L = 1e−6, G = 5000e−3, V in = 0.3} and {C = 1000e−12,
L = 1e−6, G = 2000e−3, V in = 0.3} along with the set of initial values
of voltages [0.8 V, 0.9 V ] and currents 0.04 mA and the analysis region of
interest −1 V ≤ VC ≤ 1 V and 0.01 mA ≤ IL ≤ 0.9 mA. By using interval
based analysis, with the first set of parameters, we can find out that the circuit is
oscillating for the given set of initial conditions (see Figure 3.a). By applying the
reachability analysis in Definition 9, we verify that for the given initial conditions,
the trajectory will be within the analysis region. Suppose we want to verify the
following property on the set of trajectories[23]:

∀�[0,1e−6](∀♦(IL ≤ 0.02)) ∧ ∀�[0,1e−6](∀♦(IL ≥ 0.06))

Which can be understood as within the time interval [0, 1e−6] on every com-
putation path, first predicate is true at some future time as well as for the second
predicate. This property checks for oscillation behavior. We can divide the state
space into 3 states, each corresponding to a set of predicate inequalities extracted
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(a. Oscillation) (b. No Oscillation)

Fig. 3. Oscillation

from the monitors in addition to the initial condition (as shown in figure 4.a).
It is abvious that within the specified time interval, the property in verified.

Sin S1 S2

S3

Sin S1 S2

S3

(a. Oscillation TS) (b. Non Oscillating TS)

Fig. 4. Transition Systems

Which can be understood as within the time interval [0, 1e−6] on every com-
putation path, first predicate is true at some future time as well as for the
second predicate. This property checks for oscillation behavior. We divide the
state space into 3 states in addition to the initial condition, each corresponding
to a set of predicate inequalities extracted from the formulas (P1 = IL ≤ 0.02,
P2 = 0.02 < IL < 0.06 , P3 = IL ≥ 0.06), as shown in Figure 4.a. We can use
a labeling function Prop associating a set of atomic propositions to each state;
Prop : Q → 2AP . For example, Prop(S1) = {P̄1, P2, P̄3}. Monitors synthesized
from the temporal logic can be used similar to threshold detection. Each time a
condition is changed, monitors triggers a change of states of the abstract tran-
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sition system. For example, there is a transition between state S1 and state S2,
as the trajectories generated by interval analysis and monitored by a monitor-
ing automata cross the region satisfying the conjunction of atomic propositions
P̄1 ∧ P2 ∧ P̄3 to the region satisfying P1 ∧ P̄2 ∧ P̄3. In order, to verify oscillation
condition using model checking on the abstract model , we translate CT-CTL
properties to TCTL properties. The model checking procedure is then straight
forward and model checking tools like SMV or Hytech can be used to check such
properties.

By following the same procedure for the system with the second set of para-
meters, but with the same initial conditions, we can find out that the circuit is
non oscillating. When the circuit starts up, the energy of the system is lost due
to the positive circuit resistance. Starting from any point in the analysis region,
the oscillations die down to the equilibrium point (see Figure 3.b). By applying
the reachability analysis in Definition 9, we verify, however, that for the given
initial conditions, the trajectory will be within the analysis region. If we want
to verify the oscillation property, we start by creating the abstract transition
system as shown in Figure 4.b. and by applying model checking algorithms, we
find out that the condition is not holding. This can be inferred by looking at
the transition system in Figure 4.b, as there is no transition out from S3, which
can be interpreted as once the system reaches S3, it remains deadlocked there
during the verification period.

6 Related Work

An important issue of algorithmic methods in formal verification and model
checking of AMS circuits are the solution of continuous systems; that is, the
collection of continuous time trajectories starting from a set of initial continuous
states where in practice the initial conditions are usually not known exactly
but only known to lie within some range. Several methods for approximating
reachable sets for continuous dynamics have been proposed. These methods rely
on the discretization of the continuous state space. Among the most important
approximations are those based on cubical and polyhedral representation. This
approaches were pursued by Kurshan and McMillan in [19] and Greenstreet [20,
21] respectively were they proposed verifying digital properties at the transistor
level. A variant approach of polyhedral based analysis was adapted by Dang and
Maler [1] and implemented in the tool d/dt and by Chutinan and Krogh and
implemented in their tool Checkmate [2] which supports in addition temporal
verification. In [22], Dang et. al, Dang and Maler, used d/dt for the verification
of analog systems described with differential algebraic equations (DAEs) and
apply it to the verification of a biquad low-pass filter. In addition they proposed
using techniques from optimal control (i.e hybrid constrained optimization) in
order to find bounds of the reachability and they applied this technique to the
verification of first order ∆ − Σ modulator. In [23], the authors used Checkmate
tool for the verification of AMS designs, i.e, tunnel diode oscillator and ∆ − Σ
modulator
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In [15], Hartong et. al proposed discretizing the whole state space into vari-
able sized regions to represent the state space and he used some kind of esti-
mation techniques to describe possible transitions between partitions. The dis-
cretized state space is then encoded and CTL based model checking is applied.
The paper gave no proof of soundness and It is not clear how the whole CTL
is supported as in general approximation can only preserves a subset namely
the ACTL. The proposed approach was implemented in a tool called Amcheck,
developed at University of Hannover. in [16], they extended their methodology
for the verification of time properties (i.e rise and fall time ) of analog circuits.

Several abstraction techniques have been proposed for continuous and Hybrid
systems. One of the early work for applying abstract interpretation to Hybrid
systems was proposed by Halbwachs et.al [28] as extension to a previous work
with Cousot [14]. In this work, convex approximation of linear equations is de-
scribed. A variant of this work is latter implemented in HyTech [3]. The main
limitation of this approach is the applicability only for linear systems, which
practically restrict the class of systems under verification. Hypertech [4], is an
extended version of Hytech, where they add an interval library to support ver-
ification of non linear systems. The idea presented is similar to our proposal,
however we diverge from them in that we propose combining interval analysis
with property guided abstraction which can lead to efficient analysis of the non
linear systems. Henzinger et. al [5] present a methodology for algorithmically an-
alyzing nonlinear hybrid systems by first translating the system to linear hybrid
automata, and then using automated model-checking tools. In a linear hybrid
automaton, the continuous environment is partitioned into a finite number of
classes such that within each class, the continuous variables are governed by a
constant polyhedral differential inclusions. Although, the idea is very interest-
ing, generated linear hybrid automata are still large enough to be easily model
checked. One other problem of this approach is the linearization of the dynamics
which results in losing information which might be of importance like the effect
of external disturbance for example, make it impractical for the verification of
analog circuits.

Predicate abstractions [30] have been successful in the verification of infinite
systems. I have been extended to the abstraction of verification of hybrid systems
with different complexity, see for instance the work by Alur et. al [6], Ahish et.
al [31]. One main problem in this approach is in choosing the correct predicate.
In our proposed methodology, we plan to use predicates in temporal logic as a
mean to build the abstract state space, by monitoring the execution, each set of
solutions satisfying certain predicates are represented by a certain discrete state
and finally, Clarke et. al [32], extended the Checkmate verification toolbox with
an abstraction refinement methodology.

Program monitoring have been applied sucessffuly for hardware and software
analysis. Motivated with the success of PSL assertion languages for hardware
verification, Maler et. al. [26] proposed a simple methodology for monitoring the
simulation of continuous signals by extending the PSL logic to support predicates
over the reals (signals) , the goal is to verify continuous and analog systems.
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Monitoring was applied within the Charon design framework [25] where timed
automata and linear hybrid automaton can be used to monitor real-time and
hybrid behavior. Recently similar ideas using hybrid automata as monitors have
been integrated with the PHVAR a hybrid system analysis tool [27] that provides
sound verification results based on linear hybrid automata approximations and
was used to verify properties of piecewise models of oscillator like amplitude
bounds and phase jitter.

Interval and affine arithmetics have been used in the analysis of analog cir-
cuits like in [17], were the authors presents an approach for equivalence checking
of linear analog circuits with parameter tolerances. The goal is to prove that an
actual circuit fulfills a specification in a given frequency interval for all parame-
ter variations and in [18], affine arithmetics was used to for helping in the circuit
sizing.

7 Conclusion

The lack of methods for computing reachable sets of continuous dynamics has
been the main obstacle towards an algorithmic verification methodology for hy-
brid systems. This motivated us to tackle first the reachability problem of con-
tinuous systems. Unlike the conventional approaches which attempt to find exact
solutions and are thus limited by undecidability of most non-trivial systems, our
approach is based on an efficient method for abstracting the continuous behavior
using combination of techniques from numerical methods, abstract interpreta-
tion, and program monitoring.

Future Work. The description of the methodology presented in this section
was general. Different issues will be raised throughout the development. We
present below some issues we think are of important interests:

– Extends the methodology for other domains like affine arithmetics which
have been developed to enhance precision.

– Explore more complex case studies; currently we are working on the verifi-
cation of phase locked loop designs and scmitt trigger.

– Extends the methodology for Hybrid systems.
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