Regular Session J : New Contributions in Architectures

A Tool for Automatic Watermarking of IP Designs

Amr T. Abdel-Hamid*, Sofiene Tahar* and El Mostapha Aboulhamid®
“Electrical and Computer Engineering Department. Concordia University, Montreal, Canada
Email: {at_abdel,tahar} @ece.concordia.ca
Dep. d’informatique et de recherche operationnelle, Université de Montréal, Montreal. Canada
Email: aboulham®iro.umontreal.ca

Abstract— Intellectual property (IP) block reuse is essential
for facilitating the design process of System-on-a-Chip (SOC).
Sharing IP blocks in such a competitive market poses significant
high security risks. Digital watermarking, used with most of
the shared digital media, has emerged as a candidate solution
for helping copyright protection of 1P blocks. In this paper, we
present an automatic tool for watermarking sequential IP designs.
The tool is based on the idea of utilizing unused transitions in the
State Transition Graph (STG) to add a part of the watermark.
The tool also tries to create a supraliminal channel by utilizing
the already existing transitions. The paper describes the structure
of the tool, overviews the algorithms used in its components, and
reports experimental results obtained by applying it on a set of
benchmarks.

1. INTRODUCTION

Fast advancing integrated circuit (IC) processing technolo-
gies have enabled the integration of full systems on a single
chip forming the new paradigm of the “System-cu-a-Chip”
(SOC) technology. Incremental changes 1o current design
methodologies are inadequate for enabling full potential SOC
implementation. Reusable virtual components or Intellectual
property (IP) blocks are most effective when coming to cost
reduction and development time of SOC designs. Inteilectual
property licensing has numerous roots in various media includ-
ing the printed word, music, arl. and machinery. Intellectual
property issucs would not exist but for the protection of
original work from explottation. Creators and owners of IP
designs want assurance that their content will not be illegalty
redistributed by consumers, and consumers want assurance
that the content they buy is legitimate and not forged.

Throughout history, watermarking was widely used for
copyright protection as well as data hiding. Recently, digial
watermarking has emerged as a candidate solution for the
copyright protection problem of digital media (such as video,
pictures, and music). IP watermarking was introduced as a
candidate to protect this sensitive copyright information.

The VSI Alliance IP protection development working group
[3] identifies three main approaches to sccure IPs. First, a
deterrent approach where the owner uses legal means trying
to stop attempts for illegal distribution, i.e., using patents,
copyrights and trade secrets. This method does not provide
any physical protection to the JP.

Second, a protection approach where the owner tries (o
prevent the unauthorized usage of the IP physically by license
agreements and encryption. This approach is used at the
distribution phase as well, i.e., the buyer has to have the correct
key to decrypt the design and so to use it. Yet, it does not
secure leakage from (rusied parties, as employees, or brokers.

0-7803-8322-2/04/$20.00 ©2004 IEEE.

Third, a derection approach where the owner detects and
traces both legal and illegal usages of the designs as in
watermarking and fingerprinting. This tracking should be clear
enough to be considered as evidence in front of a court if
needed. The VST alliance proposed the usage of the three
approaches for proper protection of IP designs. The detection
approach directly interacts with the IC design, and is consid-
ered an overhead on the design cycle. IP watermarking and IP
fingerprinting are the main approaches used; where the design
is watermarked (1agged) then different tracking techniques are
used to keep track of the usages of such design. This is
considered to be a passive approach, in which the designer
can only track its design, yet it cannot affect its manufacturing
except using the watermark evidence in front of the court.

IP watermarking schemes need more development to be in-
legrated in the design cycle. Future IP walermarking schemes
should be robust enough to secure the design, but they should
not imply a high overhead necither on the design process
nor on the final watermarked product. In this paper, we
are implementing a previously proposed framework [i] for
watermarking sequential IP circuits. The Proposed technique is
based on implementing a supraliminal channel [2], by utilizing
existing transitions of the covert object (watermarked design).
Finite state machines (FSM} are the transformation between
inputs and outputs of the design, and can be detected on mostly
all lower abstraction levels. FSMs can be represented in many
different ways, such as state transition graphs (8TG). Making
use of such transitions would gives the scheme more strength
against different attacks, as well as the ability to deiect the
watermark in all lower levels.

The rest of the paper is organized as follows: Section II
overviews the main approaches used for IP watcrmarking in
the open literature. Section III presents the tool prototype and
describes the different blocks of the tool. In Section IV, the
watermarking approach used is described as well as the two
algorithms used in the tool. Section V shows the experimental
results collected by applying both algorithms on a benchmark.
Finally, section VI concludes the paper and discusses future
work of this on going project.

11, IP WATERMARKING: RELATED WORK

There are a few IP watermarking technigues discussed in the
open literature: Kahng el al. [4] proposed and experimented
a constraint-based TP watermarking technique. This approach
is based on a generic optimizer and the constraint-satisfaction
(SAT) problems that can be used on different levels of the

381

Regular Session J : New Contributions in Architectures

design flow. The main advantage of this approach is its low
overhead, nevertheless, 1t has some major drawbacks. Namely.
the approach watermarks the solution produced, while it does
not watermark the design itself. The watermark cannot be
detected except at the same Jevel of abstraction, ie.. tracking
the watermark is not easy if the design is resold at other
abstraction levels.

At the behavioral level, Oliveira [7], and Torunoglu et al.
(117 introduced two different techniques used in the water-
marking of sequential parts of the design. Both algorithms
are based on adding new input/outpul sequences Lo the FSM
representation of the design. One of the main advantages of
both approaches is the ability to detect the presence of the
watermark at all lower design levels. These approaches work
at a very high abstraction level which provides extra strength.
The algorithms arc mechanically removable in case of the
knowledge of the input sequence and the initial input state,
In this paper, we are trying to solve this by presenting a new
concept and two new algorithms implementing it. We belicve
our approach to be the very first public-key watermarking
scheme that can be used for watermarking IP designs in a
shared industrial environment of intrusted parties.

IT1. TP WATERMARKING TOOL

The authors in [1] have proposed an algorithm for water-
marking sequential circuits. Their approach relies on the usage
of coinciding transitions to increase the watermark robustness
as well as decreasing the overhead it might cause on the
system. The authors as well have proposed two algorithms
that insert the watermark using their novel approach. In this
paper. a prolotype for both algorithms were built to test their
performance. The tool was implemented using C++ under
Unix environment. The design accepts kiss2 [10] standard files
(as its FSM representation) which can be gencrated by many
wols such as SIS [10]. Figure 1 shows the structure of the
tool which is composed of four main blocks. We start by
building a tree for the FSM representation using the FSM
builder block. The signature generation block provides the
signature to the watermarker afier hashing it, while the random
input and next states needed are provided using a random
generator built in our tool. The three components are added
in the watermarker, where the user can choose either of the
atgorithms to watermark his/her design. Finally. the produced
walermarked design is converted again to kiss2 format using a
Kiss-to-HDL block, and the key file that provides the signature
added is produced as well.

A. Watermark Creation: Signature Generator

The proposed model uses a constant length bit sequence
as a proof of the ownership rights. The owner should choose
any arbitrary length message that will prove hisfher ownership
and encrypts it using his/her own private key of any encryption
algorithm. The encrypted message is then hashed to shorten
it to a certain length using a one-way hash function, such as
MD35 [9], which produces bits message digest that will be used
as an authorship proof (128 bits in case of MDS5). This digest
is computationaily infeasible to find another message to hash
the same value or to invert it.

382

HIA. Code _,_! HDL 1o Kis? ‘l_ Kis2 Formai
i !

i
‘ FSM Builder i

Signawse
Uenerator

i Ramdem P
ermarker

Random
{iencrater

Random Next State

| Kiss? Buider
H

Watermarking Tool

WM Designokiss2 Kiss2 1o HDL WM HDL Code

Watermarking Tool Structure

Fig. 1.

B. FSM and Kiss2 Builders

The tool needs to represent the FSM in a tree format to
speed the search algorithm. In order to get the FSM in such
representation, FSM builder is integrated in our tool. This
block first analyzes the kiss2 file, and extracts different aspecis
from it, such as number of states, number of transitions, and
number of input/output bits. 1t then builds the tree needed by
the watermarker out of the kiss2 file provided for the design.

After inserting the watermark, Kiss2 builder rcbuild the
new kiss2 file. This block takes the watermarked tree and
converts it to the primary representation. This block checks
the number of inputs, because this number might change due
to the watermarking process. Also, extra number of transitions
added. This block generates as well the key file that contains
the watermark that we should check for.

C. Input Sequence Generation: Randem Generator

Qur tool uses a random number generator to produce both
the input sequence used and the next transition state in case
of added transitions. Usually, randomness is introduced into
computers in the form of pseudo-random numbers. For cryp-
tographic use, it is important that the numbers used to generate
keys are not just secmingly random; they must be truly
unpredictable. Pseudo-random numbers are not truly random,
In our case, we relayed on random.org [5], a truc random
number generating service available on the web, where the
atmospheric noise picked up by a radio receiver is considered
the source of noise.

D. Building HDL: Kiss-to-HDL

Kiss2 format [10] is a standard FSM format that is used
by many tools. Kiss2? contains a basic and clear description
for the FSM. The final block of the tool converts the kiss2
representation of the FSM design to VHDL [12] sequential
code. This can be done by converting all the states and
transitions of the FSM to a conditional VHDL program used
directly in the hardware design, or as a part of a larger design.
This block allows easier integration of our tool into the design
cycle.

http://random.org

Regular Session J : New Contributions in Architectures

IV, WATERMARKING INSERTION TECHNIQUES

The implemented warermarker is based on the Coinciding
Transitions approach proposed in [1]. The approach defines the
ownership rights as an output sequence of bits. that is divided
inlo input/output pairs. These patrs are added o the design to
build the ownership proof by either, adding exira tramsitions
in case the iransition is not used. or trying to coincide this
pair with an already existing one to increase robustness. Thus,
the signature is built using the free transitions avaiiable in the
system, i.c., utilizing the difference between complete FSMs
and non-complete FSMs proposed in |11}, Also, in order to
increase robusiness of the watermark, a supraliminal channel
is st on the already existing tramsitions, i.e. the signature is
inserted by utilizing existing transitions that will coincide with
the signatore. Making use of such transitions gives the system
extra strength against attacks [1], and decreases the watermark
overhead to the system. Finally, the approach minimizes the
search needed for inserting the watermark, which is directly
related to the time needed for watermark insertion, The next
subsections describes the two different algorithms that were
implemented in the watermarker.

A. Input Comparison Algorithn

The output generated sequence will be associated with a
random generated input and will be consider a new pairs in the
transition set. Starting form an arbitrary state, these sequences
will be added to the STG according to the following algorithm:

1) The random input is compared with the inpuls of the
selecled state to check if such input is already defined in the
STG. nets 2) In case this input is not used, as in our case, an
extra transition 1s added directly to the STG with a randomly
chosen next state,

3) In case this input is already used the output sequence
is checked to see if the output coincides with the generated
signature. The transition will be considered as part of the
signature, and the algorithm will advance to the next state.

4) Finally, if the output does not maich the one there, and
there are no free inputs available, the algorithm adds an extra
input bit to the STG. The logic value ‘0" is assigned to the
already existing transition, and the logic value ‘1" will be used
for the watermark transition nced to be added.

The algorithm does not search the system states of the
STG to insert the watermark, this would not cause high
overhead on the design flow. YET, the algorithm is not trying
to maximize the coinciding transitions, but it is a kind of best-
effort algorithm that randomly finds coinciding transitions.

B. Output Mapping Algorithm

In this approach, we utilize more search efforts in the
algerithm. We try to increase the number of the coinciding
transitions in order to increase the robustness. This was done
by forcing the algorithm to search the output bits of the STG
before the input ones and take the watermarking decision
depending on this search.

The output signature is divided in sub-sequences with the
same number of output bits, then starting for an arbitrary state,
the signature is added according to this algorithm:

1) The signature output bits will be compared to all the
outputs of the state to see if any of them would coincide.

2y In case of such condition being satisfied, the transition
will be considered as a part of our STG. and the next state
will be determined through such transition.

3) If such an output does not exist. the teol will search the
inputs domain of such state to find any free input sequence
and add an extra transition using such free input.

4) Finally. if all the inputs are already being used, an extra
input kit will be added to extend the whole STG converting it
te a non complete FSM and gives more room for the transition
needs to be added. This bit will be forced to (0) in the case
of already existing transitions, and (1) for added transitions,
such extra transition.

Using this algorithm, the coinciding transitions will be
maximized for any given state. Also. the number of added
input bits should be decreased. This approach will introduce
more time overhead to the design phase as the outputs of the
FSM are searched for every visited state.

V. EXPERIMENTAL RESULTS

We applied both algorithms in our prototype on the IWLS93
benchmark set [6] using the FSMs generated by the available
SIS tool to convert the code to kiss2. Table I describes the
results obtained by applying the Input Comparison Algorithm
on the benchmark set using a Sun Sparc Ultra 5 machine.
The total number of transitions of each design, and the total
number of added transitions m is shown. m is divided into
the number of extra added transitions (1) and the number of
coinciding transitions {ma). €y, is the number of extra inputs
needed to add the watermark. Finally, the table shows the time
used (o insert the watermark in each design. It is clear that the
watermark can be considered as a real overhead in the small
designs (as in 527 where the number of total transitions is 34
compared to 128 added transitions). Yet, as the designs get
larger, the overhead decreases significantly, as in the case of
thk. where 43 extra transitions are added compared to 1569
existing transitions.

Table I1 describes the results obtained by applying the
Output Mapping Algoritin using the same machine. The
numbcr of coinciding transitions {rng) increased significantly
in many cases (from 6 1o 18 in the case of bk for example).
Also, the time increases mostly to add the watermark in this
case.

V1. CONCLUSIONS

Sharing [P blocks in today’s competitive market poses sig-
nificant high security risks. Different approaches were defined
trying to decrease such risks in a fast growing market. Digital
watermarking has emerged as a candidate solution for helping
copyright protection of IP blocks.

In this paper, we have implemented a sequential IP wa-
termarking tool based on the coinciding transitions in FSMs.
The approach utilizes coinciding tramsitions as well as the
unused transitions in order to give high robustness to the
watermarked design. We implemented two main algorithms
to embed the signature in the design. First, Input Comparison

383

Regular Session J : New Contributions in Architectures

TABLE |
IWLS%3 BENCHMARK RESULTS USING THE INPUT COMPARISON
ALGORITHM

Circuits { states § I/O % trans. e,n m My ma tms)
527 6 4/} 34 1 128 19 109 34ms
bhura 10 42 60 2 6% 20 45 15ms
dkl4 7 35 36 3002 25 | 9ms
styr 30 910 166 2 1312t t5ms
bbsse 16 " 56 2 M7 2 9ms
cse 16 Eis 91 2 9 17 2 10ms
858 16 T 56 2 19 17 2 10ms
exl 20 919 138 2 7 7 0 10ms
scf 121 27456 166 i 3 3 0 5ms
5420 15 192 137 2 65 43 12 33ms
thk 32 &3 1569 2 43 37 6 Slms

TABLE I

TWLS93 BENCHMARK RESULTS USING THE OUTPUT MAPPING
ALGORITHM

Circuits £ states § VO f trans. eym m g 2 t(ms)
527 6 4/1 34 1 128 1 127 9ms
bbara 10 412 60 2 65 20 45 15ms
dki4 7 345 56 3 26 23 3 15ms
sty 30 910 166 2 312 1 2lms
bbsse 16 " 56 2 19 16 3 15ms
cse 16 W7 91 2 19 17 2 16ms
sse 16 7 56 2 19 16 3 l4ms
exi 20 919 138 2 77 G iims
scf 121 27/56 i6o 1 3 3 0 O68ms
5420 I8 1942 137 2 65 8 57 78ms
bk 32 6/3 156% 2 43 25 18 Blms

algorithm, which mainly search inputs of each state. It is a
best effort approach that uses the coinciding transition if it
finds it. Second, Output Mapping Algorithm, searches each
state it visits trying to find a coinciding transition to embed
the watermark in.

We tested our tool on a set of benchmark circuits. The
tool tends to work fine on this size of circuits, yet it needs
to be tested and applied on larger designs. Beside, our tool
mainly works on flat FSMs, which is mostly not the case when
it comes to complicated designs needed to be watermarked.
Finally, although, the sccond implemented algorithm searches
the outputs for any available coinciding states, we think that
the algorithm can be more efficient by having a kind of
speculation so that, the next state would be the one that might
have higher probability of coinciding transitions.

384

REFERENCES

[1] A. T. Abdel-Hamid. 8. Tahar and E. M. Aboulhamid, “A Frame Work
for Watermarking [P Sequantial Designs”, Technical Repon. Electrical
and Computer Engineering Department, Concordia University, Montreal,
Quebec. Canada. February 2004,

21 S. Cravar, "On Public-key Steganography in the Presence of an Active
Warden”. Technical Report RC2093(, IBM Research Division, T. 1
Watson Research Center. July 1997,

[3] Imellectual Property Protection Development Working Group, “Intellec-
wal Property Protection: Schemes, Alternatives and Discussion™. VS!
Alliance. White Paper. Version 1.1, August 2001.

[4] A. B. Kahng. D. Kirovski. S. Mantik. M. Potkonjak. and J. L. Wong,
"Copy Detectien for Inteliectual Property Protection of VLSI Design™,
Proc. TEEE/ACM Internutional Conference on Computer-Aided Design,
San Jose, California. USA. November 1999, pp. 600-604.

{5] M. Haahr, “Introduction to Randommness and Random Numbers”,
waw randon.org, June 1999,

[6] K. McElvain, “LGSynth93 Benchmark Set: Version 4.07,
waew.chl nesu.edu/pub/Benchmarkgirs/ LG Synth93/. 1993,

[71 A. L. Oliveira. "Techniques for the Creation of Digital Watermarks
in Sequential Circuit Designs”. IEEE Transactions om Computer-Aided
Design of Inregrared Circuits and Sysiems, Vol, 20, No. 9. September
2001, pp. 1101-1117.

[8] F. A, P Petitcolas, R. J. Anderson, and M, G. Kuhn, “Tnformation Hiding-
A Survey”. Proceeding of the IEEE. special issue on the praweciion of
multimedia comtent, Vol. 87. No. 7, July 1999, pp. 1062-1078.

[9]1 R. Rivest. "RFC [321: The MD5 Message-Digest Algorithm”, Network
Working Group, 1992,

[16] E. M. Seatovich. K. J. Singh. L. Lavagno. C. Moon, R, Murgai. A.
Saldanha, H. Savoj. P. R. Stephan, R. K. Braylon, and A. Sangiovanni-
Vincentelli, "SIS: A System for Sequential Circuit Synthesis”™, Technical
Report, Dept. of Electrical Engineering and Computer Science, University
of Catifornia, Berkeley,CA 94720, 1992,

[L1} L Torunoglu. and E. Charbon, "Watermarking-Based Copyright Protec-
tion of Sequential Functions”, IEEE Journal of Solid-State Circuits, Vol.
35, No. 3, February 2000, pp.434-440.

f12) IEEE standard 1076-1993. "IEEE Standard Description Language Based
on the VHDL Hardware Description Language” 1993,

