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Abstract

Design and verification of cryptographic protocols has
been under investigation for quite sometime. However, lit-
tle has been done for the class of protocols that deals with
group key management and distribution, and have special
security properties, such as forward secrecy. In this paper,
we define a formal model and establish rank theorems for
forward properties based on a set of generic formal spec-
ification requirements for group key management and dis-
tribution protocols. Rank theorems imply the validity of the
security property to be proved, and are deducted from a set
of rank functions we define over the protocol. The above
formalizations and rank theorems were implemented using
the PVS theorem prover. We illustrate our approach on the
verification of forward secrecy for the Enclaves protocol de-
signed at SRI.

1 Introduction

Cryptographic protocols provide security services for
communicating entities. They involve precise interactions
in order to achieve the required security services, therefore,
it is very important to verify that the protocol operations are
not vulnerable to attacks. Besides, networks handle more
and more tasks in a potentially hostile environment. There-
fore, cryptographic protocols should take more responsibil-
ities in order to capture these new requirements. Some se-
curity properties such as availability and fairness take more
important roles in some protocols like in commercial sys-
tems. This requires that the complexity of the cryptographic
protocol should be increased.

The general requirements for protocols involving two or
three parties are well understood, however, the case is dif-
ferent with group key distribution protocols, where the key
can be distributed among a larger number of members who
may join or leave the group at arbitrary times. Therefore,
security properties that are well defined in normal two-party

protocols have different meanings and different interpreta-
tions in group key distribution protocols, and so they require
a more precise definition before we look at how to verify
them. Therefore, systems designed for two-party protocols
may not be able to model a group protocol, or its intended
security properties because such tools require an abstraction
to a group of fixed size to be made before the automated
analysis takes place. This can eliminate chances of finding
attacks on the protocol.

Our verification methodology is based on the notion of
rank theorems we present in this paper utilizing the rank
functions first proposed by Ryan and Schneider [10]. We
map the requirements into ranks, this map is based on a
predefined function, the rank function. For this map, we
have to find the appropriate rank functions for the protocol
events, traces and properties. This rank function is tailored
for the security property we intend to verify, in particular,
forward secrecy and backward secrecy. Based on the above
rank functions, we define a set of rank theorems for forward
secrecy. The proof establishment is mechanized in the PVS
(Prototype Verification System) theorem prover [8]. Rank
theorems, protocol events and traces of execution have been
defined in PVS. We apply the implemented proof environ-
ment on the Enclaves protocol from SRI [3] in order to ver-
ify related forward secrecy.

The rest of the paper is organized as follows, Section 2
provides related work to ours. In Section 3, we present the
overall verification methodology and the formal specifica-
tion requirements model. In Section 4, we define rank theo-
rems, then prove the theorem for forward secrecy property.
In Section 5, we describe the details of our implementation
of the formal specifications and theorems in PVS. Finally,
Section 7 concludes the paper with future work hints.

2 Related Work

Syverson and Meadows [13] presented the formal re-
quirements for authentication in key distribution protocols.
The requirements they provide was for a single property, au-
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thentication, which is similar in different protocols, whereas
other properties may have different semantics in different
classes of protocols, like secrecy property for example.
Layouni et al. [7] used a combination of model checking (to
verify authentication property), theorem proving (to verify
safety and liveness properties such as proper agreement),
and a Random Oracle Model (to manually prove robustness
and unpredictability properties). This example shows how
difficult it is to verify and analyze this class of protocols.
Meadows and Syverson [5] used the NPATRL language, a
temporal requirement specification language for use with
the NRL Protocol Analyzer, in order to specify the Group
Domain of Interpretation (GDOI) key management proto-
col. In a later stage Meadows et al. [6] gave a detailed
specification of the requirements for GDOI and provided
a formal analysis of the protocol with respect to these re-
quirements using the NRL Protocol Analyzer. In a related
approach, Denker and Millen [2] used multiset term rewrit-
ing in order to model group communication protocols. They
show the mechanisms used in key distribution and provide
an analysis of group protocols complexity in terms of key
distribution. Archer [1] provided a mechanized correctness
proof of the basic TESLA protocol based on establishing a
sequence of invariants for the protocol using TAME. The
model of the protocol is rather simple, and the proof was
made under a strong assumption stating that the adversary
has no initial knowledge, and can only use facts revealed by
users.

In a more recent work, Pereira [9] proposed a systematic
approach to analyze protocol suites extending the Diffie-
Hellman key-exchange scheme to a group setting. He
pointed out several unpublished attacks against the main se-
curity properties claimed in the definition of these protocols.
The method provided is essentially manual and applicable
only on Group Diffie-Hellman (GDH) protocols. In a simi-
lar work, Sun and Lin [12] extended the strand space theory
to analyze the dynamic security of Group Key Agreement
Protocols (GKAP) and discussed the conditions of the se-
curity retention in the dynamic cases of the protocol, this
work treats the analysis dynamic aspects of the protocol
with no reasoning about the correctness of the protocol un-
der these dynamic events. A related work by Steel et al.
[11] model a group key protocol by posing inductive con-
jectures about the trace of messages exchanged in order to
investigate novel properties of the protocol and whether it
results in an agreement on a single key. The method, how-
ever, is applicable on limited groups of two or three mem-
bers only. Recently, Truderung [14] presents selecting theo-
ries, which extend the standard non-recursive term rewriting
model and allow participants to compare and store arbitrary
messages. This formalism can model recursive protocols,
however, it cannot be applied on non-recursive protocols
such as GDH or the Enclaves.

In [10], Ryan and Schneider proposed the idea of rank
functions for the verification of CSP (Communication Se-
quential Process). Dutertre and Schneider [4] used an em-
bedding of CSP in PVS in order to verify the authentication
property of Needham Shroeder public key protocol. How-
ever, the work in [10] did not present a method that can be
applied on security properties in other classes of protocols,
like group key protocols.

3 \Verification Methodology

From the above account on related work, we noticed the
lack of a single formalism to model the protocols and reason
about their security properties. In this section, we propose a
verification methodology based on rank theorems. We use
a rank function to map facts about the protocol into ranks,
and define for every security property a theorem that im-
plies the validly of the property with respect to the protocol.
Figure 1 provides a summary of the steps of our verification
methodology. The first step consists of providing a formal
model and precise definition for group protocols properties
and events. This will help eliminating the gap between the
informal protocol specification and the formal model. It will
also provide a well defined protocol specification that can
be directly integrated into the verification methodology. In
the second step, we define map functions between the set
of facts and the set of integers. The set of facts include
protocol events, protocol execution traces and the security
property. Then we define rank theorems that provide condi-
tions satisfied by a given rank function in order to conclude
that the security property satisfies its protocol model. We
define for every security property a theorem that implies the
validly of the property with respect to the protocol. Rank
theorems imply the correctness of the security property it
models. In order to prove the correctness of a specific prop-
erty, we need to prove that its corresponding rank theorem
is correct with respect to the protocol model. In the final
step of our approach, we implement the rank theorems in
PVS and establish their proof of correctness.

In order to make sure of the soundness of our approach,
we have to show the formal link between the constructed
rank theorem and the formal model of the property. This is
carried out by proving that the correctness of the rank the-
orem implies the correctness of the security property. This
way, we can argue that verifying the property at the imple-
mentation level guarantees the correctness of the property
in the model. In the rest of this section and throughout this
paper, we will use the following notations:

M: set of all possible messages, (messages space).

P: ahonest principal who is willing to communicate.

IP: the set of knowledge of member P, P C M. S: se-
cret messages space, the set of all secret messages, S € M,
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which we want to keep hidden from the intruder. These
messages are defined by the protocol.

I: adishonest member. We assume that the intruder is a dis-
honest member who is trying to find an attack in the proto-
col by using his/her unlimited resources and computational
power.

[E: set of all events, or dynamic operations, i.e., join, leave,
merge, and split. An event is a term from the message space
to the message space, E : M — M.

T: the set of all possible traces, where a trace of events is the
execution of the sequence of these events. We use 7 € T,
such that 7 : E x M — M, then we write mm = 7(E, M) to
say that a message m € M is generated by the trace 7 by
executing the set of events [E on the set of messages M. We
also write 7(E, M) ~» m to represent a predicate formula
that evaluates to true if and only if m = 7(E, M).

Ko: set of initial knowledge of the intruder, where Ko C M.
The initial knowledge of the intruder is basically the infor-
mation he/she can collect before the start of the execution
of the protocol events. Ym e M: m € S = m ¢ K,. K:
the set of knowledge of the intruder. The intruder updates
this knowledge by executing events starting with the initial
set of knowledge, Ko C Kand K C M.

Gy: current group, which can be formally defined as a set of
principals who share a secret key, or information that can be
used to calculate the secret key. G;.;: a group that can share

a secret key at future time. G;_;: a group that previously
in time shared a secret key. For group membership, we say
Kg, € P = P € Gy, which means a principal P is
a member of the group G; at this time, ¢, if the group key
Kg, isin his/her set of principal P’s knowledge P. K¢, the
group session key: the key generated for the current session.
Equivalently, it can be the set of information that can be
used to calculate the key. I ¢ G; = Kg, € S. Kg,,,: a
group session key for the group G, ; that can be generated
and used sometime in the future, I ¢ G,1; = Kg,,, € S.
Kg, ,: agroup session key that was generated and used
previously intime. I ¢ G;_; = Kg,_, €S.

Secrecy. In the following, we give the formal definition of
group secrecy, forward secrecy and backward secrecy.

Definition 3.1. Group key secrecy: for any current group
Gy, and a dishonest principal I who knows a set of initial
knowledge K, there is no trace 7 € T that he/she can exe-
cute in order to obtain the current group session key Kg, .
I1¢Gy=-3IreT: Kg, = 7(E,M).

Forward secrecy requires that a session key cannot be
calculated from keys and information that are generated af-
ter this key in time. Which means that compromising ses-
sions keys does not compromise previous session keys that
were established for previous protocol runs.

Definition 3.2. Forward secrecy: for a group G, and a
dishonest principal I, where I € G, (I knows Kg,), there
is no trace 7 € T that he/she can execute in order to obtain
a previous group session key K¢, ,, where 0 < i < t.
IeGi=-3reT: Kg,_, = 7(E,M),where I ¢ G;_;,
and 0 < i < t.

Backward secrecy requires that a session key cannot be
calculated from keys and information that are generated be-
fore this key in time. Which means that compromising ses-
sions keys does not compromise keys for future sessions.

Definition 3.3. Backward secrecy: for any current group
Gy, and a dishonest principal I, I € G; (I knows Kg,),
there is no trace 7 € T that he/she can execute in order to
obtain a previous group session key Kg,_ ,, where i > 0.
IeG=-3reT: Kg,,, = 7(E,M),where I ¢ Gy,
andi > 0.

Joining and Leaving Groups. Any group key distribution
protocol must handle adjustments to group secrets subse-
quent to all membership change operations. Single member
operations include member join or leave.

Definition 3.4. A principal P joins the group G, if P ¢
Gy, and there exists atrace 7 € T that P can execute, where
Kg,., = 7(E", M?) such that Kg,,, € P (or P € Gyyy)
and K(Gt+ri 75 KG,L-
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Definition 3.5. A principal P leaves the group G; if P €
Gy, and there exists a trace 7 € T that P can execute such
that K¢, , ¢ P(or P ¢ Gyp).

Merging and Splitting Groups. Merging and splitting
groups are considered as multiple members operations. A
merge event occurs when two groups with two different set-
tings execute a trace of events that result in a new group
setting, where every member of each of the two groups is a
member of a new group. Whereas a split event occurs when
one group executes a trace of events that result in two new
different groups, where every member of the current group
is a member of one and only one of the new groups.

Definition 3.6. A group G1, merges with group G2, if
there is a trace 7 € T that both G1; and G2; can exe-
cute such that G,; = G1; U G2; (which implies that
VP € Gy Kg,,, € P), where Kg,,, = 7(E,M),
Kg,,, # Kg1, and Kg,,, # Kga,.

Definition 3.7. A group G; splits into groups G1;,; and
G244, if there exists a trace 7 € T that G; can execute
such that G; = G]-H—i @] G2t+i and G1t+i n G2t+i = gf),
where K¢, # Kgi,,, and Kg, # Kga,,,-

4 Rank Theorems for Protocol Models

Rank functions were first introduced in [10]. For the pur-
pose of establishing the proof that a specific fact will not be
available to the intruder, we assign a value or rank to each
fact, such that, facts that can be generated by the system
have positive rank, and facts that cannot be obtained by the
intruder cannot have positive rank. The definition of the
rank function is as follows:

Definition 4.1. A rank function pisafunctionp : M — Z
that maps the set of all messages into integers.

The rank function should obey specific rules in order to
be sound. First there are no negative ranks generated by the
system. It is necessary to verify that each participant can-
not introduce anything of non-positive rank to the system.
In other words, the intruder initial knowledge must be of
positive rank, and only facts of positive ranks can be gener-
ated from sets of facts of positive rank. All messages that
are supposed to be secret and unknown to the intruder are
mapped to zero rank. When executing an event, the rank of
the generated message is a bounded function of the rank of
the parameters of the event.

We define a property ¢ for a given group protocol G.
This property states that a dishonest user I cannot execute a
trace in T in order to discover a secret in S, and is formally
modeled as follows: ¢ = V7 € T, 7(E™, M?) ~» m =
m ¢ S. If this property is correct for the protocol G then
we can write G = ¢. This is a general secrecy property

that will be used to define and proof the rank theorem. The
target security property to be verified, i.e., forward secrecy,
will be concretely defined later in this section. Now, we
define and prove a general rank theorem for this property as
follows:

Theorem. vm € K, p(m) > 0 = G, = ¢, where m =
7(E,M)and 7 € T

This means that for all traces = € T, a dishonest prin-
cipal I can execute on a group protocol G;. We say that
the protocol satisfies a security property ¢, G; | ¢, if the
protocol can maintain a positive rank for the messages that
can be generated by the intruder.

Proof. We assume there exists m € K such that p(m) = 0,
and we show that the property ¢ is invalid. p(m) = 0 =
m € S; Sis a closed set, only messages in S have rank
zeroo m e Kandm ¢ Ko = 3r € T : m = 7(E,M),
therefore, 7(E,M) ~» m is valid. Then we can write
dr € T : 7(E,M) ~» m = p(m) = 0, and so 37 €
T : 7(E,M) ~» m = m € S, this means p(m) = 0 = —¢,
and so p(m) =0= G }~= ¢ O

Now we define our forward secrecy property, ¢, based on
the formal specifications model presented previously as fol-
lows: p =Vm €S, I € Gy = —37 € T: 7(E,M) ~ m.
We use the above rank theorem in order to define a rank
theorem for the forward secrecy property ¢ (and similarly
for backward secrecy). However, we should define the rank
function p, that maps the set of all messages to the appro-
priate ranks. p,, is defined as follows, where Vi € Z : t+i >
Oandt—1i > 0.

0, ifmeSV m=Kg,_,

po(m) =¢ 1, ifmekKy VvV m=Kg, V

(m = KGt+7Z ANITe Gt—i)

This means that for the validity of forward secrecy, we
give the rank zero to all messages in the set of secret mes-
sages S, such as secrets shared between users and servers,
and all the groups keys that were generated before the cur-
rent group key. However, for the keys generated after the
assumed dishonest user joined the group are mapped to a
positive rank because they are in his/her initial set of knowl-
edge. Now we can write the above theorem for forward se-
crecy property as follows:

Theorem. Vm € K, p,(m) > 0 = G; = ¢, where
m =7(E,M)and r € T.

One of the advantages of introducing such theorems, is
that, first, it is protocol independent, which means that we
can apply it on different protocols as well as on the same
protocols at different levels of abstraction. Second, it is
implementation independent, which gives more freedom to
verification tool choice without any modification on the pre-
vious steps of our methodology.
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5 PVS Implementation and Application

The last step of our methodology is to mechanize the
proof of the rank theorem using a verification tool, for this
purpose we choose the PVS theorem prover. Our model
in the PVS includes a definition of the formal requirements
that we defined for the events and traces of execution, the
rank functions and the rank theorem of the security prop-
erty. Then we prove in PVS that the rank theorem main-
tains a positive rank, which implies the correctness of the
property with respect to the protocol.

In our implementation, we first formalized the general
requirement, rank function and its lemmas, and the rank
theorem. First we show the type declarations we used for
our model, this includes the types of messages, events, key,
a subtype of messages, and users, traces, and groups.

MESSAGE : TYPE
EVENT : TYPE = MESSAGE, MESSAGE -> MESSAGE
KEY : TYPE FROM MESSAGE

USER : TYPE
TRACE : TYPE = set[EVENT]
GROUP : TYPE

Then we defined the prototypes for the events protocols
can execute. This includes the normal events, like send,
receive, encrypt, and decrypts, in addition to the dynamic
events such as join, leave, merge split. These events of the
protocol are represented in PVS as a data type in order to be
sure that all actions are syntactically different.

Event : DATATYPE
BEGIN
send(msg_send, m_recv: USER,
s_msg: MESSAGE): send?
recv(m_recv, m_send: USER,
r_msg: MESSAGE) : recv?
join(user: USER, group : GROUP) : join?
leave(user: USER, group : GROUP) :leave?
merge(x_group, Yy _group : GROUP): merge?
split(group: GROUP) : split?
END event

In order to define the rank function for forward secrecy
property we use the predicate in.Set which tells if a given
message belongs to a specific set of messages. This predi-
cate is defined as follows:

inSet: [set[MESSAGE], MESSAGE -> bool] =
(LAMBDA (p: set[MESSAGE], m: MESSAGE): p(m)

We define the rank function for forward secrecy prop-
erty that initializes every message in the intruders initial
set of knowledge and all the messages in the set of secret
messages, this definition represents the initialization of the
ranks of the messages in the initial state of the protocol,

when executing the protocol, every new generated message
will have a specific rank that is calculated depending on the
events executed. We also show how we update ranks of
newly generated messages from events in PVS as follows:

rank(msg:MESSAGE) : NAT =
IF msg = id THEN 1
ELSEIF msg = nonce THEN 1
ELSEIF inSet(secretKey,m) THEN O
ELSEIF inSet(intlnitkKnldg,m) = THEN 1
ENDIF
updateRank(event,ml,m2, key, ul,u2) : nat =
CASES event OF
concat(ml,m2)
encr(ml,key) : rank(ml)+1
decr(ml,key) : rank(ml)-1
send(ul,u2,ml) : rank(ml)
recv(ul,u2,ml) : rank(ml)
ENDCASES

: MIN(rank(ml), rank(m2)

At this point we encoded our forward secrecy property
and our rank theorem for this property as follows:

forward_secrecy : THEORY
BEGIN
msg : VAR MESSAGE
fwd_secrecy_property: LEMMA
FORALL msg: inSet(intKnldg,msg)
IMPLIES rank(msg) > O
END forward_secrecy

This is the basic lemma we proved based on previous
definition. The set intKnldg is updated by the intruder, and
for ever update we calculate the new rank as shown above.
So the proof means that the intruder who executes any of
the above defined events for the protocol cannot obtain a
message with rank zero.

Enclaves Protocol. Enclaves [3] is a protocol that enables
users to share information and collaborate securely through
insecure networks, such as the Internet, and provides ser-
vices for building and managing groups of users. Autho-
rized users can dynamically join, leave, and rejoin an active
group. The group communication service relies on a secure
multicasting channel that ensures integrity and confiden-
tiality of group communication. The group-management
service consists of user authentication, access control, and
group-key distribution. We apply our approach on this pro-
tocol and show the correctness of its forward secrecy prop-
erty.

Then we define a preposition to show the possession of
a key by a specific user after executing the necessary steps.
Next, we describe the connection state of a user which in-
dicates that a user is connected to the group if all the given
premises are valid. At this point, we can instantiate our
rank theorem for forward secrecy and check its validity in
the protocol states. This means that starting from the initial
step in the protocol, and applying any trace, the rank of any
message in the intruder knowledge is positive.
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session_key_prop: PROPOSITION
Reachable(step_00, T)(q) AND q“users(A0) =
Joined(N, Ka) => InUse(Ka, q)
joined_states: PROPOSITION
Reachable(step_00, T)(q) AND
Joined?(q“users(A0)) AND
Joined?(q“ leader(A0))
=> EXISTS Ka, Na: g“users(A0) =
Joined(Na, Ka) AND g“leader(A0) =
Joined(Na, Ka)
forward_secrecy : THEORY
BEGIN
fwd_secrecy: LEMMA
FORALL m,T: Reachable(step_00, T)
AND inSet(intknldg,m)
IMPLIES rank(m) > O
END forward_secrecy

Using the features of PVS, we have proved that the pro-
tocol satisfies forward secrecy property by establishing the
correctness of the above theorem rank theorem for forward
secrecy Property in PVS. The proof was conducted using
the set of general requirements in addition to the protocol
model, the implementation of the proof took around three
months. The proof of backward secrecy can be derived in a
similar fashion, and in much shorter time, given the experi-
ence gained.

6 Conclusion

The correctness of security protocols in communication
systems remains a great challenge because of the sensitiv-
ity of the services provided. Formal methods have been
used widely in this area to perform protocol verification and
analysis. In this paper, we illustrated the need for a verifi-
cation methodology for a class of protocols that deal with
group key distribution. While most approaches in the lit-
erature target cryptographic properties for two parties pro-
tocols, the verification problem for group key distribution
protocols is more challenging. In addition, properties like
forward and backward secrecy are very important for pro-
tocols correctness, however, they did not receive enough at-
tention in the literature.

In this paper, we provided a set of generic requirements
of group key distribution protocols and established their
formal specifications, then defined a formal model for this
class of protocols, and finally presented rank theorems to
enable and mechanize the verification procedure of this
class of protocols. We defined our model, rank functions
and rank theorems in PVS in order to construct the proof
of the claimed security properties. We proved the sound-
ness of our approach by proving the correctness of the rank
theorem. We applied our methodology on the Enclaves
group management protocol, and constructed the correct-
ness proof for forward secrecy property for this protocol
in PVS. We are in the process of extending the above ap-

proach to prove other properties for the same protocol, like
backward secrecy property, authentication, and group con-
sistency under protocol events.
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