
A Bond Graph Approach for Constraint based
Verification of Analog Circuits

William Denman, Mohamed H. Zaki, Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montréal, Québec, H3G 1M8, Canada

{w denm, mzaki, tahar}@ece.concordia.ca

Abstract. The computer-aided design community is in need of novel method-
ologies for the verification of analog circuits because of the growing importance
of such circuits in embedded system designs. This paper demonstrates a veri-
fication flow of analog circuit functional properties. In the proposed approach,
system equations are automatically extracted from an analog circuit description
by means of bond graph transformations. Property verification based on abstract
model checking and constraint solving are then applied to the extracted equations.
The benefit of using bond graphs as a modelling framework is their representa-
tion of circuits using the concepts of energy flow, effort and conservation. Hence,
allowing for several levels of abstraction. Our methodology has the advantage of
avoiding exhaustive simulation normally encountered in the verification of analog
circuits. To this end, we have used a set of tools (i.e., Dymola, HSolver, HybridSal
and Mathematica) to implement the verification flow. We illustrate the methodol-
ogy on several analog examples including Colpitts and tunnel diode oscillators.

1 Introduction

The verification of analog designs is a challenging task because of the complexity of
modelling and verifying continuous-time behaviour, when compared to digital designs.
For instance, digital design verification is based on the validation of abstract models
that reside in a finite state-space. In contrast, the functionality of analog circuits de-
pends on continuous electrical quantities, device parameters, in addition to parasitics
and current leakage. All those factors can drastically change the behaviour of an ana-
log circuit design making conventional finite-state verification techniques inadequate.
Additionally, the dynamic behaviour of analog circuits can be generally modelled using
systems of differential algebraic equations (DAE), but generating the equations from a
circuit diagram and subsequently simplifying them for verification purposes is not triv-
ial. Specifically, the DAEs must accurately describe the behaviour of the circuit while
remaining simple enough to be verified using automated tools.

This paper demonstrates a verification flow to verify functional properties of analog
circuits. The different steps of the proposed methodology are shown in Figure 1. The
methodology consists of two parts; namely modelling and verification. In the modelling
section, the circuit model is analyzed and simplified to obtain the system of ordinary
differential equations (ODEs) necessary for the verification. The basic idea is to ex-
tract the circuit ODEs automatically from the corresponding analog circuit diagram, by

means of bond graph transformations [4]. Approaches based on combining predicate
abstraction and constraint solving are then applied to verify the properties of interest.

In the first approach, we supply the constraint based verification with predicates that
act as constraints on the state space which can enhance the state space exploration in
terms of precision and computational cost. However, in case the constraint based meth-
ods fail to provide verification answers due to state space explosion, a second approach
based on abstraction based verification is used. In this approach, predicate abstraction
is applied to generate the abstract state space that is verified. When a property can-
not be verified, a counterexample is generated identifying the reasons for the possible
property violation. Validation of the generated counterexample is achieved by applying
constraint solving. In case the counterexample is spurious, the information from it can
be used in order to refine the abstract model.

Predicate
Abstraction

Based
Verification

Refinement
Property is

verified
Counterexample

Generated

Modeling

Verification
Constraint

Based
Verification

Bond Graph
Generation

ODEs
Extraction

Analog
Design

Bond
Graphs

ODEs

Specification
Properties

Verification
Fails

Predicate
Abstraction

Based
Verification

Refinement
Property is

verified
Counterexample

Generated

Modeling

Verification
Constraint

Based
Verification

Bond Graph
Generation

ODEs
Extraction

Analog
Design

Bond
Graphs

ODEs

Specification
Properties

Verification
Fails

Fig. 1. Proposed Verification Flow

Bond graphs are a domain independent framework for modelling physical systems
that is based on the flow of power between abstract objects. This allows for the uni-
versal treatment of different physical domains. The benefit of using bond graphs as a
modelling framework is the representation of circuits using the concepts of energy flow,
effort and conservation. Hence, allowing the modelling at several levels of abstraction
while preserving the topological aspects of the circuit under consideration [2]. Addi-
tionally, the causality of bond graphs can be automatically generated [27], which leads
to the automatic extraction of DAEs. A causality analysis can also produce an opti-

mization to the computational structure of the model that refines the extracted equa-
tions depending on the properties to be verified [27]. Moreover, since bond graphs are
object oriented, larger models can be built from simpler blocks reducing the need for
a complex equation layer [4]. Such characteristics allow us to compare the verification
results of the design at different levels of abstraction. For instance, one abstraction of
a bond graph can contain blocks that represent stray capacitances, while the other has
them removed. The DAEs of the two models can be extracted and then used to verify
if the capacitances play an important role in the circuit design. In summary, the ability
of bond graphs to preserve the computational as well as the topological aspects of the
circuits makes them an attractive tool in analog verification.

Predicate abstraction [16], is one of the most successful abstraction approaches for
the verification of systems with an infinite state space. In this approach, the state space
is divided into a finite set of regions and a set of rules is used to define the transition
between these regions in a way that the generated state transition system can be verified
using model checking. Recently, predicate abstraction has been extended for the veri-
fication of hybrid systems [1]. We propose using a qualitative abstraction approach for
analog circuits, such that satisfaction of the property in the abstract model guarantees
its satisfaction in the circuit-level model. In the proposed abstraction, the state space is
initially partitioned based on the qualitative characteristics of the analog equations and
constraint based methods are applied to check for property validation. When the prop-
erty cannot be validated, one possible reason is because of the false negative problem
due to the over-approximation of the abstraction. In case of failure, an iterative process
is applied where the regions violating the property are refined and then verified again.

The proposed methodology has the advantage of avoiding exhaustive simulation
usually encountered during verification. To this end, we have used a set of tools to
implement the verification flow. The design equations necessary for the verification are
extracted from Spice models using Dymola [12]. These equations are further simplified
using Mathematica [36] simplification rules. HybridSal [34] is then used to obtain an
abstract model which is verified using the SAL symbolic model checker (SMC) [30].
The HSolver [31] constraint solver is used alternatively for property verification and as
a refinement procedure for counterexample generated by SAL-SMC. We illustrate the
methodology on several analog examples including Colpitts and tunnel diode oscillator
circuits.

The rest of the paper is organized as follows: We start with an overview of the
relevant work in Section 2. After that, we describe the different phases of the equations
extraction process along with the bond graphs theory in Section 3. This is followed by
an explanation of the proposed verification methodology in Section 4. Experimental
results are provided in Section 5 before concluding the paper with Section 6.

2 Related Work

The presented verification methodology spans through many different research do-
mains. Therefore we will only highlight the most crucial information including the work
on bond graphs for the analysis of analog designs. A survey of the current research do-
mains for the application of formal methods to the verification of analog designs will

be presented. Finally, we give an overview of the application of predicate abstraction
and constraints solving methods for the verification of hybrid systems.

Modelling analog circuits for formal verification. One of the main challenges of the
formal verification of analog designs, is the development of adequate models that pre-
serve the required behaviour. For instance, continuous-time models can express in great
detail the behaviour of a system and thus reside at the lower end of the abstraction scale.
Such models are generally based on differential equations. Mathematical models that
capture correct functional behaviour of the system as well as its physical characteristics
are used as a means for specifying, analyzing and designing analog designs.

Significant effort is required to create an appropriate formal model for each differ-
ent system. Extracting the system equations to be used in behavioural modelling is a
challenging task in the analog design process. Nodal analysis techniques have been de-
veloped to this aim by extracting equations from the circuit netlist. However the result-
ing equations are in general, very large and too complicated to be used for behavioural
analysis required at a higher level in the design process. For example, in the context of
formal verification, the authors of [19] relied on the symbolic analysis toolbox Analo-
gInsydes to obtain the system equations necessary for the verification.

In comparison with conventional symbolic extraction methods [35], bond graph
based modelling has several advantages as it provides a visual representation of the
design. By construction, it checks for the consistency of the topological settings of the
design. Moreover, it allows the hierarchical modelling of designs which can aid as an
abstraction setting for the design. Finally, from the bond graphs, the system equations
are extracted symbolically in a structured way.

Another approach that was developed recently is based on using simulation traces
to generate a formal model which can be used during state space exploration. Such
approach was used by Dastidar, et al. [9] to generate a finite state machine (FSM) from
a set of simulation traces. A similar approach was proposed by Little et al. in [26],
where they generated from simulation data, a hybrid petri net at the front-end to their
model checker.

Unlike the above mentioned methods, bond graph based modelling allows a sym-
bolic extraction of the system equations, hence providing more precise models which
raises the confidence in verification.

Analog design verification. The most common trend in analog verification is using
on-the-fly state space exploration techniques, where the set of reachable states corre-
spond to the overapproximate solution of the system equations, which is obtained for
a bounded period of time. An alternative approach is one where the whole state space
is subdivided into regions and then computational rules define the transitions between
states. Model checking algorithms are applied on the new abstract model of the system,
which is generally described as a finite state automaton.

For instance, in the early work in [24], the authors constructed a finite-state dis-
crete abstraction of electronic circuits by partitioning the continuous state space into
fixed size hypercubes and computed the reachability relations between these cubes us-
ing numerical techniques. In [14], the authors tried to overcome the expensive compu-

tational method in [24], by combining discretization and projection techniques of the
state space, hence reducing its dimension. While the approach in [14] is less precise
due to the use of projection techniques, it is still sound. Variant approaches of the latter
analysis were proposed. For instance, the model checking tools d/dt [10], Checkmate
[18] and PHaver [13] were adapted and used in the verification of a biquad low-pass
filter [10], a tunnel diode oscillator and a ∆Σ modulator [18], and voltage controlled
oscillators [13]. In [19], the authors used intervals to construct the abstract state space,
while using heuristics to identify possible transition between adjacent regions. The main
difference with [24], is that they allow variable sized regions. Petri nets based models
and algorithms have also been developed for the reachability analysis of analog designs
in [25]. In [39], the authors proposed a non-linear approximation for reachable states,
where the state space exploration algorithms are handled with Taylor approximations
over interval domains. They used this technique along with symbolic manipulation anal-
ysis for the bounded model checking. More details about relevant related work on the
formal verification of analog designs can be found in [41]

All of the surveyed formal methods limit the verification of the circuit to a pre-
defined time bound because they depend on explicit state exploration. In contrast, we
propose in this paper using qualitative based methods for the construction and verifica-
tion of abstract models, which overcomes the time bound requirement. In addition we
extend the verification with a counterexample refinement procedure.

3 Analog Design Modelling

In analog design, it is convenient to model the circuits by specifying the corresponding
topological description. This is generally achieved through schematic drawing or Spice
netlist coding. The design equations are then extracted from the netlist. This goal is
achieved in this paper through the methodology steps described in Figure 2.

At first, we require that the Spice model of circuit in question is described in Dy-
mola [12], which can be translated automatically to the corresponding bond graph. The
circuit components are then represented by generic objects that represent the same phys-
ical quantities as in the circuit diagram, but are connected by bonds that explicitly show
the flow of power (the notion of bond graphs will be introduced in Section 3.1) . At this
point simplification rules are applied to reduce bond graphs. For example, at the most
basic level this entails combining two resistors that are in series. The modelling frame-
work Dymola, which provides a library called BondLib, has been used to represent
the bond graphs. The bond graphs are inherently acausal, but by assigning causality to
the components, the system’s equations can be automatically generated using Dymola
BondLib [4]. Generally, the equations representing the circuits are differential algebraic
equations (DAEs). Here, Dymola applies symbolic manipulation techniques in order to
generate automatically the corresponding ODEs from the DAEs as described in [29].
However, this comes at the cost of introducing algebraic equations which can be then
simplified or even eliminated using Mathematica simplification rules. (Mathmodelica
[20] can also be useful at this stage).

The advantage of using Bondlib is that it preserves the behaviour of the correspond-
ing Spice models of electrical components while allowing the modelling at several lev-

els of abstraction. For instance, MOSFETs can be represented using different Spice
levels or can be specified through behavioural modelling.

Dymola/
BondLib

Bond Graph
Simplification

Rules

Level of
Abstraction

Dymola/
Modelica

Dymola/
Mathematica

Equation
Simplification

Rules

Analog Circuit
Spice/Diagram

Bond
Graphs

Extracted
DAEs

ODEs

Dymola/
BondLib

Bond Graph
Simplification

Rules

Level of
Abstraction

Dymola/
Modelica

Dymola/
Mathematica

Equation
Simplification

Rules

Analog Circuit
Spice/Diagram

Bond
Graphs

Extracted
DAEs

ODEs

Fig. 2. Bond Graph based Modeling

3.1 Bond Graph as Model for Analog Circuits

Bond graphs were introduced by Paynter [38] who hypothesized that all physical sys-
tems and the interactions between them could be modeled using energy and power
alone. His work was extended later on by Karnopp and Rosenberg [3] to enable the
bond graph theory to be used in practice. They developed multi-port objects that could
be used with power bonds to model the flow of energy and information [21]. The ben-
efit of a modelling framework based on energy flow is that different domains can be
analyzed using the same methodology.

Bond graphs define a necessary and sufficient set of primitives for the modelling of
a wide range of practical systems. The necessary and sufficent set of primitives consists
of five elements, but normally a more practical set of nine elements is used as shown
in Table 1. The storage group contains the elements for capacitive storage (C type) and
inductive storage (I type). The supply group contains the sources of effort and flow.
The reversible transformation group contains a transducer and gyrator. The irreversible
transformation group contains the elements for thermal losses and entropy producing
processes. While the distribution group contains junctions that represent the generalized
domain independent KVL and KCL laws.
Connections. Bond graphs are based on the first principle of energy conservation. The
most basic element of a bond graph is the power bond (Figure 3.a). It is the energy link
between two components. It is represented graphically by a harpoon (half arrow), which

Table 1. Basic Objects of Bond Graphs

Group Components Electrical Domain Example
Storage Capacitive/Inertial Capacitance/Inductance
Supply Source of effort/Source of flow Voltage source/Current source

Reversible transformation Transducer/Gyrator Transformer
Irreversible transformation Entropy producing process Thermal Resistance

Distribution 0 and 1 junctions KVL, KCL

points in the direction of positive power flow. The bond represents two variables, effort
and flow. In the electrical domain the effort variable is represented by voltage and the
flow by current. It follows that the product of the effort and flow variables represents
the power flowing through the bond. Additional variables can also be derived from the
bonds. The displacement and momentum energy variables are related to the energy and
flow by their time derivatives.

The next basic component is the junction, which represents a circuit node or mesh
(Figure 3.b). At the 0 or common-effort junction the efforts are equal, which is anal-
ogous to a node in a circuit. At the 1 or common-flow junction, the flows are equal,
which is analogous to a mesh in a circuit.

(a) Power Bond (b) Mesh Bond

Fig. 3. Basic Bonds

Components. Using the bonds and junctions, it is possible to connect components to-
gether in a bond graph. There are different types of single and multi port interfaces that
can be used to represent many configurations. The single port components are described
below. The first basic elements are the sources of effort or flow. They are analogous to
voltage and current sources in circuit diagrams. Additional single port components are
used to represent resistors, capacitors and inductors. They are denoted using the letters
R, L or C (See Figure 4.a).

It is possible to represent other electrical circuit components, such as transformers,
gyrators and switches using two port interfaces but their application and description
are beyond the scope of this paper. It is important to note though that more advanced

components exist and they can be used to model electronic components beyond simple
analog ones.

(a) RC bond (b) Causality

Fig. 4. Bond Graphs Basics

We have now seen how a given bond graph and a set of constitutive relations maps
to a mathematical model of the underlying system. A preferred alternative is a sequence
of directed assignment statements such that unknowns can be immediately and sequen-
tially computed from the knowns on the right hand side. Such a model is sometimes
referred to as a computational model. Such a causal computational model requires the
model variables to be ordered in a specific cause-effect relationship.

Causality. Causality is the determination and representation of the directional relation-
ship between an input and an output [3] preserving the computational structure of the
design. In fact, the causality concept is very important as it allows to detect any in-
consistency in the circuit settings such as trying to connect two voltage sources with
different voltage levels. By adding a causal bar to the end of a bond, the system equa-
tions that represent the two variables of effort and flow can be indicated explicitly. There
are many rigorous explanations on how to assign the causality of a bond and how it re-
lates to the system as a whole [3, 38, 21]. Fortunately, a simple definition exists that can
be used for the direct translation of circuit diagrams. The causal stroke is attached to
the side of the bond that computes the flow variable [5] (Figure 4.b). It is important for
the modeler to know how to assign causality manually because it can aid in the devel-
opment of complex bond graphs. However, in general causality is applied automatically
using techniques like sequential causality assignment procedures (SCAP) leading to the
construction of the causal bond graphs [27].

In summary, causality assignment is advantageous as it provides computational in-
formation of the system like the number of state space variables which leads to the
automatic derivation of the system equations. It also aids in checking for the presence
of algebraic loops during the model execution, which results in complex DAEs. Ad-
ditionally, causality analysis is very useful in detecting ill posed models and can give
insight to the correctness and consistency of designs.

Example 1. The tunnel diode oscillator circuit in Figure 5.a, which has been used by
many researchers (e.g.,[18, 19]) as a benchmark, will be used as an example throughout
the paper to demonstrate each step of our methodology. The tunnel diode exploit a
phenomenon called resonant tunneling due to its negative resistance characteristic at
very low forward bias voltages. This means that for some range of voltages, the current

decreases with increasing voltage. This characteristic makes the tunnel diode useful as
an oscillator.

This introductory example is provided as a frame of reference for the analog de-
signer. Figure 5.b is a HSPICE representation of the tunnel diode in Figure 5.a. Each
node is represented by a number and each component is represent by an alphanumeric
name. It is a one to one mapping of the circuit diagram to the HSPICE code. An external
model file provides the behaviour of the tunnel diode.

Example 2. The transformation from a circuit diagram to bond graph is comparable
to the previous HSPICE example. Each circuit diagram component is transformed into
its bond graph counterpart. They are then interconnected by transforming nodes into 0
junctions and meshes into 1 junctions as shown in Figure 6. This is preformed according
to the bond graphs rules described earlier.

(a) Circuit Diagram (b) HSPICE Code

Fig. 5. Tunnel Diode Oscillator

Simplification. There exists two levels of simplification that can be performed on bond
graphs. Firstly, there are equivalence rules for the junction object. These rules are used
to reduce the number of bonds in a circuit and are based on the simplification of the
underlying power equations. The equivalence rules can be performed automatically to
a bond graph(Figure 7).

The second level of simplification is analogous to the concept of combining many
resistances into one equivalent resistance. The similar idea can also be applied in the
physical domain to two rigidly connected bodies that can be combined into a single
mass [17]. By choosing to combine certain bond graph elements, it is possible to reduce
the complexity of the system without affecting the overall function. This can result in
simpler DAEs that are extracted from the reduced bond graph model. By using a simpler
model, the number of states can be reduced, allowing for a less complex verification
problem.

Example 3. Simplifications of the bond graph in Figure 6 can be made. The removal of
the bonds that are connected to ground can be removed since the voltage at those nodes
is zero, indicating that the power flow is zero. Since the flows at 1 junctions are equal, 1

Fig. 6. Tunnel Diode Initial Bond Graph

junctions in series can be merged together. The resulting simplified bond graph is given
in Figure 8.a.

As a final step to the simplification process, any junction that has only two bonds
connected to it can be removed since no power that flows through a two port junction
can divert to another component as shown in Figure 8.b.

Fig. 7. Simplification Rules for Bond Graph Junctions

Example 4. The next step in the conversion process is to add a causality stroke to each
bond. The stroke determines at which point the flow variable is to be calculated. Causal-
ity can be computed automatically, but it is recommended to use causal bonds since they
can help in analyzing the model when designing larger systems. Certain bond graph el-
ements only have a set number of causalities that can be assigned. For instance, at 0
junctions the efforts are equal which indicates that only one causality stroke is assigned

(a) First Simplification Pass (b) Second Simplification Pass

Fig. 8. Tunnel Diode Bong Graph Simplifications

because of the single flow equation defining the junction. Similarly, at 1 junctions the
flows are equal, which indicates that there should be only one bond without a causality
stroke because of the single effort equation defining the junction. For capacitors and
inductors causality is chosen so that differential equations are generated. The stroke
is away from capacitors and towards for inductors. The final bond graph is defined as
shown in Figure 9.

Fig. 9. Tunnel Diode Causal Simplified Bond Graph

Different levels of abstraction for verification. Bond graphs have been characterized
as “the most basic graphical modelling paradigm that is fully objected-oriented” [4].
It follows that the concept of encapsulation can be applied to bond graphs to model

systems at different levels of complexity. The benefit being that there is no need for
single complex equation layer to define a system.

The BondLib library developed by Cellier et al. [4] demonstrates the benefit of
object oriented modelling with bond graphs. The transistor models for BJTs and MOS-
FETS are true HSPICE models that can be set to different levels of complexity [4]. At
each level, parasitics, current leakages and non-ideal effects can be added to the model
by specifying the correct parameter. The parameters are available to the modeler to dy-
namically alter the bond graph level. For instance, the difference between the MOSFET
level 0 and 1 is that the capacitances between the source, drain, gate and body are set to
zero. This allows for a simplification that can be used to verify system properties based
on specific device configurations.

3.2 Analog Computation Modelling

Once the bond graph is built, the set of system equations can be extracted and simplified.
In the current project, we use Mathematica simplification functionalities in order to
remove redundant equation through rewriting techniques. The final system of equations
are the computational model on which we apply the verification. In general, the analog
design computational model can be described as follows:

Definition 1. Analog Design Model.
An Analog Design Model is a tuple A = (X ,X0,U,F), with X = Vc1 ×Vcn × . . .× Ilm ⊆
Rd as the continuous state space with d-dimensions, where Vci and Il j are the voltage
across the capacitance Ci and the current through the inductance l j, respectively. X0 ⊆
X is the set of initial states (initial voltages on the capacitances and currents through the
inductance). U ∈Rk is the set of possible input signals to the design and F : X ×U →
Rd is the continuous vector field.

The analog design can then be described by the system of ODEs as follows:

Definition 2. System of ODEs (ODEs)
Consider a set of variables xk(t) ∈R, i ∈ {1, . . . ,d}, t ∈R, an ODE is a system consist-
ing of a set of equations of the form:

ẋk =
dxk

dt
= ẋ = Fk(x(t),u(t), t)

where x(t) are variables defining the voltage across the capacitance and the current
through the inductance. u(t) ∈ Rm are variables defining the input signals, with the
vector fields Fk.

The semantics of the analog model A = (X ,X0,F) over a continuous time period
Tc = [τ0,τ1]⊆ R+ (t1 = ∞ in case of complete behaviour) can be described as a trajec-
tory Φx : Tc → X for x ∈ X0 such that Φx(t) is the solution of ẋk = Fk(x1, . . . ,xd), with
initial condition Φx(0) = x and t ∈ Tc, is a time point.

Example 5. The tunnel diode bond graph is constructed in the Dymola environment.
The BondLib library contains graphical modules for bonds and nodes. The resistors, in-
ductors and capacitors all use HSPICE based models contained in ModelicaSpice which
is itself a sub-library of BondLib. Dymola then converts the bond graph to Modelica
code. Index reduction, function tearing and further algorithms then automatically trans-
form the DAEs to ODEs from the Modelica code. Since Dymola uses dummy variables
to aid in the conversion from DAEs to ODES many extra variables are present in the
final output. By constructing simplification rules in Mathematica, the system of ODEs
can be simplified. The output of Dymola is shown in Figure 10.

With the simplified equations, we can now focus on the current IL and the voltage VC
across the tunnel diode in parallel with the capacitor of the serial RLC circuit (Figure 5).
The extracted simplified ODEs are given as V̇C = 1

C (−Id(VC)+ IL) and İL = 1
L (−VC−

1
G IL +Vin), where Id(VC) describes the non-linear tunnel diode behaviour.

Fig. 10. System of ODEs generated by Dymola

4 Analog Design Verification

The verification proposed in this paper is based on combining predicate abstraction
and constraint solvers. In predicate abstraction, the analog state space is turned into a
Boolean state space over which symbolic model checking is applied. This method is
then suitable for the verification of designs with a higher dimension state space. This
comes at the cost of the precision of the abstraction based verification employed. To
overcome such problems, refinement procedures are often associated with verification.

On the other hand, constraint solving techniques are applied directly on the continuous
state space which provide more accurate verification results. However, constraint based
methods are more computationally expensive and are usually limited to lower dimen-
sion systems. To take advantage of both techniques, we provide two verification settings
combining predicate abstraction and constraint solving.

Approach 1: Enhancing Constraints based Verification using Predicates. In the ap-
proach shown in Figure 11, we strengthen the constraint based verification with predi-
cates that act as constraints on the state space. This is technically practical as the addi-
tion of useful constraints usually limits the state space exploration and providing means
for pruning unreachable states, which reduce the computational cost and even in some
cases make some verification problem more tractable.

In this approach, HybridSal is applied on the system equations to obtain an ab-
stract state graph of the circuit behaviour. The satisfaction of properties is verified on
these regions using constraint based methods. The abstract graph, along with the system
equations and the property of interest are then used as an input to HSolver. The prop-
erty verification provides the advantage of avoiding explicit computation of reachable
sets. If the property cannot be verified at this stage, refinement is needed only for the
non-verified regions by adding more predicates (e.g., using Mathematica). Verification
is then applied on the newly generated abstract model.

Basically, HSolver has an internal abstraction refinement procedure. However, due
to overapproximation the refinement does not terminate unless there is a bound on it
which is specified when running the tool. When the bound is reached but verification
does not terminate, then we get a non conclusive answer and a set of intervals that
violates the property. Refinement can be done by increasing the bound or choosing
tighter constraints for the abstract states. Adding constraints is done by generating more
predicates using HybridSal.

Approach 2: Predicate Abstraction based Verification. The second approach illus-
trated in Figure 12 is an abstract model checking approach extended with a counterex-
ample validation and refinement procedure. In abstract model checking, when a prop-
erty cannot be verified, a counterexample is generated identifying the reasons for the
possible property violation. As the generated counterexample is an abstract one, due
to the overapproximation, it is essential to validate the counterexample. In case it is
spurious, the information from it can be used to refine the abstract reachable states.

In the approach presented in this paper, symbolic model checking using SAL-SMC
is applied on the abstract state space generated from HybridSal. The constraint based
solver HSolver is used as a counterexample validation procedure for the abstract model
checking SAL-SMC. The approach shown in Figure 12 requires as input the represen-
tation of the analog circuit as system of ODEs, the initial conditions and the temporal
property of interest. At first, the abstract model is built automatically using the predi-
cate abstraction tool HybridSal. If the property verification succeeds, the approach ter-
minates, otherwise an abstract counterexample is generated. The predicates specifying
the counterexample are turned into constraints that are provided to HSolver, along with
the property and the system of ODEs. HSolver tries to validate the property only in the

Temporal
Property

System of
ODEs

HSolver

HybridSal

Predicate
based

Constraints

Refinement /
Add

Predicates

Property
Verified

Verification
Fails

Initial
Constraints

Fig. 11. Constraints based Verification

regions described by the provided constraints. If the property is verified, then we de-
duce that the counterexample is spurious and a refinement procedure based on removing
spurious transitions is applied on the abstract model and symbolic model checking is
re-applied on the refined model. On the other hand, if HSolver fails to provide a de-
cisive answer about the property validation, the abstract model is refined by abstract
states splitting which results by adding more predicates.
Note. Unfortunately, there is no guarantee that a spurious counterexample can be re-
futed and the procedure might not terminate. Technically, this happens if the approxi-
mation is too loose and not precise enough, which results in behaviour that is impossi-
ble in reality. To our knowledge no efficient solution exists for such problems, however,
other practical counterexample validation techniques have been proposed in [7].

4.1 Constraint Based Verification

Constraint solving is the study of systems based on constraints (relation between the
variables of the system). The idea of constraint solving is to solve problems by stating
constraints about the problem area and consequently, finding solutions satisfying all the
constraints. Two categories of constraint solvers are identified [37]:

– Satisfiability constraint solvers: When a constraint solver pronounces the existence
of a solution, the constraints are guaranteed to have a numerical solution. In ad-
dition, if a solution is produced, then it is guaranteed that this solution satisfies
the constraints. One such solver is Rsolver [32] and Mathematica Capabilities like
Reduce and FindInstance [36].

– Unsatisfiability constraint solvers: If a constraint solver pronounces the infeasibility
of the input constraints, then this result is sound. If no solution is produced, then this
means that the system is unfeasible. Realpaver [15] is an example of this category.

Temporal
Property

System of
ODEs

SAL-SMC

HybridSal

Abstract
State Space

Validation
using

HSolver

Refinement /
Add

Predicates

Property
Verified True

Counterexample
Provided

Validation
Fails

Initial
Constraints Remove

Spurious
Transitions

Spurious
CounterexampleTemporal

Property
Temporal
Property

System of
ODEs

System of
ODEs

SAL-SMC

HybridSal

Abstract
State Space

Validation
using

HSolver

Refinement /
Add

Predicates

Property
Verified True

Counterexample
Provided

Validation
Fails

Initial
Constraints

Initial
Constraints Remove

Spurious
Transitions

Spurious
Counterexample

Fig. 12. Predicate Abstraction based Verification

In constraint solving techniques, the uncertainty of numerical variables are over-
approximated using intervals of real numbers to make safe decisions possible. Interval
based arithmetics techniques provide efficient and safe methods for solving continuous
constraint satisfaction problems where real variables are constrained by equalities and
inequalities. The soundness is inherited form the inclusion property of interval arith-
metics [28].

Theorem 1. Let f : Rn → R be a continuous function, then F : In → I is an interval
extension of f if { f (x1, . . . ,xn)|x1 ∈ X1, . . . ,xn ∈ Xn} ⊆ F(X1, . . . ,Xn), where I is the
interval domain.

In the context of differential equations, constraint based approaches provide safe
methods for solving initial value problems which verify the existence of unique so-
lutions and produce guaranteed bounds for the true trajectory. In this paper, for the
verification purpose, we use HSolver [32]. The basic idea behind the tool is to decom-
pose the state space into hyperboxes. Interval arithmetic is then used to check the flow
on the boundary between neighboring boxes. This is done via an abstraction refinement
framework in order to achieve precise results.

We make use of constraint based verification as a verification engine for two pur-
poses. First, it is used as a verification engine to verify safety properties. Second, since
more complex properties need to be verified using predicate abstraction the constraint
solver tool HSolver is used to refine the abstract model by refuting invalid transitions
between abstract states.

4.2 Abstraction Based Verification

The common concept between safety verification based on constraint solving and model
checking based on predicate abstraction is the requirement of overapproximation for the
reachable states.

Given the analog model transition system TA representing the analog behaviour and
a property ϕ expressed in ∀CTL. The problem of checking that the property holds in
this model written as TA |= ϕ can be simplified to the problem of checking that a related
property holds on an approximation of the model TΨ, i.e., TΨ |= ϕ. More formally, the
main preservation theorem can be stated as follows [7]:

Theorem 2. Suppose TΨ is an abstract model of TA , then for all ∀CT L state formulas
describing TΨ and every state of TA , we have s̃ |= ϕ⇒ s |= ϕ, where s∈ γ(s̃). Moreover,
TΨ |= ϕ⇒ TA |= ϕ.

If a property is proved on an abstract model TΨ, then we are done. If the verification of
TΨ reveals TΨ 2 ϕ̃, then we cannot conclude that TA is not safe with respect to ϕ̃, since
the counterexample for TΨ may be spurious. In order to remove spurious counterexam-
ples, refinement methods on the abstract model can be applied [7].

4.3 Safety Verification

In general, for analog designs, the kind of properties we are interested to verify can be
for example: The system behaviour will be the same for the set of initial condition, or,
For which set of parameters values, the circuit oscillates? Many of these properties can
be stated as safety properties. Suppose that we need to verify a safety property spec-
ified in temporal logic as ∀G¬p (which means always constraint p will be satisfied),
we build the dual property ∃♦¬p (which means that there is an execution falsifying
the constraint p) and apply feasibility checking on dual property within the invariant
regions of interest. If the constraints system is satisfiable, we conclude that the property
might be violated otherwise, the property is verified.

Example 6. Consider the tunnel diode circuit with the set of parameters {C = 1000e−12,
L = 1e−6, G = 2000e−3, Vin = 0.3} and the initial values {VC = 0.131V, IL =
0.055A}. We verify that the preceding combination of parameters and initial condi-
tions do not produce oscillatory behaviour. The behaviour in question is stated as the
safety property Gv ≤ 0.6. The validation of the property ensures the non-existence of
oscillation.

We apply the second verification for the verification of the tunnel diode oscillator.
Once the simplified system of ODEs has been extracted as shown in Example 5, they
can be used to form a hybrid system definition in the HybridSal modelling language, as
in Figure 13. In general, the hybrid system definition has both discrete and continuous
sections that allow the entire behaviour to be modeled.

Fig. 13. HybridSal Tunnel Diode Description

4.4 Predicate Abstraction

Predicate abstraction is a method where the set of abstract states is encoded by a set
of Boolean variables representing each a concrete predicate. Based on [1], we define
a discrete abstraction of the analog model A with respect to a given n-dimensional
vector of predicates over reals where each predicate is of the form ψ : Rd → B, with
B = {0,1} and d is the state variables numbers with ψ(x) := P (x1, . . . ,xd) ∼ 0, where
∼∈ {<,≥}. Hence, the infinite state space X of the system is reduced to 2n states in
the abstract system, corresponding to the 2n possible Boolean truth evaluates of the set
of predicates. We can define the abstract behaviour of the analog circuit as a transition
system that overapproximates that behaviour.

Definition 3. Abstract Transition System. An abstract transition system is a tuple
TΨ = (QΨ,Ã,QΨ,0), where:

– QΨ ⊂ L×Bn is the abstract state space for a n-dimensional vector predicate, where
an abstract state is defined as a tuple (l,b), with l ∈ L is a label and b ∈ Bn.

– Ã⊆ QΨ ×QΨ is a relation capturing abstract transition such that {b Ã b′|∃x ∈
ϒΨ(b), t ∈ R+ : x′ = Φx(t) ∈ ϒΨ(b′)∧ x → x′}, where the concretization function: ϒΨ :
Bn → 2R

d
is defined as ϒΨ(b) := {x ∈ Rd |∀ j ∈ {1, , . . . ,n} : ψ j(x) = b j}.

– QΨ,0 := {(l,b) ∈ QΨ|∃x ∈ ϒΨ(b),x ∈ X0} is the set of abstract initial states.

In general, the effectiveness of the predicate abstraction method depends on the
choice of predicates and the precision of the transition relation between abstract states.
Several criteria are raised for the choice of appropriate predicates. For instance, ba-
sic ideas from the qualitative theory of continuous systems can be adapted within the
predicate abstraction framework as proposed in [34, 40].

For example, a set of predicates can be constructed using the notion of critical
forms, which are special functions along them, the vector field direction is either ver-
tical or horizontal. In between these forms, there can be neither vertical nor horizontal
vectors. In a region (abstract state) determined by the critical forms, all vectors follow
one direction. These predicates can be obtained easily by setting ẋ = 0. A generaliza-
tion of critical forms is the concept of isoclines. Isoclines are functions over which the
system trajectories have a constant slope. A predicate π is an isocline of ODEs system
if and only if ∃ai ∈ R with i = 1, . . .d such that Σd

i=1aiPi(x)|π = 0.
Isocline and critical forms provide qualitative information about the system be-

haviour. Hence, such information can be used in refuting certain behaviour that is shown
unreachable. For instance, by knowing different constants ai, we deduce the direction of
the flow crossing the isoclines and therefore we decide how to build transitions between
abstract states. Finding different isocline predicates within an invariant region can be
achieved by solving constraints on the parameters of predefined forms of an isocline
predicate.

Other methods for finding useful predicates were developed in [34], where the au-
thors proposed a way to extract predicates from polynomial ODEs by looking at higher
derivatives. If p ∈ P, then add ṗ, the derivative (with respect to time) of p, to the set P
unless ṗ is a constant or a constant factor multiple of some existing polynomial in P.

Predicates related to the basic functionality of the design of interest can also be
provided in a manual fashion. The conventional analysis of circuits can be an interest-
ing direction for obtaining attractive predicates. It is worth noting that the termination
of the predicate generation phase is not necessary for creating an abstraction. We can
stop at any point and construct the abstract model. A larger predicate set yields a finer
abstraction as it results in a larger state space in the abstract model.

Constructing the Transition Relation The other issue in predicate abstraction is the
identification of the possible transitions. In general, information from the solution of
the ODEs is required to describe transitions between abstract states. In practice, each
abstract transition is initialized to the trivial relation, relating all states and then step by
step refined by eliminating unfeasible transitions. This guarantees that any intermediate
result represents an abstraction and the refinement can be stopped at any point of time.
The generated abstract state transition system can then be verified using a symbolic
model checker SAL-SMC.

Several complimentary approaches can be used in order to enhance the precision
of the transition system. The simplest rule to use is the Hamming distance rule [34].
The Hamming distance (HD) is the number of predicates for which the corresponding
valuations are different in different abstract states. For instance, the Hamming distance
between state s1 := (p1 = 1∧ p2 = 0∧ p3 = 1∧ p4 = 1) and state s2 := (p1 = 1∧ p2 =
0∧ p3 = 0∧ p4 = 1) is 1, written HD(s1,s2) = 1. Given two abstract states s1 and s2,

we say that a transition can exist between two abstract states only if HD(s1,s2) = 1.
More advanced methods to refine the transition relation between abstract states where
developed in the literature [34, 1, 40].

Example 7. Given the tunnel diode circuit model described in Example 6, the Hybrid-
Sal tool generates the discrete abstract model illustrated in Figure 14. This abstract
model is model checked using SAL-SMC to verify the non oscillation property.

In this case, the SAL-SMC tool returns that the property is not proved and gives a
counterexample (see Figure 15). Specifically the property states that the predicate g1
must always be negative. However, the generated counterexample demonstrates a path
to where the g1 predicate is zero. The goal is to check whether the counterexample is
spurious or not.

Fig. 14. SAL Code for the Abstract Model of the Tunnel Diode Circuit

Example 8. The next step in the tunnel diode circuit verification is to validate the coun-
terexample produced by the SAL-SMC tool. By coding the predicates and transitions
specified in the counterexample into the HSolver tool as shown in Figure 16, we can
perform a more precise examination of the reachable states. If it is determined that the
counterexample is never reached then the spurious transitions can be removed from the
abstract model.

Fig. 15. SAL-SMC Generated Counterexample for SAL Code in Figure 14

In this case, the path of the counterexample produced by the SAL-SMC tool is never
reached indicating that the counterexample is spurious. Therefore, we remove from the
SAL code in Figure 14 all transitions from states where predicate g1 = neg holds to
states where g1 = zero holds. This refinement is done by applying cone of influence
[8] on the code in Figure 14. We find that g1 depends only on g0 and not g2 through
the function ASSVP(g1, g0). This is the reason why the jump conditions implemented
in the HSolver code in Figure 16 are based only on the g0 and g1 predicates. The
verification on the refined SAL code using SAL-SMC in this case succeeds, which
means that no oscillation will occur.

5 Experimentation Results

We have applied the proposed methodology on different analog examples in order to
verify certain properties related to functional behaviours. We will present below oscil-
lator circuits, namely the Chua circuit and Colpitts oscillators.

5.1 Chua Circuit

We use the first verification approach described in Section 4 in order to verify the Cir-
cuit shown in Figure 17.a. This circuit was designed and implemented by Chua [6] to

Fig. 16. HSolver Code for the Counterexample Validation of Figure 15

demonstrate the behaviour of chaos. This is illustrated with simulation as shown in Fig-
ure 17.b. The important component of the circuit is the non-linear resistance that is the
source of the chaotic behaviour. The non-linear resistor has distinct operating modes
which allow the state space to be divided in to three piecewise linear regions [22].

I = i f (V <−Ve) then Gb(V +Ve)−GaVe else i f (V >Ve) then Gb∗(V−Ve)+Ga∗Ve else Ga∗V

with Ga =−0.757576, Gb =−0.409091 and Ve = 1.

We are interested in verifying the property that the chaos of the circuit is bounded for a
given set of parameters. This can be specified using the safety property ∀[G−6≤Vc1 ≤
6] on the voltage across the capacitor C1 shown in Figure 17.

In order to apply the proposed verification approach, the circuit diagram in Figure
17.a is transformed to the corresponding bond graph. Simplification rules are then ap-
plied to obtain a reduced bond graph as shown in Figure 18. From the reduced bond
graph, we obtain using the Dymola/Modelica tool a corresponding set of equations that
are further processed by Mathematica in order to obtain the simplified set of equations.
The different abstract regions are formed by the predicates extracted using HybridSal
tool. The state space was split into three operating regions to define the different modes
of operation of the non-linear resistor. The system equations and the safety property are
then combined into the HSolver code in Figure 19. The results from HSolver indicate
that when the proper parameters are chosen for the components, the voltage across the
conductance indeed remains bounded within −6 and 6 volts.

5.2 MOS Colpitts Oscillator

The circuit diagram for a MOS transistor based circuit is shown in Figure 20.a. For
the correct choice of component values the circuit will oscillate. This is due to the bias

-10
-5

0
5

10

Vc1

-10
1

Vc2

-10

0

10

Il

-10
1

-10

0

10

(a) Circuit Diagram (b) Simulation (Mathematica)

Fig. 17. Chua Circuit

Fig. 18. Chua Circuit Bond Graph

current and negative resistance of the passive tank. The property that was analyzed was
whether for the given parameters and initial conditions will the circuit die out (Not os-
cillate) as shown in Figure 20.b. 1 The simplified equations are described as follows:

V c1
′ := 1.2−(V c1+V c2)

R∗C + Il
C − Ids

C , V c2
′ := −Iss

C + 1.2−(V c1+V c2)
R∗C + Il

C and Il′ := 1.2−(V c1+V c2)
L

with

Ids :=

0 V c2 > 0.3
kp∗ w

l ∗ ((0.3−V c2)∗ (V c1)−0.5∗ (V c1)2) V c1 +V c2 < 0.3
kp
2 ∗ w

l ∗ (0.3−V c2)2 V c1 +V c2 ≥ 0.3

Oscillation will not occurs if the current cannot exceed a certain bound. More pre-
cisely, if verified to true, the property ∀GIl >−0.004∧ Il < 0.004 is a necessary condi-
tion that implies no oscillation will occur. The system equations, the property of interest
along with the required constraints were then translated into the HSolver code. The state

1 The bond graph transformation of the circuit diagram will not be presented here to save space,
details of the verification can be found in a technical report [11].

Fig. 19. Chua Circuit HSolver Code

space was split into three regions because of the different states of the MOSFET tran-
sistor within the circuit. The property was verified to be true indicating no oscillation.

0.5 1 1.5 2
Vd

-0.0015

-0.001

-0.0005

0.0005

0.001

0.0015

0.002

Il

(a) Circuit Diagram (b) Simulation (Mathematica)

Fig. 20. MOS Colpitts Circuit

5.3 BJT Colpitts Oscillator

In order to understand the circuit behaviour, it is important to identify the different
modes of operations of the transistor when connected with other circuit components.
Circuit analysis is usually done by hand as simulation data is not conclusive. We can
apply constraint solving to ensure that the transistor will never go into a specific mode
of operation.

Consider the BJT based Colpitts oscillator shown in Figure 21. Correct functional-
ity ensures that the BJT will never go to saturation region [23]. In fact, the BJT will
either be in the Cut-off mode or Forward active mode. The state space is subdivided
into four regions according to the BJT modes of operations (Cut-off, Reverse active,
Forward active and Saturation) with threshold voltage Vth = 0.75 as shown in Figure
22. For instance, the property that no transition can occur from Forward active (m1)
to Saturation (m3), can be validated by proving that ∀G VC2 < 0.75∧VC1 +VC2 < 0 is
False, where VC1 and VC2 are voltages across the capacitors C1 and C2.

Fig. 21. BJT Colpitts Circuit

6 Conclusion

In this paper, we proposed a novel approach for the verification of analog circuits. The
greatest advantage of our methodology is the lack of the timed bound limitation asso-
ciated with explicit reachability analysis methods commonly encountered in the formal
verification of analog designs. The major contributions are the following:

– By using bond graphs as a framework to represent circuits, models can be con-
structed automatically at several levels of abstraction. This can reduce the com-
plexity of the system equations as well as simplify complex behaviour.

Fig. 22. HSolver Code of the BJT Colpitts Circuit

– For verification purposes, we proposed to combine predicate abstraction and con-
straint solving into two alternative methodologies. Our method does not require
explicit representation of state space and relies on functions that prove or disap-
prove circuit properties.

Future Work. Main future directions include the extension of the proposed approach
to analog and mixed signal designs. For this aim, we plan to represent the design us-
ing switched bond graph rather than the conventional one presented in this paper. We
also need to explore more case studies and apply the verification on more interesting
properties.

References

1. R. Alur, T. Dang, F. Ivancic. Reachability Analysis Via Predicate Abstraction. In
Hybrid Systems: Computation and Control, LNCS 2289, pp. 35-48. Springer, 2002.

2. P.C. Breedveld. Modeling And Simulation Of Dynamic Systems Using Bond
Graphs. In Control Systems, Robotics and Automation, Encyclopedia of Life Sup-
port Systems, Eolss Publishers, pp. 1-36, 2004.

3. F. Broenink. Introduction to Physical Systems Modeling with Bond Graphs, SiE
Whitebook on Simulation Methodologies, 1999.

4. F.E. Cellier, C. Clauss and A. Urquia. Electronic Circuit Modeling and Simulation
in Modelica, In Eurosim Congress on Modelling and Simulation, Vol. 2, pp. 1-10,
2007.

5. F.E. Cellier and A. Nebot. The Modelica bond graph library. In Modelica Confer-
ence, pp. 57-65, 2005.

6. L.O. Chua. Chuas Circuit : An Overview Ten Years Later, Journal of Circuits, Sys-
tems and Computers, 4:117-159, World Scientific, 1994.

7. E. Clarke, A. Fehnker, Z. Han, B.H. Krogh, O. Stursberg, M. Theobald. Verification
of Hybrid Systems based on Counterexample-Guided Abstraction Refinement. In
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 2619,
pp. 192-207, Springer, 2003.

8. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
9. T. R. Dastidar, P. P. Chakrabarti, Verification System for Transient Response of Ana-

log Circuits Using Model Checking. In IEEE International Conference on VLSI,
pp.195-200, 2005.

10. T. Dang, A. Donze, O. Maler, Verification of Analog and Mixed-signal Circuits
using Hybrid System Techniques. In Formal Methods in Computer-Aided Design,
LNCS 3312, pp.14-17, Springer, 2004.

11. W. Denman, M. Zaki and S. Tahar. Analog Formal Verification
Via Bond Graphs and Constraint Solving. Technical Report, ECE
Dept., Concordia University, Montreal, Quebec, Canada, April 2008.
http://hvg.ece.concordia.ca/Publications/TECH REP/ AMS BG TR08

12. H. Elmqvist. Dymola - Dynamic Modeling Language, User’s Manual. Lund: Dy-
nasim AB, 1994.

13. G. Frehse, B. H. Krogh, R. A. Rutenbar. Verifying Analog Oscillator Circuits Using
Forward/Backward Abstraction Refinement. In IEEE/ACM Design, Automation and
Test in Europe, pp. 257-262, 2006.

14. M. R. Greenstreet, I. Mitchell: Reachability Analysis Using Polygonal Projections.
In Hybrid System: Computation and Control, LNCS 1569, pp.103-116, Springer,
1999.

15. L. Granvilliers. On the Combination of Interval Constraint Solvers. Reliable Com-
puting, 7(6):467-483, Springer, 2001

16. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Computer
Aided Verification, LNCS 1254, pp. 72-83. Springer, 1997.

17. P.J. Gawthrop, G.P. Bevan. Bond-graph modeling. In IEEE Control Systems Mag-
azine, 27(2):24-45, 2007.

18. S. Gupta, B.H. Krogh, R.A. Rutenbar: Towards Formal Verification of Analog De-
signs, In IEEE/ACM Conference on Computer Aided Design, pp. 210-217, 2004.

19. W. Hartong, K. Klausen, L. Hedrich. Formal Verification for Nonlinear Analog
Systems: Approaches to Model and Equivalence Checking, Advanced Formal Veri-
fication, Kluwer: pp. 205-245, 2004.

20. M. Jirstrand, J. Gunnarsson and P. Fritzson. MathModelica - A New Modeling and
Simulation Environment for Mathematica. In the International Mathematica Sym-
posium, 1999

21. D. Karnopp, R. Rosenberg. System Dynamics: a Unified Approach, Wiley, 1975.
22. M.P. Kennedy. Three Steps to Chaos - Part I: Evolution. IEEE Transactions on

Circuits and Systems I, 40(10):640-656, 1993.
23. M.P. Kennedy. Chaos in the Colpitts Oscillator, IEEE Transactions on Circuits and

Systems I, 41:771-74, 1994.
24. R.P. Kurshan and K.L. McMillan. Analysis of Digital Circuits Through Symbolic

Reduction. IEEE Transactions on Computer-Aided Design 10:1350-1371, 1991.
25. S. Little, D. Walter, N. Seegmiller, C. Myers and T. Yoneda. Verification of Analog

and Mixed-Signal Circuits Using Timed Hybrid Petri Nets. In Automated Technol-
ogy for Verification and Analysis, LNCS 3299, pp. 426-440, Springer, 2004.

26. S. Little, D. Walter, K. Jones, C. J. Myers: Analog/Mixed-Signal Circuit Verifica-
tion Using Models Generated from Simulation Traces. In Automated Technology
for Verification and Analysis, pp. 114-128, LNCS 4762, Springer, 2007

27. T. Maehne, A. Vachoux. Proposal for a Bond Graph Based Model of Computation
in SystemC-AMS. In Languages for Formal Specification and Verification, Forum
on Specification & Design Languages, 2007.

28. R. E. Moore. Methods and Applications of Interval Analysis, Society for Industrial
& Applied Mathematics, 1979.

29. S.E. Mattsson, H. Olsson, H. Elmqvist. Dynamic Selection of States in Dymola. In
Modelica Workshop, pp. 61-67, 2000.

30. L.M. de Moura, S. Owre, H. Rue, J.M. Rushby, N. Shankar, M. Sorea, A. Tiwari:
SAL 2. In Computer Aided Verification, LNCS 3114, pp. 496-500, Springer, 2004.

31. S. Ratschan, Z. She. Safety Verification of Hybrid Systems by Constraint Propa-
gation Based Abstraction Refinement. In Hybrid System: Computation and Control,
LNCS 3414, pp. 573-589, Springer, 2005.

32. S. Ratschan. Continuous First-Order Constraint Satisfaction. In Artificial Intelli-
gence, Automated Reasoning, and Symbolic Computation, LNCS 2385, pp. 181-
195, Springer, 2002

33. J.-E. Stromberg, S. Nadjm-Tehrani, J. Top. Switched Bond Graphs as Front-end
to Formal Verification of Hybrid Systems. In Verification and Control of Hybrid
Systems, LNCS 1066, pp. 282-293, Springer, 1996.

34. A. Tiwari and G. Khanna. Series of Abstractions for Hybrid Automata. In Hybrid
Systems: Computation and Control, LNCS 2289, pp. 465-478, Springer, 2002.

35. J. Vlach, K. Singhal. Computer Methods for Circuit Analysis and Design. Kluver,
2003.

36. S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addi-
son Wesley Longman Publishing, 1991.

37. S. Xia, B. Divito, C. Munoz, Toward Automated Test Generation for Engineer-
ing Applications, In IEEE/ACM International Conference on Automated Software
Engineering, pp. 283-286, 2005

38. Yousri El Fattah. Constraint logic programming for structure-based reasoning about
dynamic physical systems. Artificial Intelligence in Engineering, 1:253-264, 1996.

39. M. Zaki, G. Al Sammane, S. Tahar, and G. Bois. Combining Symbolic Simulation
and Interval Arithmetic for the Verification of AMS Designs. In IEEE International
Conference on Formal Methods in Computer-Aided Design, pp. 207-215, 2007.

40. M. Zaki, S. Tahar, and G. Bois: Qualitative Abstraction based Verification for Ana-
log Circuits; Revue des Nouvelles Technologies de l’information, 4:147-158, RNTI-
SM-1, Edition Cepadues, 2007.

41. M.H. Zaki, S. Tahar, and G. Bois: Formal Verification of Analog and Mixed Signal
Designs : A Survey. Microelectronics Journal, Elsevier. In Print.

