
Towards Assertion Based Verification of
Analog and Mixed Signal Designs Using PSL

Ghiath Al Sammane, Mohamed H. Zaki, Zhi Jie Dong and Sofiène Tahar
Department of Electrical and Computer Engineering

Concordia University, Montreal, Québec, Canada
Email: {sammane, mzaki, zh do, tahar}@ece.concordia.ca

Abstract— Analog and Mixed Signal (AMS) designs are im-
portant integrated systems that link digital circuits to the analog
world. Following the success of PSL verification methodolo-
gies, recent research suggested extending PSL to support AMS
systems. However, PSL has been defined initially to formalize
properties about logical signals using models such as automata. In
fact, the presence of continuous signals in AMS systems and the
continuous notion of time are the main obstacles in adopting PSL.
In this paper, we propose an approach to verify PSL properties
for a class of AMS systems. Our approach is based on modeling
the AMS design in terms of a System of Recurrence Equations
(SRE). Then, we define an Assertion Based Verification method
using the symbolic trace of SRE.

I. INTRODUCTION

With the latest advancement of semiconductors technology,
circuit integration and performance paved the way to the
design of system on chip (SoC) for embedded systems. A
cornerstone in embedded systems are analog and mixed signal
(AMS) designs which are integrated circuits that are usually
needed at the interface between these system and the real
world [2], [3]; by processing analog signals and converting
between analog and digital data representation.

Classically, the verification of AMS designs is carried out
using simulation to validate basic properties or assertions. For
example, property monitoring of AMS designs is performed
primarily using assertions and tests. The monitoring can be
described in general as follows: The AMS design under
verification is simulated by attaching it to a testbench which
provides the inputs while monitoring its output. Assertions
have the property that they are always checked, regardless
of what tests are running. The monitor could be as simple
as observing a current or voltage. The main challenge in
monitoring AMS designs is the development of adequate
monitors able to express the properties. With AMS systems
growing more and more complex, current methodologies are
not strong enough to express interesting properties such as
temporal requirements.

The Accellera Property Specification Language (PSL) [1]
enjoys a concise syntax supported with a well defined for-
mal semantics, permitting unambiguous documentation and
automatic verification for complex designs. In fact, PSL has
changed completely how designers specify functional require-
ments and properties of digital systems. Today, most EDA
companies are supporting PSL in their tools through formal
property checking or through Assertion Based Verification

(ABV). However, PSL has been defined initially to formalize
properties about logical signals using models such as automata,
without any support of analog signals and the continuous
notion of time.

In this paper, we propose an approach to verify PSL prop-
erties for a class of AMS systems. Our approach is based on
modeling the AMS design in terms of a System of Recurrence
Equations (SRE) for both the analog and the digital parts of
the system. Using these equations, symbolic traces of both the
design and the assertions are computed. Then, we define how
these traces are used to numerically simulate the design and
verify PSL assertions in an offline fashion.

The rest of the paper is organized as follows: Related work
is discussed in Section II. In Section 1 we give an overview
of our verification methodology. A background about PSL
and the SRE model is given in Section IV. In Section V, we
show how to verify PSL properties using the notion of trace
with an illustration on a third order ∆Σ modulator. In Section
VI, we use our methodology to verify a PLL circuits before
concluding in Section VII.

II. RELATED WORK

According to [7], run-time verification can be classified in
two different fashions : Offline monitoring, where the property
verification starts after the whole simulation sequence is given.
Online monitoring is interleaved with the process of reading
the sequence and is similar to the way the sequence is read
by an automaton. Online monitors can detect violation or
satisfaction as soon as they happen. Several works have been
recently proposed for run-time verification of AMS designs.
The most prominent are discussed below.

In [8], an Online monitoring technique was proposed, where
the authors used linear hybrid automata as template monitors
for time domain features of oscillatory behavior, such as
bounds on signal amplitude and jitter. For the automata with
an error state, the reachability computation can be stopped as
soon as this state is reachable. The monitors are used within
the PHAver tool where nonlinear circuit equations are modeled
with piecewise affine differential inclusions. The authors used
the methodology to verify the oscillation property of tunnel
diode oscillators.

In [10], the authors proposed an online monitoring method-
ology for analog systems. They present a run-time verification
methodology based on monitoring the behavior (solution flow)

of analog circuits validated using interval analysis. Given the
system description and its specification described by non-
linear differential equations and timed computational temporal
logic (T-CTL) formulas, respectively, the authors build a timed
automata monitor which can detect bad behavior within a
specified time period of the interval arithmetics simulation.
They applied the methodology for the tunnel diode oscillators.

By contrast to the work we propose in this paper, the above
two work consider only analog behaviors, while mixed systems
are not supported. In addition, they lack any practical property
specification language.

In [6], Maler et.al proposed an offline methodology for
monitoring the simulation of continuous signals described by
differential equations. The work is based on extending the PSL
logic to support monitoring analog signals, by defining the
syntax and semantics of metric timed linear temporal logic
(MTL) and extended it with predicate over real to form the sig-
nal temporal logic (STL). MTL is then synthesized into timed
automata which monitor Matlab simulation traces to check for
property violation. A related idea was proposed in [9], where
the authors use an extended temporal logic, AnaCTL (CTL
for analog circuit verification), for monitoring the transient
behavior of non-linear analog circuits. The transient response
of a circuit under all possible input waveforms is represented
as an FSM created by means of repeated SPICE simulations,
bounding and discretizing the continuous state space of an
analog circuit. Exhaustive simulation is again a drawback as
the created FSM is not guaranteed to cover the total transient
behavior leading to soundness problem.

The above approaches synthesize the property in terms of
timed automata or in terms of FSM resulting in a detailed
lower abstraction level model. We propose to use a higher
level of abstraction based on recurrence equations and hence
avoiding state space explosion. Besides, unlike above related
work, our approach supports Sequential Extended Regular
Expressions (SERE) of PSL.

III. OVERVIEW OF THE METHODOLOGY

An AMS design is usually described using languages like
VHDL-AMS [13]. The semantics of these languages describes
separately the analog behavior and the digital behavior of
the design. For example, the VHDL-AMS standard specifies
that in order to simulate a mixed system, a set of solvability
conditions should be satisfied. Among these conditions, the
analog part should be described using a set of differential-
algebraic equations (DAEs) that can be converted into an
equivalent set of difference equations (recurrence equations).
The digital part, on the other hand, deals with discrete values
or states that change only at specified times or events.

In fact, the mixed-signal simulator should consider the in-
teractions between models represented as digital (with events)
and those represented as analog (with algebraic or differential
equations). The verification of properties relies on the com-
munication model between the two behaviors of the AMS
system. In our methodology, we support AMS systems that
can be described using discrete recurrence equations. The

AMS
Design

AMS
Specification

SRE PSL

Symbolic Simulation
Step

Symbolic
Trace

ABV with
Simulation

AMS
Design

AMS
Specification

SRE PSL

Symbolic Simulation
Step

Symbolic
Trace

ABV with
Simulation

Fig. 1. Overview of the Methodology

model gives the possibility to handle continuous behaviors
like that of current and voltages, but in discrete time intervals
which covers a non trivial class of mixed behaviors. This
mathematical model is more familiar to analog designers (as
most discrete circuits are described using difference equations)
rather than automata.

The proposed methodology is shown in Figure 1. We
start with the AMS description and we extract a System
of Recurrence Equations that represent the system. In our
case, we consider the properties provided in terms of an
extended PSL that we introduce in the next section. Both
the SRE and PSL properties are input to a special symbolic
simulator that performs one simulation step. The output of this
operation is the symbolic trace of the combined system (AMS
model + PSL properties). This trace gives the possibility of
indexing the design signals in terms of simulation time. The
Assertion Based Verification (ABV) is performed using these
time indexed values. Details of this approach will be explained
in the subsequent sections. We believe this method to enable
bridging the gap between AMS modeling and PSL verification.

IV. TECHNICAL BACKGROUND

A. The Property Specification Language PSL

PSL contains four layers: Boolean, temporal, verification
and modeling layer. The modeling layer is needed to define
the verification environment specially for formal verification
tools. The verification layer is more related to the description
of verification tools where notions like assume and guarantee
are present.

We limit our discussions only to discuss the Boolean layer
and the temporal layer. The Boolean layer provides the core
to build expressions. The temporal layer is the essence of
PSL where complex temporal relations between signals can
be expressed. The Foundation Language (FL) in the temporal
layer express properties that can be as simple as a Boolean
expression, an LTL property or SEREs. We present here only
the syntax of PSL (the semantics is presented along with our
verification approach later).

Definition 1: Syntax of Sequential Extended Regular Ex-
pressions (SEREs):
• if b is Boolean expression, then b is a SERE

• if r is a SERE, then r[∗] is a SERE (finite consecutive
repetitions)

• if r1 and r2 are SEREs, then the following are SEREs:
– the consecutive concatenation of two sequences,

r1;r2
– one-state overlapping concatenation r1 : r2
– disjunction of sequences r1|r2
– overlapping sequences r1&r2
– length-matching sequences r1&&r2

FL Property ::= Boolean|(FL Property)
The LTL operators, provide Linear Temporal Logic syntax

to PSL. These LTL operators form an alternative syntax for
the parts of equivalent PSL operators, for example:

next ⇔ X

eventually! ⇔ F

until! ⇔ U

always ⇔ G

B. The System of Recurrence Equations: SRE

A recurrence equation or a difference equation is the
discrete version of an analog differential equation. In con-
ventional system analysis, recurrence equations are used in
the definition of relations between consecutive elements of a
sequence.

In [5], the notion of recurrence equation is extended to
describe digital circuits using the normal form: generalized
If-formula.

Definition 2: Generalized If-formula
In the context of symbolic expressions, the generalized
If-formula is a class of expressions that extend recurrence
equations to describe digital systems. Let i and n be natural
numbers. Let K be a numerical domain in (N,Z,Q, R or B),
a generalized If-formula is one of the following:
• A variable Xi(n) or a constant C that take values in K
• Any arithmetic operation ¦ ∈ {+,−,÷,×} between vari-

ables Xi(n) that take values in K
• A logical formula: any expression constructed using

a set of variables Xi(n) ∈ B and logical operators:
not,and,or,xor,nor, . . . etc.

• A comparison formula: any expression constructed using
a set of Xi(n) ∈ K and comparison operator α ∈ {=, 6=
,<,≤,>,≥}.

• An expression IF(X ,Y,Z), where X is a logical formula
or a comparison formula and Y,Z are any generalized
If-formula. Here, IF(x,y,z) : B × K × K −→ K
satisfies the axioms:
(1) IF(True,X ,Y) = X
(2) IF(False,X ,Y) = Y

We define a System of Recurrence Equations as follows:
Definition 3: A System of Recurrence Equations (SRE)

Consider a set of variables Xi(n)∈K, i∈V = {1, . . . ,k}, n∈Z,
an SRE is a system of the form:

Xi(n) = fi(X j(n− γ)),(j,γ) ∈ εi,∀n ∈ Z

x3

+

+

+

+ v[n]y[n]x2x1 +

3a

3c2c1c

b4

2a

b 3b1 2

1a

b

u[n]

Quantizer

+

+

z−1
1

z−1
1 1

z−1

Fig. 2. Third Order ∆Σ Modulator

where fi(X j(n− γ)) is a generalized If-formula. The set
εi is a finite non empty subset of 1, . . . ,k×N. The integer γ
is called the delay.

C. SRE Based Symbolic Simulation

Transforming Ordinary Differential Equations (ODEs) into
difference equation is well known in the domain of analog
circuits simulation. For the digital part, [5] has defined a
method and implemented tool to extract a set of recurrence
equations (difference equations) from a digital synchronized
VHDL descriptions. We use the same framework to extract
the recurrence equation of the digital part. The symbolic
simulation algorithm is based on rewriting by substitution over
the SRE. The computation aims to obtain the trace of the
system as defined in [11].

Example: 3rdOrder∆Σ modulator

∆Σ modulators with single-bit quantizers have made pos-
sible the construction of robust high-resolution analog-to-
digital and digital-to-analog converters. The design of the
∆Σ modulator in Figure 2 is given using vector recurrence
equations X(k + 1) = C X(k)+ B u(k)+ A v(k), where A, B
and C are matrices providing the parameters of the circuit,
u(k) is the input and v(k) is the digital part of the system.

The condition of the threshold of the quantizer is computed
to be equal to c3x3(k)+ u(k). The digital description of the
quantizer is transformed into a recurrence equation: v(k) =
IF(c3x3(k) + u(k) ≥ 0,−a,a). The equivalent SRE of the
system is then:

x1(k +1) = i f (c3x3(k)+u(k) >= 0,x1(k)+b1u(k)−a1a,

x1(k)+b1u(k)+a1a)
x2(k +1) = i f (c3x3(k)+u(k) >= 0,c1x1(k)+ x2(k)+b2u(k)

−a2a,c1x1(k)+ x2(k)+b2u(k)+a2a)
x3(k +1) = i f (c3x3(k)+u(k) >= 0,c2x2(k)+ x3(k)+b3u(k)

−a3a,c2x2(k)+ x3(k)+b3u(k)+a3a)

A ∆Σ modulator is said to be stable if the integrator output
remains bounded under a bounded input signal.

Always −1 < x3 < 1

V. VERIFICATION OF PSL PROPERTIES

In the seek of compactness, we present the more intuitive of
the checker algorithmic description for a PSL operator or its
definition using SRE trace. Also, we limit our discussion for
one constructor to each operator as the idea can be generalized
to the variant of this constructor.

A. Writing PSL for AMS Systems

The Boolean layer in PSL is built using Boolean ex-
pressions imported from logical signals (and registers) of the
digital design. However, in the case of AMS systems signals
can have continuous nature where values are represented as
Reals. Then, the analog equivalent to a Boolean variable in
PSL is an inequations (or a predicate) that is constructed
using signals and registers of the AMS system. We call this
expression the Basic Property.

Definition 4: Basic Property
Let x be the name of an AMS signal (or register), a basic
property p is a logical formula defined as follows:
p = x ¦ y, where ¦ ∈ {<,≤,>,≥,=, 6=} and y is a value, a
name of signal (or a register) in the design or an arithmetic
function built using the design signals.

For instance, a basic property of the ∆Σ modulator described
in Section IV-C is −1 < x3 < 1. The Boolean aspect of this
predicate makes it possible to define the design behavior using
PSL. However, the mixed nature imposes some difficulties in
the verification of these properties. Our modeling in terms of
recurrence equations aims to overcome these limitations by
giving an explicit time representation for each property. In
fact, as the design is described using a System of Recurrence
Equations (SRE), we can represent each signal or register in
the basic property by an equivalent time instance from the
SRE. This time instance is not an abstraction of the property
in terms of Boolean variables, but it is the symbolic execution
trace of the system represented as recurrence relations.

Definition 5: Trace of the Basic Property
Let p be a basic property. For each signal (or register) x,y
in the basic property we associate a time instance of the form
x(n), where n∈N. This instance corresponds to the evaluation
of the recurrence equation representing this value at time n.
We call p(n) the trace of the basic property p. The nature of
n depends on the SERE or temporal layer operator proceeding
the basic property. The nature of n can be one of the following:

• Numerical constant value.
• Symbolic constant value.
• Time variable
The Temporal layer is used to specify temporal chains of

events of Boolean primitives. In our approach, these Boolean
primitives are replaced with basic properties.

Definition 6: Evaluation of the basic property
We say that, the trace of a basic property p holds at a
simulation cycle n, we write TrueQ(p,n), if its trace is
evaluated to True. Otherwise, the property is said to not hold
at that cycle.

B. Verification Checkers of SERE

The SERE concatenation operator (;) constructs a SERE
that is the concatenation of two other SEREs. For two SEREs
A and B: A;B holds on a path iff there is a future cycle n,
such that A holds tightly on the path up to and including the
nth cycle and B holds tightly on the path starting at the n+1th

cycle. Using our trace notations, we write:

A;B := TrueQ(A,n)∧TrueQ(B,n+1)

The SERE consecutive repetition operator ([∗]) con-
structs repeated consecutive concatenation of the same SERE.
A[∗n] holds tightly on a path iff the path can be partitioned
into n parts, where A holds tightly on each part. We write:

A[∗n] :=
n∧

i=1

(TrueQ(A, i))

The SERE non-consecutive repetition operator ([=]),
constructs repeated (possibly non-consecutive) concatenation
of a Boolean expression. A[= n] holds tightly on a path iff A
occurs exactly n times along the path. The observer is defined
as follows:

J = 0
for i = 1 to Nmax do

if TrueQ(A, i) then
J ++

end if
if J == n then

return True
end if

end for

C. Verification Checkers of FL Properties

FL properties describe single- or multi-cycle behaviors built
from Boolean or sequential expressions. The most basic FL
property is a Boolean expression which is a basic property in
the case of AMS systems. More complex FL properties are
built from Boolean expressions, sequential expressions, and
subordinate properties using various temporal operators. Here,
we discuss the verification of Linear Temporal Logic (LTL)
properties. However, the bounded nature of ABV makes the
verification of this property limited in time.

Implication operators, specify that an FL property or
sequence holds if some pre-requisite sequence holds:

A⇒ B := ¬TrueQ(A,n)∨ (TrueQ(A,n)∧TrueA(B,n))

Next operators, specify that an FL property holds at some
next cycle:

X(p) := TrueQ(p,n+1)

Always operators, specify that a property holds in the
current cycle of a given path iff the FL property or sequence
that is the operand holds at the current cycle and all subsequent
cycles. The operand of the always operator is an FL Property
or Sequence:

G(p) :=
∞∧

k=0

TrueQ(p,k)

Eventually! operator, specifies that an FL property or a
sequence holds at the current cycle or at some future cycle:

F(p) :=
∞∨

k=0

TrueQ(p,k)

Until operators, specify that one FL property holds until
a second FL property holds. An until! property holds in the
current cycle of a given path iff:
1) the FL property that is the right operand holds at the current
cycle or at some future cycle; and
2) the FL property that is the left operand holds at all cycles
up to, but not necessarily including, the earliest cycle at which
the FL property that is the right operand holds. We write:

pUp′ :=
∞∨

k=0

(TrueQ(p′,k)∧
k−1∧

j=0

TrueQ(p, j))

D. The Offline Assertion based Verification

The definitions of PSL checkers are used along with traces
of both the system and properties to verify assertions using
simulation. The offline algorithm is described below (Algo-
rithm 1). In line 1, the equations are initialized by assigning
the design initial values SInit . The loop in lines (2-5) describe
the simulation of the design for Nmax simulation cycles. At
each cycle i we assign an input to be stored in the set of cases
I. In line 4, the trace of the design is evaluated using I and
SInit in order to obtain values S(i) for all signals (and registers)
of the design at time 0 < i ≤ Nmax . After, that we use S(i)
along with the trace of the properties and the checkers defined
above to evaluate the assertions of the design.

Algorithm 1 ABV Algorithm
Require: SREtrace
Require: Ptrace

1: SInit = Initialize Equations
2: for i = 0 to Nmax do
3: I := Assign Inputs(i)
4: S(i) := Evaluate Trace(SREtrace, I,SInit)
5: end for
6: Run Veri f ication(Ptrace,S(i), I)Nmax

i=0

Example: ∆Σ Stability Property

We illustrate our verification approach on the stability
property P of the ∆Σ modulator given in Section IV-C. The
basic property is −1 < x3 < 1. First, we run a symbolic
simulation step to obtain the trace of the property using the
SRE of the model. We obtain the following symbolic trace for
the basic property:

p(n) = i f (c3x3(n)+u(n) >= 0,
c2x2(n)+ x3(n)+b3u(n)−a3a < 2,
−2 < c2x2(n)+ x3(n)+b3u(n)+a3a)

Next, we bend the variable n in the trace p(n) to its meaning
that comes from the Always checker: G (p), and we obtain

Comparator Saturation

Digital
Divider

Ref_pfd VCO

Vco-out

Freq_sel

Charge
pump

Phase & Frequency
Detector
(PFD)

Inwave
sin(wo*t)

‘0’

Vco-pfd

UP

DN

Charge -out Analog
Filter

Limiter Filter-out

ComparatorVco-out-div1

VC

‘0’

Outwave

Fig. 3. PLL Frequency synthesizer diagram

∞∧

n=0

TrueQ(p,n)

However, the verification is done using bounded time. In Table
1, we give the simulation results for this property (for chosen
parameters). The results are obtained from Mathematica 5.2
[14] running on an Intel Core duo with 2GB of RAM.

TABLE I
VERIFICATION RESULTS FOR THE ∆Σ MODULATOR

Number of Cycles 100 1000 10000 105 106

CPU time (sec) 0.016 0.046 0.516 5.031 51.093

VI. APPLICATION: VERIFICATION OF A PLL DESIGN

One of the main issues in the verification of PLL designs
is the lock time which is the time necessary for the PLL
to switch from one frequency to another following a given
frequency change. Such property is important because during
the lock time, no data can be transmitted, so having a larger
lock time can reduce the data rate of the system. We applied
the methodology described in this paper to detect violation in
the locking requirement of a frequency synthesizer based PLL
design which is one of the basic building blocks in modern
communication systems.

The frequency synthesizer model [12] is composed of a
comparator, phase and frequency detector (PFD) module, ana-
log loop filter, VCO and a divider modules as shown in Figure
3. The input reference signal is a Sine wave with frequency
wo. The output signal is a Cosine wave with frequency N times
of wo. For instance, if the frequency control signal Freq sel
is set to 0, N equals to 1 and the frequencies of input and
output signals are the same. If the Freq sel signal is set to 1,
N equals to 2 and the output signal frequency becomes two
times of the input signal.

In the simulation we run, the input Sine wave signal
frequency and the VCO central frequency are 100 Hz, while
the sampling time is T = 1e−4 seconds, RC is the electrical
constant. We modeled the frequency synthesizer using the
symbolic Recursive Equations. For illustration purposes and
due to lack of space, we show below only sample equations

used in the modeling. For instance at the output of the PFD,
we have:

UP(n + 1) = I f ([re f p f d(n) = 1 ∧ re f p f d(n − 1) =
0]∧ [vco p f d(n) = 0∨ vco p f d(n−1) = 1],1,0)

The analog filter output can be described as

Filter out(n+1)= limiter(n)−[limiter(n)− f ilter out(n)]∗e
−T
RC

The property to be verified is described as follows; if the
Freq sel changes, the VCO output signal should be changed
to a new frequency within the LOCK Time. The VCO output
stability can be decided by the filter output. If the f ilter out put
signal becomes stable (fixed to a New DC level), then the VCO
output will be also stable at the new frequency. The property
is expressed in PSL as:
Freq sel 6= X(Freq sel) |− > (Filter out 6= New DC level)
[−> 1 : LOCK T IME]

The implementation of the SRE observer is as follows:

for n = 1: N−LOCK Time do
if Freq sel(n+1) 6= Freq sel(n) then

for i = 1 : LOCK Time do
if Filter out(n+ i) == New DC Level then

return Violation = False
end if

end for
return Violation = True

end if
end for

We modeled the frequency synthesizer with SRE, and per-
formed the offline runtime verification for the lock time
property using Matlab [4]. The simulation result is shown in
Figure 4. The initial value of f req sel is 0 and the VCO output
signal frequency is 100 Hz, equal to the reference input. The
f ilter out is 0. At time T0 = 5 seconds (t = 0.5∗105 ∗T), the
f req sel changes to 1, with the dividend changing to value 2.
The goal is to verify whether the VCO output frequency can
change from 100 Hz to 200 Hz within LOCK T IME. If it is
true, the property is satisfied. Otherwise, a violation will be
detected at time T1 = T0 + LOCK Time. If our requirement
for the LOCK Time is 9 seconds while the system actual
LOCK Time is around 12 seconds, then the property will be
violated at time 14 seconds (t = 1.4 ∗ 105 ∗ T), as shown in
Figure 4.

VII. CONCLUSION

In this paper, we have presented an Assertion Based Ver-
ification for a class of AMS designs using the Property
Specification Language (PSL). Our approach is based on
modeling the AMS design in terms of a System of Recurrence
Equations (SRE) which support the representation of mixed
behaviors. The SRE model provides a mathematical means to
computes the symbolic trace for the combined system (design
+ assertions). We have shown how to use this trace to build
checkers for PSL assertions. The verification is achieved via
simulation using these checkers in an offline fashion, hence
avoiding state space explosion problem. We have implemented

Fig. 4. PLL Frequency Synthesizer Run-Time Simulation

the approach in Mathematica and Matlab and used it to verify
the stability property of a ∆Σ modulator and PLL locking time
of a frequency synthesizer design.

Our approach currently is limited to discrete analog sys-
tems. Future work includes further research to support mixed
behaviors for continuous time. In fact, an important effort is
still needed to categorize mixed systems and to define what
kind of AMS properties we can define using PSL.

REFERENCES

[1] Accellera Property Specification Language Reference Manual (2004).
Available: http://www.accellera.org

[2] R.A. Rutenbar, G.G. Gielen, B.A. Antao, Computer-Aided Design of
Analog Integrated Circuits and Systems, IEEE Press, 2002.

[3] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, F.
Sendig, Design of mixed-signal systems-on-a-chip. IEEE Trans. on
CAD, 19(12): 1561-1571, Dec. 2000.

[4] MATLAB Users Guide, The MathWorks Inc. Available:
http://www.mathworks.com/

[5] G. Al-Sammane. Simulation Symbolique des Circuits Decrits au Niveau
Algorithmique. PhD thesis, Université Joseph Fourier, Grenoble, France,
July 2005.

[6] O. Maler, D. Nickovic. Monitoring Temporal Properties of Continuous
Signals. In Formal Modelling and Analysis of Timed Systems, LNCS
3253, Springer, 2004, pp.152-166

[7] O. Maler, D. Nickovic, Amir Pnueli. Real Time Temporal Logic: Past,
Present, Future. In Formal Modelling and Analysis of Timed Systems,
LNCS 3829, Springer, 2005, pp.2-16

[8] Goran Frehse, Bruce H. Krogh, Rob A. Rutenbar, Oded Maler: Time
Domain Verification of Oscillator Circuit Properties. Electronic Notes
on Theoretical Computer Science, Elsevier, 153(3): 9-22, 2006.

[9] T. R. Dastidar, P. P. Chakrabarti: A Verification System for Transient
Response of Analog Circuits Using Model Checking. IEEE Proc. of the
International Conference on VLSI Design, pp.195-200, 2005.

[10] M. Zaki, S. Tahar, and G. Bois: A Practical Approach for Monitoring
Analog Circuits; Proc. Great Lakes Symposium on VLSI, IEEE/ACM,
pp. 330-335, 2006.

[11] G. Al Sammane, M. Zaki, and S. Tahar: A Symbolic Methodology for
the Verification of Analog and Mixed Signal Designs; Proc. IEEE/ACM
Design Automation and Test in Europe, pp. 249-254, 2007.

[12] S. Brigati et. al.. Modeling of fractional-N division frequency synthesizer
with Simulink and Matlab. IEEE International Conf. on Electronics,
Circuits and Systems, pp.1081-1084, 2001.

[13] E. Christen and K. Bakalar. VHDL-AMS: A Hardware Description Lan-
guage for Analog and Mixed-signal Applications. In IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing., 46:
1263-1272, 1999.

[14] S.Wolfram. Mathematica: A System for Doing Mathematics by Com-
puter. Addison Wesley Longman Publishing, USA, 1991.

