
Formal Verification of Analog and Mixed Signal Designs
in Mathematica

Mohamed H. Zaki, Ghiath Al-Sammane, and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montréal, Québec, H3G 1M8, Canada

{mzaki,sammane,tahar}@ece.concordia.ca

Abstract. In this paper, we show how symbolic algebra in Mathematica can be
used to formally verify analog and mixed signal designs. The verification method-
ology is based on combining induction and constraints solving to generate cor-
rectness for the system with respect to given properties. The methodology has the
advantage of avoiding exhaustive simulation usually utilized in the verification.
We illustrate this methodology by proving the stability of a ΔΣ modulator.

Keywords: AMS Designs, Formal Verification, Mathematica.

1 Introduction

With the latest advancement of semiconductors technology, the integration of the digi-
tal, analog and mixed-signal (AMS) designs into a single chip was possible and led into
the development of System on Chip (SoC) designs. One of the main challenges of SoC
designs is the verification of AMS components, which interface digital and analog parts.
Traditionally, analyzing the symbolically extracted equations is done through simula-
tion [1]. Due to its exhaustive nature, simulation of all possible scenarios is impossible,
and hence it cannot guarantee the correctness of the design. In contrast to simulation,
formal verification techniques aim to prove that a circuit behaves correctly for all pos-
sible input signals and initial conditions and that none of them drives the system into
an undesired behavior. In fact, existing formal methods [2] are time bounded, where
verification is achieved only on a finite time interval. We overcome this limitation by
basing our methodology on mathematical induction, hence any proof of correctness of
the system is time independent. In this paper, we show how symbolic algebra in Math-
ematica can be used to formally verify the correctness of AMS designs. We illustrate
our methodology by applying it to prove the stability of a ΔΣ modulator [3].

The proposed verification methodology is based on combining induction and con-
straints solving to generate correctness proof for the system. This is achieved in two
phases; modeling and verification, as shown in Figure 1. Starting with an AMS descrip-
tion (digital part and analog part) and a set of properties, we extract, using symbolic
simulation, a System of Recurrence Equations (SRE) [4]. These are combined recur-
rence relations that describe each property in terms of the behavior of the system. SRE
is used in the verification phase along with an inductive based proof with constraints
defined inside Mathematica (details can be found in [4]). If a proof is obtained, then the

Y. Shi et al. (Eds.): ICCS 2007, Part II, LNCS 4488, pp. 263–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 M.H. Zaki, G. Al-Sammane, and S. Tahar

property is verified. Otherwise, we provide counterexamples for the non-proved prop-
erties using reachability criteria. If the counterexample is realistic (strong instance),
then we have identified a problem (bug) in the design, otherwise the counterexample is
spurious (weak instance) and should be eliminated from the verification process.

System of Recurrence
Equations (SRE)

Counterexample

Symbolic
Simulation

Inductive Proof
With Constraints Counterexample

Analyzer

Properties

Verified
True

Analog Digital

Constraints
Refinement

Verified
False

AMS Description

Yes

No

Weak

Instance

Strong Instance

Modeling

Verification

Fig. 1. Overview of the Methodology

2 Implementation in Mathematica

An SRE is a system of the form: Xi(n) = fi(Xj(n − γ)),(j,γ) ∈ εi,∀n ∈ Z, where
fi(Xj(n− γ)) is a generalized If-formula (see [5] for a complete definition). The set εi

is a finite non empty subset of 1, . . . ,k ×N. The integer γ is called the delay. A property
is a relation of the form: P = quanta(X ,cond,expr), where quanta ∈ {∀,∃}, X is a set
of variables. cond is a logical proposition formula constructed over X and expr is an
If-formula that takes values in the Boolean Domain B.

Proving Properties. Mathematical induction is then used to prove that a property P(n)
holds for all nonnegative integers n ≥ n0, where n0 is the time point after which the
property should be True:

– Prove that P(n0) is True.
– Prove that ∀n > n0,P(n) ⇒ P(n + 1).

The induction algorithm is implemented in Mathematica using functions like Reduce,
Assuming and Re f ine. It tries to prove a property of the form quanta(X ,cond,expr),
otherwise it gives a counterexample using FindCounterExample:

If Prove(quanta(X ,cond,expr)) = True then

Return(True)
else

FindCounterExample(cond∧¬expr,var)

Finding Counterexamples. The basic idea is to find particular variable values for
which the property is not satisfied. This is implemented using the Mathematica func-
tion FindInstance[expr,vars,assum]. It finds an instance of vars that makes expr True

Formal Verification of Analog and Mixed Signal Designs in Mathematica 265

if an instance exists, and gives {} if it does not. The result is of the following form
{{v1 → instance1,v2 → instance2, . . . ,vm → instancem}}, where vars={v1,v2, . . . ,vm}.
FindInstance can find instances even if Reduce cannot give a complete reduction. For
example, the Mathematica command FindInstance [x2 −ay2 == 1 && x > y,{a,x,y}]
returns {{a → − 1

2 ,x → − 1√
2
,y → −1}}

We need to insure that the instance is reachable by the SRE before considering it as a
counterexample. For example, we verify the recurrence equation Un = Un−1 +1 against
the property ∀n > 0. Pn = Un > 0. FindInstance transforms Pn to an algebraic one and
gives the instance Un−1 → −2. However, this instance will never be reachable by Un for
U0 = 0. Depending on the reachability, we name two types of SRE instances:

– Strong instance: if it is given as a combination of of the design input values. Then,
the counterexample is always reachable.

– Weak instance: if it is a combination of input values and recurrence variables values.
In this case,there in no guarantee that the counterexample is reachable.

If the recurrence equations are linear and if the conditions of the If-formula are
monotones, then we can search directly for a reachable strong instance. We can solve
these equations in Mathematica using the function RSolve[Eq1,Eq2, . . .,Xi(n), . . .,n]. It
returns an explicit solution of the SRE {Eqn} in terms of time relations where the time
n is an explicit parameter. We use RSolve to identify a time point at which a desired
behavior is reached.

3 First-Order ΔΣ Modulator

ΔΣ modulators [3] are used in designing data converters. It is stable if the integrator out-
put remains bounded under a bounded input signal. Figure 2 shows a first-order ΔΣ of
one-bit with two quantization levels, +1V and −1V. The quantizer (input signal y(n))
should be between −2V and +2V in order to not be overload. The SRE of the ΔΣ is :

y(n) = y(n − 1)+ u(n)− v(n− 1)
v(n − 1) = IF(y(n − 1) > 0,1,−1)

+ +
Z-1

Z-1

u[n]

-

v[n]y[n]++ +
Z-1

Z-1

u[n]

-

v[n]y[n]+

Fig. 2. First-order ΔΣ Modulator

The stability is expressed with the following properties:

Property 1. ∀|u| ≤ 1 ∧ |y(0)| ≤ 1 ⇒ |y(n)| ≤ 2. To ensure that the modulator will al-
ways be stable starting from initial conditions. In Mathematica to prove the property at
time n we write:

266 M.H. Zaki, G. Al-Sammane, and S. Tahar

in[1]:= Reduce[
ForAll[{u,y[n-1]}, And[-1< u < 1, -2< y[n-1] < 2],

And[(-1+u+y[n-1] � 2) ,(1+u+y[n-1] � -2)]], {u,y[n-1]}, Reals]
out[1]:= True

Property 2. ∀|u| > 1 ∧ |y(0)| ≤ 1 ⇒ |y(n)| > 2. If the input to the modulator does not
conform to the stability requirement in Property 1, then the modulator will be unstable:

in[1]:= FindInstance[And[1<u , 1> y>0 ,(-1+u+y>2)],u,y]
out[1]:= {u → 7

2, y → 1
2 }

As y = 1
2 is already a valid state for y[n], then the instance is weak. We refine the

instance by adding it to the constraints list and restart the proof:

in[1]:= Assuming[And[u → 7
2, 1> y>0] ,Refine[(-1+u+y>2)]]

out[1]:= True

Thus, the instance u → 7
2 is a strong instance for any y[n].

Property 3. ∀|u| ≤ 1 ∧ |y(0)| > 2 ⇒ ∃n0 > 0 ∧∀n > n0. |y(n)| < 2. If the input of the
quantizer is distorted and cause the modulator to be temporarily unstable, the system
will return to stable region and stay stable afterwards; which means that there exist
an n for which the modulator will be stable for all n > n0. Rsolve is used along with
FindInstance to search for this n0. We have two cases: y[n−1] > 0 and y[n−1] < 0. In
Mathematica to prove the property, we write:

in[1]:= Eq=y[n+1]==(-1+u+y[n]);
RSolve[Eq&&y[0]== a ,y[n],n]

out[1]:= y[n] → a-n+n u
in[2]:= Reduce[a+n+n u>-2 && u>-1 && a ∈ Reals,n]
out[2]:= a ∈ Reals && u > (-1) && n > −2−a

1+u
in[3]:= FindInstance[a < -2 && n > 2 && 1 > u > 0.5 &&

n > −2−a
(1+u , {a, u,n}]

out[3]:= {a → -5.5, u → 0.75, n → 4}

Thus, we have found a time value which provides a proof for the property: n > −2−a
1+u .

As the property is formalized using the existential quantifier, it is enough to find one
instance: n0 → 4 .

4 Conclusions

We have presented how Mathematica can be used efficiently to implement a formal ver-
ification methodology for AMS designs. We used the notion of SRE as a mathematical
model that can represent both the digital and analog parts of the design. The induction
based technique traverses the structure of the normalized properties and provides a cor-
rectness proof or a counterexample, otherwise. Our methodology overcomes the time
bound limitations of conventional exhaustive methods. Additional work is needed in

Formal Verification of Analog and Mixed Signal Designs in Mathematica 267

order to integrate the methodology in the design process, like the automatic generation
of the SRE model from design descriptions given in HDL-AMS languages.

References

1. Gielen, G.G.E., Rutenbar, R.A.: Computer-aided Design of Analog and Mixed-signal Inte-
grated Circuits. In: Proceedings of the IEEE. Volume 88. (2000) 1825–1852

2. Zaki, M.H., Tahar, S., Bois, G.: Formal Verification of Analog and Mixed Signal Designs:
Survey and Comparison. In: NEWCAS’06, Gatineau, Canada, IEEE (2006)

3. Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. IEEE Press-Wiley
(2005)

4. Al-Sammane, G., Zaki, M.H., Tahar, S.: A Symbolic Methodology for the Verification of
Analog and Mixed Signal Designs. In: DATE’07, Nice, France, IEEE/ACM (2007)

5. Al-Sammane, G.: Simulation Symbolique des Circuits Decrits au Niveau Algorithmique. PhD
thesis, Universite Joseph Fourier, Grenoble, France (2005)

	Introduction
	Implementation in Mathematica
	First-Order Modulator
	Conclusions
	References

