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Abstract— Recently, constraint based methods have been advo-
cated as verification solution for Analog and Mixed Signal (ASM)
designs. Constraint-based verification (CBV) is based on the
concept of adding properties as constraints to the design such that
detection of possible errors is due to constraint violation during
the simulation. In this paper, we propose a new method to conduct
constraint-based verification on a ∆Σ modulator using interval
analysis. In particular, we are interested in the verification of the
stability properties of ∆Σ modulators.

I. INTRODUCTION

Development of computer aided design (CAD) methods for

analog and mixed signal (AMS) system, is usually focussed

to overcome challenges in the design process. Among the

challenges encountered is the verification task, concerned

to check whether an AMS design is robust with respect

to different types of inaccuracies like parameters tolerances,

nonlinearities, etc. Such inaccuracies can lead to erroneous

behaviors of the system under development. In general, the

verification relies largely on a mixture of formal analysis and

simulation. For instance, one is interested in global properties

connected to the dynamic behavior of the design. For example,

we might be interested in properties like: can we reach from

the initial state a state where a certain condition holds?.

One important class of AMS designs is the ∆Σ modulators

[11], needed in data converters at the interface of the ana-

log environment and the digital processing components. The

principle of the ∆Σ architecture is to make rough evaluations

of the input signal over several stages, to measure the error,

integrate it and then compensate for that error. One important

requirement in ∆Σ designs is therefore the stability of the

output signal. A ∆Σ modulator is said to be stable if each

integrator output remains bounded under a bounded input

signal.

In this paper, we propose a new method to conduct

constraint-based verification on a ∆Σ modulator using interval

analysis. In general, constraint-based verification (CBV) [14]

is based on the concept of adding properties as constraints

to the design such that detection of possible errors is due to

constraint violation during the simulation. In particular, we are

interested in the verification of the stability properties of ∆Σ

modulators.

The paper structure is as follows: We start by discussing

relevant related work in Section II, afterwards, we describe

the proposed verification methodology in Section III. An

Illustrative ∆Σ modulator verification is presented in Section

IV, before concluding with a discussion in Section V.

II. RELATED WORK

AMS Formal Verification. Several approaches have been pro-

posed for the formal verification of AMS designs. For instance,

model checking and reachability analysis were proposed for

validating AMS designs over a range of parameter values and

a set of possible input signals. These approaches rely on the

discretization of the state space by using over-approximating

domains like polyhedra models, as was implemented in the

tools d/dt [5], Checkmate [8] and PHaver [6], which have

been used to verify different classes of AMS designs (e.g.,

oscillators, filters). In the approach we propose, we use interval

domains, which are in general computationally less expensive

than polyhedra models. In addition, we combine the verifica-

tion with symbolic simulation methods to simplify the system

equations at each time step.

In [9], the authors used interval methods to construct the

abstract state space. They used heuristics to identify possible

transitions between adjacent regions. This requires to divide

the whole state space prior to verification, which can be

computationally expensive. In addition, this approach is only

suitable for analog designs, while our approach supports

AMS designs.

∆Σ Modulators Verification. Different computer aided

techniques have been developed recently for the stability

verification of ∆Σ modulators. In [5], the authors used

an optimization technique in order to find bounds of the

reachable states, hence checking for stability. The essence

of the method is to reformulate bounded time reachability

analysis to be solved by mixed-integer linear programming

[3]. The verification idea is to compute a set of worst

trajectories which safety implies the safety of all other

trajectories. The main disadvantage of this method is that

the translation of the system equations into an optimization

problem is not generic and depends on the specific design.

In our case, a canonical form is used to represent the system

equations. In [8], the authors used the tool Checkmate to

verify the stability of a ∆Σ modulator, by simulating the

system over polyhedra models, instead of intervals as in our

case. The induction based symbolic verification approach

proposed in [1] was applied on the stability verification of
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Fig. 1. Verification Methodology

∆Σ modulators. While the results are time independent, the

method requires the addition of design constraints which can

be sometimes difficult to identify.

Another symbolic method for stability checking is based on

invariant verification [12]. In [7], the authors proposed using

iterative simulation to construct the invariant regions, which

if constructed successfully, provides a stability proof of the

modulator. The main drawback of this method is that stability

violation cannot be detected as failure to construct such region

does not provide a proof of instability.

III. METHODOLOGY

The proposed verification methodology is shown in Fig-

ure 1. Given an AMS described using standard recurrence

equations and the properties as algebraic constraints between

signals, a symbolic simulator performs a set of transformations

by rewriting rules in order to obtain a normal mathematical

representation called System of Recurrence Equations (SRE).

These are combined recurrence relations that describe directly

each property constraint in terms of the behavior equations

of the system. The verification is then applied using interval

analysis [10] over the normal structure of the SRE. Interval

analysis is used to simulate the set of all input conditions

with a given length that drives the discrete-time system from

given initial states to a given set of final states satisfying

the set of constraints. If for all time steps, the properties

constraints are satisfied, then the stability of the modulator

is ensured, otherwise, we provide counterexamples for the

non-proved properties. The intervals based simulator is im-

plemented inside the computer algebra system Mathematica

[13], which provides useful functions to simplify and prove

algebraic relations.

A. System Modeling

The notion of recurrence equation is extended to describe

digital circuits using the normal form (called generalized

If-formula in [2]). Such formalization was found practical

and suitable in modeling AMS systems [1]. In this paper, we

use a generalization of recurrence equations as a model for

∆Σ modulators.

+ +

Z-1

Z-1

u[n]

-

v[n]y[n]++ +

Z-1

Z-1

u[n]

-

v[n]y[n]+

Fig. 2. First-order ∆Σ Modulator

Definition 1: Generalized If-formula

In the context of symbolic expressions, the generalized

If-formula is a class of expressions that extend recurrence

equations to describe digital systems. Let K be a numerical

domain (N,Z,Q, R and B), a generalized If-formula is

one of the following:

• A variable Xi(n) or a constant C ∈ K

• Any arithmetic operation ⋄ ∈ {+,−,÷,×} between vari-

ables Xi(n) ∈ K

• A logical formula: any expression constructed using

a set of variables Xi(n) ∈ B and logical operators:

not,and,or,xor,nor, . . ., etc.

• A comparison formula: any expression constructed using

a set of Xi(n) ∈ K and comparison operator α ∈ {=, 6=
,<,≤,>,≥}.

• An expression IF(X ,Y,Z), where X is a logical formula

or a comparison formula and Y,Z are any generalized

If-formula. Here, IF(x,y,z) : B × K × K −→ K

satisfies the axioms:

(1) IF(True,X ,Y ) = X

(2) IF(False,X ,Y ) = Y

A formalization for a uniform system of recurrence equa-

tions was defined as an extension of conventional recurrence

equations in [2]:

Definition 2: A System of Recurrence Equations (SRE)

Consider a set of variables Xi(n) ∈ K, i ∈V = 1, . . . ,k, n ∈ Z,

an SRE is a system of the form:

Xi(n) = fi(X j(n− γ)),( j,γ) ∈ εi,∀n ∈ Z

where fi(X j(n− γ)) is a generalized If-formula. The set

εi is a finite non-empty subset of 1, . . . ,k×N. The integer γ

is called the delay.

Example 1: Figure 2 shows a first-order ∆Σ modulator of

one-bit with two quantization levels, +1V and −1V. Consider

the constraint that the quantizer (input signal y(n)) should be

between −2V and +2V in order to not be overloaded. The

SRE of the ∆Σ is then described as:

y(n) = y(n−1)+u(n)− v(n−1)
v(n−1) = IF(y(n−1) > 0,1,−1)

B. Interval Analysis

Intervals are numerical domains that enclose the original

states of a system of equations at each discrete step [10]. Such

method produces bounded envelopes for the reachable states

not only at some discrete time points but also for all continuous
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ranges of intermediate states between any two consecutive

time discrete points. These methods, also known as validated

methods, are an attractive tool to use in the verification of the

behavior of systems with uncertainty on the design parameters

or initial conditions as it allows sound discretization. Basic

interval arithmetic operators can be defined as follows: Let I1

and I2 be two real intervals (bounded and closed), the basic

arithmetic operations on intervals are defined by:

I1ΦI2 = {r1Φr2|r1 ∈ I1 ∧ r2 ∈ I2}

with Φ ∈ {+,−, ,/} except that I1/I2 is not defined if 0 ∈ I2.

[a,b]ι , [a+b]

[a,b]+ι [a′,b′] , [a+a′,b+b′]

[a,b]−ι [a′,b′] , [a−b′,b−a′]

[a,b]×ι [a′,b′] , [min(aa′,ab′,ba′,bb′),

max(aa′,ab′,ba′,bb′)]

1÷ι [a,b] , [1÷b,1÷a]i f 0 /∈ [a,b]

[a,b]÷ι [a′,b′] , [a,b]×1÷ [a′,b′]

In addition, other elementary functions can be included as

basic interval arithmetic operators. For example, exp may be

defined as exp([a,b]) = [exp(a),exp(b)]. The guarantee that

the real solutions for a given function are enclosed by the

interval representation is described by the following property.

Property 1: Inclusion Function.[10] Let f : Rn → R be a

continuous function, then F : In → I is an interval extension

(inclusion function) of f if

{ f (x1, . . . ,xn)|x1 ∈ X1, . . . ,xn ∈ Xn} ⊆ F(X1, . . . ,Xn)

where I is the interval domain.

As a generalization of the inclusion function, interval

analysis provides efficient and safe methods for checking

truth values of Boolean propositions over intervals by using

the notion of inclusion test.

Property 2: Inclusion Test. Given a constraint c : Rn → B,

we define CI : In → BI to be an inclusion test of c, with an in-

terval domain defined with three values set; BI = {0,1, [0,1]},

where 0 stands for false, 1 for true and [0,1] for indeterminate,

iff:
{c(x1, . . . ,xn)|x1 ∈ X1, . . . ,xn ∈ Xn} ⊆CI(X1, . . . ,Xn)

Inclusion test can be used during the verification algorithm

to prove wether the reachable interval states satisfy a given

property, or not. We define the inclusion test as follows:

CI(xI) = 1 ⇒∀x ∈ X ,c(x) = 1 and CI(xI) = 0 ⇒∀x ∈ X ,c(x) =
0. For instance, given a set of reachable interval states and a

property predicate, we remove the states that do not satisfy

1 ∈CI(X1, . . . ,Xn)

Therefore, if CI(X1, . . . ,Xn) = /0, then we have a guarantee that

the property is not satisfied. A set of the main logical rules

that define the inclusion test is given as follows:

xI ≤
ι yI = 1 ⇔ b ≤ a′

xI ∈
ι yI = 1 ⇔ xI ∈ yI

⇔ a ≥ a′ and b ≤ b′

xI ∨
ι yI , {x∨ y|x ∈ xI and y ∈ yI}

xI ∧
ι yI , {x∧ y|x ∈ xI and y ∈ yI}

¬ιxI , {¬x|x ∈ xI}

C. Verification Algorithm

A simplified version of the CBV algorithm based on interval

analysis is shown below (Algorithm 1):

Algorithm 1 Constraint Based Verification

Require: x(0) = Initialize States Equations

Require: x(k +1) = f (x(k),u,v)
Require: Q(k)
Require: Rsimp = RMath ∪ RLogic ∪ RIF ∪ REq ∪ RIntervals ∪

RInt−Logic

1: P(k) = SRE(x(k),Q(k))
2: for all k: 0 ≤ k ≤ Nmax do

3: P(k +1) = ReplaceRepeated(P(k),Rsimp)
4: if P(k +1) == False then

5: return Constraint is unsatified

6: end if

7: end for

The first step of the algorithm is to obtain the SRE de-

scribing the constraint Q(k) in terms of the system equations

x(k) (line 1), where x(k + 1) is described in terms of state

variables at previous time step x(k), the input signals u and

the digital control signals v. The constraint based verification

is applied for a Nmax time steps (line 2), using the rewriting

function ReplaceRepeated (line 3), unless the property con-

straint is unsatisfied: P(k +1) == False at k < Nmax (line 4).

ReplaceRepeated [1] is a symbolic rewriting function defined

recursively over the property and a set of rewriting rules Rsimp.

These rules include the same rules defined in [1] and extend

them by RIntervals which is a set of rewriting rules that define

interval arithmetic expressions simplifications over SRE and

RInt−Logic which is a set of rewriting rules that define the

simplification of Boolean expressions over intervals.

IV. ∆Σ MODULATOR VERIFICATION

In this section, we apply the proposed verification method-

ology on a third-order ∆Σ modulator. The design of the

∆Σ modulator in Figure 3 is given using vector recurrence

equations X(k + 1) = C X(k)+ B u(k)+ A v(k), where A, B

and C are matrices providing the parameters of the circuit,

u(k) is the input and v(k) is the digital part of the system.

The condition of the threshold of the quantizer is computed

to be equal to c3x3(k)+ u(k). The digital description of the

quantizer is transformed into a recurrence equation. Thus, the

equivalent recurrence equation that describes v(k) is v(k) =
IF(c3x3(k)+u≥ 0,−a,a). A ∆Σ modulator is said to be stable

if the integrator output remains bounded under a bounded input

signal. The stability property P of the ∆Σ modulator is written
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Fig. 3. Third-order ∆Σ Modulator

as: P(k) = Always(−1 < x3(k) < 1 for all k ≥ 0. The modulator

is described using the following recurrence equations:

x1(k +1) = i f (c3x3(k)+u >= 0,x1(k)+b1u−a1a,

x1(k)+b1u+a1a)

x2(k +1) = i f (c3x3(k)+u >= 0,c1x1(k)+ x2(k)+b2u(k)

−a2a,c1x1(k)+ x2(k)+b2u(k)+a2a)

x3(k +1) = i f (c3x3(k)+u >= 0,c2x2(k)+ x3(k)+b3u(k)

−a3a,c2x2(k)+ x3(k)+b3u(k)+a3a)

Applying the symbolic simulation, we obtain the following

expression of the property:

P(k +1) = i f (c3x3(k)+u >= 0,

c2x2(k)+ x3(k)+b3u(k)−a3a < 2,

−2 < c2x2(k)+ x3(k)+b3u(k)+a3a)

The correctness of the property P(k + 1) depends on the

parameters A,B and C, the values of variables x1(k), x2(k)
and x3(k), the time k, and the input signal u(k). We verify

the ∆Σ modulator for the following set of parameters inspired

from the analysis in [8]:










a = 1 a1 = 0.044 a2 = 0.2881

a3 = 0.7997 b1 = 0.07333 b2 = 0.2881

b3 = 0.7997 c1 = c2 = c3 = 1

We applied the Algorithm 1 in order to verify the ∆Σ

modulator stability for the above set of parameters. Table I

shows the verification results for the design given in Figure

3. We use the same circuit parameters set as in [8]. The

experiments were performed on an Intel Core2 1900 MHz

processor with 2GB of RAM. The initial constraints define

the set of test cases over which interval based simulation

is applied. If the property is false, as in the first and third

cases in Table I, then the verification is completed and a

counterexample is generated from the simulated intervals. On

the contrary, when the property is True, we have a partial

verification result as it is bounded in terms of simulation steps.

The second case in Table I illustrates such limitation.

V. CONCLUSION

In this paper, we presented a semi-formal methodology for

the stability verification of ∆Σ modulators under a set of given

initial conditions and input signals. The main advantage of the

method is the sound verification it provides over the simulation

time. In addition, it generates counterexamples for the failed

properties, which can be used for further analysis.

TABLE I

VERIFICATION RESULTS

Initial Property Evaluation CPU time

Constraints for n = 0 to Nmax Cycles Used

0.028 ≤ x1(0) ≤ 0.03 Nmax = 40 1.5 sec

−0.03 ≤ x2(0) ≤−0.02 n = 0 to 15 True x1[16] 7→ 0.263

0.8 ≤ x3(0) ≤ 0.82, u := 0.8 n > 15 False x2[16] 7→ 1.256 , x3[16] 7→ 2.42

0.012 ≤ x1(0) ≤ 0.013 Nmax = 38 31 sec

0.01 ≤ x2(0) ≤ 0.02

0.8 ≤ x3(0) ≤ 0.82, u := 0.54 True

0.163 ≤ x1(0) ≤ 0.164 Nmax = 40 0.8 sec

−0.022 ≤ x2(0) ≤−0.021 n = 0 to 17 True x1[19] 7→ 0.163

0.8 ≤ x3(0) ≤ 0.82, u := 0.6 n > 17 False x2[19] 7→ 0.886, x3[19] 7→ 2.47

The method is still in primary phase and some issues need

to be addressed to make it more practical. For instance, the

interval based reachability computation is expensive and hence

limits the maximum verification time steps as divergence can

occur quickly. This is mainly caused by the wrapping effect

[10] which appears when the results of a computation are

overestimated when enclosed into intervals, hence leading to

error accumulation at each time step.

To tackle some of the limitation mentioned, we plan to use

a variant of interval analysis that can reduce the divergence

problem. In addition, we plan to integrate this methodology

with the induction based verification developed in [1].
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