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Abstract—The correctness of group key protocols in commu-
nication systems remains a great challenge because of dynamic
characteristics of group key construction as we deal with an open
number of group members. In this paper, we propose a solution to
model group key protocols and to verify their required properties,
in particular secrecy property, using the event-B method. Event-
B deals with tools allowing invariant checking, and can be used
to verify group key secrecy property. We define a well-formed
formal link between the group protocol model and the event-
B counterpart model. Our approach is applied on a tree-based
group Diffie-Hellman protocol that dynamically outputs group
keys using the logical structure of a balanced binary tree.

I. INTRODUCTION

Security protocols are used to establish secure channels
between communicating systems. Great care needs to be
taken in developing and implementing robust protocols. The
complexity of security-protocol interactions can hide security
weaknesses that normal analysis methods cannot reveal.

Security properties that are well defined in normal two-party
protocols have different meanings and different interpretations
in group key protocols. Therefore they require a more precise
definition before we look at how to verify them. An example of
such properties is secrecy, which deals with the fact that secret
data should remain secret and not compromised. However, for
group key protocols, this property has a further dimension
since there are long-term secret keys, short-term secret keys,
in addition to present, future, and past keys; where a principal
who just joined the group and learned the present key should
not be able to have enough information to deduce any previous
keys, or similarly a principal who just left the group should not
have enough information to deduce any future keys. Therefore,
systems designed for two-party protocols may not be able to
model a group key protocol, or its intended security properties
because such systems require an abstraction to a group of fixed
size to be made before the automated analysis takes place. This
can eliminate chances of finding attacks on these protocols.

In [14] we introduced a rank functions based inference
system for verification of secrecy in group key protocols that
is implemented in higher-order logic theorem proving. Imple-
menting the inference system in higher order logic theorem
proving required a lot of effort and time, in addition, verifying
properties is achieved interactively with the theorem proving
tool because of the decidability problem on higher-order logic.

This paper complements our previous work, by providing an
event-B based automatic invariant checking for a similar class
of properties. This allows us to avoid user interaction with the
theorem proving tool, and reduce the time required to verify
such property.

Event-B [17] was introduced by extending B [1] without
changing it to model operations that could be guarded in the
process algebraic sense. The event-B method uses the set-
theoretical and logical notations of the B method and provides
new notations for expressing abstract models based on events.
It provides invariants proofs based on a state-based system that
is updated by guarded events. A strong point of event-B is the
availability of tools that support automatic invariant checking
such as Click’n’Prove [3], B4free [8], and RODIN [17]. Most
theoretical aspects of the method, such as the formulation of
proof obligations, are done automatically by the tool. Provers
are also designed to run automatically and reference a large
library of mathematical rules, provided with the system.

The B method has been used to verify semi-formal specifi-
cations. Several works were elaborated in this context such as
the translation from UML to B [16], state-charts to B abstract
machine notation [19] and UML activity diagrams to event-
B [22]. In this context, we propose a solution mapping group
protocol models presented in [14] in event-B to verify required
secrecy properties.

In order to model a group key protocol in event-B first
order logic, the semantics of the event-B language should
be formally related to the protocol model. In this paper, we
define well-formed conditions to guarantee that the event-B
invariant is equivalent to the security property in the group
key protocol model. These conditions are particular to the
group key protocol model, and are essential to establish the
equivalent event-B model. We show how an event-B model
can be structured from group key protocols model and then
used to give a formal semantics to protocols which support
proofs of their correctness.

The Diffie-Hellman basic protocol [12] has been used
extensively to design several group key protocols. Kim et al.
[15] designed a static group key exchange protocol (tree based
Group Diffie-Hellman (TGDH)) that outputs group keys using
the logical structure of a balanced binary tree. The TGDH
protocol design is based on an extension of the basic DH



protocol by [20] et al.. The designers of the protocol provide
an informal and non-intuitive simple proof for the secrecy
property in their work. We apply our approach on the TGDH
protocol and use invariant checking to formally verify secrecy
property that ensures the correctness of key construction. We
provide an automatic proof based on a sound semantical link
between group key protocols and event-B models.

In the proposed approach, we model protocol events and
traces as events and messages as sets in event-B. Secrecy
property is defined as an event-B invariant. We then use the
event-B first-order logic prover tool, Click’n’Prove, to perform
invariant checking under the assumption that basic DH key is
correct. The dynamic case was also considered by applying
events such as join and leave and verify the correctness of
key construction for bounded tree size and bounded number
of events. We assume perfect cryptography conditions in our
approach. In addition, the group key protocol is analyzed in
the presence of passive adversaries.

The contributions of this paper include the formal link
between event-B semantic and security protocols, the use of
event-B first-order prover to verify secrecy property as an
event-B invariant, which is not a straightforward task, since
we have to define a correct semantical link between the two
models. Finally, applying the method on a group key protocol
with join/ leave events, in order to verify secrecy property
using first-order automatic theorem proving in event-B. To
achieve this, certain distributive features in the protocol were
abstracted away, focusing on key construction problems.

The rest of the paper is organized as follows. Section II
discusses related work to ours. In Section III, we overview
preliminary definitions and notations we use. In Section IV,
we present our methodology and define a sound formal link
between the protocol model and event-B semantics. In Section
V, we apply our approach on a TGDH protocol. Finally,
Section VI concludes the paper with future work hints.

II. RELATED WORK

The last years have seen the emergence of successful
applications of formal approaches to reasoning about security
protocols. Earlier methods were concerned with reasoning
about the events that a security protocol can perform, and
make use of a causal dependency that exists between protocol
events. Methods like strand spaces [13] and the inductive
method of Paulson [18] have been designed to support an
intensional, event-based, style of reasoning. These methods
have successfully tackled a number of protocols though in
an ad hoc fashion. They make an informal spring from a
protocol to its representation and do not address how to build
up protocol representations in a compositional fashion [10].

Events-based verification of security protocols was used
by Crazzolara [9], [10] using mappings between process
algebra, Petri nets, strand spaces and inductive models. The
authors established precise relationships between the Petri nets
semantics and transition semantics, strand spaces, inductive
rules, trace languages, and event structures. They show how
event-based models can be structured in a compositional way

and so used to give a formal semantics to security protocols
which support proofs of the correctness of these protocols.
They demonstrated the usefulness of their Petri nets semantics
in deriving proof principles for security protocols and apply
them to prove an authentication property.

Cremers [11] proposed an operational semantics for security
protocols. The work provides a generic description of the
interpretation of such security protocols and what it means for
a protocol to ensure some security property. This work imposes
explicit static requirements for valid protocols, and verifies
that the model is parametric with respect to the matching
function and intruder network capabilities. Other related work
that treats group key protocols verification, specifically DH
based protocols, are discussed in more details in [14].

Stouls and Potet [21] proposed a method to automatically
enforce an abstract security policy on a network. They used the
B refinement process to build a formal link between concrete
and abstract terms, which is dynamically computed from the
environment data. They applied their method on a case study
modeling a network monitor. A different approach to achieve
a similar objective was proposed in [5], where the authors
addressed the proof-based development of system models
satisfying a security policy. They used OrBAC models to
express the security policies in order to state permissions and
prohibitions on actions. An abstract B model is derived from
the OrBAC specification of the security policy and then the
model is refined to introduce properties that can be expressed
in OrBAC. The refinement guarantees that the resulting B
model satisfies the security policy.

Bert et al. [6] presented a tool to build symbolic labeled
transition systems from B specifications. The resulting sym-
bolic transition system represents all behaviors of the initial
B event system. The tool, called GeneSyst, was illustrated
on a security property for a model of a smart card purchase
transaction protocol. Butler [7] combined CSP and B method
refinement in order to verify authentication property. The work
does not present a new theoretical framework, instead, it
describes the use of the above methods to treat refinement
of secure communication systems.

Compared to the above, we address, in this paper, secu-
rity property for group oriented protocols, which has special
features that cannot be modeled in any of these approaches,
such as the concept of group secrecy and dynamic group
events. In addition, we consider events that are specific for
group key protocols, something that was not treated by the
B method based work of Butler [7]. This paper tackles the
verification problem by using event-B as the target first-order
logic model. In this context, we propose a solution translating
group protocol models presented in [14] into event-B to verify
required secrecy properties.

III. PRELIMINARIES

In this section we follow the protocol model and its nota-
tions used throughout this paper and the formal semantics of
event-B.



A. Group Key Protocols

We follow the formal definition for group key protocols
presented in [14]. Let G be a group key protocol model, and
let M be a set of all possible messages (messages space). We
choose S to represent the secret messages space, the set of
all secret messages, S ⊂ M. Thereafter, we define E to be
the set of all events, or dynamic operations, i.e., join, leave,
merge, and split. An event is a term from the message space
to the message space, E :M→M. It represents an action the
user can perform on the system to update his/her own set of
knowledge.

Let K0 be the set of initial knowledge of the intruder, where
K0 ⊂M. The initial knowledge of the information is collected
before executing the protocol events. This information is
usually publicly known, ∀m ∈ M : m ∈ S ⇒ m /∈ K0. We
then define K as the set of knowledge of the intruder that is
updated by executing events. The system starts with the initial
set of knowledge and the set of events, then, by executing a
sequence of events, it updates this set. K0 ⊆ K and K ⊂M.

Finally, we define a safety property φ for a given group key
protocol model M. This property states that the system cannot
execute an event in E in order to generate a message in S, and
is formally modeled as follows: φ = ∀e ∈ E ·m′ = e(m) ⇒
m /∈ S. If this property is correct for the protocol G, then we
can write G |= φ.

B. Event-B

Event-B [2] is a variant of the B method introduced by
Abrial [1] to deal with reactive systems. An event consists
of a guard and an action. The guard is a predicate built on
state variables and the action is a generalized substitution
which defines a state transition. An event may be activated
once its guard evaluates to true and a single event may be
evaluated at once. The system is assumed to be closed and it
means that every possible change over state variables is defined
by transitions; transitions correspond to events defined in the
model. The B method is based on the concept of machines
(or systems) [1]. A machine is composed of descriptive and
operational specifications:

SYSTEM < name >
SETS < sets >
VARIABLES < variables >
INVARIANT < invariants >
INITIALISATION < initialization of variables >
EVENTS < events >
END

A descriptive specification describes what the system does
by using a set of variables, constants, properties over constants
and invariants which specify properties that the machine’s state
verify. This constitutes the static definition of the model. Oper-
ational specification describes the way the system operates. It
is composed of a set of atomic events described by generalized
substitutions. An event has a guard and an action, and it may
occur only when its guard evaluates to true. An event has

one of the general forms where the SELECT form is just a
particular case of the ANY form. SELECT takes the form

Name event =
ANY P WHERE

G
THEN

R

and similarly a SELECT statement takes the form

Name event =
SELECT

G
THEN

R

The consistency of an event-B model is established by proof
obligations which guarantee that the initialization verify the
invariant and that each event should preserve the invariant. The
guard and the action of an event define a before-after predicate
for this event. It describes a relation between variables before
the event holds and after this. Proof obligations are produced
from events in order to state that the invariant condition is
preserved. Let M be an event-B model with v being variables,
carrier sets or constants. The properties of constants are
denoted by P (v), which are predicates over constants, and the
invariant by I(v). Let E be an event of M with guard G(v)
and before-after predicate R(v, v′) that indeed yields at least
one after value v′. The initialization event is a generalized
substitution of the form v : init(v). Initial proof obligation
guarantees that the initialization of the machine must satisfy
its invariant: Init(v) ⇒ I(v).

Each event E, if it holds, has to preserve its invariant.
The feasibility statement is illustrated in Lemma III.1 and the
invariant preservation is given in Lemma III.2 [17].

Lemma III.1. I(v) ∧ G(v) ∧ P (v) ⇒ ∃v′.R(v, v′)

Lemma III.2. I(v) ∧ G(v) ∧ P (v) ∧ R(v, v′) ⇒ I(v′)

An event-B model M with invariant I is well-formed,
dented by M |= I , only if M satisfies all proof obligations.
The B syntax for generalized substitutions defines three pred-
icates: a relation R, the subsets of the pre-states where G
is true of the states in domain(R), and the subset of the
pre-state where P is true. Let S be restricted to evaluations
that satisfy the invariant, S , {v|I(v)}. Each event can be
represented by a binary relation rel. rel is formally defined
as rel , {v 7→ v′ | I(v) ∧ G(v) ∧ R(v, v′)}. The fact
that the invariant I(v) is preserved by event rel is simply
formalized by saying that rel is a binary relation built on S:
rel ⊆ S × S. It is shown that this binary relation yields to
both Lemmas III.1 and III.2 above [17].

Lemma III.1 guarantees that the active part of the relation
is a total relation, i.e., when all predicates I, P, and G hold,
formally, G(v) ∧ P (v) ⊆ domain(R(v, v′)), while Lemma
III.2 guarantees that the postcondition of any operation must
satisfy the machine invariant. The initial proof obligation
guarantees that the initialization of a machine must satisfy



its invariant.
We distinguish special rules for the initialization events.

We use RI(v, v′) to denote the predicate of the generalized
substitution associated with this event. Then we obtain the
following initialization statements [17]:

Lemma III.3. P (v) ⇒ ∃v′.RI(v, v′)

Lemma III.4. P (v) ∧ RI(v, v′) ⇒ I(v′)

Most theoretical aspects of the event-B formal method, such
as the formulation of proof obligations, are done automatically
by tools such as Click’n’Prove and B-Toolkit [3]. Provers are
also designed to run automatically and reference a large library
of mathematical rules, provided with the system. This makes
B well adapted for large scale and wide range of systems [4].

IV. EVENT-B SEMANTICS BASED VERIFICATION
METHODOLOGY

It is a practical solution to verify a security property
using model checking tools, when applicable. However, it is
inconvenient because of two reasons: the state space explosion
problem of model checking, and the limited expressiveness of
proposition logic based-tools. Treating the problem at the first-
order logic level requires applying a valid abstraction on the
protocol in order to fit to the proving system. This abstraction
should be based on a correct semantical link between the
protocol model and the target model. We tackle this problem
by using event-B as the target first-order logic model benefiting
from the automation and the expressiveness of the logic and
the availability of supporting tools.

Formal Specifications

Group Protocol

Event-B Model

SetsInvariantConstantsEvents Initializations

Verified Invariant for 
Protocol Model

Click'n'Prove

Invariant Check

Map into 

Event-B

Formal Protocol Model

Secret Messages

Conditions

Messages

Protocol Events

Secrecy Property

Initial Knowledge

Fig. 1. Verification Methodology

The proposed verification methodology consists of a number
of steps as shown in Figure 1. In the first step, the group
key protocol is specified formally using the model proposed
in [14] in order to obtain precise protocol specifications. In
addition, the secrecy property expected to be checked by
the system is described informally. In the second step, the
obtained specification is translated into event-B specification
using mapping relations presented in Figure 2. From this
mapping we obtain an event-B model that captures the features
of the group protocol mode. Next, the secrecy property φ
is specified as an invariant of the resulting event-B model
I . Messages can be defined as a set with an enumeration
of all possible secret and known messages. The intruder
initial knowledge, K0, is directly defined as variable or set
in the event-B initialization list. Secret messages are defined
similarly. Protocol initial constraints, such as K0 ⊂ M and
S ⊂ M, are defined as properties that will be included in
the invariant. Protocol join or leave events are defined as
event-B operations that update the intruder’s knowledge and
the set of secret messages, including the new generated key.
Finally, the property is checked from the obtained global
system specification using the event-B invariant checking tool
Click’n’Prove.

In Figure 2, protocol events and execution traces are
mapped into event-B events, messages generation conditions
are mapped into events guards, and messages sets are used
to generate event-B model constants properties. The initial
knowledge is defined as event-B initializations, messages are
mapped directly into sets, and finally the secrecy property is
defined as an invariant for the event-B model. The generation
of the target event-B model requires treating three parts: the
static part which includes initializations and the constant prop-
erties of the protocol, the dynamic part that represents events
of the protocol, and finally, enriching the resulting model with
invariants describing the required secrecy properties.

Execution Traces and Events Event-B Events

Messages Generation Conditions Events Guards

Messages and Secret Messages Event-B Sets

Initial Knowledge Initializations

Security Property Invariant

Messages Properties Constants Properties

Fig. 2. Mapping protocol primitives into event-B

The event-B semantics is close to the protocol model seman-
tics. This relationship is demonstrated by establishing a well-
formed link between the semantics of both models. To achieve
this link, we are interested in showing that if the invariant
I holds for event-B machine M , then the safety property
φ must hold for the group protocol model G. Formally,
(M |= I) ⇒ (G |= φ). In terms of equivalence between the



two models, we can say that a protocol model G is equivalent
to an event-B model M , with regards to the security property,
if the property φ holds in the model G, and the invariant I
holds in the model M . To illustrate this equivalence, we need
to show that I ⇒ φ. Therefore, it is enough to show that the
invariant I , with regards to M , implies the safety property φ,
with regard to G.

To show that I ⇒ φ, we need to establish a well-formed link
between event-B invariant and the safety property. We split this
formal link into two parts: the first deals with the initialization,
and the second deals with executing the events. For this, we
need to relate messages in G to variables in M . From Figure
2, there is a map from public messages and secret messages
to event-B sets and a map from messages sets to event-B
constants properties. This map relates the variable m over
the set of messages M directly to the variable v over event-
B carrier sets and constants. The semantical correspondence
between the variable m and the variable v is defined by this
map.

We define the invariant I as I = Iinit ∧ IE , where Iinit

is the invariant predicate under the initial conditions, and IE

is the invariant predicate under executed events. Similarly, we
define the safety property φ = φinit ∧ φE .

Lemma IV.1. (I ⇒ φ) = ((Iinit ⇒ φinit) ∧ (IEφ ⇒ φE))

We define the well-formed conditions that guarantee the
correctness of this lemma in two steps, we first show that
(Iinit ⇒ φinit). We identify the initial events and initial set
of messages in G under which the formula (Iinit ⇒ φinit)
holds. Then we define the predicates P, I, G, and R presented
in Lemmas III.1 and III.2 for the protocol model G such that
Lemma IV.1 holds.

The definition of the group key protocol must satisfy the
initial soundness conditions: K0 ∩ S = ∅ and ∀ei ∈ Ei.m

′ :=
ei(m) ⇒ m′ /∈ S, where ei is an initial event that can be
applied on the intruder’s initial set of messages. We choose
Ri = E0 to be the set of events that can be executed on K0.

In following, we define the constants property P and the
initialization predicate Ri for the model G that will satisfy
Lemmas III.3 and III.4. Then we define the relation R, the
predicate guards G, and the invariant I for the model G that
will satisfy Lemmas III.1 and III.2.

Case 1 (Iinit ⇒ φinit)
• P (m) = (K0 6= ∅) ∧ (K0 ⊂M) ∧ (K = K0)
• Ri = (ei ∈ E) ∧ (∃(m′ ∈M,m ∈ K0) ·m′ := ei(m))
• I(m) = m ∈ K0 ⇒ m /∈ S
The message generation event m′ := ei(m) is equivalent

to the transition relation Ri(v, v′). This yields the formula
P (m) ⇒ ∃ei ∈ Ei · m′ := ei(m) which is exactly Lemma
III.3 considering that Ri = ei.

The invariant definition for the model G is I(m) = m ∈
K ⇒ m /∈ S. We need to show that the invariant I holds for
both I(m) and I(m′). Since the protocol is initially sound,
then both I(m) and I(m′) hold by the fact that K0 ∩ S = ∅
and that the initial events cannot generate secret messages in

S. If m′ := ei(m) then m′ /∈ S. Therefore we can write
(P (m) ∧ (m′ := ei(m))) ⇒ I(m′), which corresponds to
Lemma III.3 considering that Ri = ei.

Case 2 (IE ⇒ φE)
• P (m) = (K ⊂M)
• I(m) = (m ∈ K⇒ m /∈ S)
• G(m) = (({m}k := encr(m, k) ⇒ k ∈ K) ∧ (m :=

decr({m}k, k) ⇒ m ∈ K))
• R = (e ∈ E) ∧ (∃m ∈ K,m′ ∈M ·m′ = e(m))
This message generation event is equivalent to the transition

relation R(v, v′). Therefore, applying the predicates P, I, and
G will lead to the relation R. We can write the formula P (m)∧
I(m) ∧G(m) ⇒ ∃e ∈ E ·m′ = ei(m) which is equivalent to
Lemma III.1 considering that the relation R is equivalent to
an existing event e ∈ E.

The validity of the invariant I(m′) for the model G is
expressed by the validity of the predicates P, I, R, and G,
where m′ := e(m). This can be written as I(m) ∧ P (m) ∧
G(m) ∧R ⇒ I(m′), which corresponds to Lemma III.2.

Under these conditions, we guarantee that when the invari-
ant holds in the event-B model, the secrecy property definition
holds for the group key protocol model. These predicates
should be considered carefully when providing the event-B
implementation. Properties that can be expressed as invariants
are verified using the translation process and particular event-B
tool.

V. APPLICATION: SECRECY IN TGDH PROTOCOL

In this Section, we apply the approach proposed in this
paper on a group key protocol that generates a key in a
distrusted group. We show how the conditions defined for
the correctness of the above model can be concretely applied
on a real protocol. The intended secrecy property, along with
its conditions, are efficiently defined and checked as event-B
invariant.

We first introduce the basic Tree-based Group Diffie-
Hellman protocol (TGDH) as it is designed in [15]. All TGDH
protocols have the following features:
• Each group member contributes an equal share to the

group key, and the key is a function of all current group
members shares.

• The share of each member is secret and is never revealed.
• When a new member joins the group, one of the old

members changes its share, and new members’ shares
are factored into the group key.

• When an existing member leaves the group, its’ share
is removed from the new group key, and at least one
remaining member changes its key share.

• All protocol messages are signed, time-stamped,
sequence-numbered, and type-identified by the sender
[15].

After every membership change, all remaining members
independently update the key tree structure and recompute
identical key trees after any membership event. A group key
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Fig. 3. Tree-based GDH protocol binary tree structure

can be computed from any members secret share and all blind
keys on the co-path to the root, these are the siblings of the
nodes on the key-path. The members own secret share and all
sibling blind keys on the path to the root enable a member
to compute all intermediate keys on its key-path, including
the root group key. Figure 3 shows a binary tree structure that
represents the group members, their own secret shares, and the
secret sub-keys on every node up to the root. As part of the
protocol, a group member can take on a special sponsor role,
which involves computing intermediate keys and broadcasting
to the group. Each broadcasted message contains the senders
view of the key tree, which contains each blind key known to
the sender [15].

The group key is calculated by each member based
on his/her key-path and blind keys. For instance, for a
member M3 at node n3, the key-path is the set of messages
{n3, gn2n3 , gn1gn2n3}. The set of blind keys, ordered as the
keys appear up to the root, is { gn2 , gn1 , ggn6gn4n5 }. The
group key at the root is calculated directly using the two sets:

GroupKey = ggn1gn2n3
gn6gn4n5

The protocol designers presented four types of security
properties: group key secrecy, which guarantees that it is
computationally infeasible for a passive adversary to discover
any group key, intuitively, that the attacker should not be able
to obtain a key that honest users think to be safe; forward
secrecy guarantees that a passive adversary who knows a
contiguous subset of old group keys cannot discover any
subsequent group key; backward secrecy, which guarantees
that a passive adversary who knows a contiguous subset group
keys cannot discover preceding group key, and finally, key
independence, which guarantees that a passive adversary who
knows a proper subset of group keys cannot discover any other
group key. The authors of [15] provided an informal proof that
their protocol satisfies these security property. In this work,
we provide a formal proof for group secrecy property under
certain conditions. This property can be described as a correct
key construction property, which guarantees that only group

members, who are of knowledge to their own private shares,
can calculate the group key at root. On the other hand, an
adversary, who has knowledge to all blind sub-keys cannot
find a full path to calculate the root key.

n3 n4

gn3n4n3

n1 n2

gn1n2

gn3g
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n1 n2

gn1n2

ggn1n2gn3n4

join

Fig. 4. Join event in TGDH protocol

We illustrate our method on a group protocol composed
of three members, then we apply a join event for a forth
member. Figure 4 shows the modification on the tree structure
when a new member joins the group, we define the group
protocol components before and after this event takes place.
Assuming that a passive adversary is monitoring the group
activity, the knowledge set is built based on the blind keys
interchanged between members. Based on this configuration,
we show all group protocol components, including secrecy
property, and the equivalent event-B model including the
invariant, before the join event takes place:

M = {n1, n2, n3, gn1 , gn2 , gn3 , gn1n2 , ggn1n2
, gn3gn1n2}

S = {n1, n2, n3, gn1n2 , gn3gn1n2}

K0 = {ni, gni}

K = {ni, gni , gn1 , gn2 , gn3 , ggn1n2}

GroupKey = gn3gn1n2

Then, we show the same components after the join event
of a new member with a new secret contribution n4. Note
that group key secrecy has the same definition and should be
valid always, before and after a join (or leave) event takes
place.

M = {n1, n2, n3, n4, g
n1 , gn2 , gn3 , gn4 , gn1n2 , gn3n4 ,

ggn1n2
, ggn3n4

, ggn1n2gn3n4}

S = {n1, n2, n3, n4, gn1n2 , gn3n4 , ggn1n2gn3n4}

K = {ni, g
ni , gn1 , gn2 , gn3 , gn4 , ggn1n2

, ggn3n4}

GroupKey = ggn1n2gn3n4

φ = GroupKey /∈ K ∧K ∪ S = ∅



Figure 5 shows event-B model for the protocol com-
ponents. We first define the event-B sets for blind keys
(BLINDKEY S), the general set of messages (MS), the
intruder’s set of messages (K), and the set of secret keys
(S). Then we define a number of variables over the above
sets of messages. We describe the current status of the group
by initializations where each of the above sets is concretely
defined. The secrecy property is defined as an invariant that
combines a set of conditions to be satisfied at the initialization
and after executing the event: K∩S = ∅. Some of the protocol
characterizes can also be encoded within this invariant, such
as K ⊂ MS ∧ S ⊂ M . We also define an event to represent
the protocol action (join/leave).

In the event-B model, the sets of messages MS, K, and
S, are directly defined from the above sets M,K, and S,
respectively. The group key has basically the same definition,
and secrecy property is defined as an event-B invariant that
contains, in addition to group key secrecy, certain conditions
on messages sets to insure the consistency of the map,
(K ∩ S = ∅) ∧ GKey /∈ K ∧K ⊂ MS ∧ S ⊂ MS. To be
consistent with the group structure, we also defined the set of
blind keys in event-B as follow:

BLINDKEY S = {gN1 , gN2 , gN3 , ggN1N2
, . . .};

Figure 6 represents an event-B definition that captures the
behavioral semantics of a basic message update performed by
the protocol. This event will result in updating the intruder’s
set of knowledge. New blind keys will be generated and
added to that set. The new secret group key is calculated
based on the new contribution of the joining member, n4.

GKey = ggn1n2gn3n4

SYSTEM TGDHProtocol
SETS

BLINDKEY S /* set of Blind keys */
MS; /* set of messages */
K /* Intruder’s set of knowledge*/
S /* Set of secret messages */

VARIABLES
intruderKey, msgBefore, msgAfter, bk, Gkey

INVARIANT
/* malicious participant cannot evaluate to GK */

K ∩ S = ∅ ∧GKey /∈ K ∧K ⊂ MS ∧ S ⊂ MS . . .
INITIALISATION

BLINDKEY S := {gN1 , gN2 , gN3 , ggN1N2 , . . .};
MS := N1, gN1 , N2, gN2 , . . .};
K := gN1 , gN2 , . . .
S := {N1, N2, gn1n2 , gn1n2gn3 , . . .}

EVENTS eventB tgdh , . . . /*for a protocol event*/
END

Fig. 5. Event-B Model of the Protocol Components.

To translate our initial protocol, we first consider the static
case of key construction under the assumption that basic DH
key construction (on tree leaf nodes) is correct. We then
consider the dynamic case by applying events such as join
and leave and verify the correctness of key construction for a

bounded tree size and bounded number of events. The event-
B invariant has been proven totally. The number of generated
proof obligations are three, all proof obligations are proven
automatically, and then the initial model of the group key
protocol is validated. The event-B invariant, I , defined in
Figure 5, implies the group protocol secrecy semantically,
I ⇒ φ. The event-B tool guarantees that M |= I . We have
shown in the previous section that the group protocol G is
mapped into an event-B model M . Therefore we can conclude
the correctness of the secrecy property φ for the protocol
model G, G |= φ.

eventB tgdh , /* for any message m */
ANY msgBefore, msgAfter, bk, . . .WHERE

msgBefore ∈ K ∧msgAfter = ggN3N4 ∧ . . .
THEN
/* update intruder’s set of messages after executing the event */

GKey := ggN1N2gN3N4 /* calculate group key */
K := K ∩msgAfter
/* update the set of secret messages */

S := S ∪ {Gkey, N4, gN3N4 , . . .}
END

Fig. 6. Event-B model capturing the semantics of the protocol join event

The proposed solution allows us to verify the required
property, however, one limitation of our approach is related
to the fact that event-B operations are defined only over finite
sets. Therefore, a bounded number of participants and protocol
events should be applied. Another limitation is due to the
fact that we verify the property under the execution of a
single event. However, this approach is sufficient for the target
property, where key distribution is abstracted away because we
are concerned only with modeling key construction but not key
distribution or authentication property.

In addition, to modeling the relationship between the secret
keys and blind keys an exponent operator is needed, therefore,
the set of possible blinded keys is directly related to the
number of participants represented by the tree level, i.e, the
model size in event-B is directly related to the number of
participants. Hence, a huge set of keys should be modeled,
where the automatic generation of these keys is infeasible
because no exponent operator is supported by event-B. There-
fore, applying invariant checking becomes limited by the issue
of generating this set manually. Even though there are some
limitations for the approach, event-B can be used in modeling
specific protocols behaviors, like key construction, and tree-
based protocol primitives can be modeled directly in event-B
for safety properties verification.

VI. CONCLUSION

The correctness of group key protocols in communication
systems remains a great challenge because of the sensitivity
of the services provided. In this paper, we illustrated the need
for a verification methodology for secrecy property in group
key protocols. While many approaches in the literature target
cryptographic properties for two parties protocols, the verifi-
cation problem for group key protocols is more challenging



because properties for these protocols are not trivial extensions
of the two-parties models. For example, the fact that a group
member computes a bad key can remain undiscovered by the
group, specially for a large group.

In this paper, we provide an approach for modeling and
verification of group key protocols by using event-B first-order
logic invariant checking. The method is based on a formal
link between the semantics of group key protocols model
and event-B. The contributions of this paper include defining
a well-formed connection between event-B invariant and the
group key protocol model including its secrecy property. These
conditions guarantee that the invariant verified in event-B is
equivalent to the secrecy property. In addition, we provide a
mechanized approach using first-order logic proving system
in the context of group key protocols verification. We applied
this approach on a group key protocol, the tree based Group
Diffie-Hellman protocol [15] and provided invariant checking
for secrecy under the static and the dynamic case by applying
a single event (join/leave). We also considered the limitation of
tree size that can fit into first-order logic model. We found that,
under certain assumptions, only group members can generate
the correct key. The results we achieved are very promising
and we believe that our method can be applied efficiently on
protocols of similar complexity level. We provided a formal
link from the group key protocol model to event-B in order
to use specific features in event-B to describe protocol actions
and verify the required secrecy property. The authors of the
protocol we use (TGDH) provided an informal, non-intuitive
and simple proof for secrecy property in their work. In this
paper we provided a formal, tool supported, and automatic
proof based on a sound method.

As a limitation of the approach, only invariant properties
can be modeled and verified. This is due to the target model
and verification tool, namely, event-B and Click’n’Prove [3].
However, invariant checking is adequate to model properties
that describe secrecy. In addition, we were able to conduct
invariant checking for a limited number of tree levels due to
the lack of an exponent operator in the prover. As future work,
we intend to extend the event-B based model to be able to
check for parameterized number of participants. In addition, it
will be more interesting to consider more dynamic properties:
forward and backward secrecy, and the most interesting case
is key independence. However, in order to achieve this, major
modifications of the approach are required using refinement in
event-B.
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