
Received August 27, 2019, accepted September 13, 2019, date of publication October 9, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946513

Input-Conscious Approximate
Multiply-Accumulate (MAC)
Unit for Energy-Efficiency
MAHMOUD MASADEH , (Student Member, IEEE), OSMAN HASAN, (Senior Member, IEEE),
AND SOFIÈNE TAHAR , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

Corresponding author: Mahmoud Masadeh (m_masa@ece.concordia.ca)

ABSTRACT The Multiply-Accumulate Unit (MAC) is an integral computational component of all digital
signal processing (DSP) architectures and thus has a significant impact on their speed and power dissipation.
Due to an extraordinary explosion in the number of battery-powered ‘‘Internet of Things’’ (IoT) devices,
the need for reducing the power consumption of DSP architectures has tremendously increased. Approximate
computing (AxC) has been proposed as a potential solution for this problem targeting error-resilient
applications. In this paper, we present a novel FPGA implementation for input-aware energy-efficient
8-bit approximate MAC (AxMAC) unit that reduces its power consumption by: performing multiplication
operation approximately, or approximating the input operands then replacing multiplication by a simple
shift operation. We propose an input-aware conditional block to bypass operands multiplication by (1) zero
forwarding for zero-value operands, (2) judiciously approximating 43.8% of inputs into power-of-2 values,
and (3) replacing the multiplication of power-of-2 operands by a simple shift operation. Experimental results
show that these simplification techniques reduce delay, power and energy consumption with an acceptable
quality degradation. We evaluate the effectiveness of the proposed AxMAC units on two image processing
applications, i.e., image blending and filtering, and a logistic regression classification application. These
applications demonstrate a negligible quality loss, with 66.6% energy reduction and 5% area overhead.

INDEX TERMS Approximate computing, approximate multiplier, approximate multiple-accumulate unit
(AxMAC), input-aware approximation, image processing, FPGA.

I. INTRODUCTION
The nascent approximate computing (AxC) design paradigm
is a promising approach for designing power- and area-
efficient digital circuits, which are quite suitable for battery-
powered devices. AxC has been used previously in loosy
compression and numeric computation [1]. AxC relies on the
principle of replacing traditional data processing elements by
less-complex and energy-efficient ones, while compromis-
ing on the accuracy of the results. There are many appli-
cations (e.g., [2], [3]) such as machine learning, robotics,
networking, multimedia processing and big-data processing,
i.e., data recognition, mining and synthesis that can tolerate
computation imprecision. Thus, AxC can be leveraged upon

The associate editor coordinating the review of this manuscript and

approving it for publication was Irene Amerini .

as an opportunity for designing energy-efficient error-tolerant
systems suitable for error-resilient applications.

Multiply-accumulate (MAC) computation is an important
and expensive operation in a variety of applications. It is
extensively used in the ubiquitous operations related to digital
signal processing (DSP), digital filtering, correlation, convo-
lution, speech processing, video coding, and communication.
For example, the convolution operation, which consists about
90% of MAC based computations [4], is used in various
image processing related tasks, such as smoothing, sharp-
ening and edge detection. Similarly, filtering an image of
size (512 × 512) pixels, based on (3 × 3) kernel, requires
262144 multiply-accumulate operations each with 9 multi-
plication operations and 8 addition operations.

The ever-increasing demand for ultra low power consump-
tion, small footprint, and high performance computing sys-
tems, necessitates designing a fast MAC unit, with low-power

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 147129

https://orcid.org/0000-0001-7447-1276
https://orcid.org/0000-0002-5537-104X
https://orcid.org/0000-0002-6461-1391

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

TABLE 1. CEVA-NeuPro AI processors family [5].

consumption, that is suitable for portable battery-powered
DSP systems. For example, the CEVA-NP4000 DSP proces-
sor includes 4096 8×8MAC units [5], which are used in var-
ious high-performance energy-constrained edge processing
applications, i.e., IoT, smart-phones and enterprise surveil-
lance. We believe that these requirements can be attained
by designing energy-efficient approximate MAC (AxMAC)
units that are suitable for error-resilient applications.

MAC units with a parallel architecture are suitable for high
performance applications, i.e., notepads and laptops, how-
ever, they have a large design area and power consumption.
On the other hand, MAC units with a recursive architecture
are suitable for small and low-power IoT nodes, which often
have a limited memory storage and operand size. Recursive
MAC units, which we target in this work, are embedded
within various digital systems used in our daily life. For
example, CEVA-NeuPro is a dedicated low power artificial
intelligence (AI) processor family for deep learning at the
edge [5]. Table 1 shows a list of processors of theNeuPro fam-
ily, with their corresponding design configurations and target
markets. For instance, the NP4000 processor, which includes
4096 8× 8 MAC units, is ubiquitous and used in automotive
and surveillance. Thus, energy-efficient MAC designs can
have a significant impact on the power consumption of the
overall processor.

A conventional recursive MAC unit consists of four com-
ponents, i.e., multiplier, adder, accumulator and controller.
Therefore, any of these components, can be approximated.
In this paper, we target the multiplier and controller blocks
as we propose an energy-efficient input-aware unsigned 8-bit
approximate MAC unit. The proposed approximate MAC
is applicable to both Application Specific Integrated Cir-
cuit (ASIC) and Field Programmable Gate Array (FPGA)
designs. However, in this work we target FPGAs which are
more suitable for run-time adaptive AxMAC unit design. The
proposed design is primarily based on: (1) FPGA implemen-
tation of our previously designed approximate array multi-
pliers [6], (2) a novel input-aware condition block, which is
integrated into the controller to avoid using the multiplier by
approximating input operands then performing a simple shift
operation. Inspired by our previous work [6], [7], the main
contributions of the paper are as follows:

• We propose an FPGA implementation for five designs
of an energy-efficient unsigned 8-bit approximate MAC
(AxMAC) units.

• Since approximation is application-dependent, we pro-
pose a novel input-aware conditional block to replace

FIGURE 1. Basic structure for 8-bit MAC unit.

multiplication by a simple shift left, which is applicable
to 43.8% of the operands input space.

• We demonstrate the prototype design of 8-bit approxi-
mateMACunits, and their synthesis on electronic design
automation (EDA) tools to analyze their area-power-
delay trade-offs. Additionally, we implement three
established multipliers/MAC to compare their area,
power, delay and energy with our proposed designs.

• Two real image processing applications and a logis-
tic regression classification demonstrated the qualitative
advantages of the proposed designs.

Note that the above input-aware approximation design
methods are applicable to diversely scaled MAC units,
regardless of themultiplier size, i.e., 8×16, 16×16 or 32×32,
and whether it is signed or unsigned multiplication. The rest
of the paper is organized as follows: Section II provides a brief
background about the structure of the conventional MAC unit
and its building blocks. Section III describes related work
about approximate MAC units. Section IV explains prelim-
inaries to the proposed AxMAC units. Section V introduces
the proposed approximate 8-bit MAC unit, and its build-
ing blocks, with experimental results based on the Virtex-6
FPGA. The accuracy evaluation of two image processing
applications, i.e., image blending and smoothing, and logis-
tic regression classification based on the proposed AxMAC
units, are given in Section VI. Finally, Section VII concludes
the paper.

II. CONVENTIONAL MAC UNIT
Multiply-accumulate is a standard operation that computes
the product of a sequence of two numbers, i.e., X and Y,
of length N, and then adds that product to an accumulator (A),
i.e., A =

∑N
i=1 Xi ∗ Yi. The multiplicands X and multiplier Y

are assumed to be n-bit wide, while the size of the adder and
accumulator should be at least 2n+ Log2N , to accommodate
the final result. In this work, as shown in Figure 1, we con-
siderN = 16, and the size of the adder and the accumulator as
20-bit. The design of a MAC unit has several configurations
according to the various settings of its components. Next,
we describe each component in a conventional 8-bit MAC
unit.

(1) 8-bit Binary Multiplier: An n-bit array multiplier
is composed of n2 AND gates for partial products genera-
tion, and n-1 n-bit adders for partial products accumulation.
Array multipliers have periodic structures and thus lead to

147130 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

a compact hardware due to short wiring which allows for
efficient pipelining. This advantage makes array multipli-
ers some of the most used in embedded System on Chip.
We design an exact 8-bit MAC unit using an exact 8-bit array
multiplier as the basic multiplication building block. This
in turn can be used for our proposed AxMAC units while
considering various approximate array multipliers as it will
be explained in Section IV-C.

(2) 20-bit Binary Adder: Targeting a low-power high-
speed MAC design, we design and evaluate various 20-bit
binary adders, i.e., ripple carry adder (RCA), carry look ahead
adder (CLA) and carry select adder (CSA), then we evaluate
the performance analysis for each adder, including its area,
delay and power consumption based on its RTL implementa-
tion. RCA is known for its large delay while CLA has a large
area for carry prediction [8]. Without loss of generality, based
on the analysis results of the 20-bit adders, we choose to adapt
the carry select adder (CSA) based on 4-bit (CLA) as basic
building blocks (CSA-CLA) for the MAC units design.
(3) 20-bit Accumulator: For multiplying and accumulat-

ing N n-bit numbers, the accumulator size should be at least
2n+ Log2N to accommodate the final result. Thus, we use a
20-bit accumulator to multiply 16 numbers each of size 8-bit.

(4) Controller: For energy efficiency, we propose a novel
input-aware conditional block to approximate input operands
then replace the multiplication operation with a simple shift
for almost 43.8% of the inputs, as will be explained in
Section V-A. The proposed conditional block is applicable
to MAC units with various operands, i.e., 8 or 16-bit width
and signed or unsigned polarity.

III. RELATED WORK
There is a considerable amount of literature, available on
designing MAC units due to their great significance in
DSP applications. For example, [9], [10] and [11] tar-
get exact designs without considering approximation for
power reduction. Existing work on approximate MAC unit
is very scarce comapred to other functional units. For exam-
ple, Dutt et al. [12] proposed an approximate radix-2 hybrid
redundant MAC unit based on a redundant number system.
The proposed design exploits an approximate hybrid redun-
dant adder as the basic building block for both addition
and multiplication operations in the MAC unit. However,
a significant energy gain mandates approximating 40 out of
the 64 bits of the results, which degrades the output quality
significantly. An approximate MAC unit based on partial
products compression and elimination, was proposed in [13].
The height of the partial products is reduced by using the OR
gate for compression [14], [15], and the selected columns of
partial products are not formed [16], [17]. Moreover, a com-
pensation term is required to reduce the error, and improve
output quality.

Several approaches for approximate computing have
been reported, namely voltage overscaling (VOS), use of
approximate hardware components and use of approxi-
mate memory units. These approaches can also be utilized

for approximating the MAC units. VOS involves reduc-
ing the voltage applied to the hardware for energy reduc-
tion. A voltage-scalable meta-function was proposed in [18],
where the supply voltage represents a quality tuning knob.
However, the computations of the most significant bits are
usually based on the critical paths and thus VOS is likely
to lead to large errors. On the other hand, our proposed
designs include approximate functional units as well as input
approximation.

As an example of approximate memory units based
approaches, [19] and [20] propose lookup table-based tech-
niques. Raha and Raghunathan [19] proposed a quantized
lookup table (LUT) for approximating meta-functions, which
form the core computational kernels of error-resilient appli-
cations. However, for complex functions with a large number
of inputs, the LUT size can become extremely large. Simi-
larly, Alvarez [20] presented a fuzzymemoization LUT-based
technique to store already computed values for specific input
operands. These internal values can then be used to estimate
the output for similar inputs. However, this strategy did not
lead to a perceived hardware reduction.

There exists a considerable amount of efforts to design
approximate hardware components. For instance, the works
[21], [22] replace constant multiplications with multiple
operations of shift-and-add. However, such techniques are
applicable only when the operands are represented in the
fixed point format and one of them is known in advance.
Raha et al. [23] designed a dual-mode reconfigurable adder
block, which is able to adapt the approximation degree based
on the applied inputs. However, having multiple designs to
meet the required quality, mandate a complex controller with
a large area overhead.

Ranjan et al. [24] proposed an automatic methodology
for sequential logic approximation (ASLAN), which is con-
sidered as the first effort towards the synthesis of approx-
imate sequential circuits. Such an approach can naturally
leverage upon the approximate arithmetic operators for their
use within the synthesis algorithm, and thus our proposed
approximate MAC units can be useful for such approximate
synthesis tools.

Hashemi et al. [25] designed an approximate multiplier,
called DRUM, which finds the first leading ’1’ from the
most significant position in both multiplication operands,
and then prunes the size of the required multiplier to reduce
the approximation error. However, this design cannot be
integrated on general purpose processors as it needs to set
the multiplier size for each application offline. The work
in [26] proposed a configurable floating-point multiplier
(CFPU), which multiplies input operands depending on the
input mantissa. However, such CFPU gives poor accuracy
with coarse grain tuning capability. This limits the num-
ber of applications that could benefit from approximation.
The work in [27] proposed a runtime configurable floating-
point multiplier (RMAC) by approximating the mantissa
multiplication to a simple addition between the mantissa of
input operands. Despite being runtime configurable with low

VOLUME 7, 2019 147131

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

energy consumption, both designs in [26] and [27] are still
unable to completely remove the need for exactmultiplication
from their designs.

In this paper, we propose a hybrid approach, in the sense
that it aims to simplify the MAC design by: 1) utilizing
an approximate multiplier, or 2) approximating the input
operands to the multiplier by reducing them to smaller power-
of-2 values and then using the well-known technique of shift-
ing rather than multiplication. Thus, approximate multipliers,
e.g. [19]–[27], can be easily integrated with our proposed
approximate MAC units. We compare our work with two
approximate MAC units based on approximate multipliers
proposed by Kulkarni et al. [28] and Kyaw et al. [29] that
have similar structures to our designed multipliers and their
results are still competitive. Moreover, we compare our work
with a third approximate MAC unit based on the approximate
tree compressor multiplier (ATCM), proposed by Yang et al.
[30], which is a Wallace tree multiplier. Kulkarni et al. [28]
construct a large (8×8) multiplier –which we call 2×2-based
multiplier– using smaller (2 × 2) approximate multipliers as
building blocks. The work in [29] designs an (8 × 8) error
tolerant multiplier (ETM) based on the truncation principle
by dividing the multiplier into two parts, i.e., accurate and
approximate. For an 8-bit multiplier, the most significant
8-bits of the result are generated based on exact multiplication
while the least significant 8-bits of the result are generated
based on probabilistic bit manipulation. ATCM utilizes a
4-to-2 compressor proposed by [31] which equally partitions
the rows of the partial product tree array to reduce power and
delay. In the rest of the paper, we call the above three MAC
units: Kul-MAC, ETM-MAC and ATCM-MAC, respectively.

IV. PRELIMINARIES
In this work, we target the MAC unit with 8-bit input
operands. Without loss of generality, this work can be
extended to any operand size, e.g., 16 × 8 and 16 × 16. The
proposed AxMAC unit, approximately computes the product
of two numbers, i.e.,X and Y, then accurately adds the product
to the accumulator (A). The basic approximate full adders and
our previously designed approximate multipliers were origi-
nally designed for ASIC (Application Specific Integrated Cir-
cuit). Thus, because of the architectural differences between
ASICs and FPGAs, we reevaluated the characteristics of our
basic building blocks on Virtex-6 FPGA in this paper. Next,
we briefly discuss preliminaries to the proposed AxMAC
units.

A. FPGA SYNTHESIS
To analyze the metrics of approximate designs, we utilize
the XC6VLX75T FPGA, which belongs to the Virtex-6 fam-
ily, and the FF484 package [32]. For functionality verifica-
tion, we use VHDL simulation based on Mentor Graphics
Modelsim [33]. We use Xilinx XPower Analyser for power
calculation based on exhaustive design simulation [34]. For
logic synthesis, we use the Xilinx Integrated Synthesis Envi-
ronment (ISE 14.7) tool suite [35]. In FPGAs, look-up-table

TABLE 2. Performance analysis for various approximate FAs at RTL on a
Virtex-6 FPGA.

(LUT) are a small asynchronous SRAMs that are used to
implement combinational logic circuits, while flip-flops are
single-bit memory cells that are used to hold a state. Also,
slices are the basic building block components containing a
number of LUT’s, flip-flops, and carry logic elements of the
design before mapping. Any slice that is used even partially
is counted in the occupied slices in the map report. Design
delay represent the maximum combinational path delay.

B. APPROXIMATE MIRROR ADDERS
Approximate computing relies on the principle of fail
small or fail rare, where approximation should introduce a
small error magnitude or error rate. Based on that and utiliz-
ing the mirror adder, five approximate Full Adders (FAs) are
proposed in [36]. Several approximate FAs designed in [36] at
register transfer level (RTL) with reduced design complexity.
We use such designs as building blocks for developing low-
power approximate 8-bit array multipliers [6], [7]. Table 2
shows the area, power and delay (period) of different designs
of FAs at RTL.

As shown in Table 2, all designs occupy one LUT and
one slice. However, AMA5 has 4 I/Os and it does not occupy
any LUT or slice. The delay of AMA1 – AMA3 is similar to
the exact FA delay, i.e., 755 ps where logic delay is 43 ps
and routing delay is 712 ps. AMA4 design has a negligi-
ble delay reduction, i.e., 0.5%, while AMA5 exhibits 63%
delay reduction due to its design simplicity where it has no
logic delay and its routing delay is 279 ps. Regarding power
consumption, all designs have a reduced power consumption
with an average of 37.1% compared to the exact full adder.
Thus, these designs clearly satisfy the goal of approximation
by saving power, where power reduction ranges from 28.6%
for AMA1 to 52.5% for AMA5. In the sequel of this paper,
we use these five approximate FAs, i.e., AMA1 – AMA5, for
designing an 8-bit approximate array multipliers at RTL.

C. APPROXIMATE 8-BIT ARRAY MULTIPLIERS
As avowed by [37], multiplier components utilize 46% of
chip area in most MAC modules. Thus, an energy-efficient
multiplier design can play a significance role in low-power
VLSI system design. To control error significance, the higher
order multiplication operations are performed accurately
while only the lowest significant part of the result is approx-
imated in the proposed approach. Thus, based on quality
evaluation of various approximate multipliers with a different
number of approximated bits [6], [7], here, we propose to

147132 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 2. Percentage of power and delay reduction for Approximate FAs
at RTL.

FIGURE 3. Block diagram of an unsigned 8-bit array multiplier with 9-bits
of the result being approximated.

TABLE 3. Performance analysis for various 8 × 8 approximate array
multipliers at RTL on a Virtex-6 FPGA.

use approximate array multipliers with 9-bit of the result
approximated out of 16-bit in the approximate MAC units
as shown in Figure 3. Approximating more than 9-bits gains
more area, power and delay reduction. However, the quality
degradation is also quite significant.

Table 3 shows the area, power and delay of different
designs of the 8-bit approximate multiplier at RTL. Clearly,
all designs have a reduced area and power consumption,
where the design area is represented as the number of slice
LUTs and occupied slices. The design delay (maximum com-
binational path delay) consists of the delay of two compo-
nents, i.e., logic delay and routing delay. All approximate
designs have a reduced logic delay, but AMA1 – AMA3 have

a slightly longer routing delay. Thus, their total design delay
is more than the exact design delay.

As shown in Figure 4, the area reduction of our approxi-
mate multipliers varies from 10.3% to 60.7% with an average
of 37.6%. Similarly, power reduction of the approximate
multipliers ranges from 63.6% to 71.7% with an average
of 68.8%, where dynamic power varies from 129.6 mW to
166.6 mW compared to the exact design, which is 457.7 mW.
Due to the simplicity of the design, multipliers based on
AMA4 andAMA5 have shorter critical paths with delay reduc-
tion of 32.7% and 48.1%, respectively. The energy reduction
for the approximate multipliers varies between 60.5% and
85.3% with an average of 71.8%. Noticeably, designs based
on AMA4 and AMA5 always exhibit more approximation ben-
efits for all design metrics compared to others. The 2x2-based
multiplier [28], ETM multiplier [29] and ATCM [30] have a
power reduction of 49.3%, 68.8% and 70.3%, respectively.

It is important to note that all full adders and 8-bit approx-
imate multipliers, given in Tables 2 and 3, are combinational
designs. Thus, the proposed design can be integrated directly
into the MAC unit without the need for registers. Therefore,
design synthesis on FPGA adds I/O buffers to the top level
design ports. Thus, the maximum combinational delay will
include the I/O buffer delay, i.e., maximum delay from FPGA
input pin to the FPGA output pin. Moreover, a considerable
amount of dynamic power consumption is due to such added
I/O buffers. For sequential designs, where registers are added
to buffer the inputs and outputs, the path no longer includes
any I/O elements, and the maximum path delay and dynamic
power are thus reduced substantially.

Building a (8×8) approximate multiplier based on smaller
blocks, as proposed in [28], requires 16 (2 × 2) blocks and
60 FAs for partial results accumulation. Thus, as shown
in Table 3, the 2 × 2-based multiplier [28] has an area close
to the area of the exact array multiplier with 49.3% power
reduction. The ETMmultiplier [29] relies on constructing just
only a quarter of the partial products, based on the most sig-
nificant 4-bits of the two operands. Thus, it exhibits a reduced
area, power and delay as shown in Figure 4, with relatively
large errors. ATCM [30], based on Wallace tree architecture,
employs an approximate 4-to-2 compressor designed in [31].
It has a competitive power reduction.

D. ACCURACY METRICS
There are several application dependent error metrics used
in approximate computing to quantify approximation errors
and evaluate design accuracy [38], [39]. For example, con-
sidering an approximate arithmetic design with two inputs,
i.e., X and Y , of n-bit each, where the exact result is
(P) and the approximate result is (P′), these error metrics
include:

• Error Rate (ER): Also called error probability, is the
percentage of erroneous outputs among all outputs.

• Error Distance (ED): The arithmetic difference between
the exact output and the approximate output for a given

VOLUME 7, 2019 147133

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 4. Percentage of area, power, delay and energy reduction for 8-bit approximate multipliers at RTL.

input. ED can be given by:

ED = |P′ − P| (1)

• Mean Error Distance (MED): The average of ED values
for a set of outputs obtained by applying a set of inputs.
MED is an effective metric for measuring the imple-
mentation accuracy of a multiple-bit circuit design, and
obtained as:

MED =
1
22n

22n∑
i=1

|EDi| (2)

• Normalized Error Distance (NED): The normalization
of MED by the maximum result that an exact design can
have (Pmax). NED is an invariant metric independent of
the size of the circuit, therefore, it is used for comparing
circuits of different sizes, and it is expressed as:

NED =
MED
Pmax

(3)

• Relative Error Distance (RED): The ratio of ED to the
accurate output, given by:

RED =
ED
P
=
|P′ − P|

P
(4)

• Mean Relative Error Distance (MRED): The average
value of all possible relative error distances (RED):

MRED =
1
22n

22n∑
i=1

|REDi| (5)

• Mean Square Error (MSE): It is defined as the average
of the squared ED values:

MSE =
1
22n

22n∑
i=1

|P′i − Pi|
2
=

1
22n

22n∑
i=1

|EDi|2 (6)

• Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-
noise ratio is a fidelity metric used tomeasure the quality
of the output images:

PSNR = 10 ∗ log10(
2552

MSE
) (7)

These error metrics will be used to evaluate the accuracy
of various proposed approximate MAC units.

V. PROPOSED APPROXIMATE MAC (AXMAC) UNIT
We use the five approximate array multipliers [6] and build
five AxMAC units in order to explore the quality-power
trade-offs. It is worth noting that the static power evaluated
for the approximate multipliers is almost the same as the one
for the exact designs, since it depends on Vdd and Idd [40].
However, the dynamic power consumption, which depends
on the internal capacitance (CL) of the design, and the switch-
ing factor (α) is a factor of the value of the input operands
[40]. We propose to reduce the dynamic power consumption
by avoiding multiplication and using simple shift operations.

A. CONDITIONAL OPERANDS BLOCK
The multiplier treats all operands similarly irrespective of
their magnitude. However, the power consumption of the
multiplier depends on the value of its operands. The source
of CMOS power consumption, such as binary adders and
multipliers, is primarily composed of static and dynamic
power as given in Equations 8 and 9, [40], respectively.

Ps = Vdd .Idd (8)

Pd = α.F .CL .Vdd (9)

Static power (Ps) depends on the supply voltage (Vdd)
and leakage current (Idd), while the dynamic power (Pd)
depends on the supply voltage (Vdd), operation frequency
(F) and the capacitive load (CL), which in turn depend on
the structure of the underlying circuit and the switching (α)
that depends on the operand’s values. The major portion
of power consumption in the MAC unit is attributed to the
dynamic power (Pd). Thus, we target reducing such input-
dependent dynamic power consumption through minimizing
circuit switching activity (α).

For an n-bit array multiplier, n2 partial products are always
generated then summed up irrespective of the operands value.
However, based on the operands value, partial product gener-
ations and summations may be avoided in specific cases to

147134 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

TABLE 4. Power-of-2 operands of the conditional block.

decrease power consumption. For that, we propose an input-
aware conditional block to check the input operands for the
following three cases:

1) if any of the operands is zero, then disable themultiplier
and directly pass a value of zero to the adder. This
case covers 2 ∗ 2n = 512 different inputs for the 8-bit
approximate multiplier.

2) if any of the operands has a magnitude (M) which is
a power-of-2, then the other operand is shifted left by
log2M positions and passed to the adder. A list of such
applicable operands is shown in Table 4. It includes
2 ∗ n ∗ 2n = 4096 different inputs for our approximate
multipliers.

3) if any of the input operands has a magnitude (M)
that can be approximated to (M ′) which is a power-
of-2, then the other operand is shifted left by log2M ′

positions and passed to the adder. Table 5 shows the
proposed list of the approximable operands and their
respective approximated values. The list includes 2 ∗
47 ∗ 2n = 24064 different inputs for the 8-bit approxi-
mate multiplier.

Algorithm 1 explains the work flow for the proposed con-
ditional block. It accepts the two operands to be multiplied,
i.e., X and Y, and the number of times (N) to multiply and
accumulate. The output flagMultiply-or-Add (MA), indicates
whether to multiply X and Y and forward the result to the
adder or not. Initially, it is reset (Line 4) to indicate that the
output of the multiplier is forwarded to the adder. Whenever,
any of the operands has a special value, i.e., zero, power-
of-2 or approximable to power-of-2, the MA flag is set to 1
(Lines 9, 13, 17, 22 and 27) to indicate that the output of the
conditional block, i.e., conditional result (CR), is forwarded
to the adder and the multiplier is bypassed. The conditional
result is set to a suitable value (Lines 8, 12, 16, 21 and 26),
based on the magnitude of the input operands.

Table 4 explains different possible cases for the operation
of the input-aware conditional block embedded within an
8-bit approximate MAC unit. The conditional block checks
for 9 cases for each operand of the 8-bit multiplier. X and
Y are operand values which are not power-of-2 nor approx-
imable to power-of-2. The shift left operation, which is equiv-
alent to multiplication by two, is denoted by the symbol 〈〈,
and CR is the conditional result to be used instead of the
multiplier result.

Algorithm 1 Input-Aware Energy-Efficient Conditional
Block (CR,MA) = CB(X ,Y)
Input:
1: (1) X: Multiplicand; (2) Y: Multiplier;
2: (3) A: Accumulator; (4) N: Number of operands

Output:
3: (1) CR: Conditional Result; (2)MA: Multiply-or-Add
4: MA← 0
5: while i ≤ N do
6: Read Xi , Yi
7: if (Xi == 0) Or (Yi == 0) then F Check for zero

operand
8: CRi← 0
9: MA← 1
10: end if

F Check if operand Xi is Power-of-2
11: if (Xi is power-of-2) then
12: CRi← (Yi 〈〈 Log2 Xi) F Shift-left operand Yi
13: MA← 1 F by Log2Xi times
14: end if

F Check if operand Yi is Power-of-2
15: if (Yi is power-of-2) then
16: CRi← (Xi 〈〈 Log2 Yi) F Shift-left operand Xi
17: MA← 1 F by Log2Yi times
18: end if

F Check if operand Xi is Not Power-of-2
19: if (Xi is Not power-of-2) AND (Xi is approximable)

then
20: X ′i ← Apprximate (Xi)
21: CRi← (Yi 〈〈 Log2 X ′i) F Shift-left operand Yi
22: MA← 1 F by Log2X ′i times
23: end if

F Check if operand Yi is Not Power-of-2
24: if (Yi is Not power-of-2) AND (Yi is approximable)

then
25: Y ′i ← Apprximate(Yi)
26: CRi← (Xi 〈〈 Log2 Y ′i) F Shift-left operand Xi
27: MA← 1 F by Log2Y ′i times
28: end if
29: end while

Table 5 shows 47 different values of each operand, which
are approximable to power-of-2, and their approximated
value. For example, if the operand has a value between
124 and 135, it will be approximated to 128, then as shown
in Table 4, the multiplication is replaced by shifting the other
operand 7 positions to the left. Moreover, if the operand has a
value which is not power-of-2 nor approximable to power-
of-2, e.g., 140, the shifting process is not applicable, and
the result is evaluated by approximate multiplication. For the
8-bit MAC unit, these special cases cover 2 ∗ (9 + 47) ∗ 2n

out of 2n ∗ 2n cases which equals 43.8% of the operands
input space. Thus, the proposed conditional block would be
beneficial in power saving, especially for applications that
exhibit a high probability of having such operands, i.e., with

VOLUME 7, 2019 147135

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 5. Histogram of Error Distance (ED) for various Approximate MAC Units.

TABLE 5. Approximable operands of the conditional block and their
approximated value.

a magnitude of zero, power-of-2 or approximable to power-
of-2. The effectiveness of the conditional block is explained
next.

B. APPROXIMATE 8-BIT MAC UNIT
Algorithm 2 explains the operation flow of the proposed
AxMAC unit, based on its previously explained components.
Initially, the contents of the accumulator register are reset
(Line 4), i.e., A← 0, and it is reset again after processing the
sequence of N operands. For each pair of operands, Xi and Yi,
a partial result (PRi) is set to a specific value based on: 1) the
conditional block evaluation result for special case operands

FIGURE 6. RTL of approximate mac unit with conditional block.

(Line 9); or 2) the multiplier result (Line 11). Then, the partial
result is accumulated (Line 13) and the final result is returned
in the accumulator (Line 16), i.e., A ≈

∑N
i=1 Xi ∗Yi. Figure 6

depicts an equivalent graphical representation for the RTL
implementation of the AxMAC unit design including the
approximate multiplier and conditional block.

1) ACCURACY ANALYSIS
To meet AxC requirements, we are mandated to analyze the
error metrics of the proposed AxMAC units, as well as their
area, power and delay on a Virtex-6 FPGA. We evaluate vari-
ous accuracymetrics for the proposedAxMACdesignswhich
all have the full adders (FAs) that contribute to the 9 least
significant bits (LSBs) are being approximated as shown
in Figure 3. Moreover, we evaluate the accuracy metrics for

147136 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

Algorithm 2 Approximate Multiply-Accumulate Computa-
tion Unit A = AxMAC(X ,Y)
Input:
1: (1)X:Multiplicand; (2) Y:Multiplier; (3)A: Accumulator

Output:
2: (1) A: Accumulator
3: Done← 0
4: A← 0 F Initially, reset the accumulator
5: while i ≤ N do FWork while having operands
6: Read Xi , Yi
7: (CRi, MAi) = CB (Xi, Yi) F Checking operands
8: if (MAi = 1) then F PRi holds XixYi
9: PRi = CRi
10: else
11: PRi= Multiply (Xi,Yi) F Approx Multiply
12: end if
13: A = Accumulate (PRi, R) F Accumulate the result
14: end while
15: Done← 1 F Finish processing N operands
16: return A
17: function CB(X,Y)
18: Check for special-cases of Xi and Yi F See

Algorithm 1
19: end function
20: functionMultiply(X,Y)
21: Evaluates Xi.Yi FMultiply 8-bit numbers
22: end function
23: function Accumulate(PR,A)
24: A← PRi + A F Accumulate PR with A
25: end function

TABLE 6. Error metrics for approximate MAC units with 9-bits of the
result being approximated.

the previously mentionedKul-MAC [28], ETM-MAC [29] and
ATCM-MAC [30] units. Table 6 shows the accuracy metrics
for these eight different AxMAC units. We evaluated the
accuracy inMATLAB by implementing equivalent behavioral
models and performing an exhaustive testing. Thus, the total
number of test patterns was 65536.

As shown in Table 6, the average ER for all proposed
designs is quite high, i.e., around 98%, which is expected
due to approximating 9-bits of the 16-bits of the results. Thus
the error magnitude should be reduced to compensate for the
high error probability. The proposed AxMAC designs have a
tolerable error, e.g., NED ranges from 2.61% to 22.8%. The
proposed Ax4MAC and Ax5MAC have the lowest MSE while

Ax3MAC has the highest MSE. All proposed AxMAC units
have a MSE less than Kul–MAC and ETM–MAC. Kul–MAC
has a low ER and NED, which are 0.4673 and 2.86%, respec-
tively, with a high MSE which is 6.46 × 106. ER and NED
for ETM–MAC are 0.996 and 14.29%, respectively, and MSE
equals 4.14 × 106. ATCM-MAC [30] has the minimal NED,
i.e., 1.57%, where its ER is 0.6028 and MSE is 2.62× 105.

Figure 5 shows the histogram distribution for the ED of
the proposed AxMAC units. The zoomed-in (top-right) fig-
ure is the histogram for Ax1MAC – Ax5MAC, because it is
invisible due to ETM-MAC. The maximum ED for Ax1MAC
is 2820 with average of 538. Ax2MAC with maximum
of 1452 has an average of 464, whileAx3MACwithmaximum
of 1876 has an average of 1010. Ax4MAC and Ax5MAC have
the lowest values, with average of 185 for both, and their
maximum value is 796 and 756, respectively. The bottom-
left corner of Figure 5 clearly shows histogram distribution
for the ED of Kul–MAC, ETM-MAC and ATCM-MAC units.
The maximum ED for Kul-MAC is 14450 with an average
of 903, where small error values occur frequently and large
error values occur rarely. The maximum ED for ETM-MAC is
7170 with an average of 1645. Moreover, the maximum ED
for ATCM-MAC is 7748 with a low average of 224.

In addition to the above-mentioned accuracy evaluation
of AxMAC units with different settings, we also evaluate
the output quality of two image processing applications
and logistic regression classifier, utilizing our approximate
MAC units with 9-bit of the result being inexact, Kul–MAC,
ETM–MAC and ATCM-MAC units. More details on this
application-dependent quality evaluation can be found in
Section VI.

2) AREA, POWER/ENERGY AND DELAY ANALYSIS
Now, we evaluate the proposed AxMAC units in terms of
area, power, delay and energy. Table 7 shows the obtained
design metrics including area (Slice Register, Slice LUTs and
Occupied Slices), dynamic power consumption, minimum
operating delay, maximum operating frequency and energy
of different MAC units. The evaluated designs are:

• Conventional MAC unit, where its design characteristics
are used as a baseline for evaluating other units;

• Five proposed approximate MAC units, i.e.,
Ax1MAC – Ax5MAC;

• Three related work, i.e., Kul–MAC, ETM–MAC and
ATCM–MAC;

All above designs are with two settings, i.e., without and
with the conditional block (w/o CB and w/CB). The com-
parison results for the different AxMAC units are shown
in Figure 7, where the x-axis contains the names of the eval-
uated AxMAC units. The y-axis is the percentage in reduc-
tion from the conventional design. Note that larger values
represent better results. The four bars (from left to right)
in each design show the percentage of reduction in area,
power consumption, critical path delay and design energy.
As shown in Figure 7 (left side), our proposed designswithout

VOLUME 7, 2019 147137

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 7. Design characteristics for the proposed AxMAC units.

TABLE 7. Comparative analysis for various design metrics of approximate MAC Units at RTL without (w/o) and with (w/) the conditional-block (CB).

the conditional-block exhibit a reduced area compared to
the exact one, with an average of 35.6% reduction, where it
ranges from 26.2% to 41.3%. Ax4MAC has the highest area
and delay reduction followed by Ax5MAC. Also, we were
able to obtain an average of 13.4% power reduction, which
ranges from 2.6% to 26.3%. Ax5MAC has the greatest power
saving and energy reduction followed by Ax4MAC. Clearly,
Ax4MAC and Ax5MAC are superior designs compared to
the related work [28]–[30]. Adding the input-aware condi-
tional block for more power saving introduces an area over-
head, as shown in Figure 7 (right side), where the proposed
designs have larger area with an average of 20%. Moreover,
the conditional block lengthen the critical path, where the
average delay reduction drops from 24.1% to 5.6%. How-
ever, the average power (energy) reduction of the approxi-
mate designs enhanced to 48.9% (51.3%) rather than 13.4%
(32.9%). Comparing Figure 4 with Figure 7 (left-side), shows
that the design characteristics of approximate multipliers are
not shown directly on AxMAC units. This is due to the I/O
buffers added to the top level ports when synthesizing the
approximate multipliers on FPGA.

Figure 8 shows a comparative analysis for the best AxMAC
units, i.e., Ax4MAC and Ax5MAC, compared with Kul–MAC,
ETM–MAC and ATCM–MAC units. Without the conditional
block, Ax4MAC and Ax5MAC designs have 41.3% and
40.1% area reduction, respectively.Kul–MAC has a large area
with 17% increase over the conventional MAC unit, while
ETM–MAC has a 37.2% area reduction. The area reduction of
ATCM–MAC is 12.9%. Ax4MAC and Ax5MAC designs have
19.7% and 26.3% power reduction, respectively. Kul–MAC
has a higher power consumption with 1.3% increase over
the conventional MAC unit. ETM–MAC has a high power

FIGURE 8. Comparison of the Design Characteristics for Ax4MAC,
Ax5MAC, Kul-MAC, ETM-MAC and ATCM-MAC without the
Conditional-Block.

reduction while ATCM–MAC has an insignificant reduction,
i.e., 22.4% and 1.3%, respectively. ETM–MAC has the high-
est delay reduction followed by Ax4MAC with 52.1% and
48.2%, respectively, while the other three designs are close
in their values. Regarding energy consumption, Ax4MAC and
Ax5MAC have 58.4% and 58.6% energy reduction, respec-
tively, while ETM–MAC has a slightly higher energy reduc-
tion, i.e., 62.9%. Kul–MAC and ATCM–MAC exhibit about
42% energy reduction.

As shown in Figure 9, adding the conditional block
achieves better power and energy efficiency at the cost
of an increased area and delay. For example, Ax4MAC
with 5% increased area has a 52.6% and 66.6% power
and energy reduction, respectively. Similarly, Ax5MAC with
7.9% more area has 51.3% and 65.7% power and energy
reduction, respectively. The power reduction for Kul–MAC,
ETM–MAC and ATCM–MAC is 42.1%, 48.7% and 42.1%,
respectively.Moreover, the energy reduction for these designs
is 58.9%, 63.8% and 59.2%, respectively. However, their area
is increased by an average of 15.3%.

147138 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 9. Comparison of the Design Characteristics for Ax4MAC,
Ax5MAC, Kul-MAC, ETM-MAC and ATCM-MAC with the Conditional-Block.

As a whole, there is no single design which is superior in
all design metrics. However, all proposed designs exhibit a
great design characteristics, in terms of area, power, delay
and energy. For instance, with merely a 5% area overhead,
Ax4MAC achieves 52.6% and 66.6% reduction in power and
energy, respectively. Similarly, with a 7.9% area overhead,
Ax5MAC achieves 51.3% and 65.7% reduction in power and
energy, respectively.

VI. APPLICATIONS
This section describes logistic regression classifier and two
image processing applications that we use to evaluate the
proposed AxMAC designs, and validate their quality.

A. LOGESTIC REGRESSION
Prediction problems can be solved using logistic regression
which is a classification method where its dependent vari-
ables have only two values, e.g., pass or fail. Logistic regres-
sion models are used to predict the probability of the binary
response whenever a linear regression is not applicable.
We evaluate our MAC units against a logistic regression clas-
sifier to predict whether a student gets admitted into a univer-
sity [41].We evaluate the model against 100 two-dimensional
points that belong to two classes: Admitted or Not Admit-
ted, based on applicant scores on two exams, as shown
in Figure 11. We build a classification model that estimates
an applicant probability of admission based on his scores.

TABLE 8. Training accuracy of classification models utilizing exact MAC
and AxMAC units.

The training accuracy of our classifiers proves how well the
learned model predicts based on our training set as shown
in Table 8. The training accuracy of the model based on
the exact MAC unit is 90%. Models based on Ax1MAC –
Ax3MAC, provide the same accuracy as the exact design
while models based on Ax4MAC, Ax5MAC and ATCM-MAC
have an accuracy almost identical to the exact design. The
accuracy of models based on Kul-MAC and ETM-MAC is
acceptable, i.e., 80% and 68%, respectively. Thus, our pro-
posed AxMAC units provide high-quality results for the con-
sidered classification models which is higher than the related
work.

B. IMAGE BLENDING
We evaluate and compare the accuracy of the proposed
approximate MAC units utilizing an image blending applica-
tion based on image multiplication mode, where two images
are multiplied pixel-by-pixel, for all components, i.e., red,
green and blue. The value of the pixels ranges from 0 to
255. We used MATLAB to evaluate the error metrics for
image processing. To this end, we have modeled all approx-
imate MAC units in MATLAB and used them in blending.
We use the peak signal to noise ratio (PSNR), described in
Equation 7, to measure the image quality.

Figure 10 shows a comparison of the obtained PSNR
for different approximate MAC units. The PSNR for

FIGURE 10. Output Quality (PSNR) for Image Blending Application with Different AxMAC Units.

VOLUME 7, 2019 147139

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

FIGURE 11. A 2-dimensional plot for the scores of 100 applicants with
their classification model.

Ax1MAC – Ax5MAC are 39.3dB, 41.2dB, 35.7dB, 48.7db and
48.3dB, respectively. Moreover, for Kul–MAC, ETM–MAC
and ATCM-MAC designs, PSNR is 29.2, 29.1 and 43.7,
respectively. Visually, all approximately processed images
are non-distinguishable compared with the accurately pro-
cessed ones. Designs based on Ax4MAC and Ax5MAC have
the best output image quality with 66.6% and 65.7% energy
reduction, respectively. This is consistent with the obtained
results in Section V-B and the ones given in Table 7. More-
over, other designs have an acceptable PSNR, e.g., ATCM-
MAC with 43.7dB. Generally, all proposed approximate
designs have an acceptable quality degradation, each with
different area, power and energy efficiency.

C. GAUSSIAN SMOOTHING
We also evaluate the efficiency of the proposed AxMAC units
on a Gaussian smoothing filter application, which reduces
image noise and details through attenuating high frequency
signals, by working as a low-pass filter. Gaussian blur filter

is widely used in mobile applications, such as instagram and
snapchat, which involve image processing. Mathematically,
applying a Gaussian blur to an image is the same as con-
volving the image with a circularly symmetric 2-D Gaussian
function, given in Equation 10 [42].

G(x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 (10)

Kernel =
1
254

24 30 24
30 38 30
24 30 24

 (11)

Theoretically, the Gaussian distribution is non-zero every-
where. However, in practice, it is effectively zero more than
about three standard deviations (σ) from the mean (µ). The
Gaussian smoothed output is a weighted-average of each
pixel’s neighborhood. We use a (3 × 3) kernel, shown in
Equation 11, based on σ = 1.5, where the kernel average
weight is more towards the value of the central pixels.

To illustrate the usefulness of the proposed AxMAC
unit, we use its different versions within the Gaussian blur
algorithm. All models are implemented in MATLAB. The
Gaussian kernel, given in Equation 10, is applied to 8-bit
gray-scale input images of size (512× 512) pixels. Our input
image is the benchmark lena image with added zero-mean,
Gaussian white noise with a variance of 0.01 is added to
the original grayscale image. The required 2D-convolution
with (3 × 3) kernel requires 9 multiplication operations and
8 addition operations per pixel, which are expensive opera-
tions. Therefore, we approximated the Gaussian blur filtering
by replacing MAC units with the proposed AxMAC units.
In order to measure the quality of the output images, we use
PSNR as given in Equation 7.
Figure 12 provides a pictorial representation of apply-

ing the Gaussian filter to the lena image, with different
proposed designs of AxMAC units as well as Kul–MAC,
ETM–MAC and ATCM–MAC, utilizing the (3 x 3) kernel.
For referencing, the lena image with Gaussian-noise added
and the noisy image filtered with exact MAC unit, are shown
in Figure 12. The resulted PSNR values are computed with

FIGURE 12. Output quality (PSNR) for applying gaussian filter with different AxMAC units.

147140 VOLUME 7, 2019

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

respect to the image obtained by applying Gaussian filter
with exact MAC unit on the noisy image. The PSNRs for the
Ax1MAC – Ax5MAC are 32dB, 32.8dB, 30.3dB, 38.5dB, and
39dB, respectively. Moreover, for Kul–MAC, ETM–MAC and
ATCM–MAC designs, PSNR is 36.9, 37.1 and 38.2, respec-
tively. As in image blending, the Ax4MAC and Ax5MAC
units exhibit the best output quality with maximum energy
reduction. Overall, all proposed designs have insignificant
quality degradation, i.e., the PSNR ranges from 30.3dB to
39dB, with significant energy reduction.

VII. CONCLUSION
In this paper, we proposed a novel energy-efficient approxi-
mate MAC unit based on input awareness, which is suitable
for error-resilient applications. The proposed AxMAC units
are based on: 1) approximate multipliers for power reduc-
tion, and 2) an input-aware conditional block to approximate
input operands then replace multiplication with a simple
shift operation. The proposed input-aware MAC units are
applicable to multipliers regardless of their size or being
signed or unsigned. Proposed designs achieve an energy
reduction of 66.6% and 65.7% with an overhead of 5% and
7.9% more area for Ax4MAC and Ax5MAC, respectively.
These proposed designs are quite competitive compared
to the state-of-the-art. The experimental results of logis-
tic regression classifier and image processing applications
show that the proposed approximate designs result in non-
distinguishable outputs compared to the accurately processed
ones. The output quality of approximate computing is highly
input dependent, i.e., for some inputs, the output errors may
reach unacceptable levels. Therefore, a run-time adaptive
AxMAC unit design is being considered for future research
as well as investigating multipliers with different settings,
i.e., larger and/or signed operands.

REFERENCES
[1] J. Von Neumann, ‘‘Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components,’’ in Automata Studies, vol. 34. Prince-
ton, NJ, USA: Princeton Univ. Press, 1956, pp. 43–98.

[2] A. K. Mishra, R. Barik, and S. Paul, ‘‘iACT: A software-hardware frame-
work for understanding the scope of approximate computing,’’ in Proc.
Workshop Approx. Comput. Across Syst. Stack, 2014, p. 52.

[3] J. Bornholt, T. Mytkowicz, and K. McKinley, ‘‘UnCertain< T >: A first-
order type for uncertain data,’’ SIGPLANNotices, vol. 49, no. 4, pp. 51–66,
2014.

[4] H. Nakahara and T. Sasao, ‘‘A deep convolutional neural network based on
nested residue number system,’’ in Proc. Int. Conf. Field Program. Logic
Appl., 2015, pp. 1–6.

[5] (2019). CEVA NeuPro a Family of AI Processors for Deep Learning at
the Edge. Accessed: Aug. 6, 2019. [Online]. Available: https://www.ceva-
dsp.com/product/ceva-neupro/

[6] M. Masadeh, O. Hasan, and S. Tahar, ‘‘Comparative study of approximate
multipliers,’’ in Proc. ACM Great Lakes Symp. VLSI, 2018, pp. 415–418.

[7] M. Masadeh, O. Hasan, and S. Tahar, ‘‘Comparative study of approximate
multipliers,’’ CoRR, vol. abs/1803.06587, pp. 1–23, Mar. 2018. [Online].
Available: http://arxiv.org/abs/1803.06587

[8] R. P. P. Singh, P. Kumar, andB. Singh, ‘‘Performance analysis of fast adders
using VHDL,’’ in Proc. Int. Conf. Adv. Recent Technol. Commun. Comput.,
2009, pp. 189–193.

[9] L.-H. Chen, O. T.-C. Chen, T.-Y. Wang, and Y.-C. Ma, ‘‘A multiplication-
accumulation computation unit with optimized compressors and min-
imized switching activities,’’ in Proc. Int. Symp. Circuits Syst., 2005,
pp. 6118–6121.

[10] J.-K. Chang, H. Lee, and C.-S. Choi, ‘‘A power-aware variable-precision
multiply-accumulate unit,’’ in Proc. Int. Symp. Commun. Inf. Technol.,
2009, pp. 1336–1339.

[11] M. S. Kumar, D. A. Kumar, and P. Samundiswary, ‘‘Design and perfor-
mance analysis of multiply-accumulate (MAC) unit,’’ in Proc. Int. Conf.
Circuits, Power Comput. Technol., 2014, pp. 1084–1089.

[12] S. Dutt, A. Chauhan, R. Bhadoriya, S. Nandi, and G. Trivedi, ‘‘A high-
performance energy-efficient hybrid redundant MAC for error-resilient
applications,’’ in Proc. Int. Conf. VLSI Design, 2015, pp. 351–356.

[13] D. Esposito, A. G. M. Strollo, and M. Alioto, ‘‘Low-power approximate
MAC unit,’’ in Proc. 13th Conf. Ph.D. Res. Microelectron. Electron., 2017,
pp. 81–84.

[14] A. Cilardo, D. D. Caro, N. Petra, F. Caserta, N. Mazzocca, E. Napoli, and
A. G. M. Strollo, ‘‘High speed speculative multipliers based on speculative
carry-save tree,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 12,
pp. 3426–3435, Dec. 2014.

[15] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, ‘‘Energy-
efficient approximate multiplier design using bit significance-driven logic
compression,’’ in Proc. Design, Autom. Test Eur. Conf., 2017, pp. 7–12.

[16] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,
‘‘Design of fixed-width multipliers with linear compensation function,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 947–960,
May 2011.

[17] M. de la Guia Solaz, W. Han, and R. Conway, ‘‘A flexible low power DSP
with a programmable truncated multiplier,’’ IEEE Trans. Circuits Syst.,
vol. 59, no. 11, pp. 2555–2568, Nov. 2012.

[18] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, ‘‘Design of
voltage-scalable meta-functions for approximate computing,’’ in Proc.
Design, Autom. Test Eur., 2011, pp. 1–6.

[19] A. Raha and V. Raghunathan, ‘‘qLUT: Input-aware quantized table lookup
for energy-efficient approximate accelerators,’’ ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5s, 2017, Art. no. 130.

[20] C. Alvarez, J. Corbal, and M. Valero, ‘‘Fuzzy memoization for floating-
point multimedia applications,’’ IEEE Trans. Comput., vol. 54, no. 7,
pp. 922–927, Jul. 2005.

[21] Y. Voronenko and M. Püschel, ‘‘Multiplierless multiple constant multipli-
cation,’’ ACM Trans. Algorithms, vol. 3, no. 2, May 2007, Art. no. 11.

[22] H. T. Nguyen and A. Chattejee, ‘‘Number-splitting with shift-and-add
decomposition for power and hardware optimization in linear DSP syn-
thesis,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 4,
pp. 419–424, Aug. 2000.

[23] A. Raha, H. Jayakumar, andV. Raghunathan, ‘‘Input-based dynamic recon-
figuration of approximate arithmetic units for video encoding,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 3, pp. 846–857,
Mar. 2016.

[24] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
‘‘ASLAN: Synthesis of approximate sequential circuits,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–6.

[25] S. Hashemi, R. I. Bahar, and S. Reda, ‘‘DRUM: A dynamic range unbiased
multiplier for approximate applications,’’ in Proc. Int. Conf. Computer-
Aided Design (ICCAD), 2015, pp. 418–425.

[26] M. Imani, D. Peroni, and T. Rosing, ‘‘CFPU: Configurable floating point
multiplier for energy-efficient computing,’’ in Proc. Design Autom. Conf.,
2017, pp. 1–6.

[27] M. Imani, R. Garcia, S. Gupta, and T. Rosing, ‘‘RMAC: Runtime config-
urable floating point multiplier for approximate computing,’’ in Proc. Int.
Symp. Low Power Electron. Design, 2018, pp. 12-1–12-6.

[28] P. Kulkarni, P. Gupta, andM. Ercegovac, ‘‘Trading accuracy for power with
an underdesigned multiplier architecture,’’ in Proc. Int. Conf. VLSI Design,
2011, pp. 346–351.

[29] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, ‘‘Low-power high-speed multiplier
for error-tolerant application,’’ in Proc. Int. Conf. Electron Devices Solid-
State Circuits, 2010, pp. 1–4.

[30] T. Yang, T. Ukezono, and T. Sato, ‘‘Low-power and high-speed approxi-
mate multiplier design with a tree compressor,’’ in Proc. Int. Conf. Comput.
Design, 2017, pp. 89–96.

[31] Z. Yang, J. Han, and F. Lombardi, ‘‘Approximate compressors for error-
resilient multiplier design,’’ in Proc. Int. Symp. Defect Fault Tolerance
VLSI Nanotechnol. Syst., 2015, pp. 183–186.

[32] (2019). Virtex-6 XC6VLX75T FPGA. Accessed: Aug. 6, 2019.
[Online]. Available: https://www.digikey.com/product-detail/en/xilinx-
inc/XC6VLX75T-1FF484I/XC6VLX75T-1FF484I-ND/2500879

VOLUME 7, 2019 147141

M. Masadeh et al.: Input-Conscious AxMAC for Energy-Efficiency

[33] (2019). Mentor Graphics Modelsim. Accessed: Aug. 6, 2019.
[Online]. Available: https://www.mentor.com/company/higher_ed/
modelsim-student-edition

[34] (2019). Xilinx XPower Analyser. Accessed: Aug. 6, 2019. [Online].
Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/ug733.pdf

[35] (2019). Xilinx Integrated Synthesis Environment. Accessed: Aug. 6, 2019.
[Online]. Available: https://www.xilinx.com/products/design-tools/ise-
design-suite/ise-webpack.html

[36] V. Gupta, D.Mohapatra, A. Raghunathan, and K. Roy, ‘‘Low-power digital
signal processing using approximate adders,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013.

[37] W.-C. Yeh and C.-W. Jen, ‘‘High-speed and low-power split-radix FFT,’’
IEEE Trans. Signal Process., vol. 51, no. 3, pp. 864–874, Mar. 2003.

[38] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, ‘‘Inexact designs for
approximate low power addition by cell replacement,’’ in Proc. Design,
Autom. Test Eur., 2016, pp. 660–665.

[39] J. Liang, J. Han, and F. Lombardi, ‘‘New metrics for the reliability of
approximate and probabilistic adders,’’ IEEE Trans. Comput., vol. 62,
no. 9, pp. 1760–1771, Sep. 2013.

[40] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective.
Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[41] (2019). Logistic Regression. Accessed: Aug. 6, 2019. [Online]. Available:
https://www.coursera.org/learn/machine-learning

[42] C. Solomon, Fundamentals of Digital Image Processing: A Practical
Approach with Examples in MATLAB. Hoboken, NJ, USA: Wiley, 2011.

MAHMOUD MASADEH (S’18) received the
B.Sc. degree in computer engineering from
Yarmouk University, Irbid, Jordan, in 2003,
theM.Sc. degree in computer engineering from the
Delft University of Technology, The Netherlands,
and the M.Sc. degree in management information
system (MIS) from the Arabic Academy for Bank-
ing and Financial Sciences (AABFS), Jordan. He
is currently pursuing the Ph.D. degree with Con-
cordia University. From 2005 to 2011, he was a

full-time TA, and from 2013 to 2016, as a full-time Instructor with Yarmouk
University. He is currently a Research Assistant, under the supervision of
Prof. S. Tahar, with Concordia University. His current research interests
include approximate computing and energy-efficient VLSI circuit design. He
is a Student Member of ACM and the Jordanian Engineering Association.

OSMAN HASAN (M’07–SM’14) received
the B.Eng. degree (Hons.) from the University
of Engineering and Technology at Peshawar,
Pakistan, in 1997, and the M.Eng. and Ph.D.
degrees from Concordia University, Montreal,
Canada, in 2001 and 2008, respectively. From
2001 to 2003, he was an ASIC Design Engineer
with LSI Logic Corporation, Ottawa, Canada. He
is currently an Associate Professor with the the
School of Electrical Engineering and Computer

Science, National University of Sciences and Technology (NUST), Pakistan.
He is also an Adjunct Professor with Concordia University. He is also a
Founder and the Director of the SAVe Lab, NUST, which mainly focuses on
the design and formal verification of embedded systems. He was a member
of the Association for Automated Reasoning (AAR) and a Member of the
Pakistan Engineering Council (PEC). He has received several awards and
distinctions, including the Pakistan’s Higher Education Commission’s Best
University Teacher Award, in 2010, the Best Young Researcher Award,
in 2011, and the President’s Gold Medal Award for the Best Teacher of the
University from NUST, in 2015.

SOFIÈNE TAHAR (M’96–SM’07) received the
Diploma degree in computer engineering from
the Technische Universität Darmstadt, Darmstadt,
Germany, in 1990, and the Ph.D. degree (Hons.)
in computer science from the University of Karl-
sruhe, Karlsruhe, Germany, in 1994. He is cur-
rently a Professor and the Research Chair in
formal verification of systems-on-chip with the
Department of Electrical and Computer Engineer-
ing, Concordia University, Montreal, QC, Canada,

where he is also a Founder and the Director of the Hardware Verification
Group. His current research interests include formal hardware verification,
system-on-chip verification, AMS circuit verification, and probabilistic, sta-
tistical, and the reliability analysis of systems. He is a Senior Member of
ACM and a Professional Engineer in the Province of Quebec. He recevied
the title of the University Research Fellow upon receiving the Concordia
University’s Senior Research Award, in 2007.

147142 VOLUME 7, 2019

