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Abstract
Designing dependable multiprocessor systems requires reliable interconnection networks.
Multistage interconnection networks (MINs), including shuffle-exchange networks (SENs),
are widely used to establish the desired connection. The failure of these networks can degrade
the overall systemperformance,whichmay lead to significant losses. In this paper,wepropose
to formally model and analyze the dynamic dependability aspects of SENs using a combina-
tion of dynamic fault trees (DFTs) and dynamic reliability block diagrams (DRBDs) based
on higher-order logic (HOL) theorem proving. We propose to integrate these two modeling
approaches for efficiently handling the considered formal dependability analysis by lever-
aging upon the advantages of each method. The soundness of this integration is provided
through a formal proof of equivalence between the DFT and DRBD algebras. We utilize the
proposed framework to provide the formal DFT and DRBD analyses of three common mea-
sures of SENs, namely: terminal, broadcast and network reliability. The proposed approach
allowed us to verify generic expressions of probability of failure and reliability of these sys-
tems, which can be instantiated with any number of system components and time-to-failure
functions.

Keywords Dynamic dependability analysis · Shuffle-exchange networks · Dynamic fault
trees · Dynamic reliability block diagrams · Theorem proving · Higher-order logic · HOL4

1 Introduction

Multiprocessor systems are increasingly being used tomeet the ongoing demand for intensive
processing applications, due to their cost-effectiveness and the feasibility to utilize hundreds
of processors. Thesemultiprocessor systems allow parallel computing, to enhance the overall

B Yassmeen Elderhalli
y_elderh@ece.concordia.ca

Osman Hasan
o_hasan@ece.concordia.ca

Sofiène Tahar
tahar@ece.concordia.ca

1 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00448-z&domain=pdf
http://orcid.org/0000-0003-4437-2933


286 Formal Methods in System Design (2024) 62:285–325

Fig. 1 Overview of multiprocessor system architecture.

system performance, such as throughput. However, memory and I/O peripheral resources
are shared among the processors and thus an efficient data routing among system nodes is
necessary to maintain high system performance, reliability and low cost. This is of a great
importance, particularly in scientific applications, where a huge number of processors are
used, i.e., large-scale multiprocessor systems [19]. Therefore, a dedicated interconnection
network is used to connect processors and memory modules, as depicted in Fig. 1 [19].

The complexity of interconnection networks ranges from simple networks, such as time-
shared bus to complicated ones, such as crossbar switching. The former has a negative impact
on the system performance, while the latter has much higher cost as there exists a separate
link between each pair of nodes in the systems. For example, for a system of N nodes, i.e.,
N inputs and N outputs, it is required to have N 2 links or switching elements between each
input and output.

Multistage interconnection networks (MINs) have been introduced to reduce the number
of required switching elements and hence, reduce the cost while providing better performance
than shared-bus networks [20]. The main idea of MINs is to have multiple small stages of
crossbar switches that are connected between sources (inputs) and destinations (outputs),
which results in a considerable reduction in the number of used switching elements. The
number of paths available between each input and output determines the category of theMIN.
A single-path MIN has only one path to route information between each source-destination
pair. A shuffle-exchange network (SEN) is an example of such type of networks. Each stage
has N/2 switching elements, where N is the number of inputs and outputs of the network.
Usually the switching elements are of size 2 × 2 to reduce the cost. The number of stages
required to establish the single-path MIN is log2N , which is lower than crossbar networks.
For instance, an 8× 8 SEN is shown in Fig. 2, where only a single path is available for each
input–output pair. However, the reliability of single-path MINs and SENs depends on the
switching elements and thus a fault in any of these switches cannot be tolerated.

Enhancing the dependability of MINs, i.e., its ability to provide a trusted service [3], is of
great importance in order tomaintain high system performance. Therefore, redundant switch-
ing elements are used to ensure that the network is able to provide the required switching
even after the failure of some of these elements [1, 21]. Thus, multiple-path MINs are used
to increase the fault tolerance and hence the network reliability. For instance, SEN+ [33] is
a SEN, where an additional stage is added to provide two paths between each input–output
pair, as shown in Fig. 3. However, even with the additional path, the failure of some switches
can lead to the failure of the connection in some situations. For example, in Fig. 3, if the
first two switches in stage 2 fail, then the paths between source 0 and destination 0 are not
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Fig. 2 An 8 × 8 SEN.

Fig. 3 An 8 × 8 SEN+.

available anymore. Therefore, spare parts can be used, such as in [20], to replace switches
after failure.

Studying the reliability of SENs has been an active research area [5, 28, 33, 34]. The
reliability of MINs are commonly analyzed using simulation or analytically. For example, in
[17],MonteCarlo simulationwasused to analyze the reliability of SENs.However, simulation
cannot provide accurate results due to its sampling based nature. Although Continuous Time
Markov Chains (CTMCs) can be used to analytically determine the reliability of MINs [30],
they cannot be used with large-scale systems since the state space grows exponentially with
the increase in the number of system components. On the other hand, when the complexity
of the network increases, reliability bounds provide estimate values for the MIN reliability
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[16, 35]. Reliability block diagrams (RBDs) have been also used in the analysis of MINs
with single and multiple paths. For instance, in [4], the reliability of SEN, SEN+ and SEN+2
(a SEN with two additional stages) is modeled using traditional RBDs. Generic expressions
of success rates of the switching elements are provided analytically assuming that all these
elements have the same failure rate. However, these generic expressions are not formally
verified,whichmay raise questions about their accuracy. Furthermore, dynamic dependencies
among system components, where not only the failure of a component affects the failure of
the system, but also the time of failure and the dependency of one component on another, is
an important aspect that has not been considered or modeled in the literature. For example,
using spare switches can enhance the system reliability.

Dynamic dependabilitymodels, such as dynamic fault trees (DFTs) [31] and dynamic reli-
ability block diagrams (DRBDs) [7], capture the dynamic failure and success dependencies,
respectively, among system components, and hence are more suitable in modeling real-world
systems, such as MINs. Recently, higher-order-logic (HOL) theorem proving has been used
in the formal analysis of both models algebraically [11, 13], where generic expressions are
formally verified that are independent of the failure distributions of system components. This
ensures the soundness of the analysis, which is suitable for safety-critical systems.

Based on the previous discussion, accurate modeling and analysis of these networks is
necessary to capture the dynamic behavior as this will provide design engineers with some
measures that can help enhancing the performance of the entire multiprocessor system. In
a first attempt to use higher-order logic theorem proving for the dependability analysis of
MINs, in [11], we formally analyzed the terminal reliability of SEN+ as a case study using
higher-order logic theorem proving. We analyzed the reliability of the network using DRBD
while adding spare switches to replace the critical ones after failure. However, we did not take
into account other aspects of SENs, such as the broadcast and network reliability. Further-
more, in [11], we have not considered generic versions of the given networks. In this paper,
we propose to use both formalizations in conducting the dynamic dependability analysis of
SENs of multiprocessor systems.We propose to integrate the DFT and DRBD formalizations
in a framework that allows the formal analysis of these models using a theorem prover. Fur-
thermore, this framework provides a bidirectional path between both formalizations allowing
reasoning about both the failure and success of a given system. In this work, we utilize this
framework to formally verify the terminal, broadcast and network reliability of SEN and
SEN+ in HOL and provide generic expressions of reliability and probability of failure. In
addition, we verify the equivalence of these models, which allows using the analysis results
of one model in reasoning about the other one.

The rest of the paper is structured as follows: Sect. 2 provides a brief description of the
available DFT and DRBD formalizations in HOL4. Section3 describes the proposed frame-
work for DFT-DRBD formal analysis. Sections4, 5 and 6 provide the formal verification of
the terminal, broadcast and network reliability analysis, respectively, of SEN and SEN+ along
with the formal equivalence of their dynamic dependability models. Finally, we conclude the
paper in Sect. 7.

2 Preliminaries

In this section, we provide some preliminaries related to the HOL4 probability, DFT and
DRBD theories that are required for understanding the rest of the paper.

123



Formal Methods in System Design (2024) 62:285–325 289

2.1 Probability theory in HOL4

A probability space is defined as a triplet (Ω,A,Pr), where Ω is the sample space, A
is the set of probability events and Pr is the probability measure [26]. The HOL function
p_space p returns the sample space (Ω) of the above triplet, while events p returns
the set of events (A). A random variable is a measurable function that maps the probability
space p to another measurable space. It is defined in HOL as [26]:

Definition 1
� ∀X p s. random_variable X p s ⇔

prob_space p ∧ X ∈ measurable (p_space p, events p) s

In the definition above, X is the random variable, p is the probability space and s is the
space that the random variable maps to. In our work, we use the borel space, which is
defined over the real line [29].

The probability distribution is defined as the probability that a randomvariable, X , belongs
to a certain set, A [24]:

Definition 2
� ∀p X. distribution p X =

(λs. prob p (PREIMAGE X s ∩ p_space p))

The cumulative density function (CDF) is defined as [2]:

Definition 3
� ∀p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

In the definition above, p is a probability space, X is a real-valued random variable and t is
a variable of type real and represents time.

When two random variables are independent, then the probability of the intersection
of their events equals the multiplication of the probabilities of the individual events. This
definition is ported from Isabelle/HOL [27] to HOL4 as [29]:

Definition 4
� indep_vars p M X ii =

(∀i. i ∈ ii ⇒
random_variable (X i) p

(m_space (M i), measurable_sets (M i))) ∧
indep_sets p

(λi.
{PREIMAGE f A ∩ p_space p |

(f = X i) ∧ A ∈ measurable_sets (M i)}) ii

This definition ensures that a group X is composed of random variables indexed by the
elements in set ii and that the events represented by the preimage of these random variables
are independent using indep_sets. Based on Definition 4, indep_var is defined to
capture the behavior of independence for two random variables [29].

The probabilistic Principle of Inclusion and Exclusion (PIE) can be used to express a
relationship between the probability of the union of different events as:

Pr

(
n⋃

i=1

Ai

)
=

∑
t 
={},t⊆{1,2,...,m}

(−1)|t |+1Pr

⎛
⎝⋂

j∈t
A j

⎞
⎠ (1)
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Table 1 HOL4 probability functions

Function Explanation

rv_gt0_ninfinity L Random variables in list L are greater than 0 and not equal
to +∞

indep_var p lborel

(real o X) lborel (real o Y)

Independence of input random variables defined from the
probability space p to the Lebesgue Borel measure
(lborel)

distributed p lborel (real o X)fx Defines a density function fx for the real version of random
variabe X defined from the probability space p to the
Lebesgue–Borel measure

measurable_CDF p (real o Y) Ensures that CDF (FY) is measurable

cont_CDF p (real o Y) Ensures that CDF (FY) is contiunous

cond_density lborel lborel p
(real o X)(real o Y) y fxy fy fXa|Y

Defines a conditional density function fX a|Y using the joint
density function fxy and the marginal density function fy

den_gt0_ninfinity fXa YfY fXa|Y Ensures the proper values for the density functions;
joint, marginal and conditional, respictively. 0 ≤ fXaY,
0 < fY and 0 ≤ fXa|Y

indep_sets p X s Ensures that the group of sets X indexed by the numbers in
set s are independent over the probability space p

It is formally verified in HOL4 in [2], where it is used to express the probability of union
of list of events, L:

Theorem 1
� ∀p L.

prob_space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union_list L =
sum_set {t | t ⊆ set L ∧ t 
= {}}
(λt. -1 pow (CARD t+1) * prob p (

⋂
t))

The Lebesgue integral is defined in HOL4 based on positive functions and functions with
positive and negative values [25]. In this work, we use the Lebesgue integral to integrate
cumulative density functions and probability density functions, which are always positive.
Thus, we use the Lebesgue integral for positive functions, i.e., pos_fn_integral. We
integrate over the real line and thus we use the Lebesgue-Borel measure (lborel) [29] for
this purpose. The boundaries of this integral can be identified using an indicator function
by specifying the set of elements used in the integration. For example,

∫
A f (x) dx can be

represented as pos_fn_integral lborel (λx. indicator_fn A * f x). How-
ever, for the ease of understanding, we use the regular mathematical expressions, i.e., we
use

∫
A f (x) dx to express the integrals instead. Table 1 lists the probability theory functions

used in the rest of the paper, which are explained in [9].

2.2 Dynamic fault trees

A fault tree (FT) is a graphical representation of the the sources of failure that lead to
the failure of a given system using fault tree gates, such as AND and OR gates [32]. A
failure in this context means that the system will stop delivering its proper functionality.
Static fault trees (SFTs) only consider the sources of failure without taking into account the
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Fig. 4 DFT gates.

Table 2 Definitions of DFT temporal operators

Operator Mathematical expression Formalization

Before A � B =
{
A, A < B

+∞, A ≥ B
� ∀ A B. D_BEFORE A B =
(λs. if A s < B s then A s
else PosInf)

Simultaneous AΔB=
{
A, A = B

+∞, A 
= B
� ∀ A B. D_SIMULT A B =

(λs. if A s = B s then A s
else PosInf)

Inclusive Before A � B=
{
A, A ≤ B

+∞, A > B
� ∀ A B. D_INCLUSIVE_BEFORE A B =

(λs. if A s ≤ B s then A s
else PosInf)

dependencies among systemcomponents.However, SFTs cannot capture the behavior of real-
world systems, where such failure dependencies are common. For instance, the failure of a
main part can activate its spare. Dynamic fault trees (DFTs) can capture these dependencies
using DFT gates (Fig. 4) [32]. As an example, consider the Priority AND (PAND) gate
(Fig. 4d), which models the sequence of events that can lead to the failure of another event in
the system. Such behavior, which is a realistic one, cannot be modeled using the traditional
SFT gates.

In order to analyze a given DFT formally within a theorem prover, it is required to have
some kind of algebra to mathematically capture the behavior of the gates and thus model
the DFT. In [23], a DFT algebra is proposed to enable expressing the output of a given DFT
(structure function) based on the system components. The algebraic approach based DFT
analysis relies on presenting the basic events, which represent system components, and the
output of DFT gates based on their time of failure [23]. Identity elements are defined to
express two states of system components. The ALWAYS element represents a component
that already failed, i.e., the time of failure equals 0. The NEVER element models a fail safe
component, which means that its time of failure equals +∞. Three temporal operators are
also introduced in [23], i.e., Before (�), Simultaneous (Δ) and Inclusive-before (�), to model
the dynamic behavior of one event failing before the other, at the same time and before or at the
same time, respectively [23]. In [10], we provided the HOL formalization of these operators
(Table 2), where we defined them as lambda abstracted functions that return extended-real
numbers (extreal), which include real numbers and ±∞ to model the NEVER element.
In [23], several simplification theorems are presented to help reduce the structure function of
a given DFT. However, without any formal proofs, the soundness of such reduction cannot
be guaranteed. In [10], we formally verified these theorems to ensure their correctness and
the soundness of the analysis as well.
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Table 3 DFT gates expressions and probability of failure

Gate Mathematical expression Probability of failure

AND X · Y = max(X , Y ) FX (t) × FY (t)

OR X + Y = min(X ,Y ) FX (t) + FY (t) − FX (t) × FY (t)

PAND QPAND =
{
Y X ≤ Y

+∞ X > Y

∫ t

0
fY (y) FX (y) dy

FDEP X + Y = min(X ,Y ) FX (t) + FY (t) − FX (t) × FY (t)

Spare
QSP =Y · (Xd � Y ) + Xa · (Y � Xa)

+YΔXa + YΔXd

∫ t

0

( ∫ t

v
f(Xa |Y=v)(u)du

)
fY (v)dv+∫ t

0
fY (u)FXd (u)du

Fig. 5 DFT example.

In [23], the DFT gates, shown in Fig. 4, are modeled based on the time of failure of their
output. For instance, the output of the AND gate fails when both inputs fail. Thus, the time
of failure of the output equals to the maximum time of failure of both inputs. The Priority-
AND (PAND) gate models the sequence of failure dependencies in a system. The Functional
DEPendency (FDEP) gate is used to model failure triggers of system components. The time
of failure of the triggered component equals to the minimum of the time of failure of the
trigger or the component as the latter may fail due to a failure of the trigger or the failure
of the component itself. The spare gate models spare parts in a system, where the spare (X )
replaces a main part (Y ) after its failure. In the general case, the failure distribution of the
spare is attenuated by a dormancy factor from the active state. Therefore, in the DFT algebra,
two variables are used to distinguish the time of failure of the spare in both its states; active
(Xa) and dormant (Xd ). Table 3 lists the definitions of these gates, which we formalized in
HOL [10].

An example of a DFT is shown in Fig. 5. In this example, there are three inputs to the
DFT: A, B, and C , and two gates: OR and PAND. The output of this tree fails if input A fails
before B or if input C fails.

In order to verify the probability of failure expression, given in Table 3, we need to
define a DFT_event to be used in the probabilistic analysis. This event is a set satisfying
the condition that the input function is less than or equal to time t , which represents the
moment of time until which we are interested in finding the probability of failure. Without
this DFT_event, there is no possible way to apply the probability directly to DFT gates.
We first need to create the DFT_event for the time-to-failure function of the output event
of any gate and then apply the probability to it. This is formally defined as [10]:
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Definition 5
� ∀p X t. DFT_event p X t = {s | X s ≤ Normal t} ∩ p_space p

In the previous definition, X is the time to failure function that can represent inputs and
outputs of DFT gates and t is the time until which we are interested in finding the probability
of failure. The type of t is real, while the time to failure functions are of type extreal and
thus it is required to typecast t to extreal using the Normal function. We verified the
probability of failure of all DFT gates based on this event and using their formal definitions,
as given in Table 3 [10]. For the rest of the paper, we will omit the typecasting from real
to extreal and vice versa to abstract the presentation.

In [14], we extended the definitions of the AND, OR and PAND gates to n-ary gates in
order to be able to verify generic expressions for any number of system components. We
defined the n-ary AND as:

Definition 6
� ∀ L. n_AND L = FOLDR (λ a b. D_AND a b) ALWAYS L

In the previous definition,D_AND is theDFTANDgate.FOLDR applies a 2-input function,
D_AND in this case, over a list, L that represents the time-to-failure functions of the input
events, i.e., the random variables. ALWAYS is used in this definition to apply the function to
the last element in the list L.

We defined the n-ary OR gate as [14]:

Definition 7
� ∀ L. n_OR L = FOLDR (λ a b. D_OR a b) NEVER L

In the previous definition, D_OR is the DFT OR gate. D_OR is the 2-input function used
with FOLDR in this definition. NEVER is used here since it will not affect the behavior of the
OR gate.

2.3 Dynamic reliability block diagrams

The reliability of a given system is the probability that this system will continue to function
as intended. A reliability block diagram (RBD) graphically models the paths that ensure
a successful system behavior. These paths are composed of system components that are
connected in a series or parallel manner and can be further extended to series–parallel,
parallel-series or even more nested hierarchy based on the reliable behavior of the system, as
shown in Fig. 6. Usually, systems may encompass dependent failure behaviors among their
components. This requires a more advanced modeling approach. Dynamic reliability block
diagrams (DRBDs) capture such dependencies using DRBD constructs, like for example the
spare and load sharing constructs, shown in Fig. 7. The blocks in a DRBD can be connected
in series, parallel, series–parallel and parallel-series, similar to a traditional RBD. Figure8
shows a simpleDRBD,which is composed of a spare construct and an input that are connected
in series.

We proposed an algebra that allows expressing the structure function of a given DRBD
based on system blocks [11]. The reliability of a given system can be expressed using this
DRBD algebra. We defined several operators that enable expressing DRBDs of series and
parallel configurations and evenmore complex structures. Furthermore, the defined operators
allow modeling a DRBD spare construct to capture the behavior of spares in a system. We
provided the HOL formalization of this algebra to ensure its soundness and enable the formal
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Fig. 6 RBD structures.

Fig. 7 DRBD constructs.

Fig. 8 DRBD example.
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Table 4 Definitions of DRBD operators

Operator Mathematical expression Formalization

AND X · Y = min(X , Y ) � ∀X Y. R_AND X Y =
(λs. min (X s) (Y s))

OR X + Y = max(X , Y ) � ∀X Y. R_OR X Y =
(λs. max (X s) (Y s))

After X � Y =
{
X , X > Y

+∞, X ≤ Y
� ∀X Y.R_AFTER X Y =
(λ s.if Y s < X s then X s
else PosInf)

Simultaneous XΔY =
{
X , X = Y

+∞, X 
= Y
� ∀X Y. R_SIMULT X Y =
(λs. if X s = Y s then X s
else PosInf)

Inclusive After X � Y =
{
X , X ≥ Y

+∞, X < Y
� ∀X Y. R_INCLUSIVE_AFTER X Y =
(λs. if Y s≤ X s then X s
else PosInf)

analysis using HOL4.We first formally define a DRBD event that creates the set of time until
which we are interested in finding the reliability [11]:

Definition 8
� ∀p X t. DRBD_event p X t = {s | t < X s} ∩ p_space p

In the previous definition, X is the time to failure function of a system component and t
is the moment of time until which we are interested in finding the reliability of the system.
The probability of this event represents the reliability of the system until time t [11]:

Definition 9
� ∀p X t. Rel p X t = prob p (DRBD_event p X t)

Then, we verify that its probability is related to the CDF [11].
We introduced DRBD identity elements and operators to model both the combinatorial

and dynamic behaviors, as listed in Table 4. The idea is similar to the DFT algebra, where
the blocks are modeled based on their time of failure. We need to recall that DRBDs are
concerned in modeling the successful behavior, i.e., the “not failing" behavior, and thus we
can use the time to failure functions to model the behavior of a given DRBD. We defined
two identity elements for DRBD that are similar to the DFT elements, i.e., ALWAYS = 0 and
NEVER = +∞. The DRBD operators are listed in Table 4. The AND operator (·) models
series DRBD blocks, where it is required that all the blocks are working. The output of
the AND operator fails with the first failure of any component of its inputs. On the other
hand, the OR operator (+) models parallel structures, where at least one of the blocks should
continue to work to maintain the system functionality. To capture the dynamic behavior, we
introduced three temporal operators, i.e., After, Simultaneous and Inclusive-after [11]. The
after operator (�) models the sequence of events, where the system continues to work as long
as one component continues towork after the failure of the other. For example, (X�Y ),means
that the system continues to work when component X continues to work after the failure of
component Y . The simultaneous operator (Δ) is similar to the one of the DFT algebra, where
its output fails when both inputs fail at the same time. Finally, the inclusive-after operator
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Table 5 Mathematical models and reliability of spare, series and parallel structures

Mathematical Expression Reliability

Spare (Xa � Y ) · (Y � Xd ) 1 − ∫ t
0

∫ t
y f(Xa |Y=y)(x) fY (y)dxdy −∫ t

0 fY (y)FXd (y)dy

Series
⋂n

i=1(event (Xi , t))
∏n

i=1 RXi (t)

Parallel
⋃n

i=1(event (Xi , t)) 1 − ∏n
i=1(1 − RXi (t))

(�) combines the behavior of both after and simultaneous operators. We provided the HOL
formalization of these elements and operators based on lambda abstracted functions and
extreal numbers. The mathematical expressions and the HOL formalization are listed in
Table 4. The reliability expressions of these operators are available at [11, 12]. Furthermore,
we verified several simplification theorems that enable reducing the structure function of a
given DRBD [12].

A spare construct, shown in Fig. 7a, is introduced in DRBDs to model spare parts in
systems by having spare controllers that activate the spare after the failure of the main part.
In Table 5, Y is the main part and after its failure X is activated. We use two variables
(Xa , Xd ), similar to the space in the DFT algebra to model the active and dormant states,
respectively. The spare can have three variants, i.e., hot, warm and cold spare. The cold spare
starts working only after the failure of the main part, which means it cannot fail while it is
dormant. The hot spare can fail in both the active and dormant stateswith the same probability.
The warm spare can fail in both active and dormant states but with different probabilities.
In [12], we formally verified the reliability expressions of these three variants based on the
verified reliability expressions of the operators.

DRBD blocks can be connected in series, parallel and more nested structures. We provide
here the details of only the series and parallel structures, as listed in Table 5. Details about the
nested structures can be found in [11, 12]. The series structure, shown in Table 5, continues
to work as long as all the blocks are working. Once one of these blocks stops working, then
the entire system stops as well. It can be expressed using the AND operator. Its mathemati-
cal model is expressed as the intersection of the individual DRBD events [18]. The parallel
structure, shown in Table 5, is composed of several blocks that are connected in parallel. Its
structure function can be expressed using the OR operator. Its mathematical model is repre-
sented using the union of the individual DRBD events. We developed the HOL formalization
of these structures and verified their reliability expressions assuming the independence of
the individual blocks [11].

3 Framework for formal dynamic dependability analysis

In order to efficiently use the above formalized DFT and DRBD algebras for conducting the
formal dynamic dependability analysis of SENs, we propose in this section a comprehensive
framework, which enables the modeling and analysis of DFTs and DRBDs in HOL and
produces generic expressions of dependability. Figure9 depicts the proposed dependability
analysis framework, which starts by reading a given system description that can be modeled
as a DFT to model the failure or DRBD to model the success. Based on the library of
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Fig. 9 Framework for formal dynamic dependability analysis using HOL4.

formalized DFT gates and DRBD constructs, a formal dependability model of the given
system can be created. The libraries also include the verified simplification theorems for
both algebras, which enables formally verifying a reduced dependability model of the given
system. This ensures the soundness of the reduction process and allows conducting the
analysis of this reduced model instead of the original model. Based on the reduced model,
the qualitative analysis of the given system can be performed to determine the sources of
failure, in case of a DFT, or success, in case of a DRBD. More specifically, the cut sets and
cut sequences are identified, where the former represent the sets of basic events that lead to
the failure/success of the top event without considering the order of occurrence, while the
latter require determining the exact sequence of occurrences that lead to this failure/success.
The formally verified probabilistic behavior of the DFT gates and operators as well as the
reliability expressions of the DRBD constructs are included in our library. We perform the
quantitative analysis by verifying generic expressions of dependability, i.e., probability of
failure for DFTs and reliability for DRBDs. The importance of this framework lies in the fact
that these verified expressions are generic and independent of the failure distributions of the
basic events. This represents an advantage over model checking based approaches, where
only exponential distributions are considered and the failure rates have to be identified in
advance before starting the analysis.

Our proposed framework also allows formally converting a DFT model into its corre-
sponding DRBD and vice-versa based on the equivalence of both algebras. This implies that
a DRBDmodel can be analyzed as described in Sect. 2.3, where a DRBD event is created and
its reliability is verified based on the available DRBD algebra verified theorems. The DRBD
model can also be converted to a DFT to model the failure instead of the success so that the
model is analyzed using the DFT algebra. Similarly, the DFT model can be analyzed based
on the DFT algebra, as described in Sect. 2.2, or by converting it to its counterpart DRBD
model.

In order to handle the DFT analysis using DRBD algebra and the DRBD analysis using the
DFT algebra, it is required to formally prove the equivalence of both algebras (Equivalence
Proof in Fig. 9). According to [6], the OR, AND and FDEP gates can be represented using
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Table 6 Verified equivalence of DFT gates and DRBD algebra

DFT gate DRBD operator/construct Verified theorem

AND OR � ∀X Y. D_AND X Y = R_OR X Y

OR AND � ∀X Y. D_OR X Y = R_AND X Y

FDEP AND � ∀X Y. FDEP X Y = R_AND X Y

PAND Inclusive After � ∀X Y. P_AND X Y =

R_INCLUSIVE_AFTER Y X

Spare Spare � ∀Xa Xd Y.

(∀s. ALL_DISTINCT [Y s;Xa s;Xd s])⇒
(WSP Y Xa Xd = R_WSP Y Xa Xd)

series, parallel and series RBDs, respectively. Therefore, they can bemodeled usingANDand
OR operators, while the spare gate corresponds to the spare construct. Finally, the PAND gate
can be expressed using the inclusive after operator (Y � X ). However, we need to formally
verify this equivalence to ensure its correctness. In Table 6, we provide the theorems of
equivalence of DFT gates and DRBD operators and constructs, where D_AND, D_OR, FDEP,
P_AND and WSP are the names of the AND, OR, FDEP, PAND and spare DFT gates in
our HOL formalization [10]. R_WSP is the name of the warm spare DRBD construct in
our formalized DRBD [11] and the predicate ALL_DISTINCT [Y XaXd] ensures that the
inputs cannot fail at the same time.

In order to use these verified expressions in Table 6, we need to verify that the
DRBD_event and the DFT_event possess complementary sets in the probability space.
Based on this, we can verify that the probability of DRBD_event complements the proba-
bility of the DFT_event. We formally verify this as:

Theorem 2
� ∀p X t. prob_space p ∧ (DFT_event p X t) ∈ events p ⇒

(prob p (DRBD_event p X t)= 1 - prob p (DFT_event p X t))

In the previous theorem, the conditions ensure that p is a probability space and that the DFT
event belongs to the events of the probability space. This theorem can be verified also if we
ensure that the DRBD event belongs to the probability space. This theorem means that for
the same time to failure function, the DRBD and DFT events are the complements of each
other. This way, we can analyze DFTs using the DRBD algebra and vice-versa.

Based on the verification results obtained inTable 6,DFTgates can be formally represented
using DRBDs. We show that the amount of effort required by the verification engineer to
formally analyze DFTs by analyzing its counterpart DRBD is less than that of analyzing
the original DFT model. In Sect. 2.2, a DFT is formally analyzed using the DFT algebra
by expressing the DFT event of the structure function as the union of the individual DFT
events. If the probabilistic PIE is utilized to formally verify the probability of failure of the
top event, then the number of terms in the final result equals 2n −1, where n is the number of
individual events in the union of the structure function. Therefore, in the verification process,
it is required to verify at least 2n − 1 expressions. On the other hand, verifying a DRBD
would require verifying a single expression for each nested structure.

In the following sections, we utilize this framework, to conduct the dynamic dependabil-
ity analysis of shuffle-exchange networks, i.e., terminal, broadcast and network reliability
analysis.
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Fig. 10 DFT of SEN.

4 Terminal reliability analysis of shuffle-exchange networks

The terminal reliability is the reliability of the connection between a given source and des-
tination, i.e., the probability of having a reliable connection between one source-destination
pair. In this section, we analyze the terminal reliability of the SEN and SEN+ using both
DFT and DRBD models and verify their equivalence.

4.1 DFT analysis of SEN and SEN+

We model the sources of failure of both SEN and SEN+ using DFTs. We use n-ary gates,
which enable verifying expressions of the probability of failure for a generic number of
system components.

Figure 10 shows the DFT model of the SEN system. Since SENs are single path MINs,
the failure of any of the switches in the path between a given source and destination leads to
losing the connection. Therefore, adding spare parts will lower the probability of failure. For
illustration purposes, we use a spare part (WSP) to replace the main switch Y after failure.
The DFT consists of an n-ary OR gate, which means that the failure of any of the switches
interrupts the connection between the source and the destination.

Since the top event is an n-ary OR gate, we need first to verify that the DFT_event of
the n-ary OR is equal to the union of the individual events as:

Theorem 3
� ∀ p X t s. FINITE s ⇒

(DFT_event p (n_OR (MAP_SET_LIST X s)) t =⋃
i∈s {rv_to_devent p X t i})

In Theorem 3, s is a set of numbers that are used to represent the indices of the system
components.X is a group of randomvariables that represent the time-to-failure of the switches
in the system. We need to recall that n_OR accepts a list of random variables as an argument.
Therefore, we create this list using MAP_SET_LIST X s, where set s is first converted to
a list, then a list is created by mapping the random variable X over the list. In Theorem 3,
rv_to_devent creates the DFT events of the random variables. It is defined as:

Definition 10 rv_to_devent
� ∀ p X t. rv_to_devent p X t = (λi. DFT_event p (X i) t)
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This way, we can use this function to create a group of DFT events for a set of indexed
random variables. Then, we verify the probability of the n-ary OR gate in a way similar to
the probability of the DRBD parallel structure in Tables 5, which is defined as the union of
events. We formally verify this as:

Theorem 4
� ∀ p X t s. FIN_NonEmpty s

indep_sets p (λi. {rv_to_devent p X t i}) s ∧
(∀ i. i ∈ s ⇒ rv_gt0·_ninfinity [X i]) ⇒
(prob p (DFT_event p (n_OR (MAP_SET_LIST X s)) t) =
1 -

∏
i∈s (1 - FXi(t)))

In Theorem 4, it is required that the set of indices, s, is nonempty and finite, which is a
realistic condition as in any system the number of components is finite. This is asserted using
FIN_NonEmpty s. The last condition of Theorem 4 ensures that the values of the random
variables of X are greater than or equal to 0 and not equal to +∞, which is required to be
able to use the CDF of the random variable as given in [10].

We express the structure function of the DFT of SEN as:

QdSEN_Terminal=

n_OR (MAP_SET_LIST (λi. if i = 0· then WSP Y Ysa Ysd

else X i) ({0· } ∪ L))

(2)

We notice that the structure of the DFT is defined using the indices in {0·} ∪ L. 0 is the
index of the spare gate and L has the indices of the rest of the switches in the system.

Finally, we verify the probability of failure of this top event as:

Theorem 5
� ∀ p X Y Ysa Ysd t L.
let
WSPY = WSP Y Ys a Ysd;

F0·= (λi. {event_set [(DFT_event p WSPY t, 0·)]
(rv_to_devent p X t) i});

probl = (prob p (DFT_event p QdSEN_Terminal t);

prob0·= 1- prob p (DFT_event p WSPY t);
probr = 1 - prob0· *

∏
i∈L (1-FXi(t))

in
DISJOINT {0·} L ∧ FIN_NonEmpty L ∧
indep_sets p F0·({0·} ∪ L) ∧
(∀ i. i ∈ L ⇒ rv_gt0·_ninfinity [X i]) ⇒
probl = probr

In Theorem 5, event_set is a function that accepts a list of pairs in which each pair is
composed of a DFT event with its index. In this case, DFT_event p(WSP Y Ysa Ysd) t
is the event and 0· is its index. Theorem 5 requires that (1) the indices of the elements in set L
are unique and do not include 0· , which is characterized by DISJOINT {0·} L; (2) the set
L, which has the indices, is finite and not empty, which is ensured using FIN_NonEmpty
L; and (3) the independence of the events, which is ascertained using indep_sets. Based
on this theorem, we are able to verify the probability of the structure function of the terminal
reliability of SEN. Details of the proof can be found at [8].
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Fig. 11 DFT of SEN+ terminal connection.

Theorem 5 can be further rewritten based on the probability of the spare gate [10]. How-
ever, the required conditions of the latter should be satisfied, such as the continuity of the
distributions. Since we need a group of indexed sets in indep_sets, we define a function
event_set that accepts a list of pairs in which each pair is composed of a DFT event with
its index. This function also accepts the remaining blocks of the DFT that have their indices
embedded in a set (that can be generic of any size).

In SEN+, an additional path is added to increase the redundancy in the system. Therefore,
for the connection between a given source and a destination to be broken, it is required that
these two paths must be disconnected. The DFT of the SEN+ is shown in Fig. 11, where two
spares are added to replace the main switches Y and Z after failure. Switch Y is the input
switch connected to the source and switch Z is connected to the destination. This DFT is
composed of three levels. Therefore, in order to verify the probability of the top event, we
need first to verify that the DFT_event of the n-ary AND gate is equal to the intersection
of the input events. We formally verify this in HOL as:

Theorem 6
� ∀ p X t s. FIN_NonEmpty s ∧ 0· ≤ t ⇒

(DFT_event p
(n_AND (MAP_SET_LIST X s)) t =⋂

i∈s {rv_to_devent p X t i})

Then, we verify the probability of failure of the AND gate top event as:

Theorem 7
� ∀ p X t s. FIN_NonEmpty s ∧ 0· ≤ t ∧
indep_sets p (λi. {rv_to_devent p X t i}) s
(∀ i. i ∈ s ⇒ rv_gt0·_ninfinity [X i]) ⇒
(prob p
(DFT_event p
(n_AND (MAP_SET_LIST X s)) t) =

∏
i∈s (FXi(t)))
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The first three conditions in Theorem 7 are needed to be able to use Theorem 6, while
indep_sets ensures the independence of the events.

We use Theorems 4 and 7 to verify the probability of OR of AND of OR, which is required
for the probability of the top event of SEN+. We express the structure function of the DFT
of Fig. 11, QdSEN+ as:

QdSEN+_Terminal =
n_OR (MAP_SET_LIST (λi. if i = 0· then WSP Y Ysa Ysd

else if i = 1 then(
(n_OR (MAP_SET_LIST X L1)) ·
(n_OR (MAP_SET_LIST X L2))

)
else WSP Z Zsa Zsd)

{0·; 1; 2})

(3)

In the previous equation, {0; 1; 2} indicates that the OR gate has three inputs with indices 0
for the first spare, 1 for the AND of ORs, and 2 for the second spare. L1 and L2 contain the
indices of the switches in the two redundant paths (for the two lower ORs).

The DFT top event can be expressed using union and intersection of events, which can be
useful in reusing the existing theorems of probability of union of intersections and intersection
of unions. We verify this relationship as:

Theorem 8
� ∀ p Y Ysa Ysd Z Zsa Zsd X L1 L2 t.
let
WSPY = WSP Y Ysa Ysd;

WSPZ = WSP Z Zsa Zsd;

s_events_Y_Z = {event_set
[(DFT_event p WSPY t,0·);
(DFT_event p WSPZ t,3)]

(rv_to_devent p X t) i |
i ∈ ind_set [{0·}; L1; L2; {3}] a};

BU0·= {BIGUNION s_events_Y_Z | a | a ∈ ind_set
[{0·}; {1; 2}; {3}] j};

BI0·= {BIGINTER BU0·| j | j ∈ {0·; 1; 2}}
in
FINITE L1 ∧ FINITE L2 ∧
disjoint_family_on (ind_set [{0·}; L1; L2; {3}])

{0·; 1; 2; 3} ⇒
(DFT_event p (QdSEN+_Terminal)t =
BIGUNION BI0·)

In Theorem 8, disjoint_family_on (ind_set [{0·}; L1; L2; {3}])
{0·;1;2;3} ensures that the sets {0}, L1, L2 and {3} are disjoint, i.e., each switch has
a unique index. We also define ind_set, which accepts a list of sets and returns a group of
indexed sets. This is required to be able to create the hierarchy of the DFT using sets. More
details can be found at [8].

Finally, we verify the probability of failure of QdSEN+:
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Fig. 12 Probability of failure of the terminal connection of a 128 × 128 SEN+ with and without spares.

Theorem 9
� ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.
let
WSPY = WSP Y Ysa Ysd;

WSPZ = WSP Z Zsa Zsd;

events_YZ = event_set [(DFT_event p WSPY t,0·);
(DFT_event p WSPZ t,3)]

(rv_to_devent p X t);
prob0·= (1 - prob p (DFT_event p WSPY t))
prob1 = (1 -

∏
i∈L1 (1 - FXi(t))) * (1 -

∏
i∈L2 (1 - FXi(t)))

prob2 = (1 - prob p (DFT_event p WSPZ t))
probl = prob p (DFT_event p QdSEN+_Terminal t);
probr = 1 - prob0· * (1 - prob1) * prob2 ;

in
0· ≤ t ∧
SEN_set_req p L1 L2 (ind_set [{0·}; L1; L2; {3}])

(ind_set [{0·}; {1; 2}; {3}]) {0·; 1; 2} events_YZ ∧
(∀ i. i ∈ (L1 ∪ L2) ⇒ rv_gt0·_ninfinity [X i]) ⇒
(probl = probr)

In the previous theorem, it is required to ensure that the sets are finite and nonempty. It
is also required to ascertain the independence of the input events over the probability space.
We use the function SEN_set_req to combine these conditions into an abstracted format.

In order to use the above verified generic probability of failure expressions on a concrete
instance of SEN+, we take as an example the probability of failure of the terminal connection
of a 128×128 SEN+, where each OR gate of the first level of Fig. 11 has 6 inputs. We assume
that the failure rate of each switching element is 1 × 10−5. We evaluate in MATLAB [22]
the probability of failure for the SEN+ system with and without spare parts with a dormancy
factor of 0.1, as shown in Fig. 12. This result shows that considering the spares in the analysis
leads to having more reliable and realistic system than the traditional fault trees. Note that
MATLAB is only used to calculate the probability of failure and not to implement the whole
approach.
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Fig. 13 DRBD of SEN.

4.2 DRBD analysis of SEN and SEN+

For SENs (single-path MIN), the terminal reliability is modeled as a series RBD. For illus-
tration purposes, we use a spare part to replace the first input switch, and thus increase the
reliability. The DRBD of the modified SEN is shown in Fig. 13, where Y is the main switch
that will be replaced by Ys after failure and the series structure has m + 1 elements.

Using the proposed DRBD algebra in [11], we express the structure function of the SEN
DRBD as:

QSEN_Terminal =

nR_AND (λi. if i = 0· then R_WSP Y Ysa Ysd

else X i) {0· } ∪ L

(4)

In the previous equation, X is a group of indexed time-to-failure functions that represent
the blocks of the series structure and L is a set with their indices. L can be instantiated with
any group of numbers, which makes this function generic to represent the reliability model
of any SEN with any size.

Then, we verify that the DRBD_event of QSEN can be represented using the series
structure as:

Theorem 10
� ∀ p X Y Ysa Ysd t L.
let
R_WSPY = R_WSP Y Ysa Ysd;
events_Y = (λi. event_set [(DRBD_event p R_WSPY t,0·)]
(rv_to_event p X t) i);

in
DISJOINT {0·} L ∧ FIN_NonEmpty L ⇒
(DRBD_event p QSEN_Terminal t =
DRBD_series events_Y ({0·} ∪ L) )

We use event_set and ind_set to create the events, similar to the DFTs. Since we are
dealing with a series structure, we only need to specify the heirarchy of the architecture in
one direction using {0} ∪ L . We verify Theorem 10 using the relationship between nR_AND
and DRBD_series (verified in [11]) and some set-related theorems.

Based on Theorem 10, we verify a generic expression for the reliability of the SEN system:

Theorem 11
� ∀ p X Y Ysa Ysd t L.
let
R_WSPY = R_WSP Y Ysa Ysd;
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Fig. 14 Terminal reliability DRBD of SEN+.

events_Y = (λi. {event_set [(DRBD_event p R_WSPY t, 0·)]
(rv_to_event p X t) i});

indep_event_Y = indep_sets p events_Y ({0·} ∪ L);
probl = prob p (DRBD_event p QSEN_Terminal t);
probr = Rel p (R_WSPY) t *

∏
l∈L (Rel p (X l) t);

in
DISJOINT {0·} L ∧ FIN_NonEmpty L ∧ indep_event_Y ⇒
(probl = probr)

In a similar manner, the SEN+ is modeled as a series–parallel-series structure. To further
enhance the reliability, we use spare constructs as shown in Fig. 14, where Y and Z are the
main single switches that are connected to the source and destination with their spares Ys
and Zs, respectively. The parallel structure in the middle represents the reliability model
of the two alternative paths between the source and the destination. Therefore, this DRBD
consists of a series of two spare constructs and one parallel structure that consists of two
series structures.

Using our DRBD operators, we formally express the structure function of this DRBD as:

QSEN+_Terminal =
nR_AND (λi. if i = 0· then R_WSP Y Ysa Ysd

else if i = 1 then
(
(nR_AND X L1) + (nR_AND X L2)

)
else R_WSP Z Zsa Zsd) {0·; 1; 2}

(5)

Thus, the outer series structure is expressed using the nR_AND operator over the set
{0; 1; 2} as this structure contains three different substructures; i.e., two spare constructs and
one parallel structure. In order to re-utilize the verified expressions of reliability, it is required
to express this DRBD using the series and parallel structures. Therefore, we verify that the
DRBD event of the QSEN+ is equal to a nested series–parallel-series structure as:

Theorem 12
� ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.
let
R_WSPY = R_WSP Y Ysa Ysd;
R_WSPZ = R_WSP Z Zsa Zsd;
events_YZ = (λi. event_set

[(DRBD_event p R_WSPY t,0·);
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(DRBD_event p R_WSPZ t,3)]
(rv_to_event p X t) i);

DRBD_s0·= (λa. DRBD_series events_YZ (ind_set
[{0·}; L1; L2;{3}] a));

DRBD_p0·= (λj. DRBD_parallel DRBD_s0·(ind_set
[{0·}; {1; 2};{3}] j));

DRBD_s1 = DRBD_series DRBD_p0·{0·; 1; 2};
in
disjoint_family_on (ind_set [{0·; 3}; L1; L2]) {0·;1;2} ∧
FIN_NonEmpty L1 ∧ FIN_NonEmpty L2 ⇒
(DRBD_event p QSEN+_Terminal t = DRBD_s1)

In Theorem 12, disjoint_family_on (ind_set [{0·; 3}; L1; L2])
{0·;1;2} ensures that each switch has a unique index. Since we are dealing with a series–
parallel-series structure, we need three sets to identify the hierarchy of this nested structure.
Set {0· ; 1; 2} in Theorem 12 indicates that the outer series structure has three elements, i.e.,
three parallel structures. In addition, ind_set [{0·}; {1;2}; {3}] indicates that the
first parallel structure has only one series structure with index 0, the second parallel structure
has two series structures with indices 1 and 2, and the third parallel structure has only one
series structure with index 3. Finally, ind_set [{0·}; L1; L2; {3}] implies that the
first series structure has only one element with index 0, the second and third series structures
have an arbitrary number of blocks indexed by L1 and L2. The last series structure has one
element with index 3. We verify Theorem 12 using the relationship between the event of
nR_AND and the DRBD_series, and the equivalence of the event of OR with the union of
events. Some basic set-related theorems were used in the proof as well. More details can be
found at [8].

Based on Theorem 12, we verify a generic expression for the reliability of the SEN+
system:

Theorem 13
� ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.
let
R_WSPY = R_WSP Y Ysa Ysd;
R_WSPZ = R_WSP Z Zsa Zsd ;
ind_set0·= ind_set [{0·}; L1; L2; {3}];
ind_set1 = ind_set [{0·}; {1; 2}; {3}];
events_YZ = event_set [(DRBD_event p R_WSPY t,0·);

(DRBD_event p R_WSPZ t,3)]
(rv_to_event p X t);

probl = prob p (DRBD_event p QSEN_Terminal t ;
prob0·= 1 -

∏
l∈L1 (Rel p (X l) t);

prob1 = 1 -
∏

l∈L2 (Rel p (X l) t);
prob2 = 1 - prob0· * prob1;
probr = Rel p R_WSPY t * Rel p R_WSPZ t * prob2;

in
SEN_set_req p L1 L2 ind_set0· ind_set1 {0·; 1; 2} events_YZ ⇒
(probl = probr)

In Theorem 13, SEN_set_req is the same function that we use with DFTs. We first
rewrite the goal using Theorem 12, then we use the reliability of the series–parallel-series
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Fig. 15 Terminal reliability of 128 × 128 SEN+ with and without spares.

to verify the final expression. The reliability of the spare constructs can be further rewritten
using the probability of the spare construct, verified in [11], given that the required conditions
are ensured, such as the continuity of the CDFs. It can be noticed that the DRBD and the
DFT models possess the same hierarchy represented by the sets of indices, which makes it
easy to be used when going from one model to the other. More details about the proof steps
can be found at [8].

Similar to the DFT analysis, we evaluate the terminal reliability of a 128 × 128 SEN+
in MATLAB, where each inner series structure of Fig. 14 has 6 blocks. We assume that the
failure rate of each switching element is 1 × 10−5. We evaluate the reliability for the SEN+
system with and without spare parts with a dormancy factor of 0.1, as shown in Fig. 15.
Note that the results obtained here are the complement of the ones presented in Fig. 12 since
reliability is the complement of failure.

4.3 Equivalence of DFT and DRBDmodels

In Sect. 3, we described how a DFTmodel can be formally analyzed using the DRBD algebra
and vice versa. To illustrate the utilization of the proposed methodology, we formally verify
the equivalence of the DRBD and the complement of the DFT events for terminal and broad-
cast reliability of SEN and SEN+. Proving this equivalence allows verifying the probability
of one model and directly use the equivalence proof to provide the probability of the other
model. In this section, we present the equivalence theorems of the terminal reliability and
the remaining theorems for broadcast reliability will be presented in the following sections.

We verify the equivalence of the DRBD andDFTmodels of the terminal reliability of both
SEN and SEN+. Themain idea of the proof is to verify that theDFT event of SEN/SEN+ is the
complement of the DRBD event of SEN/SEN+. Since these events are part of the probability
space p_space, we need to use p_space p DIFF to express the complement of the DFT
event in the probability space p_space.
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Theorem 14 Terminal/Broadcast SEN
� ∀ p X Y Ysa Ysd t L.

let

F0·=nR_AND (λi. if i=0· then R_WSP Y Ysa Ysd else X i) {0· } ∪ L;

F1 = n_OR

(MAP_SET_LIST (λi. if i = 0· then WSP Y Ysa Ysd else X i) ({0· } ∪ L));

in

FINITE L ∧ (∀ s. ALL_DISTINCT [Y s; Ysa s; Ysd s])⇒
(DRBD_event p F0· t = p_space p DIFF DFT_event p F1 t)

Theorem 15 Terminal SEN+
� ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.
let
R_WSPY = R_WSP Y Ysa Ysd;
R_WSPZ = R_WSP Z Zsa Zsd ;
WSPY = WSP Y Ysa Ysd;
WSPZ = WSP Z Zsa Zsd;
F0·= (nR_AND X L1) + (nR_AND X L2);
F1 = nR_AND (λi. if i = 0·then R_WSPY

else if i = 1 then F0·
else R_WSPZ) {0·; 1; 2};

F2 = (n_OR (MAP_SET_LIST X L1)) · (n_OR (MAP_SET_LIST X L2));
F3 = n_OR (MAP_SET_LIST (λi. if i = 0·then WSPY

else if i = 1 then F2
else WSPZ) {0·; 1; 2});

in
FINITE L1 ∧ FINITE L2 ∧
(∀s. ALL_DISTINCT [Y s; Ysa s; Ys d s; Z s; Zsa s; Zsd s])⇒
(DRBD_event p F1 t = p_space p DIFF DFT_event p F3 t)

Based on these theorems, the terminal reliability analysis of SEN/SEN+ can be conducted
using one model and the analysis of the other model can be performed based on this equiva-
lence.

5 Broadcast reliability analysis of shuffle-exchange networks

The broadcast reliability represents the probability of having a working connection between
one source and all destinations. This is required when one of the processors in the system
needs to transmit information to all destinations in the network. We present in this section,
the broadcast reliability of the SEN and SEN+ using both DFT and DRBD models.

5.1 DFT analysis of SEN and SEN+

Since in SENs there exists a single path between each source and destination, it is required
to have a successful transmission through all these paths for a proper broadcast. Therefore,
the DFT can be modeled using an OR gate. We further lower the probability of failure by
adding an additional spare gate, as shown in Fig. 10. However, the number of DFT inputs,
which represent the switches, varies between the terminal and broadcast reliability models.
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Fig. 16 DFT of broadcast SEN+.

For example, consider an 8 × 8 SEN. The number of inputs for the terminal DFT is 3, i.e.,
log28, while the broadcast DFT requires seven inputs, i.e.,

∑log28
i=1 ( 8

2i
) [4]. Therefore, we

can also use Theorem 5 for the broadcast, since this theorem is verified for any number of
system blocks with their indices in the set s. This highlights the importance of having generic
verified expressions for any number of system blocks, which enables the re-utilization of the
theorems in different contexts.

The DFT model of the broadcast SEN+ is shown in Fig. 16. Its top event is modeled using
an OR gate that is connected to a spare gate for the input switch, AND of OR to model the
two alternative paths and finally, the rest of the destination switches in order to have a proper
broadcast transmission.

We formally express the structure function of the top event as:
QdSEN+_Broadcast =
n_OR (MAP_SET_LIST (λi. if i = 0· then WSP Y Ysa Ysd

else if i = 1 then(
(n_OR (MAP_SET_LIST X L1)) ·
(n_OR (MAP_SET_LIST X L2))

)
else (n_OR (MAP_SET_LIST X L3)))

{0·; 1; 2}) (6)

The hierarchy of the DFT is divided using the sets of indices. MAP X (SET_TO_LIST
L1),MAP X (SET_TO_LIST L2) and MAP X (SET_TO_LIST L3) are used to cre-
ate the lists of the group of random variables for the n-ary gates. L1 and L2 have the indices
of the switches in the two alternative paths, i.e., the inputs of the two lower OR gates in the
DFT of Fig. 16, while L3 has the indices of the remaining inputs of the top OR gate. The set
{0; 1; 2} indicates that the top OR gate has three inputs, which is similar to the terminal DFT
model.
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Fig. 17 Probability of failure of the broadcast of a 128 × 128 SEN+.

We use this structure function to verify the probability of failure of the top event utilizing
the probability of the n-ary OR gate and the AND gate:

Theorem 16
� ∀ p X Y Ysa Ysd t L1 L2 L3 s.
let
ind_set0·= ind_set [{0·}; L1; L2; L3];
ind_set1 = ind_set [{0·}; {1; 2}; {3}];
WSPY = WSP Y Ysa Ysd ;
DFT_WSPY = DFT_event p WSPY t;
probl = prob p (DFT_event p QdSEN+_Broadcast t);
prob0·= 1 - prob p DFT_WSPY;
prob1 = 1 -

∏
i∈L1 (1 - FXi(t));

prob2 = 1 -
∏

i∈L2 (1 - FXi(t));
prob3 = 1 - prob1 * prob2;
prob4 =

∏
i∈L3 (1 - FXi(t));

probr = 1 - prob0· * prob3 * prob4;
in
SEN_broad_set_req p L1 L2 L3 ind_set0· ind_set1 {0·; 1; 2}
(event_set [(DFT_WSPY,0·)]

(rv_to_devent p X t)) ∧ 0· ≤ t ∧
(∀ i. i ∈ (L1 ∪ L2 ∪ L3) ⇒ rv_gt0·_ninfinity [X i]) ⇒
(probl = probr)

In Theorem 16, SEN_broad_set_req ascertains the conditions required for the sets,
such as finiteness. It also ensures the independence of the events. More details about the
proof can be found at [8].

Figure 17 shows the evaluation results of the probability of failure of the DFT of Fig. 16
for a 128×128 SEN+. This SEN+ has 63 inputs for each first level OR gate and the top level
OR gate has 66 inputs. As with the terminal SEN+, we assume that the failure rate of each
switching element is 1 × 10−5 with a dormancy factor of 0.1.
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Fig. 18 Broadcast DRBD model of SEN+.

5.2 DRBD analysis of SEN and SEN+

Similar to the DFT SEN broadcast model, we can use the model in Fig. 13. However, as
mentioned previously, the number of the blocks is different. Therefore, we can also use
Theorem 11 for the broadcast reliability, since this theorem is verified for any number of
system blocks using set s.

The DRBD of the SEN+ is depicted in Fig. 18. The first block (with the spare) represents
the input switch that is connected directly to the source. The failure of this switch can interrupt
the broadcast transmission. Therefore, we add a spare part to replace it after failure. The series
structure on the right side of the figure models the switches of all destinations, as they are all
receiving the transmission. Finally, the parallel-series structure in the middle, represents the
two alternative paths that are available for each broadcast transmission. For example, for the
SEN+ shown in Fig. 3, the number of switches connected to the destinations are four, while
each one of the alternative paths has three switches.

In order to formally verify the reliability of the broadcast of the SEN+, we first express it
using our operators as:

QSEN+_Broadcast =
nR_AND (λi. if i = 0· then R_WSP Y Ysa Ysd

else if i = 1 then
(
(nR_AND X L1) +

(nR_AND X L2)
)

else (nR_AND X L3)) ({0·; 1; 2})

(7)

In the previous equation, L1 and L2 are the sets that have the indices of the inner series
structures of the parallel-series structure in the middle. The set {0; 1; 2} indicates that the
outer series structure consists of three main components. The first spare construct has index
0, while the parallel-series structure has index 1. Finally, the series structure on the left side
of Fig. 18 has index 2, and L3 has the indices of the blocks in this series structure. We verify
the reliability of this DRBD utilizing the probability of series and parallel structures as:
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Fig. 19 Broadcast reliability of a 128 × 128 SEN+.

Theorem 17
� ∀ p X Y Ysa Ysd t L1 L2 L3.
let
ind_set0·= ind_set [{0·}; L1; L2; L3];
ind_set1 = ind_set [{0·}; {1; 2}; {3}];
R_WSPY = R_WSP Y Ysa Ysd;
probl = prob p (DRBD_event p QSEN+_Broadcast t);
prob0·= Rel p R_WSPY t;
prob1 =

∏
i∈L3 (Rel p (X l) t);

prob2 = 1 -
∏

l∈L1 (Rel p (X l) t);
prob3 = 1 -

∏
l∈L2 (Rel p (X l) t);

prob4 = 1 - prob2 * prob3;
probr = prob0·* prob1 * prob4;

in
SEN_broad_set_req p L1 L2 ind_set0· ind_set1 {0·; 1; 2}

(event_set [(DRBD_event p R_WSPY t,0·)]
(rv_to_event p X t)) ⇒

(probl = probr)

We evaluate the broadcast reliability, in Fig. 19, of a 128 × 128 SEN+, where each inner
series structure of Fig. 18 has 63 blocks and the series structure on the right hand side of the
figure has 64 blocks. We use the same failure rates of 1 × 10−5 for each switching element
with a dormancy factor of 0.1.

5.3 Equivalence of DFT and DRBDmodels

Since the terminal and broadcast reliability models of the SEN are similar, Theorem 14 can
be used for the equivalence of the SEN in the broadcast reliability of both models since they
both share the same structure.

In a similar manner to the equivalence of the terminal reliability models, we verify the
equivalence of the DRBD andDFTmodels of the SEN+ broadcast reliability. More precisely,
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we verify that the DRBD event of the broadcast reliability of SEN+ is the complement of the
DFT event.

Theorem 18 Broadcast SEN+
� ∀ p X Y Ysa Ysd t L1 L2 L3.
let
R_WSPY = R_WSP Y Ysa Ysd;
nR_AND_XL1 = nR_AND X L1;
nR_AND_XL2 = nR_AND X L2;
nR_AND_XL3 = nR_AND X L3;
F0·= nR_AND_XL1 + nR_AND_XL2;
F1 = (λi. if i = 0· then R_WSPY else if i = 1

then F0· else nR_AND_XL3);
F2 = nR_AND F1 {0·; 1 2};
WSPY = WSP Y Ysa Ysd;
n_OR_XL1 = n_OR (MAP_SET_LIST X L1);
n_OR_XL2 = n_OR (MAP_SET_LIST X L2);
n_OR_XL3 = n_OR (MAP_SET_LIST X L3);
F3 = n_OR_XL1 · n_OR_XL2;
F4 = (λi. if i = 0· then WSPY else if i = 1

then F3 else n_OR_XL3);
F5 = n_OR (MAP_SET_LIST F4 ({0·; 1 2}));

in
FINITE L1 ∧ FINITE L2 ∧ FINITE L3 ∧
(∀ s. ALL_DISTINCT [Y s; Ysa s; Ysd s]) ⇒
(DRBD_event p F2 t = p_space p DIFF DFT_event p F5 t)

6 Network reliability analysis of shuffle-exchange networks

According to [4], the network reliability of SENs can be defined as the reliability of all
connections between sources (inputs) and destinations (outputs). In other words, we are
looking at the reliability of the overall network. This is usually modeled using RBDs. In this
section, we use both DFT and DRBD models in different scenarios to model the reliability
of the network.

6.1 DFT analysis of SEN and SEN+

In the SEN, it is required that all switching elements must work properly in order to maintain
a successful behavior of the network. Thus, the system fails with the failure of any of the
switching elements. The behavior can be further enhanced by using spares. The DFT of the
SENnetwork can bemodeled as in Fig. 10. However, to further enhance the system reliability,
the reliability engineer may suggest to use more spares to replace the switching elements.
Therefore, we present a generic model, where the number of switching elements that have
spares is generic, as shown in Fig. 20. This model can be also used with both the terminal
and broadcast models, when more spares are required.
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Fig. 20 DFT of SEN network
with multiple spares.

The top event of the DFT of Fig. 20 can be expressed using the DFT operators as:

QdSEN_Network =

n_OR

(MAP_SET_LIST

(λi. if i ∈ L1 then WSP (Y i) (Ysai) (Ysd i)

else X i) (L1 ∪ L2))

(8)

We verify the probability of failure of the top event in a similar way to Theorem 5 as:

Theorem 19
� ∀ p X Y Ysa Ysd t L1 L2.
let
F0·= (λi. i ∈ L1 then WSP (Y i) (Ysa i) (Ysd i) else X i);
F2 = (λi. {rv_to_devent p F0· t i});
probl = prob p (DFT_event p QdSEN_Network t);
F3 =

∏
i∈L1(1 - prob p (DFT_event p (WSP (Y i) (Ysa i)

(Ysd i))t));
F4 =

∏
i∈L2 (1 - FXi(t));

probr = 1 - F3 * F4;
in
DISJOINT L1 L2 ∧ FIN_NonEmpty L1 ∧ FIN_NonEmpty L2 ∧
(∀ i. i ∈ L2 ⇒ rv_gt0·_ninfinity [X i]) ∧
indep_sets p F2 (L1 ∪ L2) ⇒
(probl = probr)

In Theorem 19, Y, Ysa and Ysd are groups of indexed random variables that represent the
main and spare switches. Theorem 19 provides a generic scenario for the SEN, where L1 and
L2 can be instantiated with any number of distinct indices that represent the system switches,
with and without spares.

TheDFTmodel of the SEN+ network is shown in Fig. 21. It consists of a spare gate for one
of the switches in the input stage. The rest of the input switches (X1,0 to X1,r ) are connected
directly to the n-OR gate of the top event. Therefore, the failure of any of these switches leads
to the failure of the network. The series of ANDs and ANDs of ORs are used to model the
two available paths. Finally, all destination switches (X4,0 to X4,k) are required to function
and thus they are all connected to the output of the OR gate. This DFT is composed of three
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Fig. 21 DFT of SEN+ network.

levels; OR of ANDs of ORs, and thus we can use the theorems of union of intersections of
unions to verify its probability of failure if the sets of indices are handled properly.

We first express the top event using the DFT operators as:

QdSEN+_Network =

n_OR

(MAP_SET_LIST

(λi. if i = 0· then WSP Y Ysa Ysd

else if i = 1 then n_OR (MAP_SET_LIST X L1)

else if i = 3 then (n_OR (MAP_SET_LIST X L2)) ·
(n_OR (MAP_SET_LIST X L3))

else if i = 4 then n_OR (MAP_SET_LIST X L4)

else (X (2 * i)) · (X (2 * i + 1)))

({0·; 1; 3; 4} ∪ L))

(9)

In the previous equation, the spare gate is assigned index 0. The second group of switches has
index 1, while the indices of these switches, X1,0 to X1,r , are in set L1. They are represented
as n_OR (MAP_SET_LIST X L1. The output of the AND of ORs is assigned index 3
and is modeled as (n_OR (MAP_SET_LIST X L2)) · (n_OR (MAP_SET_LIST X
L3)), which is similar to both the terminal and broadcast models. The group of switches,
X4,0 to X4,k , has index 4 and is represented using n_OR (MAP_SET_LIST X L4). Thus,
we have the indices {0; 1; 3; 4} for the outer groups in the DFT. However, the last part of the
DFT, which is the series of ANDs in the middle of Fig. 21, has a generic number of AND
gates and cannot be assigned a specific index. Therefore, we use set L to get a unique index
for the output of each AND gate.We use this unique number to create the indices of the inputs
of each AND gate. For example, for an index j in set L, we create two indices for the inputs
of the AND gate as (2*j) and (2*j+1). This is modeled as (X (2 * i)) · (X (2 *
i + 1))) and set L is used with the set of indices in the outer level as (SET_TO_LIST
({0·; 1; 3; 4} ∪ L)). It is important to highlight that the indices of the individual
inputs should be unique.

We then verify that theDFT_event ofQdSEN_Network is equal to the union of intersection
of union of events as in the following theorem:
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Theorem 20
� ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

let

s0·= {2 * i | i ∈ L};

s1 = {2 * i + 1 | i ∈ L};

WSPY = WSP Y Ysa Ysd;
s_events_WSP = {event_set [(DFT_event p (WSPY) t,0·)]

(rv_to_devent p X t) i |

i ∈ if a ∈ s0· ∪ s1 then {a}

else ind_set [{0·}; L1; L2; L3; L4] a}

BU0·= {BIGUNION s_events_WSP |

a ∈ if j ∈ L then {2 * j; 2 * j + 1}

else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j};

BI0·= {BIGINTER BU0·| j ∈ {0·; 1; 3; 4} ∪ L};

BU1 = BIGUNION BI0·;
in

FIN_NonEmpty L1 ∧ FIN_NonEmpty L2 ∧ FIN_NonEmpty L3 ∧
FIN_NonEmpty L4 ∧ FINITE L ∧
DISJOINT {0·; 1; 3; 4} L ∧
(∀ i. i ∈ L ⇒ DISJOINT {2 * i; 2 * i + 1} {0·; 1; 2; 3; 4}) ∧
disjoint_family_on

(ind_set [{0·}; L1; L2; L3; L4; s0· ∪ s1]) {0·; 1; 2; 3; 4; 5} ⇒
(DFT_event p (QdSEN_Network) t = BU1)

In Theorem 20, the conditions are required to ensure that the sets are finite, nonempty
and that at each level of the DFT the indices are unique. It is clear from the theorem
how the hierarchy of the DFT is structured using the sets. For example, “if j ∈ L then
{2 * j; 2 * j + 1} else ind_set [{0· }; {1}; {}; {2; 3}; {4}] j"
determines the indices of the second level of the DFT (the ORs) based on the value of
j in the outer level. The first part “if... then" is for the series of ANDs, while the
“else" is for the rest of the parts in the second level. Although some of the parts of the
DFT have no intermediate OR gates, like the spare, we implicitly assume that there are OR
gates with single inputs to maintain the consistency. The indices of the second level indicates
the indices of the output of these gates. This can be obvious for the AND of ORs in Fig. 21,
where the OR gates have indices 2 and 3. We use an empty set ({}) in the indices of the
second level due to the fact that there is no index 2 in the outer level, and thus we assign an
empty set in the second level for this index.

We verify the probability of failure of QdSEN_Network as:

Theorem 21 � ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.
let
s0·= {2 * i | i ∈ L};
s1 = {2 * i + 1 | i ∈ L};
s2 = (λi. if i ∈ s0· ∪ s1 then {i}

else ind_set [{0·}; L1; L2; L3; L4] i);
s3 = (λj. if j ∈ L then {2 * j; 2 * j + 1}

else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j);
WSPY = WSP Y Ysa Ysd;
events_WSPY = event_set [(DFT_event p (WSPY) t,0·)];
probl = prob p (DFT_event p (QdSEN_Network) t);
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prob0·= 1 - prob p (DFT_event p (WSPY) t);
prob1 =

∏
l∈L1 (1 - FXl(t));

prob2 = 1 -
∏

l∈L2 (1 - FXl(t));
prob3 = 1 -

∏
l∈L3 (1 - FXl(t));

prob4 = 1 - prob2 * prob3;
prob5 =

∏
l∈L4 (1 - FXl(t));

prob6 =
∏

j∈L (1 - FX2*j(t) * FX2*j+1(t));
probr = 1 - prob0·* prob1 * prob4 * prob5 * prob6;

in
SEN_network_set_req p L1 L2 L3 L4 L

s2 s3 ({0·; 1; 3; 4} ∪ L)
(events_WSPY (rv_to_devent p X t)) ∧

(∀ i. i ∈ L1 ∪ L2 ∪ L3 ∪ L4 ∪ s0· ∪ s1 ⇒
rv_gt0·_ninfinity

[X i]) ⇒ (probl = probr)

In Theorem 21, SEN_network_set_req ensures that all sets are finite, nonempty and
distinct. It also ensures the independence of the input events. It accepts all sets of the indices
of the three levels. The second condition (rv_gt0·_ninfinity [X i]) ascertains that
each element in the group of random variables of X that have their indices in L1 ∪ L2 ∪ L3
∪ L4 ∪ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} are greater than or equal to 0 but
not equal +∞. This condition is required to be able to use the CDF of the random variables.

In a similar manner to the SEN network, we provide a generic model where any number of
spares can be used for the input switches. The modified DFT is shown in Fig.22. We express
the top event using the DFT operators as:

QdSEN_Network2 =

n_OR

(MAP_SET_LIST

(λi. if i = 0· then WSP (Y 0·) (Ysa 0· ) (Ysd 0·)
else if i = 1 then

(n_OR (MAP_SET_LIST X L1))

else if i = 3 then (n_OR (MAP_SET_LIST X L2))·
(n_OR (MAP_SET_LIST X L3))

else if i = 4 then n_OR (MAP_SET_LIST X L4)

else (X (2 * i)) · (X (2 * i + 1)))

({0·; 1; 3; 4} UNION L))

(10)

In the previous equation, Y, Ysa and Ysd are indexed random variables that represent the
main and spare parts for each spare gate. We choose to use the same hierarchy of Fig. 21,
where we assign index 0 for the first spare and the rest of the spares have their indices in
set L1. In addition, the model of these additional spares is embedded within X as will be
explained shortly.

We verify the probability of failure of the top event as:
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Fig. 22 DFT of SEN+ with multiple spares.

Theorem 22
� ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.
let
s0·= {2 * i | i ∈ L};
s1 = {2 * i + 1 | i ∈ L};
s2 = (λi. if i ∈ s0· ∪ s1 then {i}

else ind_set [{0·}; L1; L2; L3; L4] i);
s3 = (λj. if j ∈ L then {2 * j; 2 * j + 1}

else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j);
events_WSP0·= event_set [(DFT_event p (WSP (Y 0·) (Ysa 0·)
(Ysd 0·)) t,0·)];
probl = prob p (DFT_event p (QdSEN_Network2) t) ;
prob0·= ∏

l∈({0· }∪L1
(1 - prob p (DFT_event p (WSP (Y l) (Ysal) (Ysd l))t);

prob1 = 1 -
∏

l∈L2 (1 - FXl(t));
prob2 = 1 -

∏
l∈L3 (1 - FXl(t)));

prob3 =
∏

l∈L4 (1 - FXl(t));
prob4 =

∏
j∈L (1 - FX2*j(t) * FX2*j+1(t));

prob5 = 1 - prob1 * prob2;
probr = 1 - prob0·* prob5 * prob3 * prob4;

in
SEN_network_set_req p L1 L2 L3 L4 L

s2 s3 ({0·; 1; 3; 4} ∪ L)
(λi. events_WSP0· (rv_to_devent p X t) i) ∧

(∀ i. i ∈ L1 ∪ L2 ∪ L3 ∪ L4 ∪ s0· ∪ s1 ⇒ rv_gt0·_ninfinity
[X i]) ∧
(∀ i. i ∈ L1 ⇒ (X i = WSP (Y i) (Ysa i) (Ysd i)) ⇒
(probl = probr)

In Theorem 22, the conditions are similar to Theorem 21. However, we add the condition
that (∀ i. i ∈ L1 ⇒ (X i = WSP (Y i) (Ysa i)(Ysd i)), which adds the addi-
tional spare gates. This way, we can use Theorem 21 to verify Theorem 22. Set {0·} ∪ L1
is used to provide the indices of the spares, including the first one with index 0.
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Fig. 23 The probability of failure of the network of a 128 × 128 SEN+.

Fig. 24 DRBD of SEN network.

We evaluate the probability of failure of the networkDFT, shown in Fig. 22, for a 128×128
SEN+. The DFT of this SEN has 32 AND gates in the first level. Each OR gate in the
first level has 160 inputs. Furthermore, we assume that all 64 input switches have spares.
Figure23 shows the evaluated result of the probability of failure, where the failure rates of
each switching element is 1 × 10−5 with a dormancy factor of 0.1.

6.2 DRBD analysis of SEN and SEN+

Similar to the DFTmodels, we start first with the network reliability model of the SEN. Since
it is a single path, it can be modeled using the series DRBD of Fig. 13. Thus, we can use
Theorem 11 to provide a generic expression for its reliability. We provide a generic model in
Fig. 24, where additional spares are used. This provides a general case where we can choose
how many switches can be replaced with spares.

We express the structure function of this DRBD using DRBD operators as:

QSEN_Network =

nR_AND (λi. if i ∈ L1 then R_WSP (Y i) (Ysa i) (Ysd i)

else X i) (L1 ∪ L2)

(11)

In the previous equation, L1 and L2 provide the indices of the blocks in the series structure
for the spare constructs and the remaining blocks, respectively.

Similar to the proof steps of Theorem 13, we verify the reliability of the SEN network as:
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Fig. 25 DRBD of SEN+ newtork.

Theorem 23
� ∀ p X Y Ysa Ysd t L1 L2.
let
probl = prob p (DRBD_event p QSEN_Network t);
prob0· = ∏

i∈L1 (Rel p (R_WSP (Y i) (Ysa i) (Ysd i)) t) ;
prob1 =

∏
i∈L2(Rel p (X i) t);

probr = prob0·* prob1;
in
DISJOINT L1 L2 ∧ FIN_NonEmpty L1 ∧ FIN_NonEmpty L2 ∧
indep_sets p
(λi.
{if i ∈ L1 then DRBD_event p (R_WSP (Y i) (Ysa i) (Ysd i)) t
else (rv_to_event p X t) i}) (L1 ∪ L2) ⇒

(probl = probr)

The DRBD of the SEN+ network is modeled in Fig. 25, where only one of the switches of
the input stage can be replaced by a spare. This DRBD is composed of a series–parallel-series
structure. The indices of each level can be treated in a similar manner to the DFT.

We express the structure function using the operators with the same sets of indices of the
DFT as:

QSEN+_Network =

nR_AND

(λi.

if i= 0· then R_WSP Y Ysa Ysd

else if i = 1 then nR_AND X L1

else if i = 3 then (nR_AND X L2) + (nR_AND X L3)

else if i = 4 then nR_AND X L4

else (X (2 * i)) + (X (2 * i + 1)))

({0·; 1; 3; 4} ∪ L))

(12)

Then, we verify that the DRBD_event of this structure can be expressed as a series–parallel-
series structure as:

Theorem 24
� ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.
let
s0·= {2 * i | i ∈ L};
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s1 = {2 * i + 1 | i ∈ L};
R_WSPY = R_WSP Y Ysa Ysd;
events_Y = (λi. event_set [(DRBD_event p R_WSPY t,0·)]

(rv_to_event p X t) i);
F0·= (λj.

if j ∈ L then {2 * j; 2 * j + 1}
else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j);

DRBD_s0·= (λa. DRBD_series events_Y
((λi. if i ∈ s0· ∪ s1 then {i}

else ind_set [{0·}; L1; L2; L3; L4] i) a));
DRBD_p0·= (λj. DRBD_parallel DRBD_s0·(F0· j));
DRBD_s1 = DRBD_series DRBD_p0·({0·; 1; 3; 4} ∪ L);

in
FIN_NonEmpty L1 ∧ FIN_NonEmpty L2 ∧ FIN_NonEmpty L3 ∧
FIN_NonEmpty L4 ∧ FINITE L ∧
DISJOINT {0·; 1; 3; 4} L ∧
(∀ i. i ∈ L ⇒ DISJOINT {2 * i; 2 * i + 1} {0·; 1; 2; 3; 4}) ∧
disjoint_family_on
(ind_set [{0·}; L1; L2; L3; L4; s0· ∪ s1]) {0·; 1; 2; 3; 4; 5} ⇒

(DRBD_event p (QSEN_Network) t = DRBD_s1)

Details about the steps of the proof can be found at [8].
Finally, we verify the reliability of the DRBD using the previous Theorem and the prob-

ability of parallel and series structures as:

Theorem 25
� ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.
let
s0·= {2 * i | i ∈ L};
s1 = {2 * i + 1 | i ∈ L};
s2 = (λi. if i ∈ s0· ∪ s1 then {i}

else ind_set [{0·}; L1; L2; L3; L4] i);
s3 = (λj. if j ∈ L then {2 * j; 2 * j + 1}

else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j);
R_WSPY = R_WSP Y Ysa Ysd;
probl = prob p (DRBD_event p (QSEN_Network) t);
prob0·= Rel p R_WSPY t;
prob1 =

∏
l∈L1 (Rel p (X l) t);

prob2 = 1 -
∏

l∈L2 (Rel p (X l) t);
prob3 = 1 -

∏
l∈L3 (Rel p (X l) t);

prob4 = 1 - prob2 * prob3;
prob5 =

∏
l∈L4(Rel p (X l) t);

prob6 = 1 - Rel p (X (2 * j)) t;
prob7 = 1 - Rel p (X (2 * j + 1)) t;
prob8 =

∏
j∈L (1 - prob6 * prob7);

probr = prob0·* prob1 * prob4 * prob5 * prob8;
in
SEN_network_set_req p L1 L2 L3 L4 L s2 s3 ({0·; 1; 3; 4} ∪ L)

(event_set [(DRBD_event p (R_WSP Y Ysa Ysd) t, 0·)]
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Fig. 26 DRBD of SEN+ network with multiple spares.

(rv_to_event p X t)) ⇒
(probl = probr)

It is worth mentioning that the conditions of the sets are similar to those in Theorem 21
of the DFT.

Finally, we provide a generic model to have any number of spares that can replace the
input switches, as shown in Fig. 26. We choose to use the same indices of Fig. 25 in order to
reutilize the verified theorems.

We express the structure of the DRBD of Fig. 26 as:

QSEN_Network2 =

nR_AND

(λi.

if i = 0· then R_WSP (Y 0·) (Ysa 0·) (Ysd 0·)
else if i = 1 then nR_AND X L1

else if i = 3 then (nR_AND X L2) + (nR_AND X L3)

else if i = 4 then nR_AND X L4

else (X (2 * i)) + (X (2 * i + 1)))

({0·; 1; 3; 4} ∪ L))

(13)

In the previous equation, Y, Ysa and Ysd are indexed groups of random variables that
represent the main parts and their spares.

Finally, we use Theorem 25 to verify the reliability of this DRBD as:

Theorem 26
� ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.
let
s0·= {2 * i | i ∈ L};
s1 = {2 * i + 1 | i ∈ L};
s2 = (λi. if i ∈ s0· ∪ then {i}

else ind_set [{0·}; L1; L2; L3; L4] i);
s3 = (λj. if j ∈ L then {2 * j; 2 * j + 1}

else ind_set [{0·}; {1}; {}; {2; 3}; {4}] j);
events_R_WSPY0·= event_set

[(DRBD_event p (R_WSP (Y 0·) (Ysa 0·) (Ysd 0· )) t,0·)];
probl = prob p (DRBD_event p (QSEN_Network2) t);
prob0·=∏

l∈({0·}∪L1 (Rel p (R_WSP (Y l) (Ysa l) (Ysd l)) t);
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Fig. 27 The network reliability of a 128 × 128 SEN+.

prob1 = 1 -
∏

l∈L2 (Rel p (X l) t);
prob2 = 1 -

∏
l∈L3 (Rel p (X l) t);

prob3 = 1 - prob1 * prob2;
prob4 =

∏
l∈L4(Rel p (X l) t);

prob5 =
∏

j∈L (1 -
(1 - Rel p (X (2 * j)) t) *
(1 - Rel p (X (2 * j + 1)) t));

probr = prob0·* prob3 * prob4 * prob5;
in
SEN_network_set_req p L1 L2 L3 L4 L s2 s3

({0·; 1; 3; 4} ∪ L)
(events_R_WSPY0·(rv_to_event p X t)) ∧

(∀ i. i ∈ L1 ⇒ (X i = R_WSP (Y i)(Ysai) (Ysd i))) ⇒
(probl = probr)

As an application, we evaluate the network reliability of a 128× 128 SEN+, as shown in
Fig. 27, where there are 32 parallel structures that are connected in series. The DRBD has 64
spare constructs, while there are 160 blocks in the inner series structures. Finally, the series
structure on the right hand side of Fig. 26 has 64 blocks. We assume that the failure rates of
each switching element is 1×10−5 with a dormancy factor of 0.1. It is worth mentioning that
the equivalence of the DFT and DRBD models of the network reliability can be verified in a
similar manner to the terminal and broadcast reliability. The proof script of the verification
of SEN and SEN+, which is available at [8], is around 9600 lines of code and it took around
80h to be developed.

7 Conclusions

In this paper, we presented the formal dynamic dependability analysis of SEN and SEN+
MINs that form a critical part in the routing process of multiprocessor systems. Based on our
proposed framework for formal dynamic dependability analysis using DFTs and DRBDs, we
provided generic expressions of reliability and probability of failure of SEN/SEN+ that are
independent of the failure distributions. Furthermore, we verified these expressions for an
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arbitrary number of system blocks that can be instantiated later to a certain number without
the need to repeat the verification process. For instance, we evaluated the reliability and
probability of failure using MATLAB for a specific number of system components based on
these generic expressions. It is worth mentioning that such sound generic results cannot be
obtained using simulation or model checking as the state space should be defined in advance.
In order to facilitate the dynamic dependability analysis in HOL4, a future work direction
would consider automating this process using machine learning techniques. For instance,
the TacticToe approach implemented in [15] can be used to automate the selection of the
proper tactics to prove a goal in HOL4. This will allow end-users that are unfamiliar with
theorem proving to benefit from our DFT and DRBD formalization to provide sound analysis
of complex engineering systems.

Data availability The theories developed during the current study are available at http://hvg.ece.concordia.ca/
code/hol/SEN/index.php.
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